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Abstract—We prove theorems on locally antipodal Delaunay sets. The main result is the
proof of a uniqueness theorem for locally antipodal Delaunay sets with a given 2R-cluster.
This theorem implies, in particular, a new proof of a theorem stating that a locally antipodal
Delaunay set all of whose 2R-clusters are equivalent is a regular system, i.e., a Delaunay set on
which a crystallographic group acts transitively.
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INTRODUCTION

This paper is a continuation of the studies [8, 9] on the so-called locally antipodal Delaunay sets,
i.e., sets in which every 2R-cluster is centrally symmetric (antipodal) with respect to its center. In
particular, it was proved that if all 2R-clusters are equivalent, then the set is a regular system and,
hence (by the Schoenflies–Bieberbach theorem), is periodic.

The study of locally antipodal sets has been motivated by the fact that atoms during crystal-
lization often form centrally symmetric clusters for physical reasons. The theorem on regularity of
locally antipodal Delaunay sets, just as the series of theorems on their crystallinity in the large, is
a continuation of the local theory of regular and crystal structures that was laid down in [7]. As is
well known, this theory is aimed at formulating and proving necessary and sufficient conditions for
the regularity/crystallinity of a Delaunay set in terms of the congruence of its local fragments. The
repetitiveness of local fragments in a crystal structure is attributed by physicists to the fact that
“when the atoms of matter are not moving around very much, they get stuck together and arrange
themselves in a configuration with as low an energy as possible. If the atoms in a certain place
have found a pattern which seems to be of low energy, then the atoms somewhere else will probably
make the same arrangement. For these reasons, we have in a solid material a repetitive pattern of
atoms” (R. Feynman [10]).

If we recall the aphorism sometimes attributed to H. Poinaré (“science is a cemetery of hy-
potheses”), the local theory of crystal structures is a “grave” for the well-known postulate on the
relationship between the repetitiveness of local fragments in the atomic structure of a crystal and
its “global order,” i.e., the existence of a spatial symmetry group of the crystal.

The distinguishing feature of the theorems for locally antipodal sets is that they require just
the coincidence of clusters of radius 2R as a sufficient condition for regularity. To better appreciate
the “modesty” of this requirement, recall1 that in the class of all Delaunay sets, even in the case
of the plane, for a set to be regular, one should require the coincidence of the 4R-clusters. Indeed,
for every ε > 0, one can construct a Delaunay set in which all (4R − ε)-clusters are equivalent,
although the set is not a regular system.
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It is useful to begin the presentation of the main results with the proof of Theorem 1 given in [8]
as well as with the proof of a new theorem (Theorem 2). This order is motivated by the fact that
both the idea of the proof of Theorem 1 and Theorem 2 itself are used in the proof of Theorem 3.
Theorem 4 on regularity of locally antipodal Delaunay sets with equivalent 2R-clusters follows from
Theorem 3.

1. MAIN DEFINITIONS AND RESULTS

A set X ⊂ R
d is called a Delaunay set with parameters r and R, where r,R > 0 (or an

(r,R)-system, see [6]), if it satisfies the following two conditions:

(1) the open d-ball B◦
y(r) of radius r with center at an arbitrary point y ∈ R

d contains at most
one point from X:

#(B◦
y(r) ∩X) ≤ 1; (r)

(2) any closed d-ball By(R) of radius R contains at least one point from X:

#(By(R) ∩X) ≥ 1. (R)

Note that in view of condition (r), the distance between any two points is at least 2r.
For x ∈ X, we set Cx(ρ) := X ∩ Bx(ρ) and say that Cx(ρ) is the ρ-cluster of the point x. In

fact, by a ρ-cluster Cx(ρ) one means a pair (center, set of points): (x,Cx(ρ)). Information on such
a pair is contained in the very notation Cx(ρ). We stress that we distinguish between the ρ-clusters
Cx(ρ) and Cx′(ρ) of different points x and x′ even if the sets of points that belong to these clusters
coincide.

Two ρ-clusters Cx(ρ) and Cx′(ρ) are said to be equivalent if there exists an isometry g ∈ O(d)
such that

g : x �→ x′ and g : Cx(ρ) → Cx′(ρ).

Note that the requirement of equivalence of clusters is somewhat stronger than the requirement
of congruence of the sets of points that belong to these clusters.

Let X be a Delaunay set. If for every ρ > 0 the number of classes of equivalent ρ-clusters is finite,
then the set X is said to be of finite type. For a Delaunay set X of finite type, denote the number of
classes of ρ-clusters by N(ρ). The function N(ρ) in such a Delaunay set is positive, integer-valued,
nondecreasing, piecewise constant, and right-continuous. Important examples of Delaunay sets of
finite type are given by regular systems and by a more general class of Delaunay sets, the so-called
crystals.

A regular system is a Delaunay set whose symmetry group acts transitively; i.e., for any two
points x and x′ in X, there exists an isometry g of the space R

d such that

g : x �→ x′ and g : X → X.

A set X ⊂ R
d is a regular system if and only if it is an orbit of a point x ∈ R

d under some
crystallographic group G acting in R

d.
Recall that a subgroup G ⊂ Iso(d), where Iso(d) is the group of all isometries of the space R

d,
is called a crystallographic group if

(1) G acts discontinuously at every point x ∈ R
d; i.e., the orbit G · x is discrete;

(2) G has a compact fundamental domain.

A crystal is a Delaunay set that is an orbit G ·X0 of a finite set X0 under some crystallographic
group G.
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Thus, a regular system is an important case of a crystal, with #(X0) = 1. In terms of the
cluster-counting function N(ρ), these sets are distinguished as follows. A Delaunay set is a regular
system if and only if N(ρ) ≡ 1 on R+. A Delaunay set is a crystal if and only if the cluster-counting
function is bounded:

N(ρ) ≤ m < ∞, where m ≤ #(X0).

If m = 1, then the crystal is a regular system. The possible inequality m < #(X0) is due to the
fact that some points in the set X0 may generally belong to the same G-orbit.

Regular systems were introduced and studied by Sohncke [2] and Fedorov [1].
Theorem (Schoenflies [3] for d = 3, Bieberbach [4, 5] for d ≥ 4). Every crystallographic group

G ⊂ Iso(Rd) contains a finite-index subgroup T of parallel translations of the space:

G = T ∪ Tg2 ∪ . . . ∪ Tgh,

where the index h is bounded by a constant depending on d: h ≤ H(d).
By the Schoenflies–Bieberbach theorem, every crystal G · X0 decomposes into a finite num-

ber (≤ mh) of congruent parallel lattices of rank d:

G ·X0 =
m⋃

i=1

(
T · xi ∪ T · g2(xi) ∪ . . . ∪ T · gh(xi)

)
, xi ∈ X0.

Consider the group of a ρ-cluster Cx(ρ) as a subgroup Sx(ρ) of Iso(d) that consists of isometries s
such that

s : x �→ x, s : Cx(ρ) �→ Cx(ρ),

and denote by Mx(ρ) the order of the group Sx(ρ). Since X is a Delaunay set (with parameters r
and R), the dimension of the affine hull of the ρ-cluster is finite for every ρ ≥ 2R; hence, the
function Mx(ρ) ≥ 1 is defined on [2R,∞) and is integer-valued, left-continuous, piecewise constant,
and nonincreasing. That the order Mx(ρ) does not increase is because each symmetry of a larger
ρ′-cluster Cx(ρ

′) must also leave invariant a smaller ρ-cluster Cx(ρ), ρ < ρ′. Therefore, the group
Sx(ρ

′) of the larger cluster Cx(ρ
′) either coincides with the group Sx(ρ) or is a proper subgroup of

the latter.
A Delaunay set X is said to be locally antipodal if for every point x ∈ X the 2R-cluster Cx(2R)

is centrally symmetric with respect to the point x, i.e., if for every x ∈ X the group Sx(2R) contains
the central symmetry with respect to x.

Theorem 1 [8]. A locally antipodal Delaunay set X is globally antipodal with respect to each
of its points x.

Theorem 2 [9]. Any locally antipodal Delaunay set X ⊂ R
d can be represented as

X =

N⋃

i=1

(x+ vi + Λ), (1.1)

where x ∈ R
d is a point, Λ is a d-dimensional lattice, and the vectors v1, v2, . . . , vN , where 1 ≤

N ≤ 2d − 1, are representatives of some cosets of the quotient lattice Λ
2 /Λ.

Theorem 3. Let X be a locally antipodal Delaunay set with a parameter R, and let Y ⊂ R
d be

an arbitrary (not necessarily Delaunay) set in which the 2R-cluster C ′
y(2R) of every point y ∈ Y is

antipodal with respect to y. Suppose that x ∈ X ∩ Y and Cx(2R) = C ′
x(2R) ⊂ X ∩ Y . Then X = Y .
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The hypothesis of the theorem does not require that Y should be a Delaunay set; i.e., we do
not even rule out the possibility that the 2R-cluster Cy(2R) is an infinite set. And only for one
point x ∈ X ∩ Y we assume that the 2R-cluster C ′

x(2R) in the set Y coincides with the 2R-cluster
Cx(2R) of the Delaunay set X. Theorem 3 strengthens a theorem announced in [9] in which both
sets X and Y are assumed to be Delaunay sets.

The following theorem is an easy corollary of Theorem 3.
Theorem 4 [8, 9]. Let N(2R) = 1 for a locally antipodal Delaunay set X. Then X is a

regular system, i.e., N(ρ) ≡ 1 for all ρ > 0.
Proof. Let us prove that for an arbitrary pair x, x′ ∈ X there exists an isometry g such that

g(x) = x′ and g(X) = X. Indeed, since N(2R) = 1, there exists a g such that g(x) = x′ and
g(Cx(2R)) = Cx′(2R).

Set Y := g−1(X). It is clear that the sets X and Y satisfy the hypothesis of Theorem 3.
Therefore, X = Y . Hence, g(X) = g(Y ) = g(g−1(X)) = X. Thus, the symmetry group of X acts
on X transitively. Since X is a Delaunay set, it follows that X is a regular system. Theorem 4 is
proved. �

2. PROOFS OF THEOREMS 1–3

Proof of Theorem 1. Suppose the contrary, i.e., that some locally antipodal Delaunay set X
is not centrally symmetric with respect to some of its points x0. Then there exists a point x1 ∈ X
such that the point x′1 symmetric to it with respect to x0 does not belong to X. Since X is a
Delaunay set, we can assume without loss of generality that the point x1 minimizes the distance
|x1 − x0| over all points x1 with the indicated property.

Set ρ := |x1 − x0|. Since the cluster Cx0(2R) is centrally symmetric, we have ρ > 2R.
Let z and z′ be the points lying on the line segment [x0x1] at a distance of R and 2R from the

point x1, respectively. It is easy to see that the balls Bz(R) and Bz′(2R) are tangent to the sphere
∂Bx0(ρ) from the inside at the point x1. In addition, the ball Bz′(2R) is homothetic to the ball
Bz(R) with homothety center at the point x1 and with ratio 2.

In view of conditions (r) and (R) from the definition of a Delaunay set, the intersection
X ∩ Bz(R) cannot consist of a single point x1. Therefore, we can choose a point x2 �= x1 such
that x2 ∈ X ∩Bz(R). It is clear that

|x2 − x1| ≤ 2R.

By the hypothesis of the theorem, the cluster Cx2(2R) is antipodal. Moreover, x1 ∈ Cx2(2R).
Therefore, if x3 is a point symmetric to x1 with respect to x2, then x3 ∈ X. On the other hand, it
is easy to see that x3 ∈ Bz′(2R) and x3 �= x1. Consequently,

|x3 − x0| < ρ.

Finally, the conditions x2 ∈ Bz(R) and x2 �= x1 imply

|x2 − x0| < ρ.

Let x′1, x′2, and x′3 be the points symmetric to x1, x2, and x3 with respect to x0. In view of the
choice of the point x1 (as a closest point to x whose antipode with respect to x does not belong
to X), we have x′2 ∈ X and x′3 ∈ X. However, since |x′3 − x′2| = |x3 − x2| ≤ 2R, the point x′3
belongs to the cluster Cx2(2R). Since the cluster Cx2(2R) is antipodal with respect to x2, it follows
that the point x′1, which is symmetric to x′3 with respect to x′2, also belongs to Cx2(2R) ⊂ X. Thus,
x′1 ∈ X. But this contradicts the assumption that the point symmetric to x1 with respect to x does
not belong to X. �
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Similar arguments will be used in the proof of Theorem 3.
Proof of Theorem 2. Denote by t(v) the parallel translation by a vector v, and let T (X) be

the group of all translational isometries of the set X. Set

Λ := {v : t(v) ∈ T (X)}.

It is clear that the set Λ is discrete; therefore, it is a lattice. Let us show that the rank of the
lattice Λ is d.

It is easy to see that for any pair of points x, x′ ∈ X we have 2(x′ − x) ∈ Λ. Indeed, by
Theorem 1, the central symmetries with respect to each of the points x and x′ are symmetries of
the set X. Hence, the parallel translation by the vector 2(x′ − x), which is the composition of these
symmetries, is also a symmetry of the set X. Since X is a Delaunay set, it follows that the rank of
the lattice Λ is d.

The Delaunay set X is a union of a finite number of lattices that are congruent and parallel to
the lattice Λ, i.e.,

X =
N⋃

i=1

(xi + Λ).

However, by what has been proved above, for i = 2, 3, . . . , N we have xi − x1 ∈ Λ/2. Setting
x := x1 and vi = xi − x1 (i = 1, 2, . . . , N), we obtain (1.1). The inequality N ≤ 2d follows from the
fact that the number of classes in Λ/2Λ is at most 2d. The case N = 2d is also impossible, because
then

T (X) = {v : v ∈ Λ/2}.

In this case the set T is a lattice for which Λ is a proper sublattice. However, this contradicts the
definition of the lattice Λ as a maximal group of translations of the set X. �

Proof of Theorem 3. We will prove the inclusions X ⊆ Y and Y ⊆ X.
1. Let us prove that X ⊆ Y .
Suppose the contrary: X \ Y �= ∅. Since X is a Delaunay set, one can choose a point x1 ∈ X \ Y

that is closest to the point x among the points of the set X \ Y .
Set ρ := |x1 − x|, and let C ′

y(ρ) be a cluster in the set Y . Notice that x ∈ X ∩ Y and that the
equality Cx(2R) = C ′

x(2R) rules out the case of ρ ≤ 2R. Therefore, we can assume that ρ > 2R.
Let z and z′ be the points lying on the line segment [xx1] at a distance of R and 2R from the

point x1, respectively. Notice that z and z′ may not lie in X or in Y . It is easy to see that the balls
Bz(R) and Bz′(2R) are tangent to the sphere ∂Bx(ρ) from the inside at the point x1. Moreover,
the ball Bz′(2R) is homothetic to the ball Bz(R) with homothety center at x1 and with ratio 2.
Therefore, the following strict inclusions are valid:

Bx(ρ) ⊃ Bz′(2R) \ {x1} ⊃ Bz(R) \ {x1}.

By conditions (r) and (R), the intersection X ∩Bz(R) cannot consist of a single point x1, because
the point x1 is located on the boundary of the ball Bz(R). Therefore, we can choose a point x2 �= x1
in X such that x2 ∈ X ∩ Bz(R). It is clear that |x2 − x1| ≤ 2R. Moreover, |x2 − x| < ρ. The
assumption that x1 is the closest point to x in X \ Y implies that the point x2 ∈ X also belongs
to Y : x2 ∈ Y .

By the hypothesis of the theorem, the cluster Cx2(2R) is antipodal. Moreover, x1 ∈ Cx2(2R).
Therefore, if x3 is the point symmetric to x1 with respect to x2, then x3 ∈ X.

On the other hand, it is easy to see that x3 ∈ Bz′(2R) and x3 �= x1. Therefore, |x3 − x| < ρ.
By the choice of the value of ρ, we have x3 ∈ Y .
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Thus, we have x2 ∈ Y , x3 ∈ Y , and |x3 − x2| ≤ 2R. Finally, consider the cluster C ′
x2
(2R),

which, according to the hypothesis of the theorem, is symmetric with respect to the point x2 and
contains the point x3. Hence, it also contains the point x1, i.e., x1 ∈ Y . We have obtained a
contradiction to the assumption that x1 ∈ X \ Y . Thus, the inclusion X ⊆ Y is proved.

2. Let us prove that Y ⊆ X. Suppose the contrary: Y \X �= ∅.
Take an arbitrary point y1 ∈ Y \X, and let |y1 − x| = ρ, where ρ > 2R. Let us show that there

exists an infinite sequence of points
y1, y2, . . . , yn, . . .

such that

(1) yi ∈ Y \X,
(2) |yi+1 − x| < |yi − x|, and
(3) (yi + yi+1)/2 ∈ X.

Let us show that there exists a point y2 that does not violate conditions (1)–(3); the subsequent
terms of the sequence can be constructed in a similar way.

Let z and z′ be the points lying on the line segment [xy1] at a distance of R and 2R from the
point y1, respectively. It is easy to see that the balls Bz(R) and Bz′(2R) are tangent to the sphere
∂Bx(ρ) from the inside at the point y1. Moreover, the ball Bz′(2R) is homothetic to the ball Bz(R)
with homothety center at y1 and with ratio 2.

By condition (R), the intersection X ∩ Bz(R) is nonempty. Therefore, one can choose a point
x1 ∈ X ∩Bz(R). Since x1 ∈ X, we have (as shown above) x1 ∈ Y .

The cluster C ′
x1
(2R) is antipodal. Hence, it contains a point y2 symmetric to the point y1 with

respect to x1. Thus, condition (3) for i = 1 is satisfied. If it turned that y2 ∈ X, then the cluster
Cx1(2R) would also contain y1 (together with y2). But this is impossible, because y1 /∈ X. Hence,
condition (1) for i = 2 is satisfied. Finally, condition (2) for i = 1 takes the form |y2 − x| < ρ. This
inequality is valid because y2 ∈ Bz′(2R).

Thus, we have found a sequence {yi} satisfying conditions (1)–(3). Next, we apply Theorem 2.
Notice that by condition (3), the subsequence {y2k+1} consists of points of the form y1 + v, where
the vector v belongs to the lattice Λ from formula (1.1).

It follows from condition (2) that all terms of the sequence {yi} are different and lie in the
ball Bx(ρ), with ρ := |x− y1|. However, the ball Bx(ρ) can contain only a finite number of different
points of the form

y1 + v, where v ∈ Λ.

The contradiction obtained proves the inclusion Y ⊆ X.
The theorem is proved. �
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