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THREE PLOTS ABOUT THE CREMONA GROUPS

VLADIMIR L. POPOV∗

To the memory of V. A. Iskovskikh

Abstract. The first group of results of this paper concerns the compressibility of
finite subgroups of the Cremona groups. The second concerns the embeddability
of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups.

1. Introduction

1.1. The Cremona group Crn(k) of rank n over the field k is the group of k-
automorphisms of the field k(x1, . . . , xn) of rational functions over k in the variables
x1, . . . , xn. It admits a geometric interpretation: if the field k(x1, . . . , xn) is iden-
tified by means of a k-isomorphism with the field k(X) of an irreducible algebraic
variety X defined and rational over k, then each element σ of the group Birk(X) of
all k-birational self-maps X 99K X determines the element σ∗ ∈ Crn(k),

σ∗(f) := f ◦ σ, f ∈ k(X), (1.1)

and the mapping Birk(X) → Crn(k), σ 7→ (σ−1)∗, is an isomorphism of groups. For
this reason, the group Birk(X) is called the Cremona group as well and denoted
by Crn(k). Which interpretation of Crn(k) is meant—algebraic or geometric— is
usually clear from context. The naturally defined concept of a morphism of an al-
gebraic variety into the Cremona group (or the concept of an algebraic family of
elements of the Cremona group) allows one to endow it with the Zariski topology
[Se10, 1.6]. Besides this property, there is a number of others which permit to speak
about the far-reaching analogies between the Cremona groups and affine algebraic
groups, see [Po131], [Po132], [Po142], [Po17].

The Cremona groups are classical objects of research, intensity of which in re-
cent years increased significantly and led to essential advances in understanding the
structure of these groups. Among the most impressive is tour de force [DI09] by I. V.
Dolgachev and V. A. Iskovskikh on the classification of finite subgroups of Cr2(C).

1.2. In this paper, three aspects of the structure of the Cremona groups are ex-
plored.

The topic of the (longest) Section 2 is the comparison of different finite subgroups
of the Cremona group Crn(k), where k is an algebraically closed field of characteristic
zero. So far, in the studies of these subgroups, including that in [DI09], they were all
considered on an equal footing. However, in reality it is necessary to consider some
of them as “not basic”, since they are obtained from others by a standard “base
change” construction [Po141, 3.4]. This leads to the problem, formulated in [Po141,
3.4], [Po16, Quest. 1], of finding those subgroups in the classification lists that are
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2 VLADIMIR L. POPOV

obtained by such a nontrivial change, or, in another terminology, are nontrivially
“compressible” (see definitions in Subsection 2.1).

Developing this topic, in Section 2 we prove a series of statements about such
subgroups. Some of them are of a general nature, while some concern cases n = 1
and 2. For example, we obtain the following result (Theorem 2.1), which immedi-
ately implies the nontrivial self-compressibility of any finite subgroup G in Cr1: for

the corresponding binary group G̃ of linear transformations of the affine plane, we

find an infinite increasing sequence of integers d > 0 such that G̃ admits a ho-
mogeneous polynomial self-compression of degree d, which descends to a nontrivial
self-compression of the group G. The proof allows us in principle to specify these
self-compressions by explicit formulas. For n = 2, we prove, for example, that if G
is a non-Abelian finite subgroup of GL2(k) ⊂ Cr2(k) that is not isomorphic to a
dihedral group, then every finite subgroup in Cr2(k), isomorphic to G as an abstract
group, is obtained from G by a nontrivial base change (Theorem 2.17). Other state-
ments on this subject, proved in Section 2, see below in Theorems 2.8–2.17 and their
Corollaries.

1.3. The subject of Section 3 is the embeddability of other groups in the Cremona
groups and, conversely, the embeddability of the Cremona groups in other groups.
This theme originates from the question of J.-P. Serre [Se091, §6, 6.0] on the existence
of finite groups that are nonembeddable in Cr3(C). By now (September 2018) signi-
ficant information is accumulated on it (including the affirmative answer to this
question). The most essential contribution to its obtaining is related to the Jordan
property (see Definition 3.1 below) of the Cremona groups Crn(k), whose proof
for any n has been completed recently1. Although the statements about the group
embeddings proved in Section 3 are also related to the Jordan property, which is in
the focus of attention already for quite a long time, in the published literature they
did not occur to the author.

The fact that, for char k = 0, every finite p-subgroup of Crn(k) is Abelian for
sufficiently big p, immediately follows from the Jordan property of the Cremona
groups (this was noted already in [Se091, §6, 6.1]). Therefore, every non-Abelian
finite p-group (such exist for any p) is nonembeddable in Crn(k) for sufficiently big
p. We prove (Corollary 3.7) for any Cremona group Crn(k) with char k = 0, the
existence of an integer bn,k > 0 such that every product of groups G1 × · · · × Gs,
each of which contains a non-Abelian finite subgroup, is nonembeddable in the group
Crn(k) if s > bn,k. In particular, for any (and not only for sufficiently big) prime
integer p, there exists a non-Abelian finite p-group that is nonembeddable in Crn(k).

Considering p-subgroups delivers invariants, which allow us to prove in some cases
that one group is nonembeddable in another. Some applications are obtained on this
way.

1In [PS16, Thm. 1.8], it was given the conditional (modulo the so-called BAB conjecture) proof
of the Jordan property of the group Birk(X) for any rationally connected algebraic k-variety X in
the case of chark = 0 (and therefore, the conditional proof of the Jordan property of any Cremona
group Crn(k)). The BAB conjecture was then proved in [Bi17, Thm. 3.7]. This completed the proof
of the Jordan property of the groups Birk(X).
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For example, we prove (Corollary 3.13) that if k is an algebraically closed field
of characteristic zero, and with each integer d > 0 any abstract group Hd from the
following list is associated:

(a) Crd(k),
(b) Aut(Ad

k),
(c) a connected affine algebraic group over k with maximal tori of dimension d,
(d) a connected real Lie group with maximal tori of dimension d,

then the group Hn is nonembeddable in Hm if n > m. In particular, the groups Hn

and Hm for n 6= m are not isomorphic.
Another example (Theorem 3.16): we prove that if M is a compact connected

n-dimensional topological manifold, and BM is the sum of its Betti numbers with
respect to homology with coefficients in Z, then for

d >

√
n2 + 4n(n+ 1)BM + n

2
+ log2BM ,

the Cremona group Crd(k) is nonembeddable in the homeomorphism group of the
manifold M .

Concerning other statements on nonembeddable groups proved in Section 3, see
below Lemma 3.2, Theorems 3.11, 3.12, 3.17 and their Corollaries.

1.4. In Section 4, we return back to the question of J.-P. Serre on the connectedness
of the Cremona group Crn(k) in the Zariski topology [Se10, 1.6]. It was answered
in the affirmative in [BZ18], where the linear connectedness (and therefore the con-
nectedness) of the group Crn(k) is proved in the case of an infinite field k (for an
algebraically closed field k, this was proved earlier in [Bl10]). We give a short new
proof for the case of an infinite field k. It is based on an argument, ideologically close
to that of Alexander, which he used in [Al23] in proving the connectedness of the
homeomorphism group of the ball, and which was then adapted in [Sh82, Lem. 4],
[Po142, Thm. 6], and [Po17] to the proofs of connectedness of the groups Aut(An)
and their affine-triangular subgroups, respectively.

The author is grateful to J.-P. Serre, Ch. Urech, and the referee for the comments.

1.5. Notations and conventions.

k is a fixed algebraically closed field containing k.
Crn := Crn(k), Bir(X) := Birk(X), Aut(X) := Autk(X).
o = (0, . . . , 0) ∈ An.
〈S〉 is a linear span of a subset S of a linear space over k.
Grass(n, V ) is the Grassmannian of all n-dimensional linear subspaces of a finite-

dimensional linear space V over k.
P(V ) := Grass(1, V ). We put P({0}) = ∅ and dim(∅) = −1.
L⊕m is the direct sum of m copies of a linear space V over k (for m = 0, it is

considered to be zero).
Gs is the direct product of s copies of a group G.
“Variety” means “algebraic variety over k”. Its irreducibilitty means geometric

irreducibility, and points mean k-points. The set of k-points of a variety X is
denoted by X(k).

Dom(ϕ) is the domain of definition of a rational map ϕ.
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Ta,X is the tangent space of a variety X at a point a.
daϕ : Ta,X → Tϕ(a),X is the differential of a rational map ϕ : X 99K X at a point

a ∈ Dom(ϕ).
k[x1, . . . , xn]d is the space of all forms of degree d in variables x1, . . . , xn and with

coefficients in k.
Ld :=L ∩ k[x1, . . . , xn]d for any k-linear subspace L in k[x1, . . . , xn].
FH = {fh | f ∈ F, h ∈ H} for any nonempty sets F,H ⊆ k[x1, . . . , xn].
The variables x1, . . . , xn in the definition of the Cremona group are assumed to

be the standard coordinate functions on An:

xi(a) := ai, a := (a1, . . . , an) ∈ An.

For any rational map σ : An 99K An, we use the notation

σ = (σ1, . . . , σn) : A
n 99K An, where σi := σ∗(xi). (1.2)

We call σ polynomial homogeneous map of degree d, if σ1, . . . , σn ∈ k[x1, . . . , xn]d.
In these notation, if for a rational map τ : An 99K An the composition ν := σ ◦ τ

is defined, then it is described by the formula

νi = τ ∗(σi) for all i, (1.3)

i.e., νi is obtained from the rational function σi in x1, . . . , xn by means of plugging
in τj in place of xj for every j.

The map (1.2) is called affine (respectively, linear), if all nonzero functions σi
are polynomial in x1, . . . , xn of degree 6 1 (respectively, are forms in x1, . . . , xn of
degree 1). The set of all invertible affine (respectively, linear) maps An → An is the
subgroup Affn (respectively, GLn) of Crn.

2. Compressing finite subgroups of the Cremona groups

In this section, k = k and char k = 0.

2.1. Terminology. First, we fix the terminology.
Here, unless a special reservation is made, a rational action of a finite group G

on an irreducible variety X is understood as a faithful (that is, with trivial kernel)
action by birational self-maps of this variety. Specifying such an action is equivalent
to specifying a group embedding ̺ : G →֒ Bir(X); therefore, hereinafter the very
homomorphism ̺ is called a rational action. The integer dim(X) is called the di-

mension of the action ̺. We say that ̺(G) is the subgroup of Bir(X) defined by the
action ̺. If ̺(G) ⊆ Aut(X), then the action ̺ is called regular.

Any regular action ρ of the group G on an irreducible smooth complete variety
Y such that there is a G-equivariant birational isomorphism X 99K Y is called a
regularization of the action ̺; combining the results of [Ro56, Thm. 1] and [BM97]
shows that a regularization always exists. If there is a regularization ρ such that
Y G 6= ∅, then we say that ̺ has a fixed point.

Consider two rational actions ̺i : G →֒ Bir(Xi), i = 1, 2. Let πi : Xi 99K Xi --
-G,

i = 1, 2, be the corresponding rational quotients, see [PV94, 2.4]. Assume that there

is a G-equivariant dominant rational map ϕ : X1 99K X2. Let ϕG : X1 --
-G 99K X2 --
-G
be the dominant rational map induced by ϕ. Then the following properties hold
(see, e.g., [Re00, 2.6]):



THREE PLOTS ABOUT THE CREMONA GROUPS 5

First, the commutative diagram

X1
ϕ

//❴❴❴❴❴

π1

��
✤

✤

✤
X2

π2

��
✤

✤

✤

X1 --
-G

ϕ
G

//❴❴❴ X2 --
-G

(2.1)

is cartesian, i.e., π1 is obtained from π2 by the base change ϕG. In particular, X1 is
birationally G-equivariantly isomorphic to the variety

X2 ×
X2 --

-

G
(X1 --

-G) := {(x, y) ∈ Dom(π2)× Dom(ϕG) | π2(x) = ϕG(y)} (2.2)

(the bar in (2.2) means the closure in X2 ×X1 --
-G), on which G acts through X2.

Second, for every irreducible variety Z and every dominant rational map β : Z 99K

X2 --
-G such that the variety X2 ×

X2 --
-

G
Z is irreducible, the latter inherits through

X2 a rational action of the group G such that commutative diagram (2.1) with
X1 = X2 ×

X2 --
-

G
Z, ϕG = β, and ϕ = pr1 holds.

It is said [Re04] that ϕ is a compression of the action ̺1 into the action ̺2 (or
that ̺2 is obtained by the compression ϕ from ̺1), and also [Po141, 3.4] that ̺1 is

obtained by the base change ϕG from ̺2. A compression that is not (or, respectively,
is) a birational isomorphism is called nontrivial (respectively, trivial ); in this case,
we say that ̺1 is obtained by a nontrivial (respectively, trivial ) base change from
̺2. If for ̺1 there is ̺2, which is obtained from ̺1 by a nontrivial compression, then
we say that ̺1 is nontrivially compressible, and otherwise, that it is incompressible.
Similar terminology applies to groups: if Gi ⊆ Bir(Xi), i = 1, 2, are finite subgroups
isomorphic to G, then we say that G1 is compressible into G2, if there are rational
actions ̺i : G →֒ Bir(Xi), i = 1, 2, such that ̺i(G) = Gi, i = 1, 2, and ̺2 is obtained
by a compression ϕ from ̺1. If ̺1, ̺2, ϕ can be chosen so that ϕ is nontrivial, then
G1 is called nontrivially compressible into G2. If G1 does not admit any nontrivial
compression into any subgroup in Bir(X2), then G1 is called incompressible.

In the case when X1 = X2 and ̺1 = ̺2, we are talking about self-compressions

of the action and the group. In particular, if in this case there exists a nontrivial
compression, then we say that ̺1(G) is a nontrivially self-compressible subgroup of
Bir(X).

2.2. Self-compressibility of finite subgroups in Cr1: reformulation. First
we consider the problem of nontrivial self-compressibility of finite subgroups in the
Cremona group Cr1 of rank 1. It can be reformulated as follows.

We assume that A1 = {(a0 : a1) ∈ P1 | a0 6= 0} and denote the standard
coordinate function x1 ∈ k[A1] by z. The elements of every finite subgroup G of the
Cremona group Cr1 are fractional-linear functions from the field k(z) (considered
as rational maps A1 99K A1). The restriction to A1 defines a bijection between the
set of self-compressions P1 → P1 of the group G and the set of rational functions
f = f(z) ∈ k(z), which are solutions of the following system of functional equations:

f
(az + b

cz + d

)
=
af + b

cf + d
for all

az + b

cz + d
∈ G. (2.3)
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In this setting, the nontriviality of the self-compression defined by the rational
function f is equivalent to the condition deg(f) > 2. Note that in (2.3) instead of all
functions from the group G it suffices to consider only the generators of this group.

Thus, the question of nontrivial compressibility of the group G is equivalent to the
question of the existence of a rational function f of degree > 2 among the solutions
of system (2.3).

2.3. Compressibility of binary polyhedral groups: formulation of the re-
sult. The comprehensive answer to the above question can be obtained for any
finite subgroup of the Cremona group Cr1: all of them are nontrivially compress-
ible. This asnwer is an immediate corollary of a more subtle result, which we obtain
here. Namely, we prove that there exists infinitely many homogeneous polynomial
self-compressions A2 → A2 of any binary polyhedral group, descending to the non-
trivial self-compressions P1 → P1 of the corresponding polyhedral group. The proof
is effective and gives a way to explicitly specify these self-compressions by formulas
(see Remark (c) in Subsection 2.8).

We now give the precise formulation of this result.
Let G be a nontrivial finite subgroup of the group PSL2 = Aut (P1) = Cr1. We

consider the canonical homomorphism

ν : SL2 → PSL2

whose kernel is the center Z := (−id). The group

G̃ := ν−1(G) ⊂ SL2 (2.4)

is either a binary rotation group of one of the regular polyhedra (dihedron, tetra-
hedron, octahedron, or icosahedron), or a cyclic group of even order > 4.

The subset A2
∗
:= A2 \ o is open in A2 and stable with respect to the actions on

A2 of the groups G̃ and T := {(tx1, tx2) | t ∈ k×}. Let

π : A2
∗
:= A2 \ o→ P1

be the natural projection. The pair (π,P1) is a geometric quotient for the action of

the torus T on A2
∗
. The morphism π is G̃-equivariant if we assume that the action of

G̃ on P1 is the restriction on G̃ of the homomorphism ν (this action is not faithful,
its kernel is Z).

If a self-compression

ϕ̃ = (ϕ̃1, ϕ̃2) : A
2 99K A2 (2.5)

of the group G̃ is polynomial homogeneous of degree d, then the morphism π ◦ ϕ̃
is constant on the T -orbits in A2

∗
and, therefore, factors through π, i.e., there is a

morphism

ϕ : P1 → P1, (2.6)

such that ϕ ◦ π = ϕ̃ ◦ π. It is dominant (and therefore surjective) in view of the

dominance of the morphism ϕ̃. From the G̃-equivariance of the morphisms π and ϕ̃
it follows the G̃-equivariance—and therefore the G-equivariance—of the morphism
ϕ. Consequently, ϕ is the self-compression of the natural action of the group G on
P1. We say that the self-compression ϕ is a descent of the self-compression ϕ̃.
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Theorem 2.1. Let G be a nontrivial finite subgroup of the Cremona group Cr1 =
PSL2 = Aut (P1). Associate with it the formal power series

SG(t) =
∑

n>0

snt
n ∈ Z[[t]] (2.7)

of the following form:

(a) If G is a rotation group of tetrahedron, octahedron, or icosahedron, then

SG(t) = t2a−1(1 + t4a−6)
∑

n>0

t2na
∑

n>0

t(4a−4)n + t4a−5
∑

n>0

t(4a−4)n, (2.8)

where, respectively, a = 3, 4, or 6.
(b) If G is either a dihedral group of order 2ℓ > 4 or a cyclic group of order ℓ > 2,

then

SG(t) =
∑

n>0

t2ℓ(n+1)−1. (2.9)

Suppose that the coefficient sd of the series (2.7) is different from zero. Then there

exists a polynomial homogeneous self-compression (2.5) of the binary group G̃ (see
(2.4)), whose degree is d, and descent (2.6) is a nontrivial self-compression of the

group G.

The proof of Theorem 2.1 will be given in Subsection 2.7, after proving several
necessary auxiliary statements in Subsection 2.6.

2.4. Application: self-compressibility of finite subgroups of Cr1. Theorem
2.1 immediately implies statement (i) of the following theorem.

Theorem 2.2.

(i) Every finite subgroup of Cr1 is nontrivially self-compressible.

(ii) Every compression of a finite subgroup of Cr1 is a compression P1 → P1 into

a conjugate subgroup.

Proof of (ii). Since every variety, to which P1 maps dominantly, is rational, (ii)
follows from the definition of compression and the well-known fact that two finite
subgroups of Cr1 are isomorphic if and only if they are conjugate. �

Remark 2.3. Another proof of statement (i) of Theorem 2.2 is given in [GA16,
Cor. 1.3]. This proof consists of presenting explicit formulas, in relation to which the
reader is supposed to verify by direct computations that they define G-equivariant
maps. In [GA16] there are no comments about the origin of these formulas. For
example (see [GA16, Lemma 9.7]), if ω5 ∈ k is a primitive fifth root of 1 and G is
the lying in Cr1 rotation group of the icosahedron generated by the fractional-linear
transformations

ω5z and
(ω5 + ω−1

5 )z + 1

z − (ω5 + ω−1
5 )

,

then such a formula has the the appearance

P1 → P1, (x : y) 7→ (x11 + 66x6y5 − 11xy10 : −11x10y − 66x5y6 + y11).

Below (see Remark (c) in Subsection 2.8) we explain how in principle the explicit
formulas can be found that define any self-compression specified in Theorem 2.1.
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2.5. Notations. To prove Theorem 2.1 we need several notations.

We denote by G̃∨ the set of characters of all simple kG̃-modules.

The action of the group G̃ on the affine plane A2 defines on the algebra

A := k[A2] = k[x1, x2]

the structure of a kG̃-module. The latter is graded: each space An is its kG̃-submo-
dule.

We denote by χ the character of the submodule A1. If the group G̃ is not cyclic,
this submodule is simple.

For any simple kG̃-module M with character γ ∈ G̃∨, we denote by A(γ) the

isotypic component of type M in the kG̃-module A; it is its graded submodule. In
particular, A(1) is the subalgebra of G̃-invariants in A.

We will also need the following set of characters:

[χ] := {γ ∈ G̃∨ | dim(γ) = 1, γχ = χ}. (2.10)

It is not empty, because 1 ∈ [χ].

For any finite-dimensional kG̃-module L, we put

multχ(L) := max{d | there exists an embedding of kG̃-modules A⊕d
1 →֒ L}. (2.11)

2.6. Auxiliary statements. We now prove several auxiliary statements that are
used in the proof of Theorem 2.1.

Lemma 2.4. Let H be a subgroup of GLn and let L be a finite-dimensional k-linear
subspace in k[x1, . . . , xn].

(a) The following conditions are equivalent:

(a1) L is a submodule of the kH-module k[x1, . . . , xn] that is isomorphic to

the kH-module k[x1, . . . , xn]1.
(a2) There exists a basis σ1, . . . , σn of the linear space L such that the mor-

phism σ := (σ1, . . . , σn) : A
n → An is H-equiavriant.

(b) Suppose that the equivalent conditions (a1) and (a2) hold.
(b1) The morphism σ from (a2) is dominant if and only if σ1, . . . , σn are

algebraically independent over k.
(b2) If n = 2 and σ1, σ2 ∈ k[x1, x2]d for some d, then σ1, σ2 are algebraically

independent over k.

Proof. (a1)⇒ (a2): Let k[x1, . . . , xn]1 → L be an isomorphism of kH-modules and
let σi be the image of xi with respect to this isomorphism. Then the H-equivariance
of σ follows directly from the definitions and formulas (1.1), (1.2).

(a2)⇒(a1): It follows from (1.1), (1.2) that the restriction of σ∗ to k[x1, . . . , xn]1 is
an isomorphism of linear spaces k[x1, . . . , xn]1 → L. From this and the H-stability
of k[x1, . . . , xn]1 it follows the H-stability of L, so this restriction is an isomorphism
of kH-modules.

(b1): The dominance of σ is equivalent to the triviality of the kernel of the homo-
morphism σ∗ of the algebra k[x1, . . . , xn], which, in view of (1.2), is equivalent to
the algebraic independence of σ1, . . . , σn over k.
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(b2): Suppose that σ1, σ2 are algebraically dependent over k, i.e., there exists a
nonzero polynomial F = F (t1, t2) ∈ k[t1, t2], where t1, t2 are variables, such that

F (σ1, σ2) = 0. (2.12)

Since σ1 and σ2 are forms in x1, x2 of the same degree, we can (and shall) assume
that F is a form in t1, t2, say, of degree s:

F (t1, t2) =
s∑

i=0

αit
s−i
1 ti2, α0, . . . , αs ∈ k. (2.13)

In view of (a2), the polynomial σ2 is nonzero, so that we can consider the rational
function σ1/σ2 ∈ k(x1, x2). From (2.12), (2.13) we get for it the relation

0 =

s∑

i=0

αi

(σ1
σ2

)s−i

. (2.14)

It follows from the linear independence of the polynomials σ1, σ2 over k that the
rational function σ1/σ2 is not an element of k, and therefore takes on A2 infinitely
many different values. In view of (2.14), each of these values is the root of the
nonzero polynomial

∑s
i=0 αit

s−i ∈ k[t], t = t1/t2. This contradiction proves the
algebraic independence of σ1, σ2 over k. �

Lemma 2.5. Let (2.5) be a polynomial homogeneous self-compression of the group

G̃, whose degree is d. Let a form a ∈ A be the greatest common divisor of the forms

ϕ̃1 and ϕ̃2 that define (2.5). The following properties are equivalent:

(a) the descent (2.6) of the self-compression (2.5) is trivial;

(b) deg(a) = d− 1;
(c) there exists a character γ ∈ [χ] and an element s ∈ A(γ)d−1 such that

ϕ̃∗(A1) = sA1. (2.15)

Proof. (a)⇔(b): If we consider x1 and x2 as homogeneous coordinates on P1, then
the self-compression (2.6) is given by the formula

ϕ =
( ϕ̃1

a
:
ϕ̃2

a

)
(2.16)

(see [Sh13, Chap. III, §1, 4]). Since every k-automorphism of the field of rational
functions in one variable over k is a fractional linear transformation [Wa67, §73],
it follows from (2.16) and the inclusion ϕ̃1, ϕ̃2 ∈ Ad that the self-compression ϕ is
trivial if and only if the forms ϕ̃1/a ϕ̃2/a are linear, i.e., (b) is satisfied.

(b)⇔(c): Suppose that (b) holds. Then the equality

ϕ̃∗(A1) = 〈ϕ̃1, ϕ̃2〉 (2.17)

and the definition of the form a imply the equality (2.15) for s = a. In view of

the G̃-invariance of the subspaces ϕ̃∗(A1) and A1, for every g ∈ G̃, we obtain from
(2.15) the following equalities:

aA1 = g · (aA1) = (g · a)(g · A1) = (g · a)A1. (2.18)

We take some linear form l ∈ A1, whose zero in P1 does not coincide with any
of zeros of the form a. Since, in view of (2.18), the form (g · a)l is divisible by a,
and deg(g · a) = deg(a), this means that the divisors of the forms a and g · a on P1
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coincide, hence 〈a〉 = 〈g · a〉. Therefore, a is a semi-invariant of the group G̃. Let

γ ∈ G̃∨ be the character of the one-dimensional kG̃-module 〈a〉. Then a ∈ A(γ)d−1,

and γχ is the character of the kG̃-module aA1. But since the kG̃-modules A1 and

ϕ̃∗(A1) are isomorphic, it follows from (2.15) that the character of the kG̃-module
aA1 is χ. Therefore, γ ∈ [χ]. This proves (b)⇒(c).

Conversely, if (c) is satisfied, then it follows from (2.15) and (2.17) that s is the
greatest common divisor of the forms ϕ̃1 and ϕ̃2, and therefore 〈s〉 = 〈a〉, and hence
(b) is satisfied. This proves (c)⇒(b). �

Lemma 2.6. Let H be a group,let L be a nonzero kH-module of dimension s <
∞, and let m be a positive integer. The Grassmanninan Grass(s, L⊕m) contains a

closed irreducible (m− 1)-dimensional subset such that all the s-dimensional linear

subspaces of the kH-module L⊕m corresponding to its points are the submodules

isomorphic to L.

Proof. We assign to any nonzero vector (λ1, . . . , λm) ∈ km the following embedding
of the kH-modules:

ι(λ1,...,λm) : L →֒ L⊕m, v 7→ (λ1v, . . . , λmv).

The images of the embeddings ι(λ1,...,λm) and ι(µ1,...,µm) coincide if and only if the
vectors (λ1, . . . , λm) and (µ1, . . . , µm) are proportional, i.e., the corresponding points
(λ1 : . . . : λm) and (µ1 : . . . : µm) of the projective space P(km) coincide. Conse-
quently, the mapping P(km) → Gr(s, L⊕m), which assigns to every point (λ1 : . . .
. . . : λm) ∈ P(km) the image of the embedding ι(λ1,...,λm), is injective. It is not difficult
to see that this mapping is a morphism. Therefore, its image is an irreducible closed
subset of dimension dim(P(km)) = m− 1. It is this image that should be taken as
the subset specified in the formulation of Lemma 2.6. �

Lemma 2.7. If, for a positive integer d, the inequality

multχ(Ad) > max{dimk(A(γ)d−1) | γ ∈ [χ]}, (2.19)

holds, then the group G̃ admits a polynomial homogeneous self-compression (2.5) of
degree d, whose descent (2.6) is nontrivial.

Proof. Assume that the inequality (2.19) holds. For the sake of brevity, put

m := multχ(Ad). (2.20)

It follows from (2.19) that m > 0.

According to (2.11), in the kG̃-module Ad there exists a submoduleM isomorphic
to A⊕m

1 . In view of dim(A1) = 2 and Lemma2.6, in Grass(2,M) there exists an
irreducible closed subset X such that

dim(X) = m− 1 (2.21)

and all the 2-dimensional linear subspaces of M corresponding to its points are
the submodules isomorphic to A1. Since M is a linear subspace in Ad, the variety
Grass(2,M), and hence X as well, is a closed subset of Grass(2, Ad).

It follows from the definition of the set [χ] (see (2.10)) that for every character γ ∈
[χ] and every nonzero element s ∈ A(γ)d−1, the linear subspace sA1 is a submodule

of the kG̃-module Ad isomorphic to A1. This submodule does not change when s
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is multilied by nonzero elements of k, therefore, assigning the submodule sA1 to
the element s defines a mapping P(A(γ)d−1) → Grass(2, Ad). It is not difficult to
see that it is a morphism. Hence its image Y (γ) is an irreducible closed subset in
Grass(2, Ad), and

dim(Y (γ)) 6 dim(P(A(γ)d−1)) = dimk(A(γ)d−1)− 1. (2.22)

In view of the finiteness of the set [χ], it follows from (2.19), (2.20), (2.21), (2.22)
that

X \
⋃

γ∈[χ] Y (γ) (2.23)

is a nonempty subset of the Grassmannian Grass(2, Ad).
We consider a point of the set (2.23) and the two-dimensional linear subspace L

in Ad corresponding to it. Then it follows from the above properties of the sets X
and Y (γ) that

(i) L is a submodule of the kG̃-module Ad isomorphic to A1;
(ii) there are no γ ∈ [χ] and s ∈ A(γ)d−1 such that L = sA1.

In view of (i) and Lemma 2.4, there is a basis ϕ̃1, ϕ̃2 of L such that (2.5) is

a polynomial homogeneous self-compression of the group G̃ of degree d, for which
ϕ̃∗(A1) = L. It follows from (ii) and Lemma 2.5 that the descent (2.6) of this
self-compression is nontrivial. �

2.7. Proof of Theorem 2.1. The plan of the proof of Theorem 2.1 is as follows.
For each noncyclic finite subgroup G of PSL2 = Aut (P1) = Cr1, we exlicitly describe

for G̃ the set [χ] and the Poincaré series

P (χ, t) :=
∑

n>1

(multχ(An))t
n, P (γ, t) :=

∑

n>0

(dimk(A(γ)n))t
n, where γ ∈ [χ].

(2.24)
Comparing the coefficients of these series, we show that if a coefficient sd of the
series (2.7) is nonzero, then the inequality (2.19) holds, from which, according to
Lemma 2.7, the statement of Theorem 2.1 for G follows. The case of a cyclic finite
subgroup G is reduced to that of the corresponding dihedral one.

Proof of Theorem 2.1. We consider separately theree possible types of the group G̃.

(a) G̃ is a primitive subgroup of the group SL2, i.e., a binary tetrahedral, octahed-

ral, or icasahedral group.

In view of [Sp87, 3.2(a)] and the definition of the set [χ] (see (2.10)), in this case
we have

[χ] = {1}. (2.25)

From [Sp87, 4.2] we obtain:

P (χ, t) =
t+ t2a−1 + t4a−5 + t6a−7

(1− t2a)(1− t4a−4)
,

P (1, t) =
1 + t6a−6

(1− t2a)(1− t4a−4)
,

(2.26)
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where a = 3, 4, and 6 respectively for binary tetrahedral, octahedral, and icosahedral
group. From (2.24), (2.26) we then deduce the following:

P (χ, t)− tP (1, t) =
∑

n>1

(multχ(An)− dimk(A(1)n−1))t
n

= t2a−1 1 + t2a−4 + t4a−6 − t4a−4

(1− t2a)(1− t4a−4)

= t2a−1 1 + t4a−6

(1− t2a)(1− t4a−4)
+ t4a−5 1

1− t4a−4

= t2a−1(1 + t4a−6)
∑

n>0

t2na
∑

n>0

t(4a−4)n + t4a−5
∑

n>0

t(4a−4)n

(2.8)
== SG(t).

(2.27)

From (2.27) and (2.7) we obtain that sd = multχ(Ad) − dimk(A(1)d−1) for every
d > 0. In view of (2.25), this gives

sd = multχ(Ad)−max{dimk(A(γ)d−1) | γ ∈ [χ]} for every d. (2.28)

As (2.8) shows, if sd 6= 0, then sd > 0. In view of (2.28) and Lemma 2.7, this implies
the statement of Theorem 2.1 in case (a).

(b) G̃ is an irreducible imprimitive subgroup of the group SL2, i.e., a binary dihe-

dral group of order 4ℓ > 8.

In this case, the McKay correspondence [Sp87, Sect. 2] juxtaposes to the group G̃

the extended Dynkin diagram of type D
(1)
ℓ+2 with ℓ+ 3 vertices. According to [Sp87,

2.3(a)], the vertex juxtaposed to the character χ is a branch point of this diagram.

In G̃∨ there are exactly four one-dimensional characters 1, θ, θ′, θ′′ (see [Sp87, 4.3]);
the vertices of the diagram juxtaposed to them is the set of all its endpoints. In view
of [Sp87, 2.2] and (2.10), an endpoint corresponds to a character from [χ] if and only
if it is connected by an edge to the vertex juxtaposed to the character χ. Therefore,
apart from 1, there is at least one more character in [χ] (we denote it by θ), and
two possibilities occur:

— If ℓ > 3, then the vertex juxtaposed to the character χ is connected by edges
to only two endpoints of the diagram, which are juxtaposed to the one-dimensional
characters 1 and θ:

◦
■■

■■ ◦
◦
χ

· · ·
α
◦

✉✉✉✉
■■

■■

◦
✉✉✉✉ ◦

, χ 6= α.
θ′

θ′′θ

1
(2.29)

Thus, we obtain

[χ] = {1, θ} for ℓ > 3. (2.30)

— If ℓ = 2, then the vertex juxtaposed to the character χ is connected by edges
to all four endpoints, which are juxtaposed to the one-dimensional characters 1, θ,
θ′ θ′′:

◦
❆❆

❆ ◦
◦

⑦⑦⑦

❆❆
❆

◦
⑦⑦⑦ ◦

χ

1 θ′

θ θ′′

.

Therefore, we obtain

[χ] = {1, θ, θ′, θ′′} for ℓ = 2. (2.31)
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It follows from [Sp87, (9)] that, for every ℓ > 2, θ is the character denoted in
[Sp87, p. 103] by c1. From this and [Sp87, 4.4] we obtain:

P (χ, t) :=
t + t3 + t2ℓ−1 + t2ℓ+1

(1− t4)(1− t2ℓ)
,

P (1, t) :=
1 + t2ℓ+2

(1− t4)(1− t2ℓ)
,

P (θ, t) =
t2 + t2ℓ

(1− t4)(1− t2ℓ)
.





for every ℓ > 2. (2.32)

In addition, according to [Sp87, 4.4],

P (θ, t) = P (θ′, t) = P (θ′′, t) for ℓ = 2. (2.33)

From (2.24), (2.32) we obtain:

P (χ, t)− tP (1, t)− tP (θ, t)

=
∑

n>1

(
multχ(An)− dimk(A(1)n−1)− dimk(A(θ)n−1)

)
tn

= t2ℓ−1 1− t4

(1− t4)(1− t2ℓ)
=

∑

n>0

t2ℓ(n+1)−1

(2.9)
== SG(t).

(2.34)

It follows from (2.34) and (2.7) that

sd = multχ(Ad)− dimk(A(1)d−1)− dimk(A(θ)d−1) for every d > 0.

In view of (2.30), (2.31),and (2.33), this gives

sd 6 multχ(Ad)−max{dimk(A(γ)d−1) | γ ∈ [χ]} for every d. (2.35)

As (2.9) shows, if sd 6= 0, then sd > 0. In view of (2.35) and Lemma 2.7, this implies
the statement of Theorem 2.1 in case (b).

(c) G̃ is a cyclic subgroup of order 2ℓ > 4 in the group SL2.

Since G̃ is a subgroup of a binary dihedral group of order 4ℓ, every polynomial
homogeneous self-compression of the latter group is a self-compression of the group

G̃. Therefore, the statement of Theorem 2.1 for G̃ follows from its statement, already
proved, for binary dihedral groups. �

2.8. Remarks about Theorems 2.1 and 2.2. Concluding the discussion of self-
compressibility of finite subgroups of the Cremona group of rank 1, we will make a
few remarks about Theorems 2.1 and 2.2.

(a) For every nontrivial finite subgroup G of the Cremona group Cr1, Theorem
2.1 yields an infinite set of natural numbers d, for which there exists a polynomial

homogeneous self-compression (2.5) of the corresponding binary group G̃, whose
degree is d and descent (2.6) is a nontrivial self-compression of the group G. From
formulas (2.8), (2.9) we obtain the minimal of these d: it is equal to 5, 7, and
11 respectively for the rotation group of a regular tetrahedron, octahedron, and
icosahedron, and to 2ℓ− 1 for the dihedral group of order 2ℓ > 4 and cyclic group
of order ℓ > 2.
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(b) Let K be a field of algebraic functions in one variable over k. By Theorem
2.2(i), if the genus of the field K is equal to 0, then every finite subgroup of Autk(K)
is nontrivially self-compressible. For the fields K of genus > 2, this, in general, is
not so, see [Re04, Ex. 6], [GA16].

(c) Let us briefly explain how one can find explicitly the forms ϕ̃1, ϕ̃2, which define

the homogeneous polynomial self-compressions (2.5) of the group G̃, whose degrees
are specified in Theorem 2.1.

Let d be such a degree. In view of what was said in part (c) of the proof of

Theorem 2.1, we can (and shall) assume that the group G̃ is not cyclic, and hence
the character χ is irreducible. Consider the linear space L (A1, Ad) of all linear maps

A1 → Ad. The group G̃ acts linearly on it by the rule

(gℓ)(a) := g(ℓ(g−1(a))), g ∈ G̃, ℓ ∈ L (A1, Ad), a ∈ A1, (2.36)

and the G̃-equivariant maps are precisely the fixed points of this action. They form
in L (A1, Ad) a linear subspace L (A1, Ad)

G, see [PV94, 3.12]. The latter is the

image of the Reynolds operator |G̃|−1
∑

g∈G̃ g for the action (2.36), see [PV94, 3.4],

and therefore, is described effectively. If ℓ1, . . . , ℓm is a basis of L (A1, Ad)
G, then

〈
⋃m

i=1 ℓi(A1)〉 = A(χ)d. Similarly, effectively are described the isotypic components
A(γ)d−1 for all γ ∈ [χ].

According to the proof of Theorem 2.1, the set of all (α1, . . . , αm) ∈ km such
that L := (

∑m
i=1 αiℓi)(A1) does not lie in 〈A(γ)d−1A1〉 for all γ ∈ [χ], is nonempty.

Effective finding of such a (α1, . . . , αm) reduces to finding for some explicitly de-
scribed nonzero polynomial in m variables with coefficients in k any values of these
variables that do not make this polynomial zero.

The linear space L is a kG̃-submodule of Ad isomorphic to A1. As a couple of
forms ϕ̃1, ϕ̃2 one can now take a basis of this subspace such that the matrices of

the elements of the group G̃ in this basis are the same as in the basis x1, x2 of the
space A1 (it suffices to ensure this only for the system of generators of the group

G̃, containing two elements for dihedral group and three for the others, see [Sp87]).
Effective finding of such a basis reduces to finding a solution of a system of linear
equations for the coefficients of the transition matrix, which satisfies an inequality
equivalent to the nondegeneracy of this matrix.

(d) Theorem 2.2 naturally leads to the question of whether its statements (i)
and (ii) will remain true if Cr1 isreplaced by Cr2 in them. As is shown below (see
Theorem 2.12), concerning statement (ii) the answer is negative. Concerning the
statement (i), at the time of this writing (September 2018) the author does not know
the answer, and the following question seems to him to be of a principal importance:

Qustion ([Po16, Quest. 1]). Is there an incompressible rational action of a finite
group on A2?

In the case of a positive answer to this question, the problem of finding all incom-
pressible actions in the list found in [DI09] naturally arises.

2.9. Self-compressing linear actions. The remaining results of Section 3 are
divided into two groups: one relates to the general case, the other to the case of
Cr2. The following theorem applies to the general case.
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Theorem 2.8. Let G be a finite subgroup of GLn, n > 1.

(a) If k[x1, . . . , xn]
G
d 6= 0, then G admits a polynomial homogeneous self-compres-

sion An → An of degree d+ 1. For d 6= 0, its is nontrivial.

(b) If |G| divides d, then k[x1, . . . , xn]
G
d 6= 0.

Proof. (a) We take a nonzero polynomial f ∈ k[x1, . . . , xn]
G
d and consider the mor-

phism

ϕ : An → An, a 7→ f(a)a, (2.37)

In view of the G-invariance of f and the linearity of the action of G on An, for any
g ∈ G and a ∈ An we have

ϕ(g · a)
(2.37)
== f(g · a)(g · a) = f(a)(g · a) = g ·

(
f(a)a

) (2.37)
== g ·

(
ϕ(a)

)
,

i.e., ϕ is a G-equivariant morphism. From (2.37) and f ∈ k[x1, . . . , xn]d we obtain

ϕ(ta) = td+1f(a)a = td+1ϕ(a) for any a ∈ An, t ∈ k, (2.38)

so ϕ is a polynomial homogeneous map of degree d+ 1.
From (2.38) it follows that if a line L in An contains 0 and a point a ∈ U := {c ∈

An | f(c) 6= 0} different from 0, then

(i) ϕ(L) = L;
(ii) the degree of the morphism ϕ|L : L → L is equal to d+ 1.

In view of (i), the image of ϕ contains a set U open in An, therefore, ϕ is dominant,
hence is a self-compression of the group G.

Suppose that ϕ is a birational isomorphism. Then the restriction of ϕ to some
nonempty open subset U ′ of An is injective. Since An is irreducible, U ∩U ′ 6= ∅. Let
a ∈ U ∩U ′. Then, in the previous notation, the degree of the morphism ϕ|L is equal
to 1 in view of its injectivity on the subset L∩U ′, which is open in L. From (ii) we
then obtain d = 0, which completes the proof of (a).

(b) The kernel of the natural action ofG on k[x1, . . . , xn]1 is trivial. Therefore there
is a nonzero linear form ℓ ∈ k[x1, . . . , xn]1 such that its G-orbit contains exactly |G|
elements. Therefore,

(∏
g∈G g · ℓ

)s
is a nonzero G-invariant form of degree s|G| for

any integer s > 0, which proves (b). �

Corollary. Every finite subgroup of Crn, which is conjugate to a subgroup of the

group GLn, is nontrivially self-compressible.

2.10. Compressing actions with a fixed point. The following result is an ap-
plication of Theorem 2.8.

Theorem 2.9. Every (faithful ) rational action ̺ of a finite group G on an n-dimen-

sional irreducible variety, which has a fixed point, is obtained by a nontrivial base

change from a (faithful ) linear action of the group G on an n-dimensional linear

space.

Proof. Let Y be an irreducible smooth complete variety and let G →֒ Aut(Y ) be
a regularization of the action ̺, such that Y G 6= ∅. Let y ∈ Y G. We consider a
nonempty open affine subset U of Y , containing y. Since

⋂
g∈G g · U is a G-stable

open affine subset, which contains y, replacing U by it, we can (and shall) assume
that U is G-stable. Since U is dense in Y , the action of G on U is faithful.
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Let Ty,U be the tangent space to U at the point y. The tangent action

τ : G→ GL(Ty,U) ⊂ Bir(Ty,U)

of the group G on the space Ty,U is faithful [Po141, Lem. 4]. According to [?, Lem.
10.3], there is aG-equivariant dominant morphism α : U → Ty,U . In view of Theorem
2.8, the linearity of the action τ implies the existence of a nontrivial self-compression
β : Ty,U → Ty,U of the group G (so that deg(β) > 1). Then β ◦ α : Y 99K Ty,U

is a nontrivial (because deg(β ◦ α) = deg(β) deg(α) > 1) self-compression of the
action ̺. �

Corollary. Avery incompressible rational action of a finite group on an irreducible

variety has no fixed points.

Remark 2.10. In [DD16] all rational actions of finite groups on A2, having a fixed
point, are found. There are quite a few of them. By Theorem 2.9 they all are obtained
by nontrivial base changes from the linear actions on A2 (the classification of which
has long been known, see, e.g., [NPT08]).

Recall that every finite Abelian group G decomposes into a direct sum of cyclic
subgroups of orders m1, . . . , mr, where mi divides mi+1 for i = 1, . . . , r − 1, and
m1 > 1 for |G| > 1. The sequence m1, . . . , mr is uniquely determined by G and
called the sequence of invariant factors of the group G. The integer r is called its
rank; the latter is equal to the minimal number of generators of the group G.

For every integer n > r, we distinguish in GLn ⊂ Crn the following subgroup
isomorphic to G:

Tn(m1, . . . , mr) :={(t1x1, . . . , trxr, xr+1, . . . , xn) | ti∈k, t
mi

i = 1, 1 6 i 6 r}. (2.39)

Theorem 2.11. Let G be a finite Abelian group with the sequence of invariant fac-

tors m1, . . . , mr. If a (faithful ) rational action ̺ of the group G on an n-dimensional

irreducible variety has a fixed point, then n > r and ̺ is obtained by a nontrivial base

change from a linear action λ : G →֒GLn(k) on An, such that λ(G)=Tn(m1, . . . , mr).

Proof. We use the notation from the proof of Theorem 2.9. Fixing an isomorphism of
the space Ty,U with An, we identify the group Bir(Ty,U) with Crn. Since the groups
G and τ(G) are isomorphic, they have the same invariant factors. According to
[Po132, Thm. 1], every finite Abelian subgroup of Affn, whose invariant factors are
m1, . . . , mr, is transformed to the group Tn(m1, . . . , mr) by means of conjugation in
the group Crn. Hence this is true for the subgroup τ(G). From here, arguing as in
the proof of Theorem 2.9, we get the statement to be proved. �

2.11. Compressing actions of cyclic groups. According to [Bl06, Thm. A], the
sets of conjugacy classes of cyclic subgroups of Cr2 of some fixed orders d < ∞ are
infininite and even there are parameter-dependent families of such classes (this is the
case if d is even, d/2 is odd). The following theorem implies that all these subgroups
are obtained by the base changes from a single such subgroup.

Theorem 2.12. Let n,m, d bw any positive integers, and n > m. Every (faithful )
rational action ̺ of a finite cyclic group G of order d on An is obtained by a nontrivial

base change from a linear action λ : G →֒ GLm(k) on Am such that λ(G) = Tm(d).
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Proof. Since G is a finite cyclic group, its rational action on An has a fixed point
[Se092]. The sequence of invariant factors of the group G consists of the single
element d. By Theorem 2.11, the ation ̺ is obtained by a nontrivial base change
from a linear action µ : G →֒ GLn(k) on An such that µ(G) = Tn(d). It remains to
note that µ is compressed into a linear action of the group G on Am by means of
the projection An → Am, (a1, . . . , an) 7→ (a1, . . . , am). �

2.12. Auxiliary statement: embeddings of G-modules into coordinate al-
gebras. In what follows we shall need the following general statement:

Lemma 2.13. If a finite group G acts regularly (and faithfully ) on an irreducible

affine variety X, then every finite-dimensional kG-module M is isomorphic to a

submodule of the kG-module k[X ].

Proof. We can (and shall) assume that dim(X) > 0. Since tr degk(k(X)G) =
dim(X) − dim(G) = dim(X) (see [PV94, Sect. 2.3, Cor.]), and k(X)G is the field
of fractions of the algebra k[X ]G (see [PV94, Lemma 3.2]), the latter is an infinite-
dimensional linear space over k:

dimk(k[X ]G) = ∞. (2.40)

From char k = 0 and the finiteness of the group G it follows that the kG-modules
M and k[X ] are completely reducible. Therefore, to prove the lemma, it suffices
to establish that, for every nonzero simple kG-module S, the multiplicity of its
occurrence in the S-isotypic component of the kG-module k[X ] is infinite, which is
equivalent to the infinite-dimensionality of this isotypic component as a linear space
over k. In turn, for this is sufficient to establish that this S-isotypic component is
nonzero. Indeed, the multiplication of functions defines on it a structure of a k[X ]G-
module. Therefore, if this S-isotypic component contains a nonzero function, its
infinite-dimensionality follows from (2.40) and the absence of zero-divisors in k[X ].
Having in view this reduction, we shall now prove that the S-isotypic component of
the kG-module k[X ] is indeed nonzero.

The set of fixed points of every element of G is closed in X . Since G is fnite, X is
irreducible, and the action of G on X is faithful, this implies that there exists a point
x of X , whose G-stabilizer Gx is trivial. Its G-orbit G · x is a G-stable and (in view
of the finiteness) closed subset of X . Its closedness implies that the homomorphism
of kG-modules

k[X ] → k[G · x], f 7→ f |G·x,

is surjective. Therefore, to prove the nontriviality of the S-isotypic component of the
kG-module k[X ], it suffices to prove the nontriviality of the S-isotypic component of
the kG-module k[G·x]. But it follows from the Frobenius duality that the multiplicity
of the occurence of the kG-module S in the kG-module k[G · x] is equal to the
dimension of the space of Gx-fixed points in the dual kG-module S∗ (see [PV94,
Thm. 3.12]). Since the group Gx is trivial, this shows that the specified multiplicity
is equal to dim(S) > 0. Therefore, the S-isotypic component of the kG-module
k[G · x] is indeed nonzero. This completes the proof of Lemma 2.13. �

2.13. rdimk(G) and the existence of compressions. For any finite group G
and any field ℓ we put

rdimℓ(G) := min{m∈Z, m>0 | there is a group embedding G →֒GLm(ℓ)}. (2.41)
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In other words, rdimℓ(G) is the minimum of dimensions of faithful linear representa-
tions of the group G over the field ℓ. Thus G has a faithful n-dimensional linear
representation over ℓ if and only if n > rdimℓ(G). Note that if the group G is
Abelian, then rdimk(G) is equal to its rank.

Theorem 2.14. Let ̺ be a (faithful ) rational action of a finite group G on an

n-dimensional irreducible variety.

(i) If ̺ has a fixed point, then n > rdimk(G).
(ii) If n > rdimk(G), then ̺ is compressible into a (faithful) rational action of a

smaller dimension.

(iii) If there is an n-dimensional faithful linear representation over k

λ : G→ GLn ⊂ Aut(An), (2.42)

then either ̺ is compressible into a (faithful ) rational action of a smaller

dimension or ̺ is obtained by a nontrivial base change from a linear action

λ of the group G on An.

Proof. Consider a regular (faithful) action of the group G on an n-dimensional
smooth variety X , which is a regularization of the action ̺.

(i) If ̺ has a fixed point, we choose X so that XG 6= ∅. Let x ∈ XG. Since the
tangent action

G→ GL(Tx,X) (2.43)

of the group G on Tx,X is faithful [Po141, Lem. 4], the homomorphism (2.43) is
injective. From this and (2.41) it follows that n = dim(X) = dim(Tx,X) > rdimk(G).

(ii) In view of the inequality edk(G) 6 rdimk(G), which follows from (2.41) and
the definition of edk(G) (see [BR97, Thm. 3.1(b)]), the statement (ii) follows from
the inequality edk(X) 6 edk(G) proved in [BR97, Thm. 3.1(c)].

Other proof of the statement (ii), not using [BR97, Thm. 3.1(b, c)], is obtained
in the course of the proof of (iii) below, see Remark 2.15.

(iii) As in the proof of Theorem 2.9, replacing X by an appropriate invariant open
subset, in the sequel we can (and shall) assume that X is affine.

Since the representation λ is faithful, the dual representation λ∗ : G→ GLr(k) is
faithful as well. From Lemma 2.13 it follows that there a linear subspace L in k[X ]
with the following properties:

(a) L is G-stable;
(b) dim(L) = n;
(c) the action of G on L is the representation λ∗.

Consider in k[X ] the k-subalgebra A generated by the subspace L. Since dim(L) <
∞, it is finitely generated and therefore isomorphic to the algebra of regular functions
of an affine variety Y . It follows from (b) that

dim(Y ) 6 n. (2.44)

The identity embedding A →֒ k[X ] determines a dominant morphism ϕ : X → Y.
From (a) the G-invarince of A follows. The action of G on A determines a regular
action ϑ of the group G on the variety Y . The morphism ϕ is G-equivariant with
respect to ϑ. In view of (c) and the faithfulness of the representation ̺∗, the action
ϑ is faithful. Therefore, ϕ is a compression of ̺ into ϑ.
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Suppose that this compression does not reduce the dimension of the action ̺, i.e.,

dim(Y ) = dim(X) = n. (2.45)

Hence, in this case any basis of the linear space L over k consists of the elements of
the algebra A, which are algebraically independent over k, because, by construction,
this algebra is generated by them; its transcendental degree over k is then equal to
the number of these elements:

tr degk(A) = dim(Y )
(2.45)
=== n

(b)
= dim(L).

This proves that there is a G-equivariant isomorphism α : Y → L∗, where L∗ is
a kG-module dual to the kG-module L. From (c) it follows that the action of G
on L∗ is the representtion (λ∗)∗ = λ. By Theorem 2.8 there is a G-equivariant
dominant morphism ε : L∗ → L∗, which is not a birational isomorphism. Therefore,
the composition ε ◦ α ◦ ϕ : X → L∗ is a nontrivial compression of the action ̺ into
the action λ. �

Remark 2.15. In view of (2.41), as in the proof of statement (iii) we establish
(under the assumption of affinity of X) the existence of

— an rdimk(G)-dimensional kG-submodule M in k[X ], on which the action of
the group G is faithful;

— an affine G-variety Z and a dominant G-equivariant morphism ψ : X → Z
such that ψ∗(k[Z]) is the k-subalgebra of k[X ] generated by the subspace M .

Since the action of G on Z is faithful, ψ is a compression of the action ̺. If
n > rdimk(G), then ψ reduces the dimension of ̺, because dim(Z) 6 dimk(M) =
rdimk(G).

This gives another proof of the statement (ii) of Theorem 2.14.

2.14. Compressing Abelian subgroups of rank 2 of the group Cr2. Theorem
2.12 answers the question about constructing finite Abelian subgroups of rank 1 of
the Cremona group Crn by means of base changes. For n = 2, the next theorem
answers the analogous question about the Abelian subgroups of rank 2, i.e., the
noncyclic subgroups isomorphic to Z/aZ⊕ Z/bZ, a > 2, b > 2.

Theorem 2.16. Let ̺ be a (faithful ) rational action of a finite Abelian group G of

rank 2 on A2 and let m1, m2 be the sequence of invariant factors of the group G.

(i) In every of the following cases

(a) |G| 6= 4;
(b) |G| = 4 and ̺ has a fixed point

the rational action ̺ is obtained by a nontrivial base change from a linear

action λ : G →֒ GL2(k) on A2 such that λ(G) = T2(m1, m2) (see (2.39)). In

these cases the rational action ̺ is incompressible into a rational action of a

smaller dimension.

(ii) If |G| = 4 and ̺ does not have a fixed point, then G is a dihedral group (that
is a Klein’s Vierergruppe), and ̺ is obtained by a base change from the action

γ : G → Cr1 on P1, for which the group γ(G) is generated by the elements

σ, τ ∈ Aut(P1) given by the formulas

σ · (a0 : a1) = (a0 : −a1), τ · (a0 : a1) = (a1 : a0) for all (a0 : a1) ∈ P1. (2.46)
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Proof. Since G is an Abelian group of rank 2, there exists a faithful linear represen-
tation (2.42) with n = 2 and λ(G) = T2(m1, m2).

If ̺ is compressible into a rational action ϑ of a smaller dimension, then ϑ is
a faithful rational action of the group G on an irreducible algebraic curve C. In
view of the existence of a dominant rational map A2 99K C (a compression of ̺
into ϑ), the curve C is rational. Therefore, we can (and shall) assume that C = P1

and hence G is isomorphic to a subgroup of Cr1 = Bir(P1) = Aut(P1) = PSL2. It
follows from the well-known description of finite subgroups in PSL2 that noncyclic
Abelian among them are only the subgroups conjugate to the dihedral subgroup of
order 4, which is generated by the elements σ and τ given by formulas (2.46). They
do not have fixed points on P1. In view of the “going down” property for fixed
points (see [RY00, Prop. A.2]), it follows from (P1)G = ∅ that ̺ does not have a
fixed point.

If ̺ is not compressible into a rational action of smaller dimension, then by Theo-
rem 2.14(iii), ̺ is obtained by a nontrivial base change from a linear action λ of the
group G on A2. From this and the “going up” property for fixed points (see [RY00,
Prop. A.4]) it follows that if in the considered case both invariant factors m1 and
m2 are equal to the same prime numer, then ̺ has a fixed point. In particular, this
is the case if |G| = 4. This completes the proof of Theorem 2.16. �

2.15. Compressing other subgroups. The classification of finite Abelian sub-
groups in Cr2 up to conjugacy is given in [Bl06]. In view of Theorems 2.12 and 2.16,
it follows from it that among these subgroups only the subgroups isomorphic to

Z/2dZ⊕ (Z/2Z)2, d > 1; (Z/4Z)2 ⊕ Z/2Z; (Z/3Z)3, and (Z/2Z)4

remain unexplored for nontrivial compressibility. Their ranks are 3, 3, 3, and 4,
respectively. By Theorem 2.14(i), all of these subgroups do not have fixed points.

Theorem 2.17. Let G be a non-Abelian finite group different from dihedral group

and admitting a faithful linear representation λ : G →֒ GL2(k). Then every (faithful )
rational action of the group G on A2 is obtained by means of a nontrivial base change

from its linear action λ on A2.

Proof. The statement will follow from Theorem 2.14(iii) if we prove that ̺ from this
theorem cannot be compressed into a faithful rational action of a smaller dimension.

Arguing on the contrary, assume that such a compression exists. Then, as in the
proof of Theorem 2.16 we obtain that G is isomorphic to a subgroup of the group
Aut(P1) = PSL2. Since noncyclic and nondihedral finite subgroups in PSL2 are
only the rotation groups of a regular tetrahedron, octahedron, and icosahedron,
G is isomorphic to one of them. However, this is impossible because the rotation
group of an icosahedron does not have nontrivial two-dimensional representations,
and even though the rotation groups of a regular tetrahedron and octahedron have
them, the kernels of these representations are nontrivial (their orders are 4), see,
e.g., [Vi85]. Contradiction. �

3. Group embeddings and the Cremona groups

In this section, the characteristic k is zero.
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3.1. Properties of abstract Jordan groups. We recall the concepts introduced
in [Po11, Def. 2.1], [Po141, Def. 1].

For any finite group H , put

mH := min
S

[H : S], (3.1)

where S runs over all normal Abelian subgroups of the group H .

Definition 3.1. Let G be a group and let

JG := sup
F

mF (3.2)

where F runs over all finite subgroups of G. If JG < ∞, then G is called a Jordan

group (one also says that G has the Jordan property), and JG its Jordan constant.

Lemma 3.2. For any groups G1, . . . , Gs, the inequality

JG1×···×Gs
> JG1 · · ·JGs

(3.3)

holds (if JGi
= ∞, then by definition, (3.3) means that JG1×···×Gs

= ∞).

Proof. Let Fi be a finite subgroup of Gi and let N be a normal Abelian subgroup of
the finite subgroup F1×· · ·×Fs of the group G1×· · ·×Gs. Let πi : F1×· · ·×Fs → Fi

be the projection to the ith factor. Then πi(N) is a normal Abelian subgroup of the
group Fi, therefore, (3.1) implies the inequality

|πi(N)| 6
|Fi|

mFi

. (3.4)

From the inclusion N ⊆ π1(N)× · · · × πs(N) and the inequality (3.4), we get:

|N | 6 |π1(N)× · · · × πs(N)| =
s∏

i=1

|πi(N)| 6
s∏

i=1

|Fi|

mFi

=
|F1 × · · · × Fs|

mF1 · · ·mFs

. (3.5)

It follows from (3.5) that [(F1 × · · · × Fs) : N ] > mF1 · · ·mFs
, whence, in view of

(3.1), we obtain the inequality

mF1×···×Fs
> mF1 · · ·mFs

. (3.6)

Now (3.3) follows from (3.6) and (3.2). �

Remark 3.3. We set jG := sup
F

min
A

[F : A], where F runs over all finite subgroups

of G, and A over all Abelian (not necessarily normal) subgroups of F . Clearly jG 6

JG. The conditions JG < ∞ and jG < ∞ turn out to be equivalent, see [Po11,
Rem. 2.2]. Omitting the assumption of the normality of the subgroup N in the proof
of Lemma 3.2, we obtain for any groups G1, . . . , Gs the proof of the inequality

jG1×···×Gs
> jG1 · · · jGs

.

Theorem 3.4. Let P be a Jordan group and let Q1, . . . , Qs be the groups, each

of which contains a non-Abelian finite subgroup. Then the group Q1 × · · · × Qs is

nonembeddable in the group P if s > log2(JP ).

Proof. It follows from Definition 3.1 that JP <∞ and, if Q1×· · ·×Qs is embeddable
in P , then JQ1×···×Qs

6 JP . This and Lemma 3.2 yield the inequality JQ1 · · ·JQs
6

JP . But from (3.1), (3.2), and the condition on Qi it follows that JQi
> 2 for every

i. Hence 2s 6 JP , and therefore, s 6 log2(JP ). �
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Remark 3.5. The statement and the proof of Theorem 3.4 remain in effect, if in
them JP is replaced by jP , and JQi

by jQi
.

3.2. Subgroups of the form G1×· · ·×Gs and p-subgroups in the Cremona
groups. We now apply the results from Subsection 3.1 to the Cremona groups.

Theorem 3.6. Let X be a rationally connected variety X defined over k. Then there

exists an integer bX , depending on X, such that every product of groups G1×· · ·×Gs,

each of which contains a finite non-Abelian subgroup, is nonembeddable in the group

Birk(X) if s > bX .

Proof. This follows from Theorem 3.4 and the Jordan property of the group Birk(X)
(see the footnote in the Introduction). �

Corollary 3.7. Let n be a positive integer. Then there exists an integer bn,k, depend-
ing on n and the field k, such that every product of groups G1 × · · · × Gs, each of

which contains a finite non-Abelian subgroup, is nonembeddable in the Cremona

group Crn(k) if s > bn,k.

Proof. This follows from Theorem 3.6 in view of rational connectedness of rational
varieties. �

Remark 3.8. According to Theorem 3.4 and Remark 3.5, we can take bX =
log2(jBirk(X)) in Theorem 3.6. The explicit upper bounds on jCr2(k)

and jBirk(X) for
rationally connected threefolds X , as well as their exact values under certain rest-
rictions, are found in [Se091], [PS17]. For example, if k = k, then jCrn = 288 and
10368 respectively for n = 2 and 3.

Corollary 3.9. For every prime integer p and rationally connected variety X defined

over k, there exists a non-Abelian finite p-group nonembeddable in Birk(X). In parti-

cular, for every integer n > 0, there exists a non-Abelian finite p-group nonem-

beddable in the Cremona group Crn(k).

Proof. This follows from Theorem 3.6, its Corollary 3.7, and the existence of finite
non-Abelian p-groups. �

3.3. Applications: p-rank and embeddings of groups. Considering p-subgro-
ups yields an obstacle to the existence of embeddings of groups. From here some
applications are obtained.

Namely, let p be a prime integer. Recall that a finite p-group is called elementary

if it is Abelian and all its invariant factors (see above Subsection 2.10) are equal
to p.

Definition 3.10. For any group G and prime integer p, we call the p-rank of the

group G and denote by rkp(G) the least upper bound of ranks of all elementary
p-subgroups of the group G.

Clearly, if G1 and G2 are two groups and rkp(G1) > rkp(G2) for some p, then G1

is nonembeddable in G2. The applications of this remark are based on the fact that
in some cases rkp(G) can be explicitly computed or estimated. In particular, this is
so for the Cremona groups:
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Theorem 3.11. For any integer n > 0, there exists a constant Rn, depending on

n, such that

rkp(Crn) = rkp(Aut(A
d)) = n for any p > Rd. (3.7)

Proof. Let p be a prime integer. Since Tn(m1, . . . , md) with m1 = . . . = mn = p (see
(2.39)) is an elementary p-subgroup of rank n in the group Aut(An), which, in turn,
is a subgroup of Crn, we have the following inequalities:

rkp(Crn) > rkp(Aut(A
d)) > n. (3.8)

On the other hand, combining [PS17, Thm. 1.10] with [Bi17, Cor. 1.3], we con-
clude that if p is bigger than a constant Rn, depending on n, then rkp(Crn) 6 d. This
and (3.8) imply (3.7). �

The other examples of groups, for which one manages to compute their p-rank,
are connected affine algebraic groups over an algebraically closed field and connected
real Lie groups. All the maximal tori in them are conjugate. Recall that, for such a
group, a prime integer p is called the torsion prime if this group has a finite Abelian
p-subgroup that does not lie in any maximal torus. The torsion primes of a given
group divide the order of its Weyl group, so the set of all such primes is finite.

Theorem 3.12. Let G be either a connected affine algebraic group over an algebra-

ically closed field or a real Lie group. If r(G) is the dimension of the maximal tori

of G, and a prime integer p is not a torsion prime for G, then rkp(G) = r(G).

Proof. Let F be a finite elementary p-subgroup of G. Since p is not a torsion prime
for G, the subgroup F lies in a maximal torus T of the group G. This torus is
isomorphic to the direct product of r(G) copies of either the multiplicative group of
the base field (if G is an algebraic group) or the group {z ∈ C× | |z| = 1} (if G is a
real Lie group). This easily implies that the rank of F does not exceed r(G). On the
other hand, clearly, T contains a finite elementary p-subgroup of rank r(G). This
completes the proof. �

From 3.11 and 3.12 we obtain

Corollary 3.13. Let k be an algebraically closed field of characteristic zero. We

associate with each positive integer d any abstract group Hd from the following list:

(1) Crd(k),
(2) Aut(Ad

k),
(3) a connected affine algebraic group over the field k, whose maximal tori have

dimension d,
(4) a connected real Lie group, whose maximal tori have dimension d.

Then the group Hn is nonembeddable in the group Hm if n > m. In particular, the

following properties are equivalent:

(a) the groups Hn and Hm are isomorphic,

(b) n = m.

Corollary 3.14. If ϕ : Crn → Crm is a continuous epimorphism of groups endowed

with the Zariski topology, then n = m and ϕ is an automorphism.
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Proof. In view of the topological simplicity of the group Crn (see [BZ18, Thm1. ]),
the kernel of the epimorphism ϕ is trivial, and therefore it is an isomorphism of
abstract groups. The statement now follows from Corollary 3.13. �

Remark 3.15. According to [Ur18], it follows from [BLZ18] the existence of an
abstract group epimorphism Cr3 → Cr2. This shows that the assumption of conti-
nuity in Corollary 3.14 is essential. On the other hand, Cr2 is a Hopfian abstract
group, i. e., every its (not necessarily continuous) surjective endomorphism is an
automorphism [Dé07].

In the following theorem is used not the exact value of the p-rank of a group, but
its upper bound.

Theorem 3.16. Let M be a connected compact n-dimensional topological manifold

and let BM be the sum of its Betti numbers with respect to homology with coefficients

in Z. If

d >

√
n2 + 4n(n+ 1)BM + n

2
+ log2BM , (3.9)

then the Cremons group Crd is nonembeddable in the homeomorphism group H (M)
of the manifold M .

Proof. Suppose that the inequality (3.9) holds.
Let p>2 be a prime integer satisfying the conditions:

(i) p > Rd (see Theorem 3.11);
(ii) p does not divide the order of the finite Abelian group

⊕n

i=0Tors(Hi(M,Z)).

It follows from [MS63, Thm. 2.5(3)] that the rank of any finite elementary p-

subgroup of the group H (M) does not exceed (
√
n2 + 4n(n+ 1)BM,p + n)/2 +

log2BM,p, where BM,p is the sum of Betti numbers of the manifold M with respect
to homology with coefficients in Fp. It follows from (ii) and the universal coefficients
theorem that BM,p = BM , whence, in view of (3.9), we obtain the inequality d >
rkp(H (M)). From it, the condition (i), and Theorem 3.11 we infer that rkp(Crd) >
rkp(H (M)). This completes the proof. �

According to [PS17, Thm. 1.10], [Bi17, Cor. 1.3], the constant Rd from Theorem
3.11 can be chosen so that, for any rationally connected d-dimensional variety X
defined over k and any prime integer p > Rd, the inequality rkp(Birk(X)) 6 d holds.
From this, another statement about nonembeddable groups follows:

Theorem 3.17. Let X be a rationally connected n-dimensional variety X defined

over k, and let p be a prime integer bigger than the constant Rn from Theorem

3.11 Then any product of groups G1 × · · · ×Gs, each of which contains an element

of order p, is nonembeddable in the group Birk(X) if s > d.

4. Connectedness of the Cremona groups

4.1. A new proof of the connectedness theorem. Two elements σ and τ ∈
Crn(k) are called linearly connected if there exist a k-defined open subset U of the
affine line A1 and a k-morphism ϕ : U → Crn such that σ, τ ∈ ϕ(U(k)). It is easy
to verify that the relation of being linearly connected is an equivalence relation on
Crn(k) (see [Bl10, p. 363]). By definition, linear connectedness of the group Crn(k)
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means that there is only one equivalence class of this equivalence relation. Linear
connectedness of the group Crn(k) implies its connectedness.

Theorem 4.1 ([BZ18]). The Cremona group Crn(k) is liearly connected if the field

k is infinite.

Proof (different from the proof in [BZ18]).
(a) First, id and every element σ ∈ Affn(k) are linearly connected, because Affn

is an open subset of the (n2 + n)-dimensional affine space An of all affine maps
An → An, and therefore, as ϕ one can take the identity map of the set U :=ℓ∩Affn,
where ℓ is a line in An, containing σ and id.

(b) Second, every element σ ∈ Birk(A
n) = Crn(k) is of the form σ = α ◦ θ ◦ τ ,

where α, τ ∈ Affn(k), and θ = (θ1, . . . , θn) ∈ Crn(k) possesses the properties:

(i) θ is defined at o;
(ii) θ(o) = o;
(iii) θ is étale at o, and doθ : To,An → To,An is the identity map.

Indeed, since the map σ : An 99K An is k-birational, and the field k is infinite, there
exists a point s ∈ An(k), at which σ is defined and étale (its existence is equivalent
to the existence of a point in An(k) that is not zero of some nonzero polynomial
from k[x1, . . . , xn]). Now, as α and τ we can take any elements from Affn(k) such
that τ−1(o) = s, α−1(σ(s)) = o, and the composition of the maps

To,An

doτ
−1

−−−→ Ts,An

dsσ−−→ Tσ(s),An

dσ(s)α
−1

−−−−−→ To,An

is the identity map—obviously, such elements exist.
(c) We will now show that id and the element θ ∈ Crn(k) specified in (b) are

linearly connected. Clearly, in view of (a) and (b), this will complete the proof of
Theorem 4.1.

Let O and Ô be respectively the local ring of the variety An at the point o and
its completion with respect to its maximal ideal. The set of functions x1, . . . , xn is
a system of local parameters of the variety An at the point o. Therefore, we can

(and shall) assume that Ô = k[[x1, . . . , xn]] and O is the subring of Ô formed by the
Taylor series at the point o of all the functions from O with respect to this system
of local parameters. We have Ok := O ∩ k(An) ⊂ k[[x1, . . . , xn]].

It follows from (i) that θi ∈ Ok for every i = 1, . . . , n, so we have

θi = Fi(x1, . . . , xn) ∈ k[[x1, . . . , xn]] (4.1)

In view of (ii) and (iii), the series Fi(x1, . . . , xn) has the form

Fi(x1, . . . , xn) = xi +
∑

d>2

Fi,d(x1, . . . , xn), (4.2)

where Fi,d(x1, . . . , xn) is a form of degree d in x1, . . . , xn with the coefficients in k,
so we have

Fi,d(tx1, . . . , txn) = tdFi,d(x1, . . . , xn) for any t ∈ k. (4.3)

From (4.1), (4.2), (4.3) it follows that, for any t ∈ k, the series

txi +
∑

d>2

tdFi,d(x1, . . . , xn)∈ Ô
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lies in O , and for t ∈ k, it lies in Ok. This implies that the series

xi +
∑

d>2

td−1Fi,d(x1, . . . , xn)

also possesses the same properties. Therefore, for every t ∈ k, we obtain a rational
map

̺(t) : An 99K An, ̺(t)i = xi +
∑

d>2 t
d−1Fi,d(x1, . . . , xn), i = 1, . . . , n. (4.4)

In reality, ̺(t) ∈ Crn for every t. Indeed, (4.4) yields

̺(0) = (x1, . . . , xn)
(1.2)
== id ∈ Crn. (4.5)

If t 6= 0 and ϑ(t) := (tx1, . . . , txn) ∈ GLn, then from (1.3), (4.1), (4.2), and (4.4) we
obtain

ϑ(t−1) ◦ θ ◦ ϑ(t) = ̺(t). (4.6)

Since the left-hand side of the equality (4.6) lies in Crn, the same is true for the
right one.

Thus, a mapping ϕ : A1 → Crn, t 7→ ̺(t), arises. In view of (4.4), it is a k-
morphism. From (4.5) and the equality ̺(1) = θ (following from (4.4), (4.2), (4.1))
it now follows that θ and id are linearly connected. �

4.2. The case of a finite field k. The following examples, belonging to A. Borisov
[Bo17], show that the condition that the field k is infinite cannot be discarded in
the proof given above.

Examples. Let k = Fq, n = 2. Then the birational self-map τ := (x1, x2− 1/(xq1−
x1)) ∈ Cr2(Fq) is not defined at all points of A2(Fq), and the birational self-map
τ := ((xq1 − x1)x1x2, (x

q
1 − x1)x2) ∈ Cr2(Fq) is not étale at all such points.

References

[Al23] J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. USA 9 (1923),
406–407.

[Bi17] C. Birkar, Birational geometry of algebraic varieties, arXiv:1801.00013 (2017).
[BM97] E. Bierstone, P. D. Milman, Canonical desingularization in characteristic zero by blowing

up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302.
[Bl06] J. Blanc, Finite Abelian subgroups of the Cremona group of the plane, Thèse No. 3777,
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