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Abstract—The problem of interaction of a centered wave of rarefaction with a shear layer is solved in the case
of a small flow vorticity in the shear layer. The solution is found in the form of an asymptotic series with respect
to a small parameter of the problem. A system of equations derived in the zero approximation describes the flow
in a simple wave. A uniformly applicable first-order expansion is constructed using the method of deformed
coordinates. © 2002 MAIK “Nauka/Interperiodica”.
Let us consider the interaction of a centered rarefac-
tion wave 1 with a vortex (shear) layer 2 of finite thick-
ness (Fig. 1). The region of interaction is bounded from
the left by a weak discontinuity A1A2A3 (which is a con-
tinuation of the weak discontinuity OA1 separating the
uniform flow and the Prandtl–Meyer wave) and from
below by a weak discontinuity A1F1C1 originating from
point A1 (the point of intersection of weak discontinui-
ties OA1 and QA1). The Mach numbers M1 and M2 (in
the regions below and above the shear layer, respec-
tively), the distribution M(y) of this number across the
layer, and the slope angle ϕ2 of a weak discontinuity
OB1 terminating the simple wave are considered to be
preset. 

The interaction of a simple wave with a shear layer
is encountered in descriptions of supersonic streams [2]
and shock waves interacting with simple waves [3] and
in the problems of external aerodynamics [4, 5]. A
small level of vorticity of the shear layers involved in
these problems allows this factor to be ignored and the
flow to be considered as potential. However, this sim-
plification leads to physically incorrect consequences
(see, e.g., [4]) and hinders adequate description of the
flow pattern [2]. 

The main purpose of this paper is to obtain an ana-
lytical solution, with allowance for the flow vorticity,
based on an asymptotic expansion of the gasdynamic
functions with respect to a small parameter δ =

|M(y) – M1|/M1 characterizing the flow vorticity in

the shear layer 2 (Fig. 1). 

A flow in the region of interaction is described by a
system of Euler equations. It is convenient to pass from

y
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this system to an extended system of equations [1]. For
a flat supersonic flow, the new system is as follows: 

(1)

.

Here, ϑ  is the slope of the flow velocity vector rela-
tive to the abscissa axis, α = 1/M), γ is the adi-
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abate index, and 

The functions 

characterize the intensity of small perturbations propa-
gating along characteristics of the first (P1) and second
(P2) families and along the current lines (P3). In partic-
ular, for a simple Prandtl–Meyer wave, P2 = P3 = 0 and 

(2)

Here, the constant c changes upon passage from one to
another characteristic of the first family. For a centered
wave, this value is constant over the wave and equal to
the abscissa x0 of the wave center (x0, y0). For wave 1 in
Fig. 1, x0 = y0 = 0. In the shear layer 2, which is parallel
to the abscissa axis, P1 = P2 = 0 and P3 is proportional
to the vorticity: 

(3)

where M(y) and S(y) are distributions of the Mach num-
ber and the entropy in the shear layer. 
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Fig. 1. A schematic diagram illustrating the interaction of a
centered wave of rarefaction with a shear layer. 
TE
Let us seek a solution in the region of interaction in
the following form: 

(4)

In the zero approximation, system (1) describes the

flow in a centered Prandtl–Meyer wave with  =

 = 0 and  determined by formula (2). The quan-
tities ν(0) and A(0) are related to the Mach number M1 of
the uniform flow ahead of wave 1 and to the polar angle
ϕ by the relations 

Now let us pass to a polar coordinate system in
Eqs. (1), substitute series (4) into this system, and
equate the terms at equal powers of δ. As a result, we
obtain for the functions f (1) 

(5)

System (5), as well as the initial system (1), is writ-
ten in the invariant form [1]. In addition, the matrix in
the right-hand part of (5) is triangular. These circum-
stances allow us to obtain an analytical solution to sys-
tem (5) by sequentially solving the linear inhomoge-
neous first-order equations in partial derivatives with

respect to functions , , ϑ (1), A(1), and . 

It should be noted that the region of interaction is
infinite in r. This circumstance leads to nonuniformity
of the asymptotic expansion. Indeed, integration of the
last three equations of system (5) along the characteris-
tics of the first family leads to the appearance of secular
terms of the type rα(ϕ) in the expressions for ϑ (1), A(1),

f  = δk f k( ),   δ 0,   f A ϑ P 1 P 2 P 3 , , , ,{ } . ∈  

k

 

0=

 

∞

 ∑

P2
0( )

P3
0( ) P1

0( )

ϑ 0( ) ω M 0( )( )+ ω M1( ),=

A 0( ) 1

ε
------ ε g M1( ) ϕ–[ ]( ).tan=

∂P3
1( )

∂ϕ
------------ r ϕ ϑ 0( )

–( )
∂P3

1( )

∂r
------------cot– α3 ϕ( )P3

1( ),=

∂P2
1( )

∂ϕ
------------ r ϕ α 0( ) ϑ 0( )–+( )

∂P2
1( )

∂r
------------cot–

=  α22 ϕ( )P2
1( ) α23 ϕ( )P3

1( ),+

D 1( )

r
--------∂ϑ 0( )

∂ϕ
----------- ∂ϑ 1( )

∂r
-----------+  = αϑ 2 ϕ( )P2

1( ),   D 1
 

( )  =  ϑ 
1

 
( ) 

A
 

1

 

( )

 
M

 
0

 
( )

 
( )

 
2

 --------------– ,

D 1( )

r
---------∂A 0( )

∂ϕ
------------ ∂A 1( )

∂r
------------+ α A2 ϕ( )P2

1( ) α A3 ϕ( )P3
1( ),+=

D 1( )

r
---------

∂P1
0( )

∂ϕ
------------

∂P1
1( )

∂r
------------+ α11 ϕ( ) α12 ϕ( )P2

1( )+=

+ α13 ϕ( )P3
1( ) α1ϑ ϕ( )ϑ 1( ) α1A ϕ( )A 1( ).+ +

P3
1( ) P2

1( ) P1
1( )
CHNICAL PHYSICS LETTERS      Vol. 28      No. 10      2002



TECHNIC

INTERACTION OF A SIMPLE PRANDTL–MEYER WAVE 879
0.16

0.12

0.08

0.04

0
5 10 15

3.42

3.38

3.34

3.30

P3

M

r5 10 15

Fig. 2. A comparison of the results of analytical and numerical calculations (see the text for explanations). 
and , which makes the expansion inapplicable at
large distances from the wall. 

In order to obtain a uniformly applicable first
approximation, let us employ the method of deformed
coordinates [6, 7] and pass from (r, ϕ) to the new vari-
ables (s, t) using the formulas 

As a result, the new equation for ϑ (1) is 

By selecting ϕ2 from the condition 

(6)

we arrive at 

where the function ϑ (0) + δϑ(1) remains constant in the
region above the vortex layer. Equation (6) can be
rewritten as 
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At t = t0, we obtain the flow in a simple wave with ϕ = s.
For this reason, the arbitrary function (s) in the last
equation should be taken equal to zero.With this choice
of (s), the parametric variable s is determined by the
implicit relation 

(7)

Figure 2 presents the results of calculations of the
distribution of vorticity P3 and the Mach number M on
the terminal wave characteristic OB3. These results
were obtained for M1 = 3, M2 = 3.1, Mw1 = 3.3, and a
velocity profile in the vortex layer described by a cubic
parabola. For these initial conditions, δ = 0.033. Solid
curves in Fig. 2 correspond to the data obtained using
an asymptotic expansion, while dotted curves represent
the values calculated by the method of characteristics.
As can be seen from this figure, even the former
approximation provides for a good coincidence with
the exact calculation: the maximum relative error of
determination of the Mach number was about 10–4. It is
interesting to note that an increase in the level of vortic-
ity does not lead to a catastrophic growth in the error.
Indeed, for a Mach number of M2 = 4, the parameter δ
is 0.33 and the maximum relative error of determina-
tion of the Mach number is on the order of 10–2. 

Conclusion. We have demonstrated that the prob-
lem under consideration belongs to the class of singu-
larly perturbed problems of vortex gasdynamics. A uni-
formly applicable first approximation was obtained
using the method of deformed coordinates. 
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