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Abstract—Special features of calculation of the flow parameters behind a nonstationary oblique shock wave
moving in a stream of absolutely nonviscous gas are considered. The wave intensity at which the stream behind
the shock wave may exhibit singularities is determined. The problem of calculating a nonstationary shock wave
configuration formed during the interaction of a supersonic jet with an obstacle is solved. © 2002 MAIK
“Nauka/Interperiodica”.
Many gasdynamic problems [1–3] encounter the
task of determining the parameters of flow f2 behind a
shock wave propagating in a gas stream, given the
parameters of flow f1 (velocity u1, static pressure p1,
density ρ1, temperature T1, etc.) in front of the wave,
the velocity w of the shock wave along a straight trajec-
tory making an angle α with the gas stream direction,
and the angle σ of the wave slope relative to the trajec-
tory (Fig. 1a).

The main parameter of the problem is the shock
wave intensity

(1)

which depends on the components of velocities u1n =
usin(σ – α) and D = wsinσ normal to the wave front
and on the thermodynamic variables of the initial
stream (sound velocity a1 and adiabatic index γ). A
physically justified condition J ≥ 1 poses restrictions on
the determining parameters, which will be considered
below.

Using the conditions for dynamic consistency on the
shock wave front [1–3], we can readily determine the
Rankine–Hugoniot adiabate of the shock wave; estab-
lish relationships between specific enthalpies, tempera-
tures, sound velocities, and the shock wave intensity,

(2)

and derive expressions for the normal velocity compo-
nents

(3)

where χ = ±1 is the index of wave propagation direction.
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Expressing the velocity components through the
angles σe = σ – α and β and using the condition u1τ =
u2τ, we determine the stream velocity u2 behind the
shock wave:

(4)

Formulas (3) and (4) yield a relationship between the
angles β and σe for the oblique shock wave:

(5)

Combining formulas (4) and (2), we obtain a relati-
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Fig. 1. The flow geometry for (a) an oblique shock wave
moving downstream at a velocity w in a stream of velocity u,
(b) overexpanded supersonic stream incident onto an infi-
nite flat obstacle, and (c) triple shock wave configuration
moving down a supersonic stream.
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onship

(6)

between the Mach number M2 = u2/a2 behind the shock
wave and that (M1 = u1/a1) in the initial stream.

Setting J = 1 in Eq. (1), we obtain a formula

(7)

which relates the Mach numbers MD = D/a1 and M1 > 0
to the angle σe = σs between the direction of the oncom-
ing stream and the weak discontinuity front. Note that,
in contrast to the case of a weak stationary shock wave
(MD = 0) for which σs = arcsin(1/M1) is fixed, the σs

value in the nonstationary case may vary within the
interval [–π/2, π/2]. In the nonstationary case, the inter-
val σs ∈  (0, π/2] corresponds to a weak opposite shock
wave, while the interval σs ∈  [–π/2, 0) corresponds to a
weak cocurrent shock wave. The special value σs = 0
refers to the case of a weak shock wave propagating
perpendicularly to the oncoming stream, whereby the
stream does not influence the shock wave (which prop-
agates as if the stream were absent).

The value of J = 1 corresponds to the minimum pos-
sible intensity of the shock wave. A maximum intensity
is attained for the J values corresponding to a forward
shock wave (σ = π/2). Let us fix the Mach number
M1 > 0 and analyze the behavior of the main gasdy-
namic parameters for various MD and J ≥ 1, restricting
the consideration to χ = –1.

As can be seen from formula (7), the range of MD

(χ = –1) is limited from above by MD = M1 – 1. For this
MD value, the stream can feature only a weak disconti-
nuity with J = 1 and σ = π/2, which either propagates
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Fig. 2. Plots of the angle β of the stream rotation behind the
shock wave versus the sloping angle σ of the wave.
T

upstream (for M < 1) or is carried downstream (for
M > 1). As the MD value decreases, the lower boundary
σs given by formula (7) goes down to reach zero for
MD = –1 and the value σs = –π/2 for MD = –M1 – 1. For
MD < –M1 – 1, an oblique shock wave with an intensity
J > 1 exists for any σ ∈  [–π/2, π/2].

Figure 2 shows the σ(β) curves constructed for var-
ious MD < M1 – 1, where M1 = 3. As can be seen, the
character of these curves significantly depends on the
MD value. For MD ∈  (M∗ , M1 – 1), the shape of σ(β)
(curves 1–3) is qualitatively the same as in the case of a
stationary shock wave (MD = 0, dashed curve). For
MD < M∗ , there always exists a shock wave which
causes the stream to deviate by any preset angle β ∈
[0°, 180°] (curves 5–8).

The special Mach number M∗  corresponds to the
case whereby the M2 value becomes zero behind the
forward shock wave (curve 4). Using formulas (1) and
(3), we can readily obtain a relationship between M∗
and the Mach number M1 of the oncoming stream:

(8)

For MD < M∗ , the stream behind the forward shock
wave is rotated by 180°; for σ < π/2, the angle of rota-
tion varies within the interval β ∈  [0°, 180°]. For MD <
–M1 – 1, all the σ(β) curves originate from the point
(0°, –90°) and come to the point (180°, 90°).

In practical problems involving nonstationary shock
waves, the analysis is usually performed using reversal
of the wave motion [3]. The passage from a laboratory
coordinate system to that related to the moving shock
wave simplifies the problem by reducing the analysis to
a simpler case of the jump in compression [2]. How-
ever, this transformation is not always possible in com-
plicated cases involving the interference of oblique
shock waves. For example, consider a shock wave con-
figuration encountered in the study of nonstationary
processes in jet streams [4]. When a homogeneous flat
stream is outgoing from a profiled overexpanding noz-
zle (na = pn/pa < 1), there appears a straight oblique
compression jump 1 (Fig. 1b) at the nozzle edge. In the
case of an efficiently small na value, this shock wave
exhibits irregular reflection from the stream axis. As a
result of this reflection, there appear the Mach jump 3,
the reflected oblique jump 2, and the tangential discon-
tinuity τ separating the stream behind jumps 2 and 3.
For the sake of simplicity, let us assume that reflection
of the oblique jump gives rise to a stationary Mach con-
figuration of the shock waves in which the branching
jump 3 is orthogonal to the current lines of the oncom-
ing stream.

Let such a stream come onto an infinite flat obstacle
(Fig. 1b). As was demonstrated previously (see, e.g., [5]),
the dynamic and total pressures in the supersonic
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stream past the jumps 1 and 2 may significantly exceed
the corresponding values behind the straight jump 3 in
a subsonic flow. A large difference between these value
may result in that the tangential discontinuity τ would
instantaneously “stick” to the obstacle surface and
block the subsonic flow. As a result, the “sticking” point
will give rise to a curvilinear shock wave 4 interacting
with the Mach jump 3 and propagating upstream. This
will lead to a shift of the shock wave 2 containing the
special point T with the branching jump 3 (Fig. 1c).
Thus, we arrive at the problem of describing the stream
behind the shock wave 2.

In order to solve this problem, note that the shock
wave 2 propagates along a trajectory coinciding with
the line of jump 1 at a velocity of w = D2/sinσ2 =
D3/sinσ3, where D2 and D3 are the velocities of shock
waves 2 and 3, respectively; σ2 and σ3 = π/2 + σ1 are the
angles between vector w and the surfaces of discontinu-
ities 2 and 3, respectively; and σ1 is the sloping angle of
jump 1 (Fig. 1c). The shock wave 3 moving upstream at
a relative velocity of MD3 < 0 leads to an increase in the
wave intensity,

where α3 = σ1 is the angle between vector w and the
oncoming stream velocity u. As a result, the intensity
J2 = J3/J1 of the shock wave 2 increases as well, this
leading to a change in the angle σ2 related to J2 by the
formula (1)

(9)

Here, M1 is the Mach number behind jump 1 and α2 =
σ1 – β1 is the angle between vector w and the stream
velocity u1 behind jump 1. Upon numerically solving
Eq. (9), we can calculate σ2 and, hence, determine β2,
the angle of stream rotation (5) by shock wave 2.

In the general case, the angle β2 differs from β20, the
angle of stream rotation behind the immobile jump 2 in
the stationary Mach configuration. As a result, the con-
ditions of dynamic consistency at the tangential discon-
tinuity τ separating the streams are broken. To restore
these conditions, we have to admit that the initial
straight jump 3 acquires curvature in the vicinity of the
triple point T in the course of the shock wave motion.
The curvature must provide both for the condition of
equal pressures and for the collinearity of current lines
above and below the tangential discontinuity τ
(Fig. 1c). Assuming that the velocity w at which the
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shock wave 3 moves along jump 1 is still related to the
velocity D3 of the shock wave in the vicinity of the sym-
metry axis as D3 = wcosσ1, we arrive at a system of
equations for determining the gasdynamic parameters
of flow at the branching point T (Fig. 1c):

(10)

Here, the intensities J2 and J3 are calculated by formu-
las (9), while J3 is determined as

and the angles β2 and β3 are determined using formula (5).
The results of calculations showed that, as the velocity
D3 of the Mach jump 3 grows, the intensities J2, J3 and
the angles β2, β3 monotonically increase. A more com-
plicated behavior is observed for the angle σ3 describ-
ing the slope of jump 3 at the point T: the function
σ3(MD3) initially (at small |MD3|) decreases from σ30 =
90° + σ1, then exhibits a minimum, and eventually
increases again tending to σ30 as MD3  M∗ , where
M∗  is given by formula (8). At the point MD3 = M∗ , the
derivative of the function σ3(MD3) exhibits discontinu-
ity; for MD3 < M∗ , the σ3 value monotonically decreases
with increasing |MD3|. It should be noted that, for
|MD3| > |M∗ |, the stream behind jump 3 changes direc-
tion to the opposite and the gasdynamic parameters in
the vicinity of point T have to be calculated using,
instead of Eqs. (10), the system of equations
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