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Abstract—Relationships between the derivatives on both sides of a discontinuity in a nonstationary shock
wave moving with acceleration in a one-dimensional vortex flow of perfect gas are deduced. The problem of
interaction between the shock wave and a weak discontinuity is solved based on these relationships. © 2002

MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The need for deriving relationships between the
properties of astrong discontinuity, such asthe acceler-
ation or the curvature of a shock wave, and the deriva-
tives of gasdynamic variables on both sides of the
strong discontinuity has been associated largely with
two problems. The first is the study of flows behind
curved shock waves, and the second is the analysis of
strong—weak discontinuity interaction. Early resultsin
this field, which date back to late in the 1940s [1, 2],
were concerned with the special case of a planar or an
axisymmetric stationary curved shock wave. Later, they
were extended for higher dimensionality problems
[3, 4]. However, most relationships that related the
derivatives on both sides of a strong discontinuity were
awkward. Therefore, the problem of strong—weak dis-
continuity interaction in gas dynamics either was solved
by the perturbation method or was considered as aspecia
case of strong—strong discontinuity interaction [5].

Inthiswork, we derive simple rel ationshi ps between
the derivatives on both sides of a nonstationary one-
dimensional shock wave. Based on them, we attack the
problem of shock wave interaction with counter and
weak cocurrent discontinuities. The application of the
results obtained is exemplified by the propagation of a
shock wave in aduct of variable cross section.

STATEMENT OF THE PROBLEM

We consider the accel erated motion of anonstation-
ary shock wave (SW) in a one-dimensiona vortex
nonisobaric flow of perfect gas. In terms of the
Lagrange variables, the set of equations for this flow
has the form [6]

dlnp , y’px’av _ 3y
0t a®> 0q X

ov, olnp _
ot P T O (@

0S _
37 - 0.
Here, p and a are the pressure and the sound velocity in

the flow, respectively; v isthe velocity of the flow; Sis
the entropy, which isrelated to p and a as

S= ZCpana+y2;y1Inp%+const, @)

where y is the adiabatic exponent; g and T are
Lagrangean coordinates; and d =0, 1, and 2 for planar,
axisymmetric, and spherically symmetric flows,
respectively.

The Eulerian coordinate x = x(q, t) is considered as
a solution of the differential equation dx/dt = v(q, t).
Introducing the vector u = [Inp, v, S], we come to the
set of equationsin the matrix form

Ju ou _
6—f+ 3 b, 3
where the matrix A has arank of 2 and A[1...2, 3] =
0[1...2, 3]. Thisset can be represented in the character-
istic form [6]:
LYU+A LYY = LY k=1,....3. (@
Here, L® =[1,~y/a, 0], L@ =[1, y/a, 0], L& =0, 0, 1],

U = [Q_Inp a_V a_SD \V = E@Inp a_V a_SD
Oot ' ot ot Uaqg ' oq’ od”

5
_YpX oyv
)\1,2 = +V_F; , A3=0, b= E——Y( , 0, (%

In the fixed coordinate system, the discontinuity
[f] =f, —f, of the gasdynamic variables f I {Inp, v,
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Fig. 1. Interaction of ashock wave with weak discontinuities. Parenthesized figuresindicate the continuity regions of thederivatives.

Ina, § inan SW and the SW velocity D = dx/dt relate
by the Hugoniot relationships
_ 8]

P-vyr
a4

A = Inp,—Inp, = In[(1+s) .

- y-1
€= vt
1-¢g)(J-1
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Ina,—Ina, _ In‘](1+£‘])
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In passing over a shock, not only the gasdynamic
variables but also their variables, 0f/0t and 0f/dq, have
discontinuities. The basic goal of the first part of the
article is to express the derivatives of the main gasdy-
namic variables behind the shock through the main gas-
dynamic variables and shock parameters in front of it.
The second part of the particle deals with the interac-
tion of an SW with a weak discontinuity. As has been
shown (see, e.g., [6]), the line of aweak discontinuity
is necessarily coincident with one of the characteristics
of set (4); in other words, thereexistsk [ (1, ..., 3) such
that dg/dt = A,.. Hereafter, such alinewill bereferred to
astheline of the weak discontinuity of the subscript k.

For definiteness, we assume that the SW direction
coincides with that of the characteristic of thefirst fam-
ily (Fig. 1a). Then, the SW may interfere with a weak
counter discontinuity of the subscript k (k=1, ..., 3) or
with aweak cocurrent discontinuity of subscript 1. As
aresult, aweak discontinuity of subscript 2 and that of
subscript 3 arise (reflected weak discontinuities of k= 2
and 3; Fig. 1a). Moreover, the SW acceleration W
changes stepwise. The problem of strong—weak discon-
tinuity interaction is stated as follows: given relation-

p
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ships (5) for astrong discontinuity and the discontinui-
ties of the derivatives 0f/0t and 0f/dq for acounter weak
discontinuity, it is necessary to find the jump in the
derivatives of weak discontinuities outgoing from the
point of interaction.

RELATIONSHIPS BETWEEN THE DERIVATIVES
BEHIND A SHOCK WAVE AND THOSE
ALONG THE SHOCK PATH

Let w(T) be the SW path. The derivative of the gas-
dynamic function f, behind the SW with respect to T in
the direction of w(t), the SW velocity D, and the deriv-
atives of,/0t, and df,/dq, are related as follows:

Y pzxéa f,

2 00,

Aswas noted, the rank of the matrix of set (3) equals
two; that is, the third row of the matrix is the linear
combination of the first two. In addition, the first two
rows of the set involve only the derivatives of Inp and v,
while the third one contains only the derivative of the
function S. This means that, from (1), we can separate
the subset

dt o1,

df, _ af,,

(D-vy) (6)

dlnp , y’pxov _ Sy
ot 2 0q X’
0 ) ol 0
ov s0Inp _
0T px daq 0.
as well asthe equation
0S _
Fr 0. (8)

Then, using formulas (5), we can separately find a
relation between the derivatives of Inp and v, aswell as
between the derivatives of S

Let us express the derivatives of Inp and v behind
the SW through the derivatives of,/0T aong the SW
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path. To do this, we substitutep = p, and v = v, into (7).
In view of relationships (6) written for f, = Inp, and f, =
V,, we have the linear system for the derivatives of Inp
and v behind the SW. Solving this system, we obtain

dlnp, _ 1 1d|np2+ 1 d_V2+5L
od, Z[v 0t  [D-v, a1  x }
D[D Vol
pZXB 0
vy _ [1d|np2+[D_V2]dL2+5_V2}D a; O
a% z|ly 0Ot ag dt X 18 yp,x '
dlnp, _ a; dinp, _dv, 5V,
0T, [Y[D vl dt dt +P-vd= }(9)
D/[D Voo
*0 ag 0
ov, _ 151 dinp, dv, dv,
0T, z[y[D_VZ] dt +_d-r—+[D Vol }
[D- Vz] J-1
z=1-
a5 J(1+s)

Using relationships (5) for the discontinuities, we
can express the derivatives df,/dt through the deriva-
tives df,/dt of the gasdynamic variables before the SW:

dinp, _ dlnp1+2(J +s)[

1 dD-v,) _dlna1
dt dt J }

D-v, dr dt

dv, _dv; (1-g)d(D-v,)

F=F+(J+S) dt [(‘]+8)+(1+8)]
(1-¢%)dIna,
—2(D—V1)(J+8)T.

Introducing the designations

_dinp, dv,

No == N =450
_dlna, _ b _dD
No= =g No =5 No =77

and taking into account the expressions for the deriva-
tives along the SW, we easily come to the desired rela-
tionships for Inp and v:

Ti(z) [LIJ(I)N + l.p(l)N + lIJ(I) N + lIJ(I)NB + Lp(')ND'I ,
(10)

N = 200N, + 00N, + 0N, + 09N + NG,

wherei =1 and 2,
alnp ov dlnp ov
(2 _ 2 (2) 772 2 _ 2 (2272
T = 0q, Tz Tog, oty N 0T,
D-v, . 1 a
D=0 =— 00 =—, =2
sz poX Y P2X
o o D-v D-v
0 =67 =1, ¢ =E 40222
a, Y
O = —dy(D-v )W +§Vg,),
O = —d)(D-v (0 +§Vg,),
b = 1('~|»'(|)+92'~|J(I))+L|J(I)d2,
08 = dy (98 +g,8%) + §Vd,,
L|J(I) _ (I) VLY, él) _ ¢(1) A
¢<2) = (09 -1)v,y,
0= 500l ol = 800
Here,
d. = 9_/} = ———2(J+8)
179D  J(D-vy)
4 =0Vl _ (1-8(3-1)
S T)) (J+g)
0 1-£%)J
g, = [v] _ V)( )

oA _( -V (J+8)2.

In practice, it is sometimes convenient to replace N,
by the function Ng= dS/dt, which characterizesthe vor-
ticity of the flow. Ng, N,, and N, are related as [ 2]
N = dna_y-1dinp, 1dS_y-1 1

& dt 2y dt 2c,dt 2y 2c

It is clear that the coefficients before Ng differ from
the associated coefficients before N, by a factor of
1(2c,),

s = wi(2c,), B8 = 0L(2c,),
and the new and old coefficients before N, are related as
(.) M _Y—=1 M _ 40 _Y=1.0)
= Uy 2y Ya by’ = b, 2y Pa
To set arelationship between the derivatives of the

function S, we note that the derivatives 050t vanish on
both sides of the discontinuity by virtue of (8). Hence,

5o Ns-

NG = NS & [Mns qa}
00, Y P2X (D V) dt
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Using the last relationship in (5), we rearrange the

derivative on the right-hand side to obtain (in terms of
the above designations)

a [ _2cp(1—s)s(J_1)2
ypxi(D—vy)L °  (1+e)I(1+ed)

x S\Ia*—D%(NV_ND)E]

RELATIONSHIPS BETWEEN THE DERIVATIVES
BEHIND THE SHOCK AND BASIC FLOW
NONUNIFORMITIES BEFORE THE SHOCK

Now let us express the derivatives behind the SW
through the discontinuity acceleration Ny, as well as
through the functions

2 _—
N3~ =

dlnp,
0T,

N, = 22,

09,
which are, respectively, flow nonisobaricity, flow accel-
eration, and flow vorticity (so-called flow nonuniformi-
ties) before the SW.

The derivative df,/dt of the gasdynamic function f;
before the SW is related to the derivatives df,/dt, and
df,/dqg, as

df, _of,
o - oar, TPV

yp. X0 f,
a2 0dy

1

(12)

Using set (1) written for f = f;, as well as relation-
ships (12), one can easily express N, N,, and Ng
through the basic flow nonuniformities:

X
N, = N;—(D-v)EN, Ng=(D-v,)PX

al al

Ns,

1
N, = N, = \‘/(D— V1)[Ny +yviNg.
Substituting these expressions into formulas (10)
and (11) in place of N,, N,, and Ns and designating
N, = N5 and N5 = N, yieldsthe desired relation between

the derivatives behind the SW and the basic flow non-
uniformities beforeiit:

M(ay) & 1 <
N = _22 z AN, TP = 52 AxcNy,

k = Zp2X k=1
1 5

NG =2 AaN,
k=1

—a, o av &
T = — % AulN- 2N,
ZPX Y P2X
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5
N = N3—0(J—l)zz AgN,.

Here,
Ais = dif+d,S,, Ayx = dif,+d,0C,,
Ag = fo/(D-v,),

170G+ 05, o= 035,+0,C, fi =1,
_ Y ~ - ~ - D—UZ
r@=Y &=1 &=

0 = T (ay),

A= AV (D=V,) +5,(Vy(D—-vy)—vi(D—vy)),
As = ApV(D=Vy) +Cy(Vy(D—V,) —vy(D=Vvy)),
Ay = Agvi(D-v,y),

Az = ady(D-v,y)f;, Ay =ady(D-v,)f,,

5 2
Y P1X a 2c.¢
== 12(D_ul)’ 0= 2 52 -Jl'f\],
2c,8; V2 p,x°(D —uy) J(1+€J)
- € -
A = _A15C1+1_d1(D_V1)f1r(al)Sl
2o T
+CiS,— Ma 1) $,Cy,
- € -
Ay = _A25C'1+1_d1(D_V1)f2r(a1)Sl
o~ F(al)~ ~
S (@)™
NI -
Agp = —AgsCy + mfiir(al)sl’
- - D-u
c,=1 s= 3
q
A, = ———1——A S, — d,(D-v,)f,C
n = Fy s 1+ 1 1) T1Cy
1 ze+-1 gc
M) 2" T(ay)
A = = sl ———d, (D= v ) 6
2= Py e 1+ 1) T2Cy
L1 s+ -L g5
T(a) ™t T(a) &7
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RELATIONSHIPS
FOR A WEAK DISCONTINUITY

Before passing to the problem of strong—weak dis-
continuity interaction, it would be well to establish a
number of relationships concerning aweak discontinu-
ity of the subscript k. Let (1) betheline of aweak dis-
continuity of the subscript mthat is defined by the equa-
tion dg/dt = A, From the continuity condition for the
gasdynamic functions in the vicinity of aweak discon-
tinuity, it follows that the derivatives of the vector func-
tionsu=(Inp, v, S) areequal in thedirection g(t) of the
weak discontinuity:

U, +AV, = Uy, +AL V. (14

Subscripts 1 and 2 refer to the derivatives on the
opposite sides of the discontinuity. Since u satisfies
characteristic set (4), we have

L®U, + A L v, = LW,
LU, +A L9V, = L¥p, k=1,..,3

at any point in the line of this discontinuity.

Subtracting the second expression from the first one
yields

(LYY, - LYUu,) + A LYV, - LYV,) = o;
k=1..,3.

Eliminating the difference of the derivatives with
respect to T with (14), we can eventually write

A=A LYV -LYV,) =0, k=1,..,3 (17
It follows from (17) that the equalities
LY, L%V, =0, kzm (18)

hold at the weak discontinuity of the subscript m for
any kzm.

By virtue of (16), the equalities
LYU,-L%u, = 0, kzm

are also valid.
Introducing the designation [f] = f, — f;, we can
obtain from the last two formulas

dinp  youy _ @_&1_
[ aq +aaq} =0, [aq =0,

dlnp _ you) _ G_ﬂ_
[ ot +aar} =0, [GT =0

for aweak discontinuity of the subscript k = 1.

Similarly, for a weak discontinuity of the subscript
k=2, we have

dlnp , youq _ 6_51-
[ aq +aaq} =0, [aq =0,

(15)

(16)

(19)

(20)

(21)

(22)

dlnp _ you) _ G_ﬂ -
[ ot +a6r} =0 [GT =0
Finally, for a weak discontinuity of the subscript
k = 3 (weak contact discontinuity), the differential con-

ditions
dinp7 _ vy _
[aq}_o’ [aq]'o’

o 3]

for dynamic compatibility follow from (18) and (19).

(23)

(24)

(25)

INTERACTION OF A SHOCK WAVE
WITH A COUNTER WEAK DISCONTINUITY

The above rel ationships, which rel ate the derivatives
of the basic gasdynamic functions at weak and strong
discontinuities, allow oneto effectively solve the prob-
lem of SW-weak discontinuity interaction. In this sec-
tion, we will consider the interaction of SW 1 with
counter weak discontinuity 2 of the subscript k (k =
1, ...,3) (Fig. 1b).

At the point of interaction, SW 3 with an accelera-
tion W; and weak discontinuities 4 and t of subscripts 2
and 3, respectively, originate. Let usintroduce the vec-
tors of discontinuity of the derivatives behind the SW:
V], = V¥ —V@ and [U],, = U®W —U®,

Theorem 1. If an SW whose direction coincides
with that of the characteristic of the first family inter-
acts with a counter weak discontinuity, the vectors[V],,
and [U],, of derivative discontinuity behind the SW
(strong discontinuity) are orthogonal to the left eigen-
vector L®; that is,

LYTvy, =0, L®[u], = 0. (26)

Proof. As follows from Fig. 1b, the differences of
the derivatives V¥, U® and V@, U@ in the regions in
front of and behind the point of interaction are related
to the vectors[V],, and [U],, of derivative discontinuity
at originating weak discontinuities T and 4 by the obvi-
0US expressions

V], = V(4)_V(2) - (V(4)_V(3)) +(V(3)—V(2)),27)
[U], = U(4)_U(2) - (U(4)—U(3))+(U(3)—U(2)).

Weak discontinuities 4 and T have subscripts 2 and
3, respectively. Multiplying by the left eigenvector L™
and taking into account formulas (18) and (19), we
prove the theorem.

Consequence 1. When an SW interacts with a
counter weak discontinuity, the product of the left
eigenvector L® by the derivative du,/dt of the vector
function u, along the SW path remains unchanged and

TECHNICAL PHYSICS Vol. 47
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equals

4 @)
@du” _  @du” . @wdu _ o

Ldr_L = L = L*b.
Proof. Consider the discontinuity line w(t) for the
vector function u(x, t). Behind the SW, the derivative of
an arbitrary gasdynamic function f, with respect to T is
related to the derivatives df,/d1, and of,/0q, through (6).
We multiply the second equality in (26) by (D —
v,)yp,x%/a5 and add the result to the first equality. In

view of (6), we abtain

(28)

2

This equality means that, when multiplied by L® on
the left, the derivative of u in the direction of the strong
discontinuity does not change when the strong discon-
tinuity interacts with any arbitrary weak discontinuity:
L(l)gli(.‘l_) = L(l)g.u_(z_) =const = C

dt dt ’

It only remains to find the constant on the right of
(29). To do this, consider the characteristic of subscript 1
arriving at the point of interaction. Sinceitliesinregion
(4), the conditions on this characteristic have the form

LYW+, LV = L Wp, (30)

Subtracting (30) from (29), we obtain on the left-
hand side

(29)

O] x6
B(D-VZ)WOZ2

a

0
“A(LOVE - LOVE) = o,
0

Hence, C = L®b, which isthe required result.

Consequence 2. Thediscontinuity [W] = W; —W, of
the SW acceleration islinearly related with the discon-
tinuities N = N{¥ (i =1, ..., 3) of the basic flow non-
uniformities near the counter weak discontinuity of the
subscript k.

Proof. Consider, for example, the second relation-
shipin (26). It can be recast as

(N = N) =T (a) (NP = NS = 0.

The derivatives N, N and N, N$V refer to
the regions immediately behind the SW. Expressing
them through the derivatives in front of the wave with
(13), we obtain the equality that linearly relatesthe dis-
continuity [W] of the SW acceleration to the disconti-
nuities [N;] of the basic flow nonuniformities near the
kth counter weak discontinuity:

3
(Ais=Ax) W] + 5 (Au—A) (N -N) = 0.
k=1 (31)
TECHNICAL PHYSICS  Vol. 47
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Now let us consider specific cases of the problem.

(i) k = 1. As follows from (21), the function N
remains continuous near the counter weak discontinu-
ity of the subscript k = 1. At the same time, the discon-
tinuity [N;] of the derivative dInp/dt and the disconti-
nuity [N,] relate as

NP - NE? = 1 (a) (NS = NSY).
Then, (31) can be recast as
W;-W,; _ M(a1) (A —Ax) — (A= Ap)
N(Zl) - N(20) Ais— Az .

(i) k = 2. From (23), it follows, as before, that
[N;] = 0 and the functions [N,] and [N,] relate as

(32)

NE” =N = (a) (NS = NS).
Substituting thisinto (31) yields

W; -W, _ M(a) (A —Axn) + (Ap—Ayp)

N(zl) - N(20) Ais — Az .

(iii) k = 3. From the differential conditions for
dynamic compatibility at a weak contact discontinuity
[see (25)], we have [N,] =[N,] = 0; hence, formula(31)
isreduced to

W3 —W, - Az — Ay
N(31) - N(3°) Ags— Ags

(33)

Theorem 2. A weak discontinuity of the subscript m
does not originate at the point where the SW interacts
with the counter weak discontinuity of the subscript kif
the vectors [V],, and [U],, of discontinuity of the deriv-
atives behind the SW and the left eigenvector L™ are
orthogonal to each other; that is, if

L™v], =0, L™[U], =0, m=23. (34

Proof. We will prove the statement for m = 2; for
m= 3, it isproved in asimilar way. Multiplying equal-
ities (27) by the eigenvector L@ and taking into account

formulas (18) and (19) yields
L@[v],, = LO(v@ —v®)
! ’ (35)
L(Z)[U]W — L(Z)(U(4) _ U(3)).

If the rights of these equalities are zero, this means
that the vectors of derivative discontinuity at weak dis-
continuity 4 are orthogonal to all three eigenvectors.
Since the latter are linearly independent, the orthogo-
nality takes place only if V® — V@ = U@ —U® = Q, that
is, if discontinuities near characteristic 4 are absent.

L et usexaminethe criteriathat weak discontinuity 4
does not originate. The second relationship in (35) can
then berecast as

(N =Ny + T (a) (NS =Ny = 0.
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Expressing the derivatives N2, N? and N,
NS$? through the derivatives in front of the SW with
(13), we cometo

3
(Ais+ Ax) W] + 5 (At A)(NU =N) = 0.
k=1

This relationship along with (31) forms the set of
linear homogeneous equationsin the variables [W] and

(NP = NP) (k=1, ..., 3) that isconveniently recast as
3
AW+ 5 Ay (NP =NP) = 0,
< (36)
AW + 5 An (N =N = 0.
k=1

Using formulas (21), (23), and (25), one can express
the discontinuities (N” — N{”) (k= 1, ..., 3) through
the discontinuity of one of the nonuniformities. The
nontrivial solutions of the thus-obtained set of linear
homogeneous equations will serve as criteria for the
absence of weak reflected discontinuity 4.

(i) k=1, m=1. Inthiscase, N{” = N{; hence, by
virtue of (32), set (36) takesthe form

As[W] — (T (al)All_AlZ)(N(Zl)_N(ZO)) =0,

AssIW] = (I (a1) Az =~ A) (N3 =N3”) = 0.
This set has nontrivial solutions if
Ais(M(a) Ay —Ay) = Ax(M(a))An—Ay). (37)

(ii) k=2, m= 1. With such k, expression (33) and the
equality N$” — N are valid, so that the nontrivial
solutions of set (36) are found if

As(M (1) Agr + Ax) = Ax(M(ag)An +Ap). (38)

With (13) it is easy to check that Egs. (37) and (38)
has the same analytic solution

_ oL+ e
J = 2¢ DFD , (39)
which implies that the interaction without a reflected
discontinuity is possible only if € > 1/4, y > 5/3, and
k=1

(iii) k= 3, m= 1. Substituting the differential condi-
tions for dynamic compatibility at a weak contact dis-
continuity [see (25)] into set (36), one can easily find
the following criterion for the absence of a weak dis-
continuity:

AisAz— APz = 0.

With the expressions for the associated coefficients,
this equality is reduced to the form

2(1+¢€)(I+e)px’/(D—v,) = 0,

from which it follows that the interaction of the SW
with a weak contact discontinuity without generating
reflected weak discontinuity 4 isimpossible.

INTERACTION OF A SHOCK WAVE
WITH A COCURRENT WEAK DISCONTINUITY

As was noted above, if the direction of SW 1 coin-
cides with that of characteristic 2 of the second family,
the SW may interact with the cocurrent weak disconti-
nuity of subscript 1 (Fig. 1c). The result of the interac-
tionisthe discontinuity [W] = W, —W, of the SW accel-
eration, as well as weak discontinuities 3 and T of sub-
scripts 2 and 3, respectively.

Theorem 1. If the SW interacts with the weak
cocurrent discontinuity of subscript 1, the eigenvector
L® (k=1, ..., 3) isorthogona to the differences[V],, —
[U],, and [V]—[U],, where the former isthe difference
of the derivatives behind the SW and the latter is that
near aweak discontinuity of the subscript k; that is,

LY([V], = [V]W) = 0,
LY([U],-[U]) = 0; k=1,..,3.
Consequence 1. Thediscontinuity [W] = W, — W, of

the SW acceleration is linearly related to the disconti-

nuity of the path curvature N — NP at the weak
cocurrent discontinuity of subscript 1; that is,

(Ass—Axs)[W] = 2T (a) (N3 = N3).

Consequence 2. Weak discontinuity 3 does not

originate if
Ais = Ags. (40)

All the three statements are proved as those in the
previous section.

Using expressions (13) for the coefficients A;, one
can show that equality (40) holdsiif

s

V=T

Thus, the interaction without the reflected disconti-
nuity is possibleif € > 1/4 and y > 5/3.

THE CHESTER-WHITHAM FORMULA

Let us turn back to the interaction of an SW with a
counter weak discontinuity. For one specific case of
great importance, formula (28) is likely to be first
derived by Whitham [7, 8]. He analyzed the results
reported in [9-11], where ashock wave propagated in a
stationary gas through a duct with a small cross-sec-
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tiona discontinuity. This problem is a specific case of
the more general problem of discontinuity breakdown
in a variable-section duct [6]. In essence, the general
problem involves two subproblems:. the propagation of
ashock wave in a constant-section duct and the flow of
agasin avariable-section duct.

In [9], the relation between a small variation of the
relative velocity M = D/a of the shock and the variation
of the cross-sectional area A of the duct was derived
based on the linearization of the relationships at the
cross-sectional discontinuity:

dinA = f(M)dM.

Whitham noticed that the same result can be
obtained if one writes the condition for the characteris-
tic of the second family in the flow behind the shock
and, instead of p,, u,, and a,, substitutes their associ-
ated expressions (in terms of M) for the shock wave
[see(5)]. If the wave propagatesin astationary gaswith
the parameters p;, u,, and a;, we have

%i = (L+&)M°—¢, gTi = (1—5)5\4—$%
- J[(1+s>-§-2][(1-s>+ew].

Whitham called such an expedient the rule of char-
acteristics and assumed that it can also apply to other
cases[7]. Formula (28) proved in our work generalizes
thisrulefor theinteraction of ashock wave propagating
in a vortex nonisobaric one-dimensional flow with a
counter discontinuity of an arbitrary subscript. Also,
this formula allows one to derive approximate analyti-

TECHNICAL PHYSICS Vol. 47 No.1 2002

ca solutions for the interaction of a shock wave with a
Riemann wave, a shear layer, etc.
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