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Abstract. In this paper, I discuss current developments in cluster anal-
ysis to bring forth earlier developments by E. Braverman and his team.
Specifically, I begin by recalling their Spectrum clustering method and
Matrix diagonalization criterion. These two include a number of user-
specified parameters such as the number of clusters and similarity thresh-
old, which corresponds to the state of affairs as it was at early stages of
data science developments; it remains so currently, too. Meanwhile, a
data-recovery view of the Principal Component Analysis method admits
a natural extension to clustering which embraces two of the most popular
clustering methods, K-Means partitioning and Ward agglomerative clus-
tering. To see that, one needs just adjusting the point of view and recog-
nising an equivaent complementary criterion demanding the cluster to be
simultaneously “large-sized” and “anomalous”. Moreover, this paradigm
shows that the complementary criterion can be reformulated in terms of
object-to-object similarities. This criterion appears to be equivalent to
the heuristic Matrix diagonalization criterion by Dorofeyuk-Braverman.
Moreover, a greedy one-by-one cluster extraction algorithm for this cri-
terion appears to be a version of the Braverman’s Spectrum algorithm —
but with automated adjustment of parameters. An illustrative example
with mixed scale data completes the presentation.

1 Two early approaches by Braverman and his team

1.1 Braverman’s algorithm Spectrum

The problem of clustering has been formulated by Misha Braverman as related
to a set of objects I = {i,is,...,in} in the so-called potential field which is
specified by a similarity function between objects A(4,j), i,5 = 1,2,..., N [5],
[4]. A preferred potential function is defined by equation
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where d is Euclidean distance between feature vectors (see, [4]). As is currently
well recognised, this is what is referred to as a kernel, one of the most important



concepts in machine learning theory [12]. That is a similarity function which
forms a positive semidefinite function at every finite set of objects. Moreover,
when depending on the Euclidean distance between objects as elements of a
Euclidean space of a finite dimension, any kernel function admits a finite set of
“eigen-functions” such that ¢(d(i,7)) can be expressed as a linear combination
of products of values of the eigen-functioms on objects z;,x;, 7,5 € I.

To define his early batch, or parallel, clustering heuristic, Braverman intro-
duces the concept of average similarity between a point x; and subset of points
S referred to as the potential of x; inflicted by S,

Ali, 8) = Y A(i,§)/19] (2)
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where |S] is the cardunality of S, that is, the number of elements in S. His al-
gorithm Spectrum begins at arbitrary point z; to build a sequence z1, xa, ..., x N
over I so that each next point xyy; maximizes the similarity A(zg41,Sk) (2)
where Sy = {21, 29, ...,21}, k= 1,3,..., N — 1. The sequence of points is accom-
panied by the sequence of the average similarity values A(z3,S1), A(z3,52), ...,
A(zy,Sn—1). These two sequences form a spectrum, in Braverman’s opinion,
which can be illustrated with Figure 1.1 replicating an image from Arkadiev and
Braverman’s book [4], p. 107. On this Figure, x-axis represents the sequence of
objects, hand-written images of digits 1, 2, 3, 4, 5, and y-axis shows the levels of
the average similarity A(z41,Sk). Normally, when a set of homogeneous clus-
ters is present in the data, the graph of the spectrum should look like that on
Figure 1.1.
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Fig. 1. A spectrum of hand-written images of digits 1, 2, 3, 4, 5, 30 copies of each. The
x-axis represents the sequence of objects after application of algorithm Spectrum, and
y-axis shows the levels of the average similarity A(zr+1,Sk)-

In the current author’s view, the graph on Figure 1.1 looks somewhat unlikely.
Consider, say, the deep drop between images for “5” and “3”. Indeed, the image



number 31, of “3”, would look much different from the 30 images of “5”. But
the image number 32 is also much different from the previous 30 images, which
makes the return of the curve to high levels immediately highly unlikely. A simple
modification, though, can save the picture. Assume that the spectrum sequence
breaks immediately just before the drop, and a new ordering procedure starts
again. Then the averaging of the similarity with the previous cluster discontinues,
and new averages are computed starting from the object 31. This is, I think, how
a practical version of Spectrum algorithm was working. A threshold value for
the drop of similarity has to be pre-chosen, so that a drop of the similarity value
below that level would stop the algorithm’s run at a found cluster. After this, the
found cluster is removed, and another run of the algorithm is performed at the
remaining objects, possibly with a different threshold value. This goes on till the
set of remaining objects gets empty. In the follow-up this version of Spectrum
will be referred to as Spectrum-B.

1.2 Diagonalization of similarity matrices

This is another idea of Braverman’s team, probably generated by the work over
the PhD thesis by Alex Dorofeyuk [8], [6]. Given a similarity matrix A = (a;;),
consider criterion of goodness of a partition S = {51, So, ..., Sk } with a prespec-
ified number of clusters K by scoring it according to formula
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where Ny is the cardinality of cluster Sy (k =1,2,..., K).
Criterion (3) has been selected by the authors as the best performer out of
a family of criteria
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where ¢(5) is either ¢(S) = 1 or ¢(S) = 1/|S| or ¢(S) = 1/|S|(]S]—1). Of course,
the experimental base was much limited at the time. And there are obvious draw-
backs of the other two criteria in the family. Indeed, at ¢(S) = 1 the criterion
is just the sum of within-cluster similarities. At non-negative similarity matrix
A = (a;j) this criterion would lead to a trivial optimal partition S at which all
elements gather into the same “big” cluster, whereas all other clusters would be
singletons consisting of the weakest links. In contrast, at ¢(S) = 1/]S|(]S] — 1),
the criterion would be proportional to the average within cluster similarity. Max-
imization of this criterion normally would prohibit large-sized clusters because
the average similarity may only decrease when a cluster size grows. This leaves
criterion (3) as the only option remaining for getting normal-size clusters. In
the follow-up we will see that this is not just a lucky occurrence but rather a
model-based property.



2 K-Means clustering as a data recovery method

2.1 K-Means algorithm and criterion

K-Means is arguably the most popular clustering algorithm. For an empirical
proof of this statement, one may wish to consult [3] and references therein.
Specifically, the following Table 1 from [3] clearly demonstrates the prevalence
of K-means over other clustering techniques.

Table 1. Numbers of relevant web pages returned by the most popular search engines
with respect to queries of the named methods at a computer in Birkbeck University of
London (15 November 2015).

Search engine Google  Bing Yahoo
K-means 2,070,000 481,000 537,000
Hierarchical clustering 677,000 251,000 268,000
Neighbor-joining 591,000 146,000 148,000
Spectral clustering 202,000 71,500 78,100
Single linkage 140,000 30,900 32,800
Agglomerative clustering| 130,000 33,100 33,000

Another, less controversial, statement would be that K-means has nothing to
do with Braverman’s team developments described above. Here is a conventional
formulation of K-Means as a method for the analysis of an object-to-feature
dataset.

Batch K-Means

0. Data pre-processing. Transform data into a standardized quantitative N x
V matrix Y where N is the number of objects and V', the number of quantified
features.

1. Initial setting. Choose the number of clusters, K, and tentative centers
c1,Ca, ..., K, frequently referred to as seeds. Assume initial cluster lists Sy empty.

2. Clusters update. Given K centers, determine clusters S; (k = 1,..., K)
with the Minimum distance rule assigning any object to its nearest center.

3. Stop-condition. Check whether S’ = S. If yes, end with clustering S =
{Sk}, ¢ = {c}. Otherwise, change S for S’

4. Centers update. Given clusters Sy, calculate within cluster means ¢ (k =
1,...,K) and go to Step 2.

This algorithm usually converges fast, depending on the initial setting. Loca-
tion of the initial seeds may affect not only the speed of convergence but, more
importantly, the final results as well.

As is well known, there is a scoring function, which is minimized by K-Means.
To formulate the function, let us define the within cluster error. For a cluster
Sk with centroid ¢, = (cxy), v € V, its square error is defined as the summary



distance from its elements to cy:

W(Sknck) = Z d(yiack) = Z Z(yiv - Ckv)Q' (4)
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The square error criterion is the sum of these values over all clusters:

W(S,c) =3 W(Skcr) =D > dyicr) (5)
k=1
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Criterion W (S, ¢) (5) depends on two groups of arguments: cluster lists Sy and
centroids ¢k. An alternating minimization algorithm for this criterion would pro-
ceed in a series of iterations. At each of the iterations, W (S, ¢) is, first, minimized
over S, given ¢, and, second, minimized over ¢, given the resulting S. It is not
difficult to see that the batch K-Means above is such an alternating minimization
algorithm This warrants that K-Means converges in a finite number of steps be-
cause the set of all partitions S over a finite I is finite and W (.S, ¢) is decreased
at each change of ¢ or S. Moreover, as experiments show, K-Means typically
does not move far away from the initial setting of ¢. Considered from the per-
spective of minimization of criterion (5), this leads to the conventional strategy
of repeatedly applying the algorithm starting from various randomly generated
sets of prototypes to reach as deep a minimum of (5) as possible. This strategy
may fail especially if the feature set is large because in this case random settings
cannot cover the space of solutions in a reasonable time.

Yet, there is a different perspective, of typology making, in which the criterion
is considered not as something that must be minimized at any cost but rather a
beacon for direction. In this perspective, the algorithm is a model for developing
a typology represented by the centers. The centers should come from an external
source such as advice by experts, leaving to data analysis only their adjustment
to real data. In this perspective, the property that the final centers are not
far away from the original ones, is more of an advantage than not. What is
important in this perspective, though, is defining an appropriate, rather than
random, initial setting.

2.2 Data recovery equation: encoder and decoder

According to conventional wisdom, the data recovery approach is a cornerstone
of contemporary thinking in statistics and data analysis. It is based on the as-
sumption that the observed data reflect a regular structure in the phenomenon
of which they inform. The regular structure A, if known, would produce data
F(A) that should coincide with the observed data Y up to small residuals which
are due to possible flaws in any or all of the following three aspects: (a) sampling
entities, (b) selecting features and tools for their measurements, and (c) mod-
eling the phenomenon in question. Each of these can drastically affect results.
However, so far only the simplest of the aspects, (a), has been addressed by in-
troduction of probabilities to study the reliability of statistical inference in data



analysis. In this text we are not concerned with these issues. We are concerned
with the underlying equation :

Observed data Y = Recovered data F(A) 4+ Residuals E (%)

In this equation, the following terminology applied in the context of unsu-
pervised learning is getting popular [15]. Data model A such as, for example,
partition, is referred to as “encoded data” produced with an encoder, whereas
the recovered data, F'(A), are those decoded with a decoder. The quality of the
encoded data A is assessed according to the level of residuals E: the smaller the
residuals, the better the model. Since both encoder and coder methods involve
unknown coefficients and parameters, this naturally leads to the idea of fitting
these parameters to data in such a way that the residuals become as small as
possible, which can be captured by the least squares criterion.

Data analysis involves two major activities: summarization and correlation
[15]. In machine learning, their couterparts are unsupervised learning and super-
vised learning, respectively. In a correlation problem, there is a target feature
or a set of target features that are to be related to other features in such a way
that the target feature can be predicted from values of the other features. Such
is the linear regression problem considered above. In a summarization problem,
such as the Principal component analysis or clustering, all the features available
are considered target features so that those to be constructed as a summary can
be considered as “hidden input features” (see Figure 2).

Data Enoder Surnary
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Fig. 2. A diagram for data recovery summarization. Rectangles are for data, both ob-
served and computed, rhombs are for computational constructions. A double feedback
shows the ways for adjustment of the encoder according to both the data and decoder.



Considering the structure of a summarization problem as a data recovery
problem, one should rely on existence of a rule, decoder, providing a feedback
from the summary back to the data. This makes it possible to use the criterion
of minimization of the difference between the original data and the output so
that the less the difference, the better. In supervised learning, this criterion
work only for the feature (s) which is being predicted. Here all the data is to
be approximated by the encoded model. This leads to a number of difficulties
such as, for example, the issue of data standardization, which, in the supervised
context, can be solved by using mainly the feature being predicted.

The least squares perspective gives us a framework in which K-Means, Spec-
trum and Matrix diagonalization become comparable, as will be shown further
on.

2.3 Principal Component Analysis extended to clustering

Principal Component Analysis is a major tool for approximating observed data
with model data formed by a few ‘hidden’ factors. Observed data such as marks
of students ¢ € I at subjects labeled by v = 1,...,V constitute a data matrix
X = (x4). Assume that each mark z;, reflects student i abilities over a set of
K hidden talent factors z;k up to coefficients c,k, (1 € I, k =1,2,...,K). The
principal component analysis model [15], suggests that the student i’s marks
v reflect the inner product of the hidden talent factor scores of the student
i, z; = (zi) and subject v loadings, ¢, = (cyr). Then equation (x) can be
examplified as

Tin =< Cy, Zi > +€40, (6)
where the inner product < ¢,, z; > is a specific decoder leading to a rather re-
markable, spectral, solution. The least squares criterion is L? = Yicr 2ovev (@iv—
Ele Cvk:zik)g-

In matrix terms equation 6 can be rewritten as

X =27CT +E, (7)

where Z is N x K matrix of hidden factor scores Z = (z;), C is V x K matrix
of subject loadings C' = (cyx), and E = (e;,) is the matrix of residuals. The
least squares criterion can be put as L? = ||E||? = Tr(ETE) to minimize. Of
course, the solution Z, C to this problem is specified up to any unitary K x K
matrix U so that pair ZU, CU leads to the same product ZUUTCT = ZCT
since UUT is an identity matrix. That means that the solution to the problem is
not unique but rather specifies a subspace of rank K. Let us denote non-trivial
singular triplets of matrix X as (pg, 2k, k), K = 1,...,7, where r is the rank of
X, pr > 0 is a singular value, z; is a normed N-dimensional singular vector
(zx = (2ix), ¢k is V-dimensional normed vector ¢, = (cyp) such that Xcg = ppzi
and X7z, = Lk Cle -

It is not difficult to prove that (u, 2k, cx) is a singular triplet for matrix X if
and only if uz is eigen-value of the square matrix X7 X corresponding to eigen-
vector ¢, and zp = Xc¢g/u. This implies that the singular vectors z1, 22, ..., 2Kk
are mutually orthogonal as well as vectors z1, 22, ..., 2k



Provided that K < r, the first-order optimality conditions for the least-
squares criterion lead to the first K singular triplets forming its minimizer as
the matrix Zx M KC,? where Zx and Cg are matrices whose columns are the
first K singular vectors, zx and ¢y, respectively, and M is the diagonal matrix of
the first K singular values pig, k = 1,2, ..., K. This implies that Z = Zy (Mg )'/?
and C = Cx(M K)l/ 2 form solution to 7. Moreover, this solution provides for a
Pythagorean decomposition of the data scatter:

IXI[P = Tr(XTX) = i} + 4i + o+ s + L (8)

This implies a one-by-one method for low-rank approximation of the data. You
want a one-dimensional approximation? Take the first, the maximum, singular
value. You want a visualization of the data on a plane? Take two. The descend-
ing order of the singular values implies the order of extraction of the principal
components, one-by-one.

This one-by-one extraction approach of PCA was extended by the author to
cluster analysis [14]. Specifically, equation (7) with criterion (8) was extended
to the constraint that the unknown Z must be zero-one binary N-dimensional
vectors to represent K clusters to be found. More precisely, any binary z; one-
to-one corresponds to subset of I, Sy = {i: zj = 1}.

The requirements that clusters do not overlap is translated as the constraint
that binary vectors zj, are to be mutually orthogonal. Because of this, the square
error criterion can be reformulated by putting the sum over k in the beginning
while using the binary membership values to limit summation over ¢ by the
cluster Sy, only:

K K
L? = Z Z(xw - chkzm)Z = Z Z Z(ww — Ccor)?
k=1
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This proves that the least-squares criterion for the model (7) in the clustering
context, that is, under the orthogonal binarity of Z constraint, is but the square-
error K-Means clustering criterion.

Thus, a proven fact is that K-Means is a clustering analogue to the Principal
Component Analysis. A few conclusions from that:

i A data scatter decomposition should hold.
ii One-by-one strategy for extracting clusters should be valid.
iii Reformulation in terms of feature-to-feature covariance and object-to-object
similarity should be tried.

We do not mention some other analogies such as, for instance, a possibility
of trying the spectral relaxation of the clustering model for obtaining clusters.
These three will be covered in brief in the follow-up sections 2.4, 2.5 and 2.6.

2.4 Data scatter clustering decomposition

Although the data scatter decomposition involving the square error clustering
criterion (4) can be derived by using matrix algebra [14], we, however, do this



here from the criterion itself:
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where Ni is the number of Ie()lements in c&uster Sk. The }?st equat‘i/on is derived
from the definition that ), , Ziesk Y o1 YivCho = 2y Nk Doy ChoCio be-
cause ¢ = Zz‘esk yi/Nk.

K % . N «V
As Y i1 Yies, Douet Vi is but the data scatter by T(Y) = 7.0 >0 1 ¥7,,
denoting the right-hand term in the equation above, by

K
F(S,¢0) =Y Ni < cp ek >, (9)
k=1

the equation above can be expressed as
T(Y)=F(S,c)+W(S,c) (10)

which is the Pythagorean decomposition. It should be mentioned that this de-
composition is well known in the analysis of variance, a classical part of mathe-
matical statistics: at a centered matrix Y, the data scatter T'(Y") is proportional
to the summary feature variance, whereas F'(S,c) and W (S, ¢), respectively, to
the inter-group and within-group summary variances.

In clustering, however, it is important on it own, because of the comple-
mentary criterion in (9) which is to be maximized to make W (S, ¢) minimum.
The value F(S,c) is the part of the data scatter taken into account, that is, the
contribution of clustering (5, ¢) to the data scatter.

The complementary criterion in (9) is the sum of contributions by individ-
ual clusters, f(Sg,cx) = Np < cg,cr >; each is the product of the cluster’s
cardinality and the squared distance from the cluster’s center to the origin, 0.
Provided that the origin preliminarily has been shifted into the point of 'norm’
such as the gravity center, the problem of maximization of F (S, ¢) is of finding
as large-sized and as anomalous clusters as possible, to maximize the sum of
cluster contributions f(Sg,cr) = Np < ¢, ¢ >, k=1,2,..., K.

2.5 Omne-by-one strategy for extracting clusters

A procedure proposed by Mirkin [13] is an extension of the one-by-one principal
component analysis method to the case at which the scoring components are



constrained to represent clusters by having only 1/0 values. This procedure was
later renamed as the method of anomalous clusters because of the criterion
minimized by the algorithm. Denoting an anomalous cluster sought by S and its
center by c, the criterion can be put as

D(S,¢) = d(yic)+ Y _ d(y:,0) (11)
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where 0 is the space origin.

This criterion is akin to that of k-means. Two points of departure from the
batch K-Means formulation are: (i) the number of clusters K=2 and (ii) one of
the centers is at 0 and never changes.

Anomalous cluster alhorithm

Input: N x V data matrix X.

Output: A single cluster S and its center ¢ as far away from 0, as
possible.

Step 1. Initialization. Choose an object as far away from 0 as
possible and put ¢ at this location.

Step 2. Cluster update. Assign to S all those ¢ for which d(y;, ¢) <
Step 3. Center update. Recompute ¢ as the mean of the newly
found S.

Step 4. Test. If the new c¢ coincides with the previous one, halt and
output the current S and c. Otherwise, take the newly computed
c and go to Step 2.

After S is found, its elements can be removed from the entity set, so that
next anomalous cluster could be found with the very same process, while the
origin remains unchanged. Continuing the process of one-by-one extraction of
anomalous clusters, one arrives at the situation when no non-clustered objects
remain. Then all the small anomalous clusters are to be removed and centers of
the remaining clusters are to be taken to initialise the K-means clustering process
— this whole procedure is referred to as the intelligent K-Means (iK-Means) in
[7], [2], [16]. The “small” clusters are defined as those containing a predefined
number ¢ or less elements.

By default, ¢ is usually taken as unity, t = 1. At synthetic data with Gaussian
clusters generated, the iK-Means at ¢t = 1 tends to produce about twice the
number K* of generated clusters. Indeed, in our computations, it never ever led
to a smaller than K* number of clusters [7]. This is why, in a recent paper,
Amorim et al. [2] proposed further agglomeration of iK-Means clusters with
the same criterion. It appears, such a hybrid method is much faster than the
classic Ward agglomeration method while maintaining similar cluster recovery
capabilities [2].

Another comment that should be made is that the criterion in (11) is not
exactly equivalent to the criterion of maximization of cluster’s contribution Ny <
Ck, >, see [18] where a different algorithm is proposed. Here is an example of



a dataset at which the two criteria lead to different solutions from [18]. Consider
a set of eight two-dimensional observations A to H in Table 2. Assume that the
“norm” here is specified as the origin, point 0=(0,0), and no normalization is
required. Then criterion would lead to two non-trivial clusters S1=A B,C and
S2=D,E,F, leaving G and H singletons. Anomalous Cluster method outputs only
one nontrivial cluster, S1=A,B,C here.

Table 2. Illustrative example of the difference between two single cluster criteria.

Object x y
A -1 3
B 03
C 2 2
D 11
E -11
F 01
G -2-1
H 0-1

2.6 Reformulation of the complementary criterion in terms of
object-to-object similarity

Consider the complementary clustering criterion

K K
F(S,0)=>_> ¢, ,Ny=> Npd(0,cx) (12)
k=1

k=1veV

To maximize this criterion, the clusters should be as far away from 0 as possible.
This idea is partly implemented in the Anomalous clustering algorithm above. A
batch version is developed in [3] by using an accordingly modified version of the
Affinity Propagation algorithm developed by Frey and Dueck [10] (see also URL
http://scikit-learn.org/stable/modules/clustering. html#affinity-propagation).

However, in this account, I am not going to concentrate on this, but rather
on reformulation of criterion by using row-to-row inner products. Indeed, let us
substitute one within cluster average ¢ by its definition in (12): < ¢, ¢ >=<
[ ZieSk ka/Nk >= Ziesk < Cg,Y; > /Nk. This implies that

K
F(S,c)zzz < Yi, Ck > (13)
k=14i€Sy

This expression shows that the K-Means criterion that minimizes the within-
cluster distances to centroids is equivalent to the criterion (13) for maximization



of the within-cluster inner products with centroids. By further substituting the
same formula into (13), we arrive at equation

K
F(S,0)=>">" <uwiy; > /N (14)

k=14,jE€Sy

expressing the criterion in terms of entity-to-entity similarities a;; =< s, y; >,
with centroids ¢ present implicitly. Criterion (14) is the total within-cluster
semi-averaged similarity that should be maximized to minimize the least-squares
clustering criterion.

2.7 Returning to Matrix diagonalization

Obviously, by denoting a;; = Y, Yiv¥jv, criterion (14) gets the form of Braverman-
Dorofeyuk criterion in (3), that is, the semi-average within cluster similarity to
maximize. Indeed, a;; = Y, ay,i; is the sum of a, ;; = yivyjv, that are scores of
the level of similarity between entities due to single features:

|
F(S’C):Z]\Tk Z Qi (15)
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Assuming that y;, has been pre-processed by subtracting a reference value
such as the grand mean m, = va Yiv/N, one can see that ay,j is negative if
i and j differ over m, so that y;, and y;, lie on v-axis at the different sides of
zero. In contrast, a, ;; is positive if y;, and y;, lie on v-axis at the same side,
either positive or negative. The greater the distance from 0 to y;, and y;,, the
greater the value of a, ;;. If the distribution is similar to a Gaussian one, most
entities fall near grand mean, which is 0 after the normalization, so that most
similarities are quite small.

Moreover, there is a claim in the literature that the inner product is much
beneficial at larger sizes of the feature set if the data is pre-normalized in such
a way that the rows, corresponding to entities, are normed so that each has its
Euclidean norm equal to unity, so that the inner product becomes the cosine of
the angle between the vectors.

This criterion has something to do with the spectral approach. Indeed, matrix
A = (ai;) can be expressed through the data matrix ¥ as A = YY7 so that
criterion (14), in a matrix form, is:

_ K szsk
F(S,c)=Y" (16)

T
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where s = (s;) is a binary membership vector for cluster Sy so that s;, = 1 if
1 € S and s;; = 0, otherwise. In mathematics, sy is referred to as indicator of
Sk Proof of (16) follows from the fact that s} s, = Nj and Zmesk a;j = s Asg.
This is the sum of Rayleigh quotients whose extremal values are eigenvalues of



A. Of course, this is similar to Rayley quotients in the Proincipal Component
Analysis, except that solutions here must be binary zero-one vectors. Therefore,
the contributions of individual clusters, > civN &, are akin to the contributions
of individual principal components, ui, both expressing the maximized values
of the corresponding Rayleigh quotients, albeit over different domains.

One more comment should be about potentially using kernels, that is, func-
tions K (y;,y;) forming positive semi-definit matrices, to imitate the inner prod-
ucts a;; =< y;, y; >. These functions were introduced by E. Braverman and his
team to be used as a computationally feasible possibility of non-linearly trans-
forming the feature space. Kernel “trick” is quite popular in clustering. However,
it applies to the K-Means criterion itself leading to a nuch more complex and
less interpretable formula than the expression (15) — see, for example, review in
[9].

There can be several approaches to optimization of the criterion (15). Of
course one of them is the agglomerative approach by Braverman and Dorofeyuk.
However, I concentrate on an extension of the Anomalous clustering one-by-one
approach to the case of similarity matrices.

2.8 Returning to Spectrum

Consider any item in the criterion (15) as a maximized criterion for finding an
individual cluster. One may drop the index k in this section, since one cluster S
is sought here. (Note that S here is not a partition but just a subset.)

Given a similarity matrix A = (as5), 4,j € I, let us define within-S average
similarity as a(S) = 3, ;g aij/N§ where Ng is the cardinality of S. Then the
semi-average clustering criterion in (15) can be converted to

g9(8) =Y aij/Ns = Nga(S). (17)

i,JES
This criterion combines two:

(i) maximize the cluster’s tightness as measured by the within-cluster mean
a(5),

(ii) maximize the cluster size, measured by Ng.

These two goals are not quite compatible: the greater the cluster, the weaker the
average within-cluster similarity. The product in (17), thus, balances them and,
in this wald lead to a relatively tight cluster of a reasonable size.

Indeed, the tightness of S can be mathematically described by using the
following concept [15]. For any entity ¢ € I, define its attraction to subset S as

the difference between its average similarity to S, a(i, ) = >_,c5aij/Ns, and
half the average within-cluster similarity:
a(i,S) = a(i, S) — a(S)/2. (18)

The fact that a(S) is equal to the average a(i, S) over all ¢ € S, leads us to
expect that normally a(i, S) > a(S)/2 for the majority of elements i € S, that is,



normally (i, S) > 0 for ¢ € S. It appears, a cluster S maximizing the criterion
A(S) is much more than that: S is cohesive internally and separated externally
because all its members are positively attracted to S whereas non-members are
negatively attracted to .S [15].

Maximizing criterion ¢(S) in (17) is akin to a combinatorially feasible prob-
lem of finding a subgraph of maximum density when the similarity matrix is non-
negative [14]. Otherwise, it is non-polynomial. A local search algorithm would
use a pre-defined neighborhood system to locally maximize the criterion at the
neighborhood of a pre-specified subset S. In [15], the neighborhood system was
considered to include S +k for any k. Here, we take on a simpler neighbourhood
system to include only those subsets S + k obtained from S by adding to S any
k¢gsS.

Specifically, a version of algorithm ADDI [14] can be defined as follows.

Start from a singleton S = {i} consisting of any object i = 1,2,..., N. Then
proceed iteratively as follows. Given S, take an object & ¢ S maximizing the
difference A(S, k) = g(S + k) — g(S). Check whether A(S, k) > 0. If Yes, make
S = S+ k and go to the beginning of the iteration. If not, stop and output S
and its contribution to the data scatter g(.5) as well as the within-cluster average
similarity a(S).

This algorithm is a model-based version of Spectrum algorithm. Indeed, it is
not difficult to prove that

A(S k) = Ns (a(k,S) —

_ a(S) + Ak
Ng+1

2 2Ng

) (19)

Consider a simplifying assumption that agi = 0, so that clusters are defined
by similarities between different objects only. Computationally, this assumption
is easy to maintain by zeroing the main diagonal immediately before the start of
a run of the ADDI algorithm. Then the maximum of A(S, k) corresponds to the
maximum of the average similarity a(k, S) between k and S, exactly as in Spec-
trum algorithm. But in ADDI, there is a natural stopping condition according
to the sign of (19). Adding of elements stops whenever condition a(k, S) < @
holds.

In this way, ADDI algorithm may be considered a theory based version of
Spectrum. Moreover, ADDI not only defines a cluster-specific stopping condition,
but also, the starting object: that must be that ¢ maximizing ayg.

2.9 Illustrative example

Consider an illustrative dataset in Table 3 after [16]. It relates to eight fictitious
colleges in the UK described by five features.

Two features are of college sizes:

1) Stud - The number of full time students;

2) Acad - The number of full time teaching staff.

Three features of teaching environment:

3) NS - The number of different schools in a college;



4) DL - Yes or No depending on whether the college provides distant e-
learning courses or not;

5) Course type - The course type is a categorical feature with three categories:
(a) Certificate, (b) Master, (c) Bachelor, depending on the mainstream degree
provided by the college.

Table 3. Colleges: Eight colleges: the first three mostly in Science, the next three in
Engineering, and the last two in Arts. These categories are not supposed to be part of
the data. They can be seen via first letters of the names, S, E and A, respectively.

College|Stud Acad NS DL Course type
Soli 3800 437 2 No MSc
Semb |5880 360 3 No MSc
Sixpe (4780 380 3 No BSc
Etom |3680 279 2 Yes MSc
Efin 5140 223 3 Yes BSc
Enkee (2420 169 2 Yes BSc
Ayw 4780 302 4 Yes Certif.
Ann 5440 580 5 Yes Certif.

The data in Table 3 can be utilized to cluster the set of colleges and describe
clusters in terms of the features. One would ask whether the clusters are in line
with the three main areas: Science, Engineering, Arts.

To analyze the data, one should first quantify the table by enveloping all
the qualitative categories into binary zero-one features. Therefore, the Type of
course will be represented by three yes/no features: is it MSc; is it Bsc; is it
Certificate. Then Yes answer is coded by 1 and No answer by 0 (see Table 4).

Table 4. Quantitative representation of the Colleges data as an 8 X 7 entity-to-attribute
matrix.

Entity|Stud Acad NS DL MSc BSc Certif.
1 3800 437 2 0 1 O 0
2 5880 360 3 0 1 O 0
3 4780 380 3 0 0 1 0
4 3680 279 2 1 1 0 0
5 5140 223 3 1 0 1 0
6 2420 169 2 1 0 1 0
7 4780 302 4 1 0 O 1
8 5440 580 5 1 0 O 1




Now this table can be standardized by subtracting from each column its
average and dividing it by its range. To further balance the total contribution of
the three categorical features on the right so that it is equal to the contribution
of one feature represented by them, we divide them by the square root of 3. Then
their part in the data scatter will be divided by 3 and the effect of tripling the
original feature, Type of course, will be reversed [15]. The resulting data table
is in Table 5.

Table 5. Range standardized Colleges matrix with the additionally rescaled nomi-
nal feature attributes; Mean is grand mean, Range the range and Cntr the relative
contribution of a feature to the data scatter.

Item Stud Acad NS DL MSc BSc Cer.
1 -0.20 0.23 -0.33 -0.63 0.36 -0.22 -0.14
2 0.40 0.05 0.00 -0.63 0.36 -0.22 -0.14
3 0.08 0.09 0.00 -0.63 -0.22 0.36 -0.14
4 -0.23 -0.15 -0.33 0.38 0.36 -0.22 -0.14
5 0.19 -0.29 0.00 0.38 -0.22 0.36 -0.14
6 -0.60 -0.42 -0.33 0.38 -0.22 0.36 -0.14
7 0.08 -0.10 0.33 0.38 -0.22 -0.22 0.43
8 0.27  0.58 0.67 038 -0.22 -0.22 0.43
Mean 4490 341.3 3.0 0.6 0.4 0.4 0.3
Range 3460 411 3.00 1.00 1.73 1.73 1.73
Cntr, % | 12.42 11.66 14.95 31.54 10.51 10.51 8.41

Ezample 1. Centers of subject clusters in Colleges data

Let us consider the subject-based clusters in the Colleges data. The cluster
structure is presented in Table 6 in such a way that the centers are calculated
twice, once for the raw data in Table 4 and the second time, with the standardized
data in Table 5.

Table 6. Means of the variables in Table 5 within K=3 subject-based clusters, real
(upper row) and standardized (lower row).

Mean
CL | List |[St (f1) Ac (f2) NS (f3) DL (f4) B (f5) M (f6) C (I7)
1 11,2,3 4820 392 2.67 0 0.67 0.33 0
0.095 0.124 -0.111  -0.625 0.168 -0.024 -0.144
2 14,56 3740 224 2.33 1 0.33 0.67 0
-0.215 -0.286  -0.222 0.375 -0.024 0.168 -0.144
3 7,8 5110 441 4.50 1 0.00 0.00 1
0.179 0.243 0.500 0.375 -0.216 -0.216 0.433




Ezxample 2. Minimum distance rule at subject cluster centroids in Col-
leges data

Let us apply the Minimum distance rule to entities in Table 5, given the
standardized centroids ¢ in Table 6. The matrix of distances between the stan-
dardized eight row points in Table 5 and three centroids from Table 6 is in Table
7.

Table 7. Distances between the eight standardized College entities and centroids;
within column minima are highlighted.

Entity, row point from Table 5

Centers 1 2 3 4 5 6 7 8
c1 |0.220.190.31 1.31 1.49 2.12 1.76 2.36
c2 1.58 1.84 1.36 0.33 0.29 0.25 0.95 2.30
cs3 2.50 2.01 1.95 1.69 1.20 2.40 0.15 0.15

The table, as expected, shows that points 1,2,3 are nearest to centroid cq,
4,5,6 to co, and 7, 8 to c3. This means that the rule does not change clusters.
These clusters will have the same centroids. Thus, no further calculations can
change the clusters: the subject-based partition is to be accepted as the result.

But of course the algorithm may bring wrong results if started with a wrong
set of centers, even if the initial setting fits well into clustering by subject.

Table 8. Distances between the standardized Colleges entities and entities 1, 4, 7 as
tentative centroids.

Row-point

Centers 1 2 3 4 5 6 7 8
1 0.00 0.51 0.88 1.15 2.20 2.25 2.30 3.01
4 1.15 1.55 1.94 0.00 0.97 0.87 1.22 2.46
7 2.30 1.90 1.81 1.22 0.83 1.68 0.00 0.61

Ezample 3. Unsuccessful K-Means run with subject-based initial seeds

With the initial centroids at rows 1, 4, and 7, all of different subjects, the
entity-to-centroid matrix in Table 8 leads to cluster lists S = {1,2,3},5; =
{4,6} and S3 = {5, 7,8} which do not change in the follow-up operations. These
results put an Engineering college among the Arts colleges. Not a good outcome.

Ezxample 4. Explained part of the data scatter
The explained part of the data scatter, F'(S, ¢), is equal to 43.7% of the data
scatter T(Y") for partition {{1,4,6},{2},{3,5,7,8}}, found with entities 1,2,3



as initial centroids. The score is 58.9% for partition {{1, 2,3}, {4,6},{5,7,8}},
found with entities 1,4,7 as initial centroids. The score is maximum, 64.0%, for
the subject based partition {{1,2,3},{4,5,6},{7,8}}, which is thus superior.

Ezxample 5. Similarity matrix and clusters using ADDI algorithm

Table 9. The matrix of similarity between objects obtained as the result of multipli-
cation of the standardized matrix in Table 5 by its transpose.

College 1 2 3 4 5 6 7 8
Soli 0.794 0.519 0.260 0.086 -0.474 -0.237 -0.478 -0.470
Semb 0.519 0.752 0.293 -0.137 -0.307 -0.629 -0.299 -0.191
Sixpe 0.260 0.293 0.604 -0.404 -0.048 -0.126 -0.330 -0.250
Etom 0.086 -0.137 -0.404 0.527 0.005 0.320 -0.069 -0.328

Efin -0.474 -0.307 -0.048 0.005 0.457 0.347 0.090 -0.069
Enkee |-0.237 -0.629 -0.126 0.320 0.347 0.983 -0.074 -0.583
Aiw -0.478 -0.299 -0.330 -0.069 0.090 -0.074 0.549 0.612
Ann -0.470 -0.191 -0.250 -0.328 -0.069 -0.583 0.612 1.279

The similarity matrix A = Y'Y in Table 9 is obtained from the standardized
matrix Y in Table 5. Its structure pretty much corresponds to that underlying
the Spectrum algorithm: there are three groups, S, E, and A, so that all the
within-group similarities are positive, whereas almost all the inter-group simi-
larities are negative, or quite small when positive, see a(Soli,Etom)=0.086 and
a(Efin,Aiw)=0.09.

Let us apply algorithm ADDI to it starting from the most anomalous object,
which is Ann with its squared Euclidean distance to 0 equal to 1.279. Then Aiw
joins in, with a(Ann,Aiw)=0.612. All the other objects have negative similarities
with this cluster (assuming zeroing of all the diagonal elements while computing
or not), so that the computation stops here: cluster A is complete.

After removal of the two A-colleges, college Enkee becomes the most anoma-
lous, with the diagonal element 0.983. Its nearest is Efin, a(Efin, Enkee)=0.347.
Merge them into one cluster. The only positive average similarity to this is frim
Etom, (0.0540.320)/2=0.162. Now the results split. Assuming the diagonals ze-
roed, this value is less than half of the within-cluster dimilarity, 0.347/2=0.174,
so that Etom should not be added to the cluster. By sticking to the inequality
(19), one can see that a(k, S)—a(S)/2+akr/(2Ng) = 0.162—0.368/2+0.527/4 =
0.1098 > 0, that is, adding Etom to the cluster will increase the criterion g(S)
and, thus, must be done. This would complete E-cluster.

This leaves three unclustered S-colleges. Of them, Soli is the most anomalous;
it goes into the cluster first. Its nearest is Semb with a(Soli, Semb)=0.519. The
average similarity of Sixpe to the current cluster {Soli, Semi } is (0.260+0.293) /2=0.276.
This is greater than half the within-ckuster similarity (with the diagonal zeroed)
0.519/2=0.260; the more so at the diagonal taken into account.



Therefore, ADDI leads to the course based clusters only, unlike K-Means
itself, which may fail on this.

3 Conclusion

This paper gives a review of author’s contribution to K-Means clustering, which
include the two seemingly unrelated E. Braverman’s approaches described in the
beginning of the presentation. Main concepts and results reported are:

1. K-Means can be considered as a procedure emerging within the data-recovery
approach. Specifically, this is a method for fitting an extension of the SVD-
like Principal Component Analysis data model towards binary hidden factor
scores.

2. This opens up a bunch of equivalent reformulations of K-Means criterion
including;:

(a) Maximum of partition’s contribution to the data scatter, that is the sum
of squared Euclidean distances between centers and the origin weighted
by cluster cardinalities;

(b) Maximum of the summary inner product between object points and cor-
responding centers;

(c) Spectral reformulation;

(d) Maximum of Dorofeyuk-Braverman’s semi-average within-cluster simi-
larity.

3. Ome-by-one Principal Component Analysis strategy applies to clustering.
This leads to:

(a) One-by-one extraction of anomalous clusters leading to a natural ini-
tialization of K-Means. The initialization has proven competitive ex-
perimentally in application to such issues as speeding-up agglomerative
Ward clustering and determining the number of clusters.

(b) One-by-one extraction of clusters over a similarity matrix. This approach
appears to be much similar to Braverman’s Spectrum algorithm, leading
additionally to automation of starting and stopping conditions.

Other extensions emerging within the data-recovery approach, such as clus-
tering over mixed data, feature weighting, Minkowski metric clustering, consen-
sus clustering, and hierarchical clustering can be found in the author’s mono-
graph [16].
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