
Theory of K-representations as a Tool for
Designing File Managers with a Natural

Language Interface
V.A. Fomichov* and A.A. Razorenov**

* Department of Innovations and Business in the Sphere of Informational Technologies, School of Business
Informatics, Faculty of Business and Management, National Research University Higher School of Economics,

Kirpichnaya str. 33, 105187 Moscow, Russia
** Technoserv Consulting, 115280 Moscow, Russia

 vfomichov@hse.ru

Abstract - During last decade, semantic parsing of the

instructions in natural language (NL) has become a

significant branch of the studies aimed at creating semantics-

oriented NL processing systems. A topical problem of the

kind is designing file managers with a NL-interface. The

principal attention in our previous papers was paid to

creating new, more effective theoretical foundations of

designing semantic parsers of NL-instructions. In particular,

we suggested in a very concise form an original and broadly

applicable algorithm of semantic parsing. This paper, firstly,

illustrates a correspondence between input instructions and

their semantic representations. Secondly, the main attention

is given to describing mathematical foundations of executing

NL-instructions by computer systems. The methodological

basis for these results is the theory of K-representations

(knowledge representations). Its basic formal model

introduces a system consisting of ten partial operations on

conceptual structures. There are solid grounds for

conjecturing that, combining these operations in arbitrary

order, it is possible and convenient to build step by step a

semantic representation of arbitrarily complex sentence or

discourse in NL. The stated theoretical results have become

the basis for designing a file manager with a NL-interface

NLC-2 (Natural Language Commander - Version Two).

Keywords - semantic parsing; SK-language; integral

formal semantics of natural language; execution of

instruction; relation of correspondence to a pattern

I. INTRODUCTION
Semantic parsing of the instructions in natural

language (NL) has become during last decade a significant
branch of the studies aimed at designing semantics-
oriented NL processing systems. This branch is interested,
in particular, in the development of NL-interfaces for
interaction with robots and the personages of videogames
[1-4], navigation in virtual space [5, 6], and for
programming by means of NL-instructions [7, 8]. Besides,
one of the topical problems of the kind is the development
of file managers with a NL-interface. This problem is
considered by us in several previous papers, in particular,
in [9-13]. The principal attention was paid to creating
new, more effective theoretical foundations of designing
semantic parsers of NL-instructions.

In [11, 12], an original and broadly applicable
algorithm of semantic parsing SemSyntRA is presented in
a very concise form. This paper, firstly, illustrates a
correspondence between input NL instructions and their
semantic representations (SRs). Secondly, the main
attention is given to describing mathematical foundations
of executing NL-instructions by computer systems. The
methodological basis for these results is provided by the
theory of K-representations (knowledge representations),
or TKR [14-22]. It is the central constituent of Integral
Formal Semantics of NL (see [23] and Chapter 2 of [19]).

The basic mathematical model of TKR introduces a
system consisting of ten partial operations on conceptual
structures. There are solid grounds for conjecturing that,
combining these operations in arbitrary order, it is
possible and convenient to build step by step a semantic
representation (SR) of arbitrarily complex sentence or
discourse in NL (English, Croatian, Russian, etc.).

The basic model of TKR determines a new class of
formal languages - the class of SK-languages (standard
knowledge languages). The SRs of NL-texts are to be the
expressions of SK-languages.

The stated theoretical results have become the basis
for designing a file manager with a NL-interface NLC-2
(Natural Language Commander - Version Two). This
system is implemented with the help of the functional
programming language Haskell.

The structure of this paper is as follows. Section 1
contains an introduction to the considered problem.
Section 2 gives a very general information about TKR as
a whole and about its basic mathematical model
determining, in particular, the class of SK-languages.
Besides, this section illustrates the correspondence
between an input NL instruction and its primary SR
generated by the algorithm SemSyntRA and being an
expression of a certain SK-language. Section 3 explains
the notion of a transformation rule used for constructing a
secondary SR of an input instruction from its primary SR.
The application of the transformation rules depends on
special binary relation on the considered SK-language, it
is called the relation of correspondence to a pattern. This
relation is explained in Section 4. Section 5 shortly
characterizes an applied intelligent system called NLC-2

MIPRO 2018/miproBIS 1375

Natural Language Commander - Version 2). The ideas
described in this paper underpinned the design of this
system being a file manager with a NL-interface. Section
6 contains the conclusions.

II. SK-LANGUAGES AS A CONVENIENT TOOL FOR
DESCRIBING COMPLEX SEMANTIC STRUCTURES
OF NATURAL LANGUAGE

One of the principal reasons for developing the
algorithm SemSyntRA was the intention to considerably
expand the possible complexity of input NL instructions.
The algorithms of NL instructions' semantic parsing
described in scientific literature by the middle of this
decade are able to process only simple instructions,
including one verb with dependent words. But the
instructions emerging in applications may be much more
complex: include several actions joined by the connective
AND or OR, indicate the order of actions, time distance
between actions, mention compound designations of
objects’ groups as the operands of actions, include the
modal words “necessary”, “should”, etc.

The analysis of the scientific literature shows that the
main approaches to this problem used in practice are
Abstract Meaning Representation (AMR) [3] and
lambda-calculus meaning representation (LCMR) [1].

The semantic formalism AMR was introduced in
2013 in the ACL publication [24] by a group consisting
of ten researchers from UK and USA. The paper [25]
shows that much broader prospects for creating semantic
languages-intermediaries in comparison with AMR are
opened by the theory of K-representations, developed by
V. A. Fomichov [14-22]. The advantages of TKR in
comparison with AMR are, in particular, the possibilities
to construct semantic representations of compound
infinitive constructions (expressing goals, commitments,
etc), of compound descriptions of notions and sets, and of
complex discourses and knowledge pieces, in particular,
of discourses with the references to the meaning of
sentences or larger parts of discourse.

The approaches AMR and LCMR are rather
convenient for representing structured meanings (SMs) of
simple instructions: with one verb, containing no
connective OR. However, the analysis shows that the
expressive power of AMR and LCMR is insufficient for
effectively dealing with complex instructions
characterized above. The appropriate expressive
mechanisms are provided only by TKR.

The part 1 of TKR is a mathematical model (Model 1)
of a system of primary units of conceptual level used by
an applied intelligent system. This model determines, in
particular, a new class of complex formal objects called
conceptual bases. To construct an arbitrary conceptual
basis (c.b.) B is equivalent to defining a certain finite
sequence of formal objects Tuple(B). The interpretation
of its distinguished components St, X, V, F, tp is as
follows [19]. St is a finite set of symbols called sorts and
interpreted as designations of most general notions used
in the considered application domains: physical object,
intelligent system, organization, distance value, price
value, etc. The countable set V contains the variables. The
countable set X includes the subset St of sorts and
contains the symbols interpreted as the designations of

primary informational (or conceptual) units. The set X is
called the primary informational universe of the c.b. B.
The finite subset F of X contains the designations of
functions.

The component tp of the sequence Tuple(B) is a
function from the union of X and V into a countable set of
strings Types (B), it includes St. The elements of this set
are called types and are interpreted as structured
characteristics (labels) of the entities denoted by the
elements of X. The mapping tp gives us a much more
fine-grained structuring of application domains than first
order logic.

Example. A c.b. B may satisfy the following
conditions: (a) St includes the elements (sorts)
dyn.phys.ob (dynamic physical object), ints (intelligent
system), org (organization), inf.ob (informational object);
(a) X includes the elements M-Bulgakov, Master-and-
Margaret, person, tourist-group, Suppliers, Authorship,
and
tp(person) =↑ ints * dyn.phys.ob, tp(M-Bulgakov) = ints
* dyn.phys.ob, tp(Master-and-Margaret) = inf.ob,
tp(Authorship) = {(ints, inf.ob)},
tp(tourist-group) = ↑ {ints * dyn.phys.ob}, tp(Suppliers)

= {(org, {org})}.
Here the symbol ↑indicates a type of a notion; Suppliers
is the name of the function associating an enterprise with

the set of all its suppliers.
A partial order ⊢ is defined on the set of types Types (B),
it is called the concretization relation. For instance, the

following relationships may take place:
phys.ob ⊢ dyn.phys.ob, phys.ob ⊢ ints * dyn.phys.ob,

ints ⊢ ints * dyn.phys.ob,
{phys.ob} ⊢ {ints * dyn.phys.ob}.

The part 2 of TKR determines a mathematical model
(Model 2) of a system consisting of ten partial operations
on conceptual structures. The Model 2 defines, in
particular, a new class of formal languages called SK-
languages (standard knowledge languages). There are
weighty reasons to conjecture that SK-languages are a
convenient formal tool for building SRs of arbitrarily
complex NL-texts (sentences and discourses) pertaining
to mass spheres of professional activity (engineering,
medicine, business, sport, etc.). The term "a K-
representation” (KR) is used for denoting SRs of NL-
texts being the expressions of SK-languages.

The expressions of SK-languages are built from
primary semantic units and several service symbols by
means of inductive application of some original rules
P[0], P[1], …, P[10]. A set of primary semantic units and
several distinguished subclasses of this set are determined
by a conceptual basis (c.b.) [19]. The language corres-
ponding to an arbitrary c.b. B is designated by Ls(B).

The mapping tp from the union of the primary
informational universe X(B) and the set of variables V(B)
into the set Types(B) is expanded in [19] to the mapping
tpl from the SK-language Ls(B) into the set Types(B). For
instance, the value of the mapping tpl for the argument
Greater(Distance(Moscow, London), Distance (Moscow,
Paris)) could be the sort prop (meaning of proposition), it
is interpreted as the type of SRs of assertions
(propositions).

The rule P[0] describes an initial set of formulas from
Ls(B); in other terms, they are called K-strings. E.g., the

1376 MIPRO 2018/miproBIS

unit file1 is a K-string. The rules P[1] – P[10] jointly
define a system consisting of ten partial operations on
conceptual structures [19].

The rule P[1] allows us to join intensional quantifiers
and designations (simple or compound) of notions, in
particular, to construct the formulas certain file1,

 certain file1 * (Extension1, “doc”),
all file1 * (Extension1, “doc”).

The rule P[2] is used for constructing the expressions of
the form f(t1 ,…, tn), and P[3] enables us to build the
expressions of the form (c ≡ d). Example: (document ≡
file1 * (Extension1, "doc")).

One uses the rule P[4] for building the expressions of
the form rel(t1 ,…, tn), where rel is the name of a relation
with n attributes (example: Earlier (Creation-date(certain
file1), #yesterday”)). The rule P[5] provides the
possibility to mark a formula or its part by means of a
variable. Example: all file1 * (Extension, "doc") : S1.

The rule P[6] allows us to join the negation
connective to a formula (example: ¬file1). The rule
P[7] governs the use of the logical connectives (and)
and (or). Example: file1 * (Extension1, ("doc"
“docx”)).

Using the rule P[8] at the last step of an inference, it is
possible to construct compound designations of notions.
Example: file1 * (Extension1, ("doc"
“docx”))(Location, certain desktop).

The rule P[9] allows us to use the universal quantifier
and existential quantifier (и) in formulas. The rule
P[10] enables us to construct the SRs of finite sequences
as the strings of the form < c1 ,…, cn >, where c1 ,…, cn are
the elements of a sequence.

Example 1. The algorithm SemSyntRA associates the
instruction “Archive documents in folder “Project” and
send to somebody@example.org” with the primary K-
representation (KR) Semrepr1 of the form
 (IsAction (#now#, archiving1 * (Object1, certain set *
(Qualitative-composition, document1 * (Location, certain
folder 1 * (Name1, “Project”) : S1))(Result, x1), e1
IsAction (#now#, sending1 * (Object1, x1)(Email-
address, “somebody@example.org”), e2) Immediately-
after(e2, e1)).

III. THE PRINCIPAL IDEAS OF EXECUTING K-
REPRESENTATIONS OF INSTRUCTIONS

In order to execute an instruction, more exactly, a KR
of an instruction, it is necessary to do two steps: (a) to
form a KR including only the notions being "known" to
the goal applied system; (b) to translate the obtained KR
to the language of the goal system.

Let's consider the user instruction "Move the video
with the name "Lecture 2017-12-15" to the reserved
disc". For escaping many details, let's restrict ourselves
by considering the processing of the fragment the video
with the name "Lecture 2017-12-15", associated with the
KR of the form certain video1 * (Called, "Lecture 2017-
12-15").

Suppose that we have the transformation rule
video1 * (Called, filename) → file1*(Called,
filevame)(Extension1, ("avi" ∨ "mkv" ∨ "mp4")),
where filename is a certain string such that the type
tpl("Lecture 2017-12-15") is a concretization of the type
tpl(filename).

Then, applying this rule to the KR certain video1 *

(Called, "Lecture 2017-12-15"), we obtain the secondary
KR of the form
certain file1*(Called, filevame)(Extension1, ("avi" ∨
"mkv" ∨ "mp4")).

For applying this transformation rule, it is necessary
to get to know that the K-string certain video1 * (Called,
"Lecture 2017-12-15") or its certain substring
corresponds to the left part of the considered
transformation rule.

With this aim, a special binary relation is introduced.
It is called the relation of correspondence to a pattern
and receives the name (designation) Match. For the
considered example, the pair (video1 * (Called, "Lecture
2017-12-15"), video1*(Called, filevame)) belongs to
Match.

 Next section is devoted to considering the grounds
for including the pairs of K-strings into a binary relation
Match.

Similarly, it is assumed to fulfill the transformation of
KR into the scripts of the goal system. The only
difference will be that the right parts of the
transformation rules will contain not the K-strings but the
scripts of the goal system.

IV. THE GROUNDS FOR INCLUDING THE K-
STRINGS INTO THE RELATION OF
CORRESPONDENCE TO A PATTERN

In order to fulfill a transformation, let's formulate a

rule of checking a correspondence between the left part of
the transformation rule and the processed K-string. With
this aim, we'll define the relation of correspondence to a
pattern on the set of K-strings. The relation is defined
with the help of several natural assumptions called below
the grounds.

Firstly, a correspondence of an element of the primary
informational universe X(B) to the pattern z may be
defined by the coincidence of the meanings (synonymy).
This synonymy may be determined by a certain reflexive
symmetric relation. Let's introduce

Definition 1. Let B be an arbitrary conceptual basis
(c.b.). Then the synonymy relation coordinated with the
c.b. B is an arbitrary reflexive symmetric relation Syn on
the primary informational universe X(B).

Let's determine the relation of correspondence to a
pattern Match on the SK-language Ls(B). The fact that
the pair (y, z) belongs to the relation Match will be
denoted by the record y≻z. We do know that the relation
Match depends on the synonymy relation Syn and on the
set of rules enabling us to expand Syn on the set Ls(B).
That is why it would be correct to say about the relation
of correspondence to a pattern with the precision to
within a synonymy relation Syn.

Taking this into account, we formulate
Ground 1. Let B be an arbitrary c.b, y and z be the
arbitrary elements of the primary informational universe
X(B). Then the fact (y, z)∈ Syn implies the fact (y, z)∈
Match.

For instance, the pair (folder1, catalogue1) may
belong to the synonymy relation, because the
informational units folder1 and catalogue1 correspond to

MIPRO 2018/miproBIS 1377

mailto:somebody@example.org
mailto:somebody@example.org

the words "folder" and "catalogue", and these words are
synonyms in the field of manipulating with files. Hence
the unit folder1 corresponds to the pattern catalogue1,
i.e., (folder1, catalogue1) ∈ Match, it is the same as
folder1≻ catalogue1.

In case the pattern is a variable, the correspondence of
the K-string y to the pattern z is determined by the types
of the pattern z and y. The type of the pattern z is to
coincide or to be more general than the type of y. E.g., if
the element of a primary informational universe disc1 has
the type ↑inf.object * dyn.phys.object, and a variable var
has the type ↑inf.object, then the element disc1
corresponds to the pattern var. We obtain in this way

Ground 2. Let B be an arbitrary c.b, y belong to
Ls(B), and z be an arbitrary variable from V(B).Then the
pair (y, z)∈ Match then and only then when tpl(z)⊢tpl(y),
where tpl is a mapping from the SK-language Ls(B) into
the set of types corresponding to B Types(B).

Since a pattern may be constructed with the help of
some rules P[1] - P[10], it is reasonable to see how the
relation of correspondence to a pattern will be defined in
each of these cases.

Let's start from considering the usage of intensional
quantifiers in the K-strings (the rule P[1]). For instance,
the K-string certain folder1 * (Called, "Video") will
correspond to the pattern certain catalogue1, but will not
correspond to the pattern catalogue1. Besides, a more
simple K-string certain folder1 will correspond to the
pattern certain catalogue1.Thus, we have

Ground 3. Let B be an arbitrary c.b, Syn be a
reflexive symmetric relation on X(B), y be a K-string of
the form intq1c1, z be a K-string of the form intq2c2 , and
(intq1,intq2)∈ Syn, (с1,с2)∈Match. Then (y ,z) ∈ Match.

The K-strings with functional and relational symbols
(i.e., with the names of functions and n-ary relations,
where n≥1), built respectively according to the rules P[2]
and P[4], will correspond to the patterns with similar
structure.

For instance, the K-string Size1(certain file1 *
(Called, "a.txt")) will correspond to the pattern
Size1(certain file1). In more general cases, the functional
symbols of the K-string and the pattern should be
synonyms, and the arguments of a function (of a
predicate) should correspond to the arguments of the
pattern as the argument certain file1 * (Called, "a.txt")
corresponds to the pattern certain file1.

Besides, if a variable n has the type number, the K-
string Size1(certain file1 * (Called, "a.txt")) has the type
integer, and the type of the sort number is a more general
type than the sort integer, then the K-string Size1(certain
file1 * (Called, "a.txt") corresponds to the pattern n.

We'll formulate the similar requirements to the K-
strings built with the use of relational symbols and also to
the K-strings of the form (a ≡ b). The above said enables
us to introduce three additional grounds.

Ground 4. Let B be an arbitrary c.b, Syn be a
reflexive symmetric relation on X(B), y be a K-string of
the form f(a1,…,an), z be a K-string of the form
g(b1,…,bn), where f and g be functional symbols from
F(B), and (f,g)∈ Syn. Let for every i from 1 to n, the pair
(ai, bi) belongs to Match. Then (y, z)∈ Match.

Ground 5. Let B be an arbitrary c.b., y be a K-string
of the form (c ≡ d), and z be a K-string of the form (a ≡

b). Let the pairs (c,a) and (d,b) belong to Match. Then
(y,z) ∈ Match.

Ground 6. Let B be an arbitrary c.b., Syn be a
reflexive symmetric relation on X(B), y be a K-string of
the form r(a1,…,an), and z be a K-string of the form
p(b1,…,bn), where r and p are relational symbols from
X(B)\F(B). Let for every i from 1 to n, the pair (ai, bi)
belongs to Match. Then (y, z)∈ Match.

It is obvious that the application of the rule P[5] to a
K-string doesn't cause any changes in the correspondence
to a pattern. Taking this into account, we formulate

Ground 7. Let B be an arbitrary c.b., y and z are K-
strings from the SK-language Ls(B), and var be a
variable from V(B) such that it is possible to form the K-
string y : var in accordance with the rule P[5]. Then it
follows from (y, z)∈ Match that the pair (y : var, z)
belongs to Match.

Consider in a simple example the case of K-strings
with the left segment ¬ (the connective "negation"). The
K-string certain file1 * (Called, "a.txt") corresponds to
the pattern certain file1. It would be logical to assume
that the negation of the considered unit corresponds to the
negation of the pattern. That is, the K-string ¬ certain
file1 * (Called, "a.txt") corresponds to the pattern ¬
certain file1.Thus, we can define

Ground 8. Let B be an arbitrary c.b., y and z be the
K-strings from Ls(B). Then the fact (y,z)∈ Match implies
the fact (¬y,¬z)∈ Match.

The case of binary logical connectives ∧ and ∨
(conjunction and disjunction) is more complex. Let's
consider firstly the disjunction. i.e. the logical connective
OR.

Ground 9. Let B be an arbitrary c.b., y be a K-string
of the form (y1∨…∨ yn), and z ∈ Ls(B). Let there be such
i from 1 to n that (yi, z)∈ Match. Then the pair (y,z)
belongs to the relation Match.

To the contrary, y≻ (z1∨…∨ zn) in case y corresponds
to every substring zi.

Ground 10. Let B be an arbitrary c.b., y∈ Ls(B, and z
be a K-string of the form (z1∨…∨ zn). Let there be such i
from 1 to n that (y ,zi)∈ Match. Then (y, z)∈ Match.

The grounds 9 and 10 allow us also to define a
correspondence to a pattern for a K-string y of the form
(y1∨…∨ yn) and a pattern z of the form (z1∨…∨ zm). It is
not difficult to see that y≻z in case there is such pair (i, j)
that yi≻zj.

Similarly to the grounds 9 and 10, it is possible to
define that a K-string of the form (y1 ∧ … ∧ yn)
corresponds to the pattern z in the case at least one of the
substrings yi. corresponds to z. To the contrary, a K-string
y corresponds to the pattern z of the form (z1∧…∧ zn), if y
corresponds to all substrings zi for i from 1 to n. We use
also several additional grounds, they are formulated in
[13].

Example. Let's illustrate the ideas stated above in a
formal way. Assume that the synonymy relation includes
the pairs (file1, document1), (folder1, catalogue1),
(folder1, directory1), (disc1, carrier1), (disc1, USB) and
also the inverse (symmetric) pairs. Then the following
relationships will take place:
catalogue1≻ folder1;

1378 MIPRO 2018/miproBIS

disc1≻z, if z∈ V(B), tpl(certain folder1)=inf.object *
dyn.phys.object, and tpl(z)= inf.object , because inf.object
⊢ inf.object * dyn.phys.object;
certain catalogue1≻ certain folder1;
Size1(certain catalogue1)≻ Size1(certain folder1);
Size1(certain catalogue1 * (Called, "Docx")) ≻ Size1(
certain catalogue1);
(certain file1 ∧ certain catalogue1)≻ certain file1;
certain catalogue1≻(certain file1 ∨ certain catalogue1).

V. APPLICATION OF THE STATED FORMAL APPROACH

The ideas stated above together with the model of
linguistic database, the notion of a graph-like semantic-
syntactic structure, and the algorithm of semantic parsing
SemSyntRA [11-12] underpinned the design of file
management system NLC-2 (Natural Language
Commander – Version 2). This program is the next
generation of NLC-1, which was developed for the
studies and experiments in the field of NL-interfaces to
action-based applications [9, 10]. NLC-2 processes
natural language instructions in accordance with the
following scheme:
User instruction ==> Primary K-representation ==>
Secondary K-representation ==> BASH Script

Example. Let’s look how NLC-2 processed the user
instruction from the example of Section 2: “Archive
documents in folder "Project" and send to
"somebody@example.org"”. This instruction is
transformed by the algorithm SemSyntRA described in
[11] into the primary K-representation Semrepr1
described in Section 2.

Now if the knowledge base of NLC-2 contains the
transformation rule document1 → file1 * (Extention1,
("doc" ∨ "docx" ∨ "odt")) then the system NLC-2
transforms the constructed primary K-representation of
the user instruction into its secondary KR

(IsAction (#now#, archiving1 * (Object1, certain
set * (Qualitative-composition, certain file1 *

(Extention1, ("doc" ∨ "docx" ∨ "odt"))(Location,
certain folder 1 * (Name1, “Project”) :

S1))(Result, x1), e1 ∧ IsAction (#now#, sending1 *
(Object1, x1)(Email-address,

“somebody@example.org”), e2) ∧ Immediately-
after(e2, e1)).

Then the result shell script for Bourne-Again Shell
(BASH) is as follows:

zip /tmp/z000129.zip "Project/*.doc"
"Project/*.docx" "Project/*.odt"; sendfile

somebody@example.com /tmp/z000129.zip

The final step is the execution of this script.
NLC-2 software complex contains two applications:

NLC-TI – command line tool with text interface and
WebNLC – tool for settings tuning and experiments with
Web-interface. Both of them use the same TKRlib
library. NLC-TI uses it directly. WebNLC uses TKRlib
through the NLC-RESTful – a set of services for Web-
applications and integration with another software.

VI. CONCLUSION
This paper expands new mathematical foundations of

designing semantic parsers of NL instructions. The theory
of K-representations underpins the stated formal approach.
The principal advantages of this approach are that it is
application domain independent and can be effectively
used for dealing with arbitrarily complex NL instructions.

ACKNOWLEDGMENT
We are grateful to the anonymous referees of this

paper for their efforts and precious recommendations.

REFERENCES

[1] Y. Artzi, and L. Zettlemoyer, "Weakly supervised learning
of semantic parsers for mapping instructions to actions,” in
Transactions of the Association for Computational
Linguistics, 2013, vol. 1, pp. 49–62. Action Editor: Jason
Eisner (https://aclweb.org/anthology/Q/Q13/Q13-1005.pdf,
retrieved: 2016-03-13)

[2] M. Babes-Vroman, J. MacGlashan, R. Gao, K. Winner, R.
Adjogah, M. desJardins, M. Littman, and S. Muresan,
“Learning to interpret natural language instructions,” in
Proceedings of the Second Workshop on Semantic
Interpretation in an Actionable Context, pp. 1–6, Montreal,
Canada, June 3-8, 2012.
(https://aclweb.org/anthology/W/W12/W12-2801.pdf,
retrieved: 2016-03-13)

[3] E. Bastianelli, C. Castellucci, D. Croce, and R. Basili,
“Textual inference and meaning representation in human
robot interaction,” in Proceedings of the Joint Symposium on
Semantic Processing. Textual Inference and Structures in
Corpora, 2013, pp. 65-69
(https://aclweb.org/anthology/W/W13/W13-3820v2.pdf,
retrieved: 2016-03-13).

[4] M. Marge and A. Rudnicky, “Comparing spoken language
route instructions for robots across environment
representations,” in Proceedings of the SIGDIAL 2010
Conference, pp. 157–164, The University of Tokyo,
September 24-25, 2010.
(https://aclweb.org/anthology/W/W10/W10-4328.pdf,
retrieved: 2016-03-13)

[5] L. Benotti, M. Villalba, T. Lau, and J. Cerruti, “Corpus-
based interpretation of instructions in virtual environments,”
in Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short
Papers), pp. 181–186, Jeju, Republic of Korea, 8-14 July
2012 (https://aclweb.org/anthology/P/P12/P12-2036.pdf,
retrieved: 2016-03-13)

[6] D.K. Misra, K. Tao, P. Liang, and A. Saxena, “Environment-
Driven Lexicon Induction for High-Level Instructions,” in
Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pages 992–1002, Beijing, China, July 26-31,
2015 (https://aclweb.org/anthology/P/P15/P15-1096.pdf,
retrieved: 2016-03-13)

[7] C.S. Carlos, “Natural language programming using class
sequential rules,” in Proceedings of 5th International Joint
Conference on Natural Language Processing, pp. 237–245,
Chiang Mai, Thailand, November 8 – 13, 2011
(https://aclweb.org/anthology/I/I11/I11-1027.pdf, retrieved:
2016-03-13)

[8] T. Lei, F. Long, R. Barzilay, and M. Rinard, “From natural
language specifications to program input parsers,” in
Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp.
1294–1303, Sofia, Bulgaria, August 4-9, 2013.

MIPRO 2018/miproBIS 1379

mailto:somebody@example.org
mailto:somebody@example.com
https://aclweb.org/anthology/Q/Q13/Q13-1005.pdf
https://aclweb.org/anthology/W/W12/W12-2801.pdf
https://aclweb.org/anthology/W/W13/W13-3820v2.pdf
https://aclweb.org/anthology/W/W10/W10-4328.pdf
https://aclweb.org/anthology/P/P12/P12-2036.pdf
https://aclweb.org/anthology/P/P15/P15-1096.pdf
https://aclweb.org/anthology/I/I11/I11-1027.pdf

(https://aclweb.org/anthology/P/P13/P13-1127.pdf, retrieved:
2016-03-13)

[9] A.A. Razorenov and V.A. Fomichov, “The design of a
natural language interface for file system operations on the
basis of a structured meanings model,” Procedia Computer
Science, Elsevier, 2014, vol. 31, pp. 1005-1011; open
access, URL:
http://authors.elsevier.com/sd/article/S1877050914005304

[10] V.A. Fomichov and A.A. Razorenov, “Significance of the
theory of K-representations for the studies on automatic
semantic role labeling,” (“Znachenie teorii K-predstavlenii
dlya issledovanii po avtomaticheskomu vyavleniyu
semanticheskikh roley”), Informatsionnye Tekhnologii,
2015, no. 6, pp. 403-411 (in Russian).

[11] A.A. Razorenov and V.A. Fomichov, “A new formal
approach to semantic parsing of instructions and to file
manager design,” in Database and Expert Systems
Applications. Proceedings of the 27th International
Conference, DEXA 2016, Porto, Portugal, September 5-8,
2016. Cham: Springer, 2016, vol. 9827. Part. I, pp. 416-430.

[12] A.A. Razorenov and V.A. Fomichov, “A new approach to
formalization of instructions’ semantic processing based on
the theory of K-representations,” (“Novyi podkhod k
formalizatsii semanticheskoi obrabotki predpisanii na osnove
teorii K-predstavlenii”). Informatsionnye tekhnologii, 2017,
vol. 23, no. 1, pp. 3-14 (in Russian).

[13] A.A. Razorenov, “The principles of applying the theory of
K-representations to developing mathematical foundations of
executing natural language instructions by computer
systems,” (“Printsypy primeneniya teorii K-predstavlenii k
razrabotke matematicheskikh osnov vypolneniya
estestvenno-yazykovykh predpisanii komp'yternymi
sistemami”), Informatsionnye tekhnologii, 2017, vol. 23, no.
10, pp. 699-706 (in Russian).

[14] V.A. Fomichov, “A mathematical model for describing
structured items of conceptual level", Informatica. An
International Journal. of Computing and Informatics
(Slovenia), 1996, vol. 20, no. 1, pp. 5-32.

[15] V.A. Fomichov, “Theory of restricted K-calculuses as a
comprehensive framework for constructing agent
communication languages,” in Fomichov V.A., Zeleznikar
A.P. (eds.). Special Issue on NLP and Multi-Agent Systems.
Informatica. An International J. of Computing and
Informatics (Slovenia), 1998, vol. 22, no. 4, pp 451-463.

[16] V.A. Fomichov, “An Ontological Mathematical Framework
for Electronic Commerce and Semantically-structured Web,”
in Zhang Y., Fomichov V.A., Zeleznikar A.P. (eds.), Special
Issue on Database, Web, and Cooperative Systems.
Informatica. An International J. of Computing and
Informatics (Slovenia) , 2000, vol. 24, no. 1, pp. 39-49.

[17] V.A. Fomichov, “Theory of K-calculuses as a powerful and
flexible mathematical framework for building ontologies and
designing natural language-processing systems,” in
Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L.
(Eds.), Flexible Query Answering Systems, 5th Intern.
Conference, FQAS 2002, Proceedings, Lecture Notes in
Artificial Intelligence. 2002. Berlin, Heidelberg, New York:
Springer, 2002, vol. 2522, pp. 183-196.

[18] V.A. Fomichov, “A comprehensive mathematical framework
for bridging a gap between two approaches to creating a
Meaning-Understanding Web,” Intern. Journal of Intelligent
Computing and Cybernetics, 2008, vol. 1, no. 1, pp. 143-
163.

[19] V.A. Fomichov, Semantics-Oriented Natural Language
Processing: Mathematical Models and Algorithms, New
York, Dordrecht, Heidelberg: Springer, 2010.

[20] V.A. Fomichov, “Theory of K-representations as a
comprehensive formal framework for developing a
Multilingual Semantic Web", Informatica, An Intern. Journal
of Computing and Informatics, 2010, vol. 34 , no. 3, pp.
387-396 .

[21] V.A. Fomichov, “A broadly applicable and flexible
conceptual metagrammar as a basic tool for developing a
Multilingual Semantic Web,” in Metais, E., Meziane, F.,
Saraee, M., Sugumaran, V., Vadera, S. (eds.) NLDB 2013.
LNCS, vol. 7934, pp. 249-259. Heidelberg: Springer.

[22] V.A. Fomichov, “SK-Languages as a Comprehensive
Formal Environment for Developing a Multilingual
Semantic Web,” in Decker, H., Lhotska, L., Link, S., Spies,
M, Wagner, R. R. (eds.) Database and Expert Systems
Applications, 25th Intern. Conference, DEXA 2014, Munich,
Germany, September 1-4, 2014, Proceedings, Part I, LNCS,
Vol. 8644, 394-401. Springer, Cham, Heidelberg (2014)

[23] V.A. Fomichov, “Integral Formal Semantics and the design
of legal full-text databases,” Cybernetica. Quarterly Review
of the International Association for Cybernetics (Belgium,
Namur), 1994, vol. 37, no. 2, pp. 145–177.

[24] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt,
U. Hermjakob, K. Knight, P. Koehn, M. Palmer, and N.
Schneider, “Abstract Meaning Representation for
Sembanking,” in Proceedings of the 7th ACL Linguistic
Annotation Workshop and Interoperability with Discourse,
Sofia, Bulgaria, August 8-9, 2013
(www.aclweb.org/anthology/W13-2322; retrieved 2016-03-
12)

[25] V.A. Fomichov, “SK-languages as a powerful and flexible
semantic formalism for the systems of cross-lingual
intelligent information access,” Informatica. An Intern.
Journal of Computing and Informatics (Slovenia), 2017, vol.
41, no. 2, pp. 221-232.

1380 MIPRO 2018/miproBIS

https://aclweb.org/anthology/P/P13/P13-1127.pdf
https://mail2.hse.ru/owa/redir.aspx?C=515rn93gDEikKDTAecGbE6l7jHGcUNEIMcKcmwfpWG_r9SiDzt_6TEB7yushsoFLzwZ0YGG33dc.&URL=http%3a%2f%2fauthors.elsevier.com%2fsd%2farticle%2fS1877050914005304

