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SINGULAR INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS
FOR INTEGRODIFFERENTIAL EQUATIONS
IN DYNAMICAL INSURANCE MODELS WITH INVESTMENTS

T. A. Belkina, N. B. Konyukhova, and S.V. Kurochkin UDC 517.91/.93

ABSTRACT. We investigate two insurance mathematical models of the following behavior of an insur-
ance company in the insurance market: the company invests a constant part of the capital in a risk
asset (shares) and invests the remaining part in a risk-free asset (a bank account). Changing parame-
ters (characteristics of shares), this strategy is reduced to the case where all the capital is invested in a
risk asset. The first model is based on the classical Cramér—Lundberg risk process for the exponential
distribution of values of insurance demands (claims). The second one is based on a modification of the
classical risk process (the so-called stochastic premium risk process) where both demand values and
insurance premium values are assumed to be exponentially distributed. For the infinite-time nonruin
probability of an insurance company as a function of its initial capital, singular problems for linear
second-order integrodifferential equations arise. These equations are defined on a semiinfinite inter-
val and they have nonintegrable singularities at the origin and at infinity. The first model yields a
singular initial-value problem for integrodifferential equations with a Volterra integral operator with
constraints. The second one yields more complicated problem for integrodifferential equations with
a non-Volterra integral operator with constraints and a nonlocal condition at the origin. We reduce
the problems for integrodifferential equations to equivalent singular problems for ordinary differential
equations, provide existence and uniqueness theorems for the solutions, describe their properties and
long-time behavior, and provide asymptotic representation of solutions in neighborhoods of singular
points. We propose efficient algorithms to find numerical solutions and provide the computational
results and their economics interpretation.
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1. Introduction

In this paper, a brief review of the main authors’ results (as well as related background results) is
provided: we compare two insurance mathematical models under the same behavior of an insurance
company in the insurance market, assuming that the company invests its circulating capital in a risk
asset, which is shares with prices modelled by a geometrical Brownian motion. The considered models
cover a more general case of a permanent investment structure, i.e., the case where a constant part
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of the circulating capital is invested in a risk asset (shares) while the remaining part is invested in a
risk-free asset (a bank account with a constant interest rate). To reduce the latter case to the former,
we have to change the characteristics of the shares, which are parameters of the problem (this is briefly
discussed below).

Model I is based on the classical Cramér—Lundberg risk process for the exponential distribution
of values of insurance demands (claims). In the Cramér-Lundberg model, the process describing the
capital change is the sum of a determinate process of the insurance premium income and a compound
Poisson process of insurance payments (see, e.g., [26, 34]). In [21, 22, 33, 37], a modified Cramér—
Lundberg model is described: the premium income process is a compound Poisson process as well
and its parameters are different from the ones for the insurance payment process; following [21, 33,
37], we call the corresponding model the Cramér-Lundberg model with stochastic (random) premi-
ums. Model II is based on the Cramér—Lundberg model with stochastic premiums and exponentially
distributed values of claims and premiums.

For dynamical insurance models, it is very important to estimate the nonruin probability, which is
a traditional determinate solvency characteristic for insurance companies. In the majority of mathe-
matical models, the dynamics of the capital of the insurance company is described by a homogeneous
continuous-time Markov process. In particular, if the capital is invested in risk assets, then the speci-
fied process is described by a stochastic differential equation. For such processes, treating the nonruin
probability as a function of the initial capital, one can find assumptions for the properties of that
function such that the integrodifferential equation for them can be found by means of the generator
technique (see, e.g., [13, 25] and references therein). The integrodifferential equations are defined
on R, . If their solutions exist such that they are nonnegative on R, do not exceed 1, and tend to
1 at infinity, then those solutions determine the sought probability. This can be proved by means of
probabilistic methods (for details, see [11] and references therein). In particular, in [11], problems for
Models I and II of the present paper are justified in the above sense.

For each of those models, the infinite-time nonruin probability of an insurance company, treated
as a function of its initial capital, is a solution of a singular problem for a linear second-order inte-
grodifferential equation defined on a semiinfinite interval and having nonintegrable singularities at the
origin and at infinity (see [14-16] and references therein). Model I yields a singular initial-value prob-
lem for an integrodifferential equation with a Volterra integral operator with constraints; in [14, 15],
this problem is studied in detail. Model II yields a more complicated problem for integrodifferential
equations with Volterra and non-Volterra integral operators with constraints and a nonlocal condition
at the origin; it is posed and studied in [16].

In this paper, the main results of [14-16] are presented taking into account earlier results obtained
by other authors: singular problems for integrodifferential equations are posed, methods to reduce
them to equivalent singular problems for ordinary differential equations are described, existence and
uniqueness theorems are presented for their solutions, asymptotical representations of solutions in
neighborhoods of singular points are given, the long-time behavior of solutions of the posed problems is
described, efficient algorithms of finding numerical solutions are presented, and computational results
are provided and interpreted (some misprints and errors found in [14-16] are corrected here). For
important assertions, we present brief schemes or their proofs.

In the sequel, we use the following notation: P(A) is the probability of an event A and EX is
the mathematical expectation of a random variable X. The other notation is introduced below when
needed.

2. Singular Problems for Second-Order Integrodifferential Equations with Constraints

First, we pose two singular problems for integrodifferential equations related to Model 1 and
Model II. The models itself leading to the above problems are described in the next section.
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2.1. Problem 1: singular problem for Model I. In Model I, a second-order integrodifferential
equation with a Volterra integral operator, arises for the nonruin probability ¢(u) (considered as a
function of the initial capital ). That equation is defined on R and has singularities as © — +0 and
u — 00. The following singular problem with constraints for the range of the solution is posed for that
integrodifferential equation:

(6%/2)u¢" (u) + (au + €)' (u) = A[p(u) = (Jmp)(W)] =0, 0 <u< oo, (2.1)
{1 Jim o), | lim ' (u)]} <oo,  lim fe¢(u) = Ap(u)] =0, (2.2)
0<pu) <1, u € Ry, (2.3)

uh_)ngo o(u) =1, ulglgo ¢’ (u) = 0. (2.4)

Unless the opposite is stated, the parameters a, b, ¢, A, and m are real and positive and .J,,, is the
following Volterra integral operator:

u u

(Jmep)(u) = ; /gp(u —x)exp (—z/m) dx = ; /gp(s) exp (— (u—s)/m)ds, ueRy, (2.5)
0 0

where J,,, : C[0,00) — C][0,00) and C]0,00) is the real linear space of functions continuous and
bounded on R;.

The second limit condition as u — 0 follows from the first one and from the integrodifferential
equation itself: conditions (2.2) imply the limit relation ul—i{&o[ u?¢"(u)] = 0 in (2.1), ensuring the

degeneration of Eq. (2.1) as u — +0 (any solution ¢(u) of problem (2.1), (2.2), which is a singular
problem without initial-value data, satisfies Eq. (2.1) till the singular point u = 0).

The “truncated” problem (2.1)—(2.3), which is a singular problem with constraints, always has the
trivial solution ¢(u) = 0. To select a nontrivial solution, condition (2.4) is imposed.

2.2. Problem 2: singular problem for Model II. In Model II, a second-order integrodifferential
equation with Volterra and non-Volterra integral operators arises for the nonruin probability ¢ (u)
(considered as a function of the initial capital u). That equation is defined on R and has singularities
as u — 40 and u — co. The following singular problem with constraints for the range of the solution
is posed for that integrodifferential equation:

(% /201" (u) + aued! (u) = Alp(w) = (Jmp) ()] = Mlp(u) = (Jap)(@)] =0, 0<u<oo, (2:6)

. / o
| i p(u)] <oo, - lim fug'(u)] =0, (2.7)
A+ A1) hm go / y)exp (—y/n) dy, (2.8)
0
0<p(u) <1, u € Ry, (2.9)
. o . / o
ull)l}_loo o(u) =1, ull}riloogo (u) =0. (2.10)

Unless the opposite is stated, the parameters a, b, A, A1, m, and n are real and positive, .J,,, is the
Volterra integral operator defined by (2.5), and Ji 5, is the following non-Volterra integral operator:

(o)) = [ elutg)exp (-umydy = | [ elo)exp (s —w)/nyds, weRy, (210)
0 u

where Jp ,, : C[0,00) = C[0, 00).
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The second identity in (2.11) can be treated as a transformation of a non-Volterra integral operator
with deviating argument into a singular Volterra operator. In any case, the sum Jy, ,, : (Jmnp)(u) =
A (@) (w) + A1 (Jing)(u), u € Ry, is a singular non-Volterra! operator.

Condition (2.7) at the origin and relation (2.8) imply the limit relation ul_i)njl_o[u%p”(u)] =01in (2.6).

This implies that Eq. (2.6) degenerates as v — 40 (if there exists a solution ¢(u) of the singular
problem (2.6)—(2.10), then it satisfies the integrodifferential equation (2.6) till the singular point
u = 0). Also, it follows from conditions (2.7) that the first derivative of the solution is integrable at
the origin though its boundedness is not guaranteed.

The “truncated” problem (2.6)-(2.9), which is a singular problem with constraints and a nonlocal
condition at the origin, always has a trivial solution ¢(u) = 0; to select a nontrivial one, we impose
condition (2.10).

3. Genesis od Problems: Dynamical Insurance Models with Investments
in Risk Assets and Nonruin Probability for Insurance Companies

3.1. Classical Cramér—Lundberg risk theory model. The classical continuous-time risk pro-
cess (where the premium income is a determinate process with constant positive intensity ¢ > 0) has
the following form (see, e.g., [26, 34]):
N(t)
Ry=u+ct—>» Z,  t>0 (3.1)
k=1
Here R; is the amount of the capital of the insurance company at the time ¢, u is the value of the initial
capital, ¢ is the income velocity of insurance payments (¢ is the premium value per time period and
ct is the total insurance payment received by the time ¢), the sum on the right-hand side is the total
insurance premium, N (¢) is the homogeneous Poisson process with positive intensity A (EN(t) = At,
N(0) = 0) determining the number of client claims during the time interval (0,t] for any positive t,
and Zy, Za, ... are independent random variables with the same distribution function F(z) (F(0) =0,
EZ, = m < o0) that express values of the claims and do not depend on the process N(t) (so that
Zj is the payment for the jth claim initiated at a random moment generating the jth jump of the
process N(t)).
For the risk process (3.1), we provide the classical definition of the relative “security load” charac-
terizing the expected “specific income” of an insurance company per time period (see, e.g., [26, 34]).

Definition 3.1. The security load (coefficient) for the risk process (3.1) is
o1 = (c = Am)/(m)) (3:2)
and the condition
c—Am >0 (3:3)
provides the positive of the expected net revenue.

Let 7 = inf{t : R; < 0} denote the ruin moment; then P(7 < 00) is the infinite-time ruin probability.
The following assertion is a classical result from the Cramér-Lundberg risk theory (see, e.g., [26]).

Assertion 3.1. Suppose that condition (3.3) is satisfied and there exists a positive constant R (“the
Lundberg coefficient”) such that

/[1 — F(z)]exp (Rz)dx = ¢/\. (3.4)
0

!Definitions and investigation of Volterra and non-Volterra operators for classes of systems of functional-differential
equations (including integrodifferential, nonlinear, and singular equations) can be found, e.g., in [8, 31, 32] (see also
references therein).
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Then the ruin probability {(u) (considered as a function of the initial capital) satisfies the estimate

£(u) = P(1 < 00) < exp (—Ru), u > 0. (3.5)
Moreover, if the distribution of insurance payments is exponential, i.e.,
F(z)=1—exp(—x/m), m >0, x>0, (3.6)
then R = (¢ — Am)/(mc) > 0 and the nonruin probability p(u) =1 — &(u) is expressed as follows:
go(u):gol(u)zl—)\mexp <_c—)\mu>7 0<u< . (3.7)
c me

Remark 3.1. In the Cramér-Lundberg model, Eq. (3.4) is called the characteristic equation. It can
be written as follows:

MEexp (RZ;) — 1] —cR = 0. (3.8)

If there exists a positive solution R of this equation, then the process exp (—RR;) is a martingale
and Eexp (—RR;) = exp (—Ru) (taking into account (3.8), one can verify that directly). Using this
fact, one can easily obtain ruin probability estimates such as (3.5) and more general estimates (see,

e.g., [26]).

Remark 3.2. The history of creation of the collective risk theory and the stochastic process theory is
quite interesting. We provide a very brief review (for details, see, e.g., [33, 35] and www.hse.ru/news/
avant/85659995.html).

A recognized founder of the collective risk theory is Ernst Filip Oskar Lundberg (1876-1965). The
mathematical collective risk theory is established by Carl Harald Cramér (1893-1985). References
to main publications of those Swedish scientists and a description of their results can be found, e.g.,
in [26].

It is generally accepted that the birthday of the financial mathematics is March 29, 1900. On that
day, Louis Bachelier, follower of Henri Poincaré, defended his thesis “Théorie de la spéculation” [9]. In
particular, he proved that the evolution of asset market prices can be described by a stochastic process
with continuous trajectories (called Wiener process or Brownian motion nowadays). It happened that
Bachelier was recognized as the founder of financial mathematics only many decades later.

Along with the Wiener process, the Poisson process introduced by Lundberg for the collective risk
theory became the basis of contemporary stochastic process theory.

3.2. Cramér—Lundberg model with stochastic premiums. Described in [21, 22] (see also [33,
Sec. 9.5]), this model treats the continuous-time risk process in the following form:

Ni(t) N(t)
Ry=u+ Y C—> Z, t>0. (3.9)
i=1 j=1

Here R; is the amount of the capital of the insurance company at the time ¢, u is the value of the initial
capital, the first sum on the right-hand side is the total insurance premium by the time ¢, Ny(¢) is
the Poisson process with positive intensity A;, (ENi(t) = A\it, N1(0) = 0) determining the number of
premiums paid by clients during the time interval (0,t] for any positive ¢, C1,Cs, ... are independent
stochastic variables with the same distribution function G(y) (G(0) = 0, EC]; = n < c0) defining the
values of premiums (those stochastic variables are assumed to be independent of the process Nj(t)
and each C} is the ith payment occurring at a random time determining the time of the i¢th jump of
the process Ni(t)), and the second sum is equal to the total insurance premium, i.e., is the same as
in (3.1). The total premium process and total claim process are assumed to be independent as well.

For the risk process (3.9), we introduce a definition of the relative security load similar to Defini-
tion 3.1 introduced for the classical Cramér—Lundberg model.
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Definition 3.2. The value

p2 = (Ain — Am)/(Am) (3.10)
is called the security load for the risk process (3.9) and the condition
Ain—Am >0 (3.11)

yields the positivity of the expected net revenue.

If the values of claims and premiums are exponentially distributed, i.e.,

F(z)=1—-exp(—z/m), G(y)=1—exp(—-y/n), m,n>0, z,y>0, (3.12)
then the nonruin probability ¢(u) satisfies the integral equation
A+ A1) e(w) = A (Jne)(uw) + A1 (J1ap) (), ueRy. (3.13)

If condition (3.11) is satisfied, then the nonruin probability p(u) is expressed by the relation
A(n+m) Ain — Am

— R 14
n(A+ A1) exp( mn()\—i-)\l)u)’ wE Ry (3:.14)

because it is a solution of Eq. (3.13) that is positive on R4 and it does not exceed 1 (see [21]).

o(u) = p2(u) =1 -

Remark 3.3. In the Cramér-Lundberg model with stochastic premium, the process exp (—RR;) is a
martingale and estimates for the nonruin probability (including estimates of type (3.5)) are obtained
due to the characteristic equation having the following form (see [21, 37]):

AMEexp (RZ;) — 1] + M [Eexp (—RC;) — 1] = 0. (3.15)

It is equivalent to the equation

o

A/exp (Rx)dF(z Al/exp —Ry)dG(y) = A+ A1 (3.16)
0
3.3. Insurance models with investments in risk assets. Now, consider the case where the

capital is continuously invested in shares such that the dynamics of their prices is described by the
model of the geometric Brownian motion:

dS; = St(a dt + bdwt), t> 0. (317)

Here S; is the price of a share at the time ¢, a is the expected profitability of a share, b > 0 is the
volatility, and {w;} is the standard Wiener process.

Denoting the company capital at the time ¢t by X, we see that X; = 6,.5;, where 6, is the number
of shares in the portfolio. Then the capital changes as a function of time according to the relation

dX, = 0,dS; + dR;,

where R; is the original risk process.
Taking into account (3.17), we see that

dXt = aXt dt + bXt dwt + th, t> 0. (318)

Note that, unlike initial risk processes, we do not assume the positivity of the “security load” in
models with investments in risk assets, i.e., we do not suppose that condition (3.3) for the classical
model or condition (3.11) for the Cramér-Lundberg model with stochastic premium holds.

For the dynamical process (3.18) with the initial risk process (3.1), the nonruin probability function
©(u) satisfies the linear integrodifferential equation (see, e.g., [13, 25] and references therein)

u

A /gp(u — 2)dF(2) — Ap(u) + (au+ ¢) @' (u) + (0*/2) u® " (u) =0, u € Ry, (3.19)
0
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and the following limit relation providing the degeneration of Eq. (3.19) as u — +0 is satisfied at the
singular point u = 0:
. /
Jim_ [eg!(u) — Xp(w)] = 0. (3.20)

Assuming that the payments are distributed exponentially according to (3.6), from (3.19) we obtain
the integrodifferential equation (2.1) for Model I.

For the dynamical process (3.18) with the initial risk process (3.9), the nonruin probability function
©(u) satisfies the linear integrodifferential equation

0%/ 22" (u) + aug! () = X | p(us) — / ol —2)dF (@) | + X [o) - / pluty)dG(y)| (3:21)
0 0

on R (see [22]) and the following limit nonlocal condition providing the degeneration of Eq. (3.21)
as u — —+0 is satisfied at the singular point u = 0:

() T o(e) = / o(y) dG(y) (3.22)
0

(cf. the local condition (3.20) for Model I). Conditions of type (3.22) do not arise in [22] for (3.21);
we discuss the necessity of such conditions below (see also [16]).

Assuming that the payments are distributed exponentially according to (3.12), from (3.21) we obtain
the integrodifferential equation (2.6) for Model II.

Remark 3.4. Models under consideration cover more general investment strategies with constant
structure where instead of all the circulating capital only its fixed part a (0 < a < 1) is invested
in shares (with expected profitability u and volatility o) while the remaining (positive) part 1 — «
is invested in a risk-free asset (a bank account with a constant interest rate » > 0). To reduce the
case where 0 < a < 1 to the case where a = 1, one can change the parameters of the problem
(characteristics of the shares): a = au + (1 — a)r and b = ao (for details, see [14-16]). Thus, it
remains to consider only models where all the circulating capital is invested in risk assets; this is done
in [14-16] and the present paper.

Singular problems and corresponding models become different if some parameters of the considered
integrodifferential equations vanish: for b = 0, we obtain degenerated problems for insurance models
where all the circulating capital is invested in risk-free assets; for ¢ = 0 or Ay = 0, we obtain problems
for noninsurance models like charity foundations (no insurance payments in the model). The passages
(along the parameters) from the original problems to the new ones are singular for small (and/or
large) values of the initial capital. Such problems and corresponding models are interesting from the
mathematical point of view and from the point of view of the collective risk theory, but we do not
consider them in this paper (apart from the degenerated problems obtained for a = b = 0 corresponding
to investment-free models). For Model I, the most comprehensive investigation of problem (2.1)—(2.4)
including all “degenerated” cases is done in [17].

Remark 3.5. For Model I, the singular problem for Eq. (2.1) considered on the positive semiaxis
(problem 1) was posed and completely investigated in [14, 15, 17]. However, the first result for the
nonruin probability ¢(u) considered as a solution of Eq. (2.1) under the assumption of its existence
was obtained in [25]: it referred to the asymptotic representation of ¢(u) for large values of the initial
capital u.

Theorem 3.1 (see [25]). Let b > 0 and the payment value be exponentially distributed, i.e., Eq. (3.6)
be satisfied. Then:

(1) If the “reliability condition” for shares holds, i.e., the inequality
p=2a/b*>1 (3.23)
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is satisfied, then the asymptotic representation
o(u) =1— Ku'"P[1 +0(1)], u— oo, (3.24)
18 true for some constant K > 0.
(2) If p< 1, then p(u) =0, u € Ry.
4. Problem 1: Main Results

The singular problem (2.1)—(2.4) with constraints for the range of solution can be represented in
the following equivalent parametric form:

(?/2)u*¢" () + (au + €)@ (u) = Mp(u) = (Jmp)(w)] =0, u € Ry, (4.1)
Jimoo(u) = Co, - Tim @'(u) = ACo/e, (42)

uh_}rr;o o(u) =1, uh_}r{)lo ¢'(u) =0, (4.3)

0<p(u) <1, u € Ry, (4.4)

where the value of the unknown parameter Cj is to be defined.
Main corollaries from results of [14, 15] are provided below.

4.1. Existence, uniqueness, and behavior of solutions. Auxiliary singular Cauchy prob-
lem for ordinary differential equations.

Lemma 4.1. Let all the parameters of Eq. (4.1) be fized real numbers such that ¢ > 0, X\ > 0,
and m > 0. Let there exist a solution ¢1(u) = p(u,Cy) of problem (4.1)—(4.3) (which is a problem
without constraints for the range of the solution) for some Cy € R. Then such a constant Cy is
unique, 0 < Cy < 1, the function p(u) = ¢1(u) satisfies condition (4.4) and is a unique solution of
problem (4.1)—(4.4) (which is a problem with constraints for the range of the solution), and ¢'(u) > 0
for any finite u € Ry, i.e., p(u) strictly increases on R.

Proof.
1. To prove the uniqueness, suppose, to the contrary, that ¢o(u) is another solution of problem (4.1)—
(4.3). Then either

li = i 4.
S, ea(w) = e (w) (45)
or

Jimpa(u) # Hm g (u). (4.6)

If (4.5) is satisfied, then consider the difference ¢(u) = pa2(u) — ¢1(u). This function is a solution of
Eq. (4.1) such that

Jm @(u) = lim $(u) = 0. (4.7)
If there exists a nontrivial solution of problem (4.1), (4.7) that is positive on R, then it has a positive
maximum on R, (if the function @(u) is nonpositive on R, then consider the function —@(u) instead).
Suppose that @ > 0 is a maximum point of such a solution: @(u) = max @(u) > 0. Then &'(u) =0

)

and ¢”(u) < 0. However, a contradiction follows from (4.1) and (2.5):

u

(b?/2)u%3" (W) = A\g(@) — Am L exp (= /m) / o(s)exp (s/m)ds
0

>Ap(@) |1 —m Lexp (—u/m) /exp (s/m)ds| = Ap(u)exp (—u/m) > 0. (4.8)
0
Therefore, ¢(u) = 0.
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If (4.6) is satisfied, then it is easy to see that there exists a linear combination @(u) = c1p1(u) +
copa(u) of solutions such that ¥(u) # 1 and it is a solution of Eq. (4.1) satisfying the limit conditions
lim @¢(u) = lim p(u) = 1.

If there exists @ such that @(u) > 1, then the line of reasoning is the same as in the first case. The

assumption that @(u) < 1 for any nonnegative u contradicts conditions (4.2) because those conditions

imply that hm+0 ¢'(u) = A/e > 0. Hence, there is no other solution of problem (4.1)—(4.3) satisfying
u—r

condition (4.6).
2. The remaining assertions are proved by contradiction in the same way. [ ]

The second-order integrodifferential equation (4.1) can be reduced to a third-order ordinary differ-
ential equation. This is an important reduction. To do this, we differentiate (4.1) and, taking into
account the relation

(Jm®) (u) = [p(u) = (Jmp)(w)]/m (4.9)
and using the original integrodifferential equation (4.1), remove the integral (J,,¢)(u) from the ob-
tained third-order integrodifferential equation.

This transforms the singular initial-value problem for an integrodifferential equation (4.1), (4.2)
into the singular Cauchy problem for an ordinary differential equation.

Lemma 4.2. Let all parameters of Eq. (4.1) be fized real numbers such that ¢ > 0, b # 0, A # 0, and
m > 0.

Then for any fixed value of the real parameter Cy, the singular “integrodifferential” initial-value
problem (4.1), (4.2) is equivalent to the singular “differential” Cauchy problem

0% /2)u*@" (u)+ [c + (b* + a)u + b*u?/(2m)] " (w)+(a — A + ¢/m + au/m) ¢’ (u) = 0, u >0, (4.10)

lim @(u) =Coy, lim ¢'(u) =ACo/c, lim ¢"(u) = [m(\ —a) — A Co/(mc?). (4.11)
u—+0 u—+0 u—+0

Proof. The passage from Eq. (4.1) to Eq. (4.10) obviously follows from the above construction of

Eq. (4.10). The third limit relation in (4.11) follows from the first and the second ones and from

Eq. (4.10) itself, providing its degeneration as u — +0.

Now, let ¢(u) = ¢(u,Cp) be a solution of the singular Cauchy problem (4.10), (4.11). We need to
prove that ¢(u) satisfies the integrodifferential equation (4.1).

By g(u) denote the left-hand side of Eq. (4.1) with the function ¢(u). We claim that g(u) = 0.
Indeed, taking into account the method of derivation of Eq. (4.10), it is easy to see that g(u) satisfies
the following first-order ordinary differential equation [15, 17]:

g () +gu)/m=0, u>0.
Its general solution is N
g(u) = C exp(—u/m), u=0,
where C' is an arbitrary constant. However, taking into account that @(u) satisfies condition (4.11),

we deduce the relation g(0) = 0 from the integrodifferential equation (4.1). This implies that C' = 0,
ie., g(u)=0. ||

The third-order linear ordinary differential equation (4.10) has irregular (strong) singularities® of
rank 1 as u — +0 and as u — oo. In [14, 15], results of [19, 20, 29, 30] are used to investigate singular
Cauchy problems in neighborhoods of singular points of the obtained third-order ordinary differential
equation.

Lemma 4.3. Let the conditions of Lemma 4.2 be fulfilled. Then:

2The classification of pole-like singularities for systems of linear ordinary differential equation can be found, e.g.,
in [18, 23, 24, 28, 36].
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(1) The solution p(u, Co) of the singular Cauchy problem (4.10), (4.11) for the ordinary differential
equation (respectively, of the equivalent initial-value problem (4.1), (4.2) for the integrodifferen-
tial equation) exists, is unique, and is represented by the asymptotic series

)\ o0
1 Dyuf /k ~ 40 4.12
+C<u+z ku/)], u ~ +0, (4.12)

k=2
where the constant coefficients Dy do not depend on Cy and are defined by formal substitution
of series (4.12) in Eq. (4.10):

SO(U, CO) ~ CO

Dy =—[(a—\)/c+1/m], (4.13)
D3 = —[Dy(b* 4+ 2a — A + ¢/m) + a/m]/(2¢), (4.14)
and
Dy, = —{Dj_1[(k—1)(k—2)b*/2+ (k — 1)a — A+ ¢/m] + Dj_s[(k — 3)b* /2 + a] /m}/[c(k —1)], (4.15)
k=4,5,....

(2) All solutions of the ordinary differential equation (4.10) (the singular initial-value problem (4.1),
(4.2) for the integrodifferential equation) have finite limits as u — oo if and only if inequal-
ity (3.23), which is the “reliability condition” for shares, is satisfied.

Theorem 4.1. Let the parameters a, b*, ¢, A\, and m in Eq. (4.1) be fized positive numbers. Let
condition (3.23) be satisfied. Then the following assertions are valid:

(1) Problem (4.1)—~(4.4) has a unique solution p(u). It is infinitely differentiable on (0,00) and
strictly increasing on Ry. If all the parameters of Eq. (4.1) are positive, then inequality (3.23)
is a necessary and sufficient condition for the solvability of problem (4.1)—(4.4).

(2) The solution o(u) can be obtained as a solution of problem (4.1), (4.2) for the integrodifferential
equation (it is a solution of the equivalent problem (4.10), (4.11) for the ordinary differential
equation as well), where the value of the positive parameter Cy is selected to satisfy condi-
tion (4.3) normalizing the solution at infinity. Condition (4.4) always holds for such a solution.

(3) For small u > 0 the asymptotic representation (4.12) with 0 < Cy < 1 is valid for p(u).

(4) The asymptotic representation

o) =1— Ku"20/[1 £ o(1)],  u— oo, (4.16)

holds, where K = C’of( (Co and K are positive and cannot be found by local analysis).

(5) If i1 >0, where
wi=m(a—\)+c (4.17)

defines the “risk factor” for Model 1, then p(u) is concave on Ry; if ir1 < 0, then there exists

a positive point of inflection u such that p(u) is convex on [0,u].
Remark 4.1. Assertion 5 of Theorem 4.1 is more exact than the one from [14, 15, 17], which states
(without a proof) that the (stronger) inequality ¢,1 > 0 implies the concavity on R4 of the solution
¢©(u) of problem (4.1)—(4.4). For small positive u, the latter assertion follows from expansion (4.12)
and relation (4.13): ¢”(u) < 0 for small nonnegative u and ¢”(u) does not change sign as u increases.
Indeed, let there exist a positive u such that ¢” (%) = 0. Then (4.10) implies the inequality ¢ (u) < 0,
but ¢”(u) > 0 for u > u; this yields a contradiction.

We add one more new assertion: for 4,1 = 0 the solution ¢(u) remains concave on Ri. To prove
this, we note that relations (4.12)—(4.14) imply that ¢”(0) = 0 and ¢”(0) = —am/(2¢) < 0. Thus,
there exists a neighborhood of the origin where ¢”(u) is negative and, as above, ¢ (u) does not change
sign as u increases. Relations (4.12)—(4.14) imply that there exists a positive point of inflection @ such
that the function ¢(u) is convex on [0, u] provided that i1 < 0 (note that the nonstrict inequality
ir1 < 01is claimed in [14, 15, 17] by mistake).
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Remark 4.2. For a < 0, Lemma 4.2 and assertion 1 of Lemma 4.3 are applied to investigate the
optimal control of investments for the model “with constraints on loans admitting short positions”
(see [12]). In general, this model is nonlinear. The behavior of its Bellman function for small values
of the independent variable is described by a singular linear Cauchy problem of kind (4.10), (4.11),
while condition (3.23) is not imposed.

Remark 4.3. If condition (3.3) is satisfied, then function (3.7) is an exact solution of the degenerated
problem obtained from the original singular problem (2.1)—(2.4) by assigning a = b = 0, i.e., a solution
of the following problem for an integrodifferential equation:

0 (1) ~ Mp(w) — (Jm@)(@)] =0, weRs, ef(0)~Ap(0)=0, lm () =1 (418)

U—r 00
This problem is equivalent to the Cauchy problem with parameter and normalization condition at
infinity:
e’ (u) + (¢/m =N ¢'(u) =0,  u€Ry, (4.19)

P0)=Co PO =ACofe,  lim p(w) =1 (4.20)

This implies that Chp = 1 — Am/c, 0 < Cy < 1, ¢'(0) > 0, ¢"(0) < 0, and relation (3.7) holds
determining the exact classical solution for the Cramér—Lundberg model with positive security load.

Remark 4.4. For problems (4.18) and (4.19), (4.20), the critical value of the bifurcation parameter
is equal to ¢ = Am: for ¢ < Am, those problems have no solutions.? For Model I, due to the presence
of investments, the inequality ¢(u) > 0 is satisfied on Ry even if the risk factor is negative, i.e., if
ir1 < 0 (where i,1 is defined by (4.17)).

4.2. Algorithm of a numerical solution. Theorem 4.1 allows us to find the solution of prob-
lem (4.1)—(4.4) numerically, using the solution of the auxiliary singular Cauchy problem (4.10), (4.11)
with parameter Cy such that its value is defined by the normalization conditions (4.3) at infinity.
In [16], the following improved algorithm is presented. In (4.10), we assign ¢(u) = ¢'(u) and, taking
into account (4.11), consider the following auxiliary singular Cauchy problem:

(b?/2)uy" (u) + [c + (b + a)u + b*u?/(2m)[Y (u) + [a — A + ¢/m + au/m]p(u) =0, u >0, (4.21)

Jim ) =1, Tim '(w) = [n(\ — a) — d/(me) = iy /(m). (4.22)

There exists a solution ¥ (u) of this problem; it is unique and is represented by the asymptotic series

Plu) ~ 1+ Dt () ~ > (k= DD w40, (4.23)
k=2 k=2

where the coefficients Dy, k > 2, are defined by (4.13)—(4.15). Expansions (4.23) are used to approxi-
mately move the limit conditions (4.22) from the singular point v = 0 to a close regular point ug > 0.
To find the solution ¢(u) of the original problem (4.1)—(4.4), we use the relation

u 0o -1
A A
olu) = |1+ W(s)ds| |1+ Y(s)ds| (4.24)

where ¢(u) is the solution of problem (4.21), (4.22).
The computational results for Model I are presented in [14, 15, 17] and in this paper for various
values of its parameters.

3In the classical Cramér-Lundberg model, the nonruin probability ¢(u) is the identical zero for ¢ < A (see, e.g., [26]),
which corresponds to the trivial solution of the initial-value problem for the integrodifferential equation from (4.18)
(respectively, for the ordinary differential equation (4.19)), while the normalization condition at infinity refers only to
nontrivial solutions.
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In conclusion of this section, we note that investigation of the auxiliary singular Cauchy prob-
lem (4.1), (4.2) for the ordinary differential equation is a part of the solution of the optimal control
problem for investments of an insurance company (see [14] for solution of such an optimal control
problem in the case of Model I).

5. Problem 2: Main Results

Problem (2.6)—(2.10) can be written in the equivalent parametrized form:

(6/2)u® " (u) + aup'(w) = Alp(u) = (Jm) ()] = Mlp(u) = (Jiap)(W)] =0, uweRy,  (5.1)

i () =Co,lim ug' ()] =0, (52

Jim gt = o= o) esn (/) dy (53
0

Jm e =1, T of(u) =0, (5.4)

0<pu) <1, ueR,. (5.5)

Here Cj is the parameter satisfying nonlocal condition (5.3).
Below, we formulate the main corollaries from results of [16] with refinements and remarks (we also
fix some inaccuracies and misprints).

5.1. The uniqueness of the solution and the concomitant singular nonlocal problem for
a fourth-order ordinary differential equation.

Lemma 5.1. Let in integrodifferential equation (5.1) all parameters be fized real numbers such that
2 >0, A>0, A\ >0, m>0, andn > 0, while a € R has any sign. Then the following assertions are
valid:

(1) If there exists a solution ¢1(u) = ¢(u,Cy) of problem (5.1)~(5.5) for some real Cy, then this
solution is unique.

(2) If there exists a solution p1(u) = p(u,Cy) of problem (5.1)—(5.4) for some real Cy, then this
solution satisfies condition (5.5) and 0 < Cy < 1.

Proof.
1. Uniqueness. Suppose, to the contrary, that ¢o(u) is another solution of problem (5.1)—(5.5).
Then either

Jm o1 (u) = Hm s (u) (5.6)
or
Jim o1 (u) # lm o (u). (5.7)

If (5.6) is valid, then the difference @(u) = @a(u) — p1(u) is a solution of Eq. (5.1) such that
Jim @(u) = lim gu) = 0. (5.8)

If a nontrivial solution of problem (5.1), (5.8) exists and has positive values on R,, then it has a
positive maximum on Ry (if @(u) is nonpositive on R, then consider the function —p(u) instead).
Suppose that @ is a positive point of maximum of that solution: @(u) = max @(u) > 0. Then

¢'(u) = 0 and @"(u) < 0. However, it follows from (5.1), (2.5), and (2.11) that a
(?/2)a*@" (@) = A [p(@) — (Jm@)(@)] + M [2(a) = (J1,09)(@)] = AG(@) exp (=i/m) > 0. (5.9)

We arrive to a contradiction. Hence, ¢(u) = 0.
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Consider the case where (5.7) holds. Then one can easily check that there exists a linear combination
P(u) = c191(u) + cap2(u) of solutions such that P(u) # 1 and p(u) satisfies Eq. (5.1) and the limit
conditions
If there exists u € Ry such that @(u) > 1, then the line of reasoning is the same as for the first case.
If we assume that @(u) < 1 for any positive u, then we obtain the inequality

o0

(@0 = [ Bw)exp (-y/m)dy < 1.
0

Then, taking into account the limit relation limo ®(u) = 1, we obtain a contradiction: condition (5.3)
u——+

is not satisfied. Hence, there is no other solution of problem (5.1)—(5.5) satisfying condition (5.7).

2. Now, let p(u) = ¢(u,Cp) be a solution of problem (5.1)—(5.4) without constraints for some
Co € R. We claim that ¢(u) < 1 for any finite positive u. Indeed, first we show that the greatest positive
value of the function ¢(u) is not achieved as u — +0. Suppose, to the contrary, that p(u) < Cj for any
positive u, where ul_i)erO o(u) = Cy > 0. However, (5.3) implies a contradiction: (A 4+ A;)Cy < A1 Cp,

which implies that Cy < 0.
Now, let ¢(u) > 1 for some finite positive u. Then ¢(u) has a maximum on R, , exceeding 1.
However, similarly to the proof of inequality (5.9), we have a contradiction at that point of maximum.
In the same way, we prove that the least negative value of p(u) cannot be achieved as u — 40 and
there is no negative minimum of ¢(u) on R;. ||

Further, the second-order integrodifferential equation (5.1) can be reduced to a fourth-order ordi-
nary differential equation. As well as in model 1, this is an important reduction. To do that, we
differentiate (5.1) twice and, taking into account (4.9) and the relation

(J1n®) (w) = [(J1n9) (u) — @ (u)]/n, (5.10)

remove the integrals (Jp,¢)(u) and (J1,¢)(u) from the obtained integrodifferential equation, using the
original integrodifferential equation (5.1) and an intermediate auxiliary third-order integrodifferential
equation.

Thus, the following Lemma 5.2 is valid with the following notation:

a1 =2(2+a/b?), ax=(n—m)/(mn), az=2[1+ (2a—X—\)/b?],
as = 2(1 + a/b*)(n —m)/(mn), as = —1/(mn), (5.11)
ag = 2[a(n —m) + Am — \yn] /(b?mn), ar = —2a/(b*mn).

Lemma 5.2. Let the parameters of Eq. (5.1) satisfy the conditions of Lemma 5.1. Then prob-
lem (5.1)—~(5.4) is equivalent to the following linear singular boundary-value problem for an ordinary
differential equation with nonlocal condition at the origin:

0" (u) + (a1 + agu)ue” (u) + (az + asu + asu?)@” (u) + (ag + aru)¢’(u) =0, uwe Ry, (5.12)

: _ : / I 2.1 T 3. m .
Jm o(u) =Co, lim [ug'(w)] = lim [ue"(w)] = lim [ue™(w)] =0, (5.13)
lim ) = Cp= 7 () exp (—y/n) d (5.14)
0
. o . / _ . /i _ . " _
Jim p(u) =1, lim @(u) = lim ¢"(u) = lim ¢ (u) = 0. (5.15)

Here Cy is a parameter and the values aj, j = 1,7, are defined by (5.11).
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Proof. The passage from Eq. (5.1) to Eq. (5.12) is obvious: it follows from the construction of Eq. (5.12)
explained above. Now, let ¢(u) = ¢(u, Cp) be a solution of problem (5.12)-(5.15). We have to prove
that ¢(u) satisfies Eq. (5.1).

Substitute function ¢(u) in Eq. (5.1) and denote the left-hand side by g(u). We claim that g(u) = 0.
Indeed, taking into account the derivation of Eq. (5.12) (see [16] for details), one can see that g(u)
satisfies the ordinary differential equation

" (n—m) , 1
- =0 0 . 5.16
g+ " g - g =0, 0<u<w (5.16)
The general solution of Eq. (5.16) is
g(u) = ¢y exp (—u/m) + caexp (u/n), u >0, (5.17)

where ¢; and ¢y are arbitrary constants.
Taking into account the definition of g(u) and limit conditions (5.15), we see that lim [g(u)/u?] =
U—00

which implies that ¢o = 0in (5.17). Finally, taking into account conditions (5.13) and (5.14), we obtain
the relation g(0) = 0, which implies that ¢; = 0 in (5.17). ||

5.2. Auxiliary singular boundary-value problem for third-order ordinary differential
equations. Assigning ¢'(u) = ¥(u), we reduce the order of Eq. (5.12) and obtain the following
auxiliary linear singular boundary-value problem for the function ) (u):

" (u) + (a1 + agu)uy” (u) + (a3 + agu + asu®)ud’ (v) + (agu + a7U2)1/1( ) =0, weRy, (5.18)

i [up(u)] = T [2' ()] = lim [0 (w)] = (5.19)
Jim () = lim 'u) = lm ¢"(u) =0. (5.20)

Equation (5.18) has a regular singularity as © — +0 and an irregular singularity of rank 1 as u — oo.
In particular, results of [19, 20, 29, 30] are used to study singular Cauchy problems in neighborhoods
of singular points of this ordinary differential equation (for details, see [16]).

The singular boundary-value problem (5.18)—(5.20) is always satisfied by the trivial solution ¢ = 0.
We investigate the existence of its nontrivial solution selected by the normalization condition presented
in Lemma 5.3 below.

Lemma 5.3. Let assumptions of Lemma 5.2 be satisfied, and let 1)(u) be a nontrivial solution of the
auziliary linear singular boundary-value problem (5.18)~(5.20) such that 1(u) belongs to Li(R4) and
is normalized by the requirement

/ [14+ (A /N)exp(—s/n)] ¥(s)ds = 1. (5.21)
0
Then the function p(u) defined by the relation
o(u) = (A1/A) /1[)(3) exp (—s/n) ds + /1[)(3) ds, u>0, (5.22)
0

satisfies both linear singular boundary-value problem (5.12)—(5.15) and main linear nonlocal singular
boundary-value problem (5.1)—(5.5) for an integrodifferential equation with constraints.

Thus, it suffices to prove the existence of a nontrivial solution (u) of the auxiliary linear singular
boundary-value problem (5.18)—(5.20) satisfying conditions of Lemma 5.3 and to find such a solution.
To solve that auxiliary boundary-value problem, we have to investigate singular points of Eq. (5.18)
and reduce the singular boundary-value problem (5.18)—(5.20) to an equivalent boundary-value prob-
lem without singularities on a finite interval. To move the limit boundary-value conditions from
singular points, we use results from the theory of stable initial manifolds of solutions or, which is the
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same, conditional stability manifolds in the Lyapunov sense (see, e.g., [2, 3, 7]). The notion of admis-
sible boundary-value conditions at pole-type singular points (see, e.g., [5, 6]) is taken into account as
well.

5.2.1.  Transfer of limit boundary-value conditions from the singular point u = 0. At u = 0, Eq. (5.18)
has a regular (weak) singularity with characteristic parameters p;, j = 0,1,2:

o =0, p1=—1/2—a/b? +/(1/2+a/t)? + 200+ A — a) /b2, (5.23)
and
po = —1/2 — /bt — \/(1/2+ /1) + 201 + A1 — a) /B2, (5.24)
The relations for 1112 imply that

p 1 =172 a/b? +1/(1/2 = a/B?) + 200 + \) /12,

po+1=1/2 = af8? —\J(1/2 = a/B?)’ + 2(A + A1) /12,
Thus, at least for A + A1 > 0 we have
o =0, w1 > —1, po < —1. (5.25)

In particular, this means that the singular Cauchy problem (5.18), (5.19) has a two-parameter family
of solutions and their values generate a two-dimensional linear subspace in the three-dimensional phase
space (of variables ¢, ¢', and 1"") of the ordinary differential equation (5.18). The said phase space is
the plane containing the origin. This plane depends on parameter u and is defined by a single linear
relation in R3.

Further, using the theory of transfer of boundary-value conditions from singular points for systems of
linear ordinary differential equations and results for singular Cauchy problems for systems of nonlinear
ordinary differential equations, we obtain the following assertion (its simple proof can be found in [16]):

Lemma 5.4. Let the coefficients aj, j = 1,7, of Eq. (5.18) be defined by relations (5.11), where a, b,
A, A1, m, and n satisfy the assumptions of Lemma 5.1. Then there exists a sufficiently small uy such
that conditions (5.19) for solutions of Eq. (5.18) are equivalent to the linear relation

u?y (u) = a(uuy (u) + fw)p(u), 0 <u < u. (5.26)
Here the pair of functions {a(u), 5(u)} is a solution of the nonlinear singular Cauchy problem
ua' = (1 —a; — agu)a — o — B — (az + agu + asu?), (5.27)
uf = (2 — a1 — azu)B — aff — (agu + a7u?), u >0, (5.28)
ull>m+0a(u) =ag=pu — 1, ull>m+0,8(u) =0, (5.29)

where p1 is defined by (5.23). For sufficiently small positive u, problem (5.27)~(5.29) has a solution
{a(u), B(u)} and this solution is unique and is a holomorphic function at the point u = 0:

a(u) = Zakuk, B(u) = Zﬁkuk, lu| < ug, ug > 0. (5.30)
k=0 k=1

Here o is defined by (5.29), while the coefficients ay and By, k > 1, are defined by the formal
substitution of expansions (5.30) in (5.27) and (5.28), which yields the following recurrent relations:

ag B1 + aza + ay
_ _ : 5.31
& ag+a; —1’ “ 200 + a1 31
2
By — _ar+ asBi + 01517 g = _/32 +oa7 +aza1 + a5; (5.32)
ap + aq 200 + a1 +1
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k-1 k—1
a2fBi—1+ Y uBr— Br+ > ooy
=1

o =1
) A =

P = - T 2agtag+k—1’

k=3,4,.... 5.33
ag+ay +k—2 Y (5-33)
This allows us to transfer the boundary-value conditions (5.19) from the singular point v = 0 to
a close regular point u = uy > 0 by means of relation (5.26): at the point u = uy we have the
boundary-value condition
ugt” (uo) = a(uo)uoy’ (uo) + Bluo)th(uo), (5.34)
where approximate values of a(ug) and 5(ug) can be found by means of expansions (5.30)—(5.33) with
any prescribed precision. It is important for the computations that in a neighborhood of the singular
point u = 0 condition (5.34) is stably transferred from the left to the right, i.e., in the direction from
the singular point.*

Remark 5.1. It was not noted in [16] that Lemma 5.4 remains valid for a < 0 as well, which can be
interesting for other models of insurance and financial mathematics (cf. Remark 4.2).

Remark 5.2. For completeness, taking into account the results of general theory of linear ordinary
differential equations with regular (weak) singular points (see, e.g., [24, §2]), let us establish the
following representation for the two-parameter family of solutions v (u, qo, q1) of problem (5.18), (5.19):

(U, q0,q1) = qo{1 + ¥1(u) + Aut log (u) [1 + o (u)]} + qrutt [1 + 1o (u)] . (5.35)

(Under the assumptions of Lemma 5.4, it can be derived from relation (5.26) for small positive u.)
Here gg and ¢ are arbitrary constants, p; is defined by (5.23), v;(u) are functions holomorphic at the
origin such that 4;(0) = 0, j = 1,2, and the constant A depends on the parameters of Eq. (5.18) such
that A = 0 if p; is not an integer. To obtain the coefficients of the convergent series (with respect
to powers of u) for the functions v;(u), j = 1,2, one can formally substitute all the expansions in
Eq. (5.26).

5.2.2.  Transfer of limit conditions from the singular point at infinity. As u — oo, Eq. (5.18) has an
irregular (strong) singularity of rank 1.
Singular boundary-value problem (5.18), (5.20) can be represented as follows:

W (u) + [aQ + ‘;1} W (1) + [as + CZ* + j;} W (u) + [‘: + Zg] ) =0, 0<u<oo, (536)
Jim () = Tim /() = lim () =0, (5.37)

The characteristic parameters of Eq. (5.36), defining the behavior of solutions for large u, are as
follows:

vy =0, v =—1/m <0, vy =1/n>0. (5.38)
To completely investigate the behavior of solutions of Eq. (5.36) as u — oo, one has to find the first
correction (for large u) for the parameter vy = 0 in the sense of perturbation theory. It is done in detail
in [16] (results of [19, 20, 29, 30] are used as well). These results combined with the general theory of
linear ordinary differential equations with irregular singular points yield the following assertion.

Lemma 5.5. Let the coefficients aj, j = 1,7, of Eq. (5.18) be defined by relations (5.11), where
the constants a, b%, n, and m are positive, while the constants X\ and \i are real. Then singular
Cauchy problem (5.18), (5.20) has a two-parameter family of solutions 1(u,p1,p2) and the following
representation is valid for large w:

(u, p1,p2) = pru” Y [1+ & (w) fu] + pou* exp(—u/m)[1 + &(u) /u). (5.39)

4See [16]; also, in [4], this is studied for the case of transfer of stable manifolds of solutions for quite general systems
of ordinary differential equations with pole-type singularities at boundary points.
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Here p1 and py are arbitrary constants, the functions £;(u), j = 1,2, have finite limits as u — oo, and
for large u those functions are represented by the asymptotic series

gw) Y ek, =12 (5.40)
k=0

The coefficients of the series can be obtained by formal substitutions of all expansions in Eq. (5.18). All
solutions of the family (u,p1,p2) are integrable at infinity if and only if inequality (3.23) is satisfied.

The values of solutions (5.39) generate a two-dimensional linear subspace in the three-dimensional
phase space (of variables 1, ¥/, and ") of the ordinary differential equation (5.18). The said phase
space is the plane containing the origin. This plane depends on parameter u and is defined by a single
linear relation in R3.

More exactly, using the theory of transfer of boundary-value conditions from singular points of
systems of linear ordinary differential equations and results for singular Cauchy problems for systems
of nonlinear ordinary differential equations, we obtain the following assertion (see its proof in [16]).

Lemma 5.6. Let the assumptions of Lemma 5.5 be satisfied. Then, for sufficiently large u, condi-
tions (5.20) for solutions of Eq. (5.18) are equivalent to the linear relation

¥ (u) =y (u) + se(u)p(u), w2 o, (5.41)

where the pair of functions {y(u), s(u)} is a solution of the singular nonlinear Cauchy problem
v == (ag +ay/u)y — 7> — % — (a5—|—a4/u—|—a3/u2), (5.42)
%’:—(ag—l—al/u)%—y%—(ay/u—l—aﬁ/uz), Uoo < U < 00, (5.43)
ull)r}rloo Y(u) =7 = —-1/m, ull)riloo »(u) = 0. (5.44)

For sufficiently large u, there exists a unique solution {y(u), »(u)} of problem (5.42)—(5.44) that can
be represented by the asymptotic series:

VW) ~ v+ Y /ut, () ~ Y s /uF, ws> L (5.45)
k=1 k=1

Here ~g is defined by (5.44) and the coefficients v, and . for k > 1 can be obtained by formal
substitution of expansions (5.45) in (5.42) and (5.43), which yields the recurrent relations

»1 = —az/(az + "), Y1 = —(a170 + a1 + aa) /(a2 + 270), (5.46)
sy = [s1(1 — a1 —m1) —agl/(az +70), 2= [1n(1 —a1—mn)— 2 —a3]/(a2 + 2%), (5.47)
k-1
M = [(k‘ —1—ay)mp_1 — Z’yl%k_l /(CLQ + ), (5.48)
=1
k-1
Ve = [%—1(/-6 —1—a1) = — Z%%—z] /(az +2%), k=34, (5.49)
=1

In particular, then representation (5.39), (5.40) for the two-parameter family ¥ (u,p1,p2) of solutions
of singular Cauchy problem (5.36), (5.37) can be obtained by formal substitution of all expansions in
relation (5.41).

Thus, to transfer the boundary-value conditions (5.20) from infinity to a finite point u = uy > 1,
we use relation (5.41): the boundary-value condition
¢//(uoo) = 7(”00)71)/(1%0) + %(uoo)ﬂ)(uoo) (5'50)

holds at the point u = us, where the approximate values of 7 (uso) and »(us) can be found by means
of expansions (5.46)—(5.49). It is important for computations that if  is large, then the condition (5.50)
is stably transferred from the right to the left, i.e., from the singular point u = oc.
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5.2.83.  Equivalent homogeneous regular boundary-value problem with underdetermined boundary-value
conditions. Existence of a nontrivial solution and its properties.

Lemma 5.7. Assume that the coefficients aj, j = 1,7, of Eq. (5.18) are defined by formulas (5.11)
and a, b*, n, m, \, and A1 are positive. Then problem (5.18)~(5.20) on R, is equivalent to the
following homogeneous linear boundary-value problem on the finite interval 0 < ug < u < Uy without
stngularities:

u" (u) + (a1 + agu)u®y" (u) + (a3 + agu+ asu®)uy’ (u) + (asu+azu®)P(u) = 0, up < u < ugo, (5.51)

udy” (uo) = a(uo)uod’ (uo) + Buo)t(uo), (5.52)

P (too) = (oo )P (too) + 3¢(too )1 (Uoo)- (5.53)
Here a(u) and 5(u) are defined in Lemma 5.4, y(u) and »(u) are defined in Lemma 5.6 while the ranges
of values of uy and ue (0 < ug K 1 and us > 1) depend on the parameters of the problem (moving
boundaries). Problem (5.51)—(5.53) is underdetermined with respect to the number of boundary-value
conditions (the ordinary differential equation has the third order, but only two separated boundary-value
conditions are given) and always has a nontrivial solution.

Taking into account relations (5.23) and (5.24) as well as representations (5.35) and (5.39) for the
two-parameter families of solutions of problems (5.18), (5.19) and (5.18), (5.20) respectively, we deduce
the following assertion.

Theorem 5.1. Let Eq. (5.18) satisfy assumptions of Lemma 5.7 with fized parameters a, b*, n, m,
A, and A1, and let inequality (3.23) be satisfied (which is the “reliability condition for the portfolio of
assets”).

Then the singular boundary-value problem (5.18)(5.20) has a unique (up to a normalizing factor)
nontrivial solution ¥ (u), ¥(u) € L1(0,00) and the following assertions hold:

(1) If
0<a< A+ A, (5.54)
then p > 0, ul—i}?ow(u) = Dy > 0, and the inequality |ul_i)1f1J10 Y (u)| < oo is valid if and only if,
moreover,
A+ A > b2 4 2a. (5.55)
More exactly, in this case p1 > 1 and
Jim V' (u) = D1Dy = Dy [a(m —n) + M\in — Am)] / [mn(b* + 2a — X — \], (5.56)

whence Dy < 0 provided that iy 11 > 0 and Dy > 0 provided that i, 11 < 0, where
iy =a(m —n) +An— Am (5.57)

determines the “risk factor” for Model II.
If condition (5.55) is violated, i.e.,

A+ A < b2 4 2a, (5.58)
then 0 < py <1 and the function ' (u) is unbounded, but integrable as u — +0.

(2) If
a> A+ >0, (5.59)

then —1 < p1 <0 and the function ¥ (u) is unbounded, but integrable as u — 0.
(3) The behavior of ¥(u) for large u follows from Lemma 5.5: namely, the asymptotic representation

Y(u) = qlu_Qa/b2 1+ o0(1)], U — 00, (5.60)
holds with q1 # 0 and ¥ (u) is integrable as u — oo by virtue of (3.23).
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5.3. Existence, uniqueness, and behavior of solutions of the original singular nonlocal
problem for integrodifferential equation with constraints.

Theorem 5.2. Let the assumptions of Theorem 5.1 hold, and let ¢(u) be a nontrivial solution for
the auziliary singular Cauchy problem (5.18)~(5.20) normed by condition (5.21). Then the following
assertions are valid:

(1) The function 1(u) is positive for any positive u while the function p(u) defined by relation (5.22)
is the unique solution of the original singular boundary-value problem (5.1)—(5.5) for integrodif-
ferential equation with constraints and a nonlocal condition at the origin. Function @(u) strictly
increases on R,.

(2) If inequalities (5.54) are satisfied, then the derivative ¢'(u) has a finite limit as u — +0.
If, moreover, condition (5.55) is satisfied, then ¢"(u) has a finite limit as u — +0, which is
nonnegative if i1 > 0 and negative if i,11 < 0; if inequality (5.58) satisfied, then ¢"(u) is
unbounded but integrable at the origin. If inequality (5.59) is satisfied, then ¢'(u) is unbounded
but integrable at the origin.

(3) For large u, the following representation holds:

o(u) =1 — K u=20/7 [1 4+ o(1)], u — 00, (5.61)

where K is a positive constant that cannot be found by methods of local analysis.

(4) If conditions (5.54) and (5.55) and the inequality i1 < 0 are satisfied, then there exists a
positive U such that the function ¥(u) = ¢'(u) attains a positive maximum at the point u and
the function p(u) has an inflection at the point w.

Remark 5.3. If condition (3.11) is satisfied, then function (3.14) is a solution of the degenerate
problem obtained from the main singular problem (2.6)—(2.10) by formally assigning a = b = 0, i.e.,
of the following singular nonlocal problem for an integral equation:

A+ A)e(u) = A (Ime)(uw) + A1 (Jinp) (), u € Ry, (5.62)
0 =Co= M\ (e, lim ()= 1. (5.6

This problem is equivalent to the following linear boundary-value problem on a half-axis for a second-
order ordinary differential equation with nonlocal constraint at the origin:

Am — \n A1 .
1" _ _

Then it is easy to see that Cho =1 —A(n+m)/[n(A+ A1)}, 0 < Cp < 1,
¢'(0) = Dy = A(n+m)(An—Am)/[mn® (A+ A1)*] > 0,
¢"(0) = D1Dy = —D1(An — Am)/[mn (A + )] <0,

and relation (3.14) determines the exact solution of the Cramér-Lundberg model with stochastic
premium and positive security load.

O(u), ueRy, ¢0)=Cy=

The critical value of the bifurcation parameter is equal to Ay = Am/n: if Ay < Am/n, then prob-
lem (5.62), (5.63) (problem (5.64) respectively) has no solutions.

5.4. On algorithms of numerical simulation. It follows from the above that to solve the original
singular boundary-value problem (2.6)—(2.10) for an integrodifferential equation with constraints and
nonlocal condition at the origin, one has to find nontrivial solutions of the auxiliary homogeneous
boundary-value problem (5.51)—(5.53) for a differential equation, which is set on a finite segment
[0, Uso] Without singularities and with underdetermined boundary-value conditions.

It is well known that differential sweep methods are efficient to solve linear boundary-value problems
on finite intervals without singularities. Results of [4] are important for nontrivial solutions of prob-
lem (5.51)—(5.53); in that paper, a brief review of variants of the differential sweep is provided and the
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stability of computations is studied in neighborhoods of singular points for boundary-value problems
(including spectral ones) obtained from singular boundary-value problems by transfer of boundary-
value conditions from singular points. In particular, boundary-value problem (5.51)—(5.53) is obtained
from singular boundary-value problem (5.18)—(5.20) by means of the above methods of local transfer of
boundary-value conditions from singular points. To find nontrivial solutions of problem (5.51)—(5.53),
methods of [4] are important to stably find eigenfunctions in spectral problems. However, as far as we
know, the said methods were not used for homogeneous underdetermined boundary-value problems
until the paper [16].

In [16], numerical algorithms of solution for problem (5.51)—(5.53) are proposed and implemented.
They are efficient with respect to the number of sweep equations and with respect to the number of
computational operations. Here, we do not focus on this. We only mention that one of those algorithms
is based on a combination of two variants of the globally stable method of the differential sweep: the
sweep variant of [1] and its modification proposed in [10]; this approach might be interesting for other
boundary-value problems as well. Another algorithm is more efficient: we apply the direct sweep
and, instead of applying the method of [1], we solve Cauchy problems (5.27)—(5.29) and (5.42)—(5.44)
(respectively, from the left to the right from the point v = uy > 0 to the point v = u and from the
right to the left from the point u = us < 00 to the point u = U, uy < U < Uy ), but still use the
method of [10] for the inverse sweep.

Further, due to Theorem 5.2, once a nontrivial solution ¢ (u) of problem (5.18)—(5.20) normalized
by condition (5.21) is found, the solution ¢(u) of problem (5.1)—(5.5) can be found by means of
relation (5.22).

6. Numerical Simulation: Computation Comparison for Models I and I1

For computations, the program environment Maple® 14.01 was used with a prescribed precision of
computations and additional tools to control the number of valid digits.

First, we formulate comparison conditions for computational results for Models I and II (as well as
their comparison with the data for the initial risk models 1 and 2, i.e., models without investments):

(1) the values of the parameters a, b2, A, and m in Model II (model 2) are the same as in Model I
(model 1);

(2) the value of ¢ in Model I (model 1) is related to A; and n in Model IT (model 2) so that \yn = ¢,
i.e., the expected premium values per time period are the same for both models.

If a > 0 and b # 0, the “reliability condition” for shares is valid for all computational examples,
i.e., 2a/b® > 1; the risk factors i,1 and 4, 11 are defined in (4.17) and (5.57) respectively.

Further, we present the plots of dependence of the nonruin probability on the initial capital provided
that the comparison conditions hold for Models I and II (models 1 and 2).

First, we compare solutions (3.7) and (3.14) for models 1 and 2. It is easy to see that the following
assertion is valid.

Assertion 6.1. Let A\, m, ¢, A\1, and n be positive, and let ¢ = A\yn > Am; in particular, this implies
the relation p1 = pa > 0 for the security load.

Then @a(u) < pi(u) for any finite positive u and p2(u) — p1(u) for any positive u (p2(u) — 0
for any finite positive w) provided that there exists positive ¢ such that \y = ¢/n — o0 as n — 0
(respectively, A1 = ¢/n — 0 as n — 00).

This assertion is illustrated by Fig. la and Fig. 1b. In the sequel, the digit 1 marks the plots of
exact solutions of (3.7) and the digit 2 marks the plots of exact solutions of (3.14). The values of
the parameters for Fig. 1la and Fig. 1b (exact solutions of degenerated problems for integrodifferential
equations are for models without investments) are as follows: a = b = 0, m = 0,5, A = 0,09; 1:
c=0,1; 2 (Fig. 1la): n=0,1, A\; = 1; 2 (Fig. 1b): n = 0,4, and A\; = 0,25 (¢ = A\yn > Am).

5The license of CS RAS.
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Theorems 4.1 and 5.2 are illustrated by Figs. 2-5, where the digit I marks the plots for Model I and
the digit II marks the plots for Model II. The values of the parameters for Fig. 2a and Fig. 2b are as
follows: m =1, A=0,09; 1,2: a=0=0;1: ¢c=0,1; 22 n=0,1, Ay =1; L 1: a =0,02, 6 =0,1; L.
c=0,1; II (Fig. 2a): n=0,1, \y = 1; II (Fig. 2b): n =0,9, A1 =1/9 (c=An>Im; 1: 0 < a < A,
1> 0 I 0<a< A+A, A+ A > b + 2a, and ir,y1 > 0). The values of the parameters for Fig. 3
are as follows: b=10,1, m =1, A=10,09; I: ¢=0,02; II: n =0,2, \; = 0,1 (¢ = A\in < Am); (a) for
the upper plot, we have a = 0,1 (I a > X, 4,1 > 0; Il a < A+ A, A+ A < b? + 2a, and i1 > 0);
(b) for the lower plot, we have a = 0,02 (I: @ < A, 4,1 < 0; I @ < A+ A1, A+ Ap > b% + 2a, and
irg1 < 0); both for Models I and II, the results of numerical simulation coincide up to the graphical
precision (for the difference in another scale, see Fig. 4a and Fig. 4b). In Fig. 4a and Fig. 4b, we
present the plots of the differences ¢r(u) — @rr(u) for the graphically coinciding differences in Fig. 3:
Fig. 4a (Fig. 4b) corresponds to the upper plot (lower plot) of Fig. 3. The values of the parameters
for Fig. ba and Fig. 5b are as follows: a = 0,2, b = 0,1, m = 1, and A = 0,05; Fig. 5a: I. ¢ = 0,02
(¢ < dmand i,; > 0); II: n = 0,2 and A\; = 0,1 (\in < Am, a > A+ Ay, and 4, ;1 > 0); Fig. 5b: L:
c=0,08 (¢>Am and 4,1 > 0); II: n=0,8 and A\; = 0,1 (A\in > Am, a > A+ Ay, and 4,11 > 0).

Detailed data for the computations (including ¢(0), ¢’(0), ¢”(0), and other values) for Models I
and IT (models 1 and 2) are provided in [16].
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7. Final Remarks and Economic Interpretation of Results

1. Investigating Model I, we see that if the initial capital is large and the structure of the investment
portfolio is constant, then the use of risk assets is not a good strategy from the nonruin point of view.
However, if the initial capital is small, especially if the security load is nonpositive, then risk assets are
efficient to minimize the total risk: if there are no investments, then the ruin is inevitable; otherwise,
the nonruin probability rapidly grows as the initial capital u grows (this is valid even for negative
values of the risk factor provided that the second derivative of the nonruin probability for small w is
positive).

In [13, 14], the optimal strategy is investigated for the case where claims are distributed exponen-
tially; it shows that the share of risk investments should be an infinitesimal variable of order O(1/x)
as the circulating capital x tends to infinity.

2. In [16], we investigated singular boundary-value problem (2.6)—(2.10) with constraints for an
integrodifferential equation (Model IT) in order to find the nonruin probability in the insurance model
with stochastic premium and investments of the capital in risk assets. We also constructed an algorithm
to compute the nonruin probability as a function of the initial capital and computed it numerically.
We note that one has to prove the existence theorem for the posed boundary-value problem in order
to justify theoretically the kind of function defining the nonruin probability in the considered model.

In [22], natural heuristic reasoning combined with direct application of the generator technique
for Markov processes results in the equation for the nonruin probability treated as a function of
the initial capital (in this case, a linear integrodifferential equation is obtained) provided that the
nonruin probability is a twice continuously differentiable function of the initial capital. Then, to
use the obtained integrodifferential equation, e. g., for investigation of the asymptotics of the nonruin
probability for large values of the initial capital, one has to prove that the nonruin probability is a twice
continuously differentiable function indeed and, on the other hand, to justify the limit condition at
infinity for the corresponding solution of that integrodifferential equation (more exactly, the condition
for that solution to tend to unity). To do that, one can use, e.g., upper estimates for the ruin
probability similar to the Lundberg estimate for the classical model, proving that the ruin probability
tends to zero as the initial capital tends to infinity provided that the security load is positive (such
an estimate for the Cramér—Lundberg model with stochastic premium is provided, e.g., in [37]).
However, this was not proved in [22], where the model with investments of the capital in risk assets
was investigated. As a result, the function of the asymptotics of the solution of the integrodifferential
equation, obtained in [22], contains an indeterminate constant. Thus, in fact it remains unproved that
the obtained function determines the asymptotics of the nonruin probability at least for some value
of the above constant.

The approach used in [16] and in the present paper is based on the investigation of the well-posed
problem (2.6)—(2.10) for an integrodifferential equation on the whole nonnegative semiaxis and on the
proof of the existence of its solution. Using that approach and taking into account results of [11],
we avoid the problems mentioned above. In particular, we do not need to prove that the nonruin
probability is twice continuously differentiable and to obtain its upper estimates for large values of
the initial capital. (For Model I, estimates from [27] are used and refined to justify the asymptotics
obtained in [25] for the nonruin probability for large values of the initial capital; however, no similar
estimates for Model IT were obtained in [22].) Moreover, we do not need to prove lower estimates for
the ruin probability (for Model I, such estimates are given in [25] and [27]).

3. Additionally, the approach used allows us to compute the nonruin probability numerically, to
compare computational results for Model I and Model 11, and to provide their economic interpretation.
In particular, the adequacy of the constructed solutions and computations is confirmed by the
closeness of the plots of the functions of nonruin probability in Model I and Model II for frequent
small-size premiums in Model II provided that the expected premium per time unit coincides for both
models. Also, this shows that the premium income can be approximately considered as a determinate
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process under the assumption that the premium frequency substantially exceeds the claim frequency
(the classical Cramér-Lundberg model is based on the same assumption).

At the same time, the results of computations allow us to analyze cases where the use of the classical
Cramér—Lundberg model as the initial risk process might overstate or understate the nonruin prob-
ability compared with its values resulting from the model based on the risk process with stochastic
premium. In particular, if the security load in the original model is positive, then the nonruin probabil-
ity computed according to Model I is overstated for any nonnegative initial capital. For both models,
application of investments substantially increases the nonruin probability for small values of the initial
capital compared with the corresponding models without investments (the classical Cramér—Lundberg
model and the Cramér-Lundberg model with stochastic premium). If the security load is negative,
then the ruin probability is equal to 1 in the initial risk models, but application of investments with
constant portfolio structure always provides positive values of the nonruin probability provided that
the portfolio is reliable.

Thus, application of investments efficiently compensates the proper risk of insurers when this risk is
high. This conclusion is based on study of solutions of the problems on the whole nonnegative semiaxis,
but it cannot be made only based on comparison of their asymptotic behavior for large values of the
initial capital as done in [25] claiming that “in insurance, investments in risk assets are dangerous.” It
turns out that if the initial capital is small, then the conclusion is different: Investments in risk assets
are not dangerous but are necessary to increase solvency. More information is provided by investigation
of the optimal control of investments minimizing the ruin probability in the Cramér—-Lundberg model
with constraints; in particular, this is based on the investigation of Model I (see [12]).

Comparing the computational results for the nonruin probability in Model I and Model IT for
nonpositive security loads in the initial risk models and for equal expected premiums, we see that the
conclusions depend on the risk factors of models 4,1 and 4,11 defined in (4.17) and (5.57) respectively.
The greatest risk occurs if the risk factor is negative: then the plot of the nonruin probability has an
inflection.
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