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Abstract

We present new results for the system with two species of vector bosons in an optical lattice. In
addition to the standard parameters characterizing such a system, we are dealing here with the ‘degree
of atomic nonidentity’, manifesting itself in the difference of tunneling amplitudes and on-site
Coulomb interactions. We obtain a cascade of quantum phase transitions occurring with the increase
in the degree of atomic nonidentity. While in the system of nearly identical vector bosons only one
phase transition between two phases occurs with the evolution of the interparticle interaction, atom
nonidentity increases the number of possible phases to six and the resulting phase diagrams are so
nontrivial that we can speculate about their evolution from the images similar to the ‘] Mir6-like
paintings’ to ‘K Malewicz-like’ ones.

1. Introduction

Experimental research of ultracold atoms in optical lattices have dramatically expanded the possibilities of a tunable
simulation in quantum many-body physics [ 1-14]. Moreover, ultracold atoms open the path to the parameter
range that is hardly possible or even impossible to achieve in the natural condensed matter systems [15-21].

The typical example is the system of vector bosons. This case corresponds to Bose—Hubbard model that is
absent in the standard solid state theory and is the topic of intensive research last time [22—34], and [35-37] for
review. Numerous striking effects, in particular, induced by the multispecie nature of boson system have been
found recently including quantum phase transitions, many-body localization, and topological order, as well as
the superfluidity and supersolidity of ultracold atomic systems [35—37]. Here, we focus on still unexplored
physical phenomena in the systems with different species of vector bosons originating from the tunable interplay
of spin degrees of freedom and of those identifying different sorts of atoms. Then the situation becomes quite
intriguing: in addition to the standard parameters, there appear nontrivial ones related to the ‘degree of atomic
nonidentity’: the difference of tunneling amplitudes and on-site interactions. We address here new physical
effects including quantum phase transitions driven by atom nonidentity.

Vector cold atoms in optical lattices are characterized in general by the following parameters: intersite
hopping amplitudes t,,, where o = 1, 2 abels different atoms, on-site U, - Coulomb interactions, and spin
channel interaction parameters U [31, 38].

In our recent paper [31], we have considered the simplest limiting case of nearly identical bosons in the Mott
insulating state: Uy, ~ U ~ U,, = Upandt; ~ 1, < Up. This model differs from the case of perfectly
identical bosons just by the absence of cross-tunneling term: tunneling with the change of boson identity
was forbidden. It has been shown in [31] that such model can be reduced to the Kugel-Khomskii [39] type

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aacbba
https://orcid.org/0000-0002-7242-1483
https://orcid.org/0000-0002-7242-1483
https://orcid.org/0000-0003-4030-5426
https://orcid.org/0000-0003-4030-5426
mailto:nms@itp.ac.ru
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aacbba&domain=pdf&date_stamp=2018-06-25
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aacbba&domain=pdf&date_stamp=2018-06-25
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

I0OP Publishing New J. Phys. 20 (2018) 063039 AM Belemuk et al

€450, £,,=0.2 51270, £2,=0.4

15 .

1.0 p-spin A
6 Epapinam

05 .

0.0 : op-Spin AFM
5 EXoi

05 .

| T
4 Epspinae

-0.1 0.0 0.1 02 03 -1.5 02 -01 0.0 041 02 0.3 -02 -01 0.0 01 02 03
£12=0, £2,=0.6 €170, £2,=0.8 £12=0, £2,=2.0

op-spinFy
3 ERY

a——
2 ER

1 gpeine

03 -02 -01 00 01 02 03
A

Figure 1. Phase diagrams for {;, = U,/U;; = 0.Here 8 = t,/t;, &5 = Uy/Uypand A = U,/ Uy, In this case, there is no Coulomb
interaction between atoms of different kinds. The colorbar defines different spin and pseudospin orders.
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Figure 2. Phase diagrams for small Coulomb interaction between different kinds of atoms: &, = U;,/U;; = 0.2. All the notations
follow figure 1.

spin-pseudospin model, but in contrast to the usual version of the latter model, here spinis S = 1 and
pseudospin-1/2 (where pseudospin labels different bosons). New effects in [31] have been found, in particular,
that the ground state of the system always has the pseudospin domain structure while sign change of U; switches
the spin arrangement of the ground state within domains from ferro to aniferromagnetic (AFM).

Here we also consider two species of vector bosons in an optical lattice, but we get rid of the identity
conditions Uy, ~ Uy =~ U,, = Uy, t; > t, and trace the evolution of the system quantum state with the
increase in the degree of atomic nonidentity (6 = t,/t,, {1, = U,/ Uy and &, = U,/ Uyy) starting from
nearlyidentical atoms of [31].

Surprisingly, instead of some naive and predictable modification of our previous results [31], we find that the
boson system evolves between six quantum states instead of two in [31] and the manifold of quantum phase
transitions is so nontrivial that one can even compare the resulting phase diagrams with modern art paintings
(we find some similarity with ‘] Mir6-like paintings’ or ‘K Malewicz-like’ paintings depending on atom
nonidentity), see figures 1-9.

The rest of our paper is organized as follows: in section 2, we introduce the model Hamiltonian, then in
section 3, we reduce the initial general Hamiltonian for vector bosons to the effective Hamiltonian appearing to
be anisotropic spin-pseudospin model of the Kugel-Khomskii type [39]; in section 4, we investigate different
possible configurations in spin and pseudospin spaces and find their energy; in section 5, we address the ground
state energy of the system and the quantum phase transitions. In particular, in section 5, we illustrate the
evolution of phase diagrams with the degree of atomic nonidentity, which looks like the transformation from the
Joan Mir6 style artistic image to that of Kazimir Malewicz. Finally in the appendix, we present the analysis of
several special limiting cases of the model Hamiltonian that relate our model system to some well-known results.

2. Hamiltonian for two species of vector bosons

We consider two types of boson atoms with § = 11in the optical lattice with sites labeled by index i. The
corresponding creation operators c;, where ¢ = {—1,0, 1} is the spinindexand o = 1, 2 labels the type of
boson.
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Figure 4. Phase diagrams for £, = U,,/U;; = 0.6.

15

1.0

05 05
=00 = 00 < 00

05 05 05

1.0 10 10

15 03-02 010001 0203 15 0302 2100 01 02 03 03-0.2-0.1 09;0 0.1 0.2 0.3 15 03-02-01 0};00.1 0203
Figure 3. Phase diagrams for ;, = U;,/U;; = 0.4.

£,=0.6, £,=0.0 2,206, £,=06 2,206, £,=08 £,=0.6, £,=2.0

-02 00 0.2 02 00 02 02 00 02
p A A

512=0.8, £2,=0.2 £€1270.8, £=0.4

< 0.0
-0.5
-1.0
15

T3 02010001 0.2 0.3

£12=0.8, £2,=0.0

. 1
aoon

-0.3-0.2-0.1 00 0.1 0203

"-0.3-0.2-0.1 0.0 0.1 0.2 0.3
A

£12=0.8, £p=12

§12=0.8, £9,=0.8

13 =0.8,§ =10
15 12 22 1.5

1.0 1.0

0.5 0.5
0.0 < 0.0
-0.5 -0.5

1.0 -1.0

-1.5

-1.5
-0.3-0.2-0.1 0.0 0.1 0.2 0.3

A A A

-0.3-0.2-0.1 0.0 0.1 0.2 0.3

-0.3-0.2-0.1 0.0 0.1 0.2 0.3

Figure 5. Phase diagrams for ;, = U;,/U;; = 0.8.

£1270.8, £2,=0.6

5
-0.3-0.2-0.1 0.0 0.1 0.2 0.3
A

512708, £,=2.0

1.0
0.5
«.0.0
-0.5
-1.0
-1.5

-0.3-0.2-0.1 0.0 0.1 0.2 0.3
h

The Hamiltonian includes three terms:
H=HUW + W L H,

The interaction between bosons is given by two terms:

HWo) — Z Unainia +1 > Uattia(nia — 1).

La=1,2

(Y]

(@)

These terms corresponds to the repulsion between boson atoms at the same site [36]. Here, Uy, U,,, and U}, are

three interaction parameters and n;, =
differ from each other, in contrast to the case considered in [31].

M . .
> Cit o Cino- Now we assume that the interaction constants can strongly
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The spin-dependent interaction term is taken in the standard form [40, 41]:
HY = U(S? - 2n)) /2, (3)

where n; = n;; + n,,1sthe total number of bosons at site 7.

4
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The hopping term

Hy =3 h =3 talc s Clao + CrpCiao)s (4)
() (i)

where (i, j) means the summation only over the nearest-neighbor sites and h, is the hopping Hamiltonian for
one link. As usual, the repeated indices imply summation.

3. Effective Hamiltonian

Below we focus on the Mott insulating state, where cold atoms are localized at the sites of optical lattice with the
number of bosons at each site equal to unity. We remind that in such case, the hopping terms (4) can be treated
as perturbation compared to the interaction part of the Hamiltonian, HW + HW, Application of the
perturbation theory reduces the initial general Hamiltonian to a simpler effective Hamiltonian written solely in
terms of the spin and pseudospin (p-spin) operators related to the lattice sites with atom filling equal to one.
These spin-1S; and p-spin-1/2 T operators are defined in a standard way [42]

a a a a
Si = CT Soo' Ciaa's Ti = CT TQﬂCiﬁg—, (5)

iao o oo

wherea = x,y,z.
Below we outline the algorithm of transforming the initial Hamiltonian to the effective one.

3.1. Basis states

In what follows, when we consider the link (i, ) between the nearest-neighbor sites, we focus on the basis of
possible states for two bosons with spins S; = 1and S, = 1 atneighboringsitesi = 1andj = 2. Weare
interested in the case with single occupation, i.e. when one boson of either type is located at each lattice site,

n; + nj; = 1. We can pass now to the basis of the eigenstates of the total spin squared §* = (S; + S,)? andits z-
projection §* = Sf + S7. We designate these statesas |[SM), S = 0, 1, 2and M = —S, ..., S. This basis can be
written as follows

o) = |60) ISM), 6)

where f = 1, ..., 4 enumerates the ways to distribute two types of bosons over two sites. The coordinate part
|¢(Sf )Y is given explicitly in [31].

Applying h;, see equation (4), to the basis states (6), we obtain two kinds of intermediate (virtual) states. The
first type will be realized for two identical bosons at one site (i or j), the second type is for two nonidentical bosons
at one site. Intermediate energies depend on the spin and types of bosons. They are

Efy=Uy —2U, E,=U;+ U,
Ely=Up—2U, E&,=Un+ U,
ELy=Up—2U, E&,=Us+ U,
E&, =Up - U )

There are no intermediate states corresponding to the total spin S = 1 for two identical a- or b-bosons due to the
symmetry of the total wave function [40].

The energy of the virtual states with the double site occupancy is much larger than the energy of the states
with the single site occupancy we are focusing at. To find corrections to the energy of the single occupancy states
related to the hoppings, we need the second-order terms of the perturbation theory. So, further it will be
convenient to work with the operator

h= _heff = ht(l/HO)ht: (8)

where Hy = HW + HW In the basis of states (6), the matrix of & can be presented in the following block form

B;; O 0 0
0 By By 0
0 Bs By 0
0 0 0 By

h= ©

The matrix /& here is in fact the block matrix, where each blockisa9 x 9 matrix. Blocks
By = (®K,0|h|®L,,), k, I = 1, 2, 3, 4 are diagonal matrices. Their explicit forms are the following

5
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aa [1
EsZy
By, = 4t} 0-5 , (10)
1
I
Egiz 5
1

o

Byy = 4t} 0-L , (1)
1
1
ab Il
ES:0
By =Bss = (t + 15) L ] (12)
EY,
1
1
1
323 = B32 = 24t EIS . (13)
1

Herel,,n = 1,3, 5,are theidentity n x nmatrices. I; accounts for one state with S = 0, I3 accounts for three
stateswith S = 1, and I5 accounts for five states with S = 2.

In what follows, we identify the single occupancy of site i with a- or b-boson by the pseudospin-1/2 states
[1); = [+)iand |2); = |—);, respectively. It will be convenient to introduce explicitly two types of creation
operators: a;] for bosons of type &« = 1and b for bosons of type o = 2.

For this purpose, we rewrite the pseudospin operator 7] at sites 7, see equation (5), in the form

T] = aimhai + afmhbi + b7, ai + b bi (14)
We can rewrite, as usual, the set of 77 operators in the other equivalent form:

s

T =albs, T =blas, Tf= %(a}; ais — biby). (15)

To describe the occupancy of sites i and j, we introduce the basis of pseudospin states |a3) = |«);|3);. Then,
we find the correspondence between two-boson orbital states (6) and pseudospin states |3). For
example, |¢(Sl)) — [++).

In what follows, we map the matrix h, equation (9), onto an effective spin-pseudospin operator in the space
|av)i|3);ISM). This operator will be given in terms of spin S = 1 operators S;, S;and pseudospin T = 1/2
operators T}, T;and it has the same structure as matrix h, equation (9).

Next, we introduce the projection operator Qs and Pronto the combination of states |SM) and | TMr)

corresponding to the total spin S = 0, 1, 2 and pseudospin T' = 0, 1 at thelink (i, j). The projectors in the spin
space Qs = Z§4:75|SM) (SM| can be written as

1 1
=——=+ —(Si- 8%
QO 3 3( ])
Q =1 _l(SS)_l(SS)Z
1— ) 1 j ) 1 i) >

11 1
=4+ =(Si-S) + =S - )7, 16
Q2 3 2( i) 6( i) (16)

whereQy + Q; + Q, = 1.
Similarly, in the pseudospin space the projectors onto the singlet T' = 0 and triplet T = 1 states are

P=y-T-T, R=3+TT, (17)
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Itis also convenient to introduce the following projectors in the pseudospin space

1 1
Pl = |4+4) (++] = (E + Tf)(— + Tf),

2
PR o) (k-1 = (3 + )3 - 75),
2 2 !
P¥ =|—+)(—+| = (l - Tf)(l + TZ),
2 2 !
P44 _ (1 T? 1 T? 18
=)= (5 - )5 - 7). as)
and
32 _ _ ot
P2 =|=4){+-| = I} T},
PR =|+—)(—+| = T,'T;. (19)
In addition, we use below the following identities:
piypu=Ly 2T TS,
2
prypn=l_ 2T TS,
2
P¥ 4 P¥ =0T, - T; — 2T/ T%. (20)

With the help of projectors (16)—(19) and identities (20), we rewrite the block matrix / in terms of spin and
pseudospin operators as follows

h= 4t P“[Q—,ﬂ, + qu] + 4t P“[Q—fb + Q—;b] + (1 + P2 + Pﬁ[% + th]
E¢ E; EZ  E! Ey” K| E,

+ 261, [P? + P”][% + % + %] (1)
0 1 2
Substituting the explicit form of pseudospin projectors, we can rewrite /1 in the form
1 ty 1 ty t ty
h=q— + 2 42| L — 2 |(T? + T?) + 4| - + 2 |T?T?
{Eo““ P I A VA R

2 2

tlz t22 tl t22 z z tl t22 z iz
+ T = T2 aa__bb(Ti+Tj)+4 aa+ﬁT"T1 Q2
E; E, E; E, E; E,

1
+ {—(t12 + 1) — 20t + L) TFT? + 486, T; - Tj} Qoh + le + sz ) (22)
2 E¢ B ES

Finally, the effective Hamiltonian is written as the sum of i operators (22) over all (i, j) links
Hegr = =) h. (23)
(i)
This is the most general form of the effective Hamiltonian involving different Hubbard interaction parameters,

different hopping amplitudes, and spin-dependent interaction. In the appendix, we show that in a number of
limiting cases, this Hamiltonian can be simplified to some well-known forms.

4. Energy of the ground state

To proceed with the calculation of the ground state energy, we rewrite the ‘kernel’ i of effective Hamiltonian (23)
as follows

2t2
h="1|RyQo+ RQ; + R Qob + le + sz , (24)
Un Eq Ef Ey
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where the coefficients Ry, R; and R, are

11 B 1 B2z o e 1 B2 )z e
Ro=|=| = + 2= — L+ 1+ 2 Lz |, 2
’ [2(&?“ i Eg”) +[E5‘“ Egb]( P [Eé‘“ ! Egb]( l 1)] @)
R = E(l + 8 — (1 + BR(TETS) + 20(T; - Tp], 26)
1 1 52 1 2 zZ z 1 ﬁz z z
R=|= |2 - 2 |r + 19 + 2| — + 2 |errrs |
’ [z(zﬁm +'E§bJ<+'(Ef“ Efb](l 4_’) +2[E2““+ Efb]( ’ ’)] 7

Here, we introduce the dimensionless parameter 3 = t,/t, that characterizes the difference of the tunnel
amplitudes for different boson species.

The energy E of the ground state can be formally written as the average of the effective Hamiltonian over the
ground state wave function (we will find it later using the variational approach)

v
E= —E<h>, (28)

where v = 2D is the number of nearest neighbors for the D-dimensional cubic lattice.
Within the mean-field approximation, we can neglect any correlations between spin and p-spin degrees of
freedom. Then, for example, (R Qo) — (Ro) {Qy), and

(h) = Eu| (Ro)(Qo) + (R)(Q2) + <Rl>[ <EQa0b> * <EQalb> * <EQ“2b> ]]) >

where E,, = %‘j
We take the trial wave function in the p-spin space as the ‘mixed orbital state’ on two-sublattices A and B
Ix)i = cosO|+); + sinf|—);, i€ A, (30)
Ix)j = cosf|+); + nsinf|—);, je€B, n==L (31)
For 6 = 0, it defines the p-spin ferromagnetic (FM) state
[ 115 0 T o) (32)
For 0 = %, it defines also the p-spin FM state
[Li (= 1) Li (= 1)) (33)

The FM and AFM p-spin states will occur at § = % forn = +1andn = —1, respectively. These states are
polarized in x direction:

1
NG (1) + 1) (34)
(D) + by (35)
7 :
For other angles 6, the mixed orbital state is a some intermediate state between the FM and AFM ones. That is
why, it is more correctly to refer to this mixed orbital state as the mixed orbital state withn = +1,0rn = —1

rather than the FM and AFM states.
Now, we find averages over the trial mixed orbital state of the p-spin operators entering R;, i = 0, 1,2

Z o Jcos20, n=+1,
(T; +Tj>_{ 0, n=-1, (%6)
o icosZZG, n=-+1,
(TFT]) =9 7, (37)
—Zc05220, n=-1,
1
o 77: +1>
(TT) =4 * (38)
1
-5 n=-L

Later on, we will minimize the energy E with respect to the angle 6.

In contrast to the p-spin space, the effective Hamiltonian in the spin space is isotropic. So, we do not expect
any exotic states there. Hence, we take for trial wave functions in the spin space the usual FM, AFM, and nematic
(NEM) states. It should be noted that NEM naturally appears for spin-1 isotropic Heisenberg Hamiltonian, it has
zero average site spin, and it is discussed in detail in [40].
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Then, the coefficients for projectors in the spin space are

-

0, M,

0, FM,
1
Q=15 A (g = > ARM,
%, NEM, 0, NEM,
(1, EM,
1
(Q)) = J s ARM, (39)
%, NEM.

Finally, we have found all the averages and correlation functions entering equation (28) for the energy. We
minimize numerically the energy E(6, n), find the ground stats at different values of the parameters, and draw the
corresponding phase diagrams.

5. Results and discussion

5.1. General properties of the phase diagrams
We address here the ground state of the system and possible quantum phase transitions. Performing the energy
minimization, we find the phase diagrams for different ranges of the parameters. The key parameters are

8 =t/t, A= U/U, & = Up/Up,and &, = Usy/ Uy All these parameters (except A responsible for spin
channel interaction) are related to the difference between the types of bosons.

There are six different phases: three phases have the FM pseudospin arrangement, while three others
correspond to the AFM pseudospin state. Evolution of these phases is illustrated in figures 1-9; figure 1 is
supplemented by the colorbar, where the correspondence between colors and phases is shown. Points at the
colorbar correspond to the following orders in spin and pseudospin systems:

1— E Fpl\—/[spin M

b
p-spin FM
2 — Expm >

p-spin FM
3 — EXgm >

p-spin AFM
4 — Epyg

b
p-spin AFM
5 — Epv >

6 — Elgl_gsl\l/j[m AFM' (40)

Here, for example, color ‘1’ corresponds to FM spin and pseudospin orders.

In figures 1-9, we demonstrate the evolution of the phase diagrams within the wide range of parameters
8 = t/t;, A = U/Uyy, &n = U/ U and &, = U,,/Uy;. The most interesting phase transition is that
accompanied by the change of atom distribution over the optical lattice: p-spin FM « p-spin AFM. Note that
the cold colors correspond to FM p-spin, while the warm ones—to p-spin AFM. So the transitions with p-spin
change can be found in the phase diagram at the lines, where cold colors change to warm ones.

Evolution of the phase diagrams for &;, = Us,/Up; = Owith &, = U,,/ Uy on (A, §)-plane is shown in
figure 1. In this case, there is no Coulomb interaction between different boson species. We see that there is always
quantum phase transition at the line A = 0. This is true not only for figure 1, but also for all phase diagrams in
figures 1-9. This phase transition is driven by the sign change of spin channel interaction Us. This transition has
been recently revealed in [31] for nearly identical vector bosons. Here, we show that this transition is quite robust
with respect to the evolution of the degree of nonidentity.

One can also see in figure 1, that the ‘left color’ is always blue. It corresponds to FM spin ordering (with FM
p-spin ordering). This situation is intuitively obvious: since the ‘left’ phase is determined by large negative A—
the interaction in the spin channel. In all the next figures, the ‘left color’ also corresponds to the FM spin
ordering, sometimes with the AFM p-spin ordering (yellow).

Looking through the complete set of phase diagrams, one can notice the absence of exact symmetry with the
respect to reflections A — —Aand 3 — — (3, though some traces are detectable. The 3-symmetry is restored,
when &, > &,

Let us mention that the intuitive speculations useful, for example, in the case of simple Heisenberg model,
can be misleading here, because the effective Hamiltonian is rather nontrivial.

We also underline the evolution of the artistic image of the phase diagrams. Namely, at small £; , their style
resembles the ] Mir¢ paintings, while at large &;,—those of K Malewicz.
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5.2. Phase diagrams: specific features
Figures 1 and 2 are the most multicolored—there are quantum phase transitions nearly between all the possible
phases. These pictures correspond to the low or moderate interspecies Coulomb interaction U, as compared to
the single-species one. This feature can be attributed to small or moderate difference in the parameters
characterizing their nonidentity. One can also notice that there are many reentrant phase transitions in
figures 1-9, especially for moderate &;,.

When &,, becomes sufficiently large, then the NEM spin phase prevails. The &,,-threshold for this behavior
is the smallest at large &5, as can be seen in figures 1-9.

6. Conclusions

To conclude, we have investigated the evolution of the quantum state of vector two species bosons in optical
lattices with the ‘degree of atomic nonidentity’ that drives the cascade of quantum phase transitions.
Surprisingly, this quite simple model exhibits rather rich and complicated manifold of quantum phase
transitions between six different phases when interaction parameters of the model change in rather limited
subspace. In fact, one can say that the system is ‘unstable’ with the respect to small variation of parameters.

Technically, we have reduced the initial general Hamiltonian for vector bosons, using the Mott insulating
state natural small parameters, to the anisotropic spin-pseudospin model of the Kugel-Khomskii type that
served as the effective Hamiltonian. This procedure gave a chance for analytical progress in investigations of the
system ground state. The variational approach have been used to uncover the phase diagram of the system in
hand. Finally, we have investigated also limiting cases of the effective Hamiltonian and demonstrated the
relation of our rather complicated Hamiltonian to the well-known results. There are further perspectives to find
new results in the two species fermion systems in optical lattices and hybrid boson-fermion ones looking at the
‘degree of atomic nonidentity’ as the driving parameter.
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Appendix. Special cases of Hamiltonian (22)—(23)
Weremind that Hei = —Z@j)h.

A.1. Equal Hubbard interaction parameters
Now, we take alook at more special cases. First we consider the case with equal Hubbard interaction parameters

Up = Un=Un= U (A.)
Then
E& = E¢* = El* = Eq, §=0,1,2, (A2)

and as follows from equation (22), the effective matrix / reduces to the following form:

h= go { S+ ) 20— tH(TF + T7) + 2t — t)? TiT; + 4, T; - T, }
0
+ 22624 a8 262 = BT+ T + 206 — 0 T+ s T T
2
gl { (tl + tz) —2(4 + tz)z TZTZ + 4ht, T; - T; } (A.3)
1
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A.2. Equal Hubbard interaction parameters and equal hopping amplitudes
The effective matrix / can be simplified further if one considers equal hopping amplitudes, t; = t, = t. For this
case, as it can be seen from equation (A.3), matrix h reduces to

h= &{Stz + 42T, - Tj} + &{3% +4t2T; - Tj} + &{ﬂ — 8> T/ T; + 4t T; - T} (A4
EO E, E,
The last expression can be simplified if we take into account that
t2 — 8t T7 T; + 412 T; - T; = 4t Py, (A.5)
where By = B — (P'' 4+ P*) = [1/4 — 2T7 T7 + T; - Tj]is the projector onto the pseudospin state
|T = 1, My = 0), when the matrix & can be reduced to the form

h = 4t? {%B + &Pt + %Bo}. (A.6)

0 2 1
Note that due to the presence of the projector Py, the states with spin S = 1 will be automatically symmetric
in the orbital space, while the antisymmetric combination of orbital states is automatically excluded from the

effective Hamiltonian.
Next, we rewrite the Hamiltonian 4 in terms of the spin operators. We use the relation

—4¢2 412 _ 442
— 442 @4_& = 4t L_L + 4t Si S+ 4t L+L (Si.sj)Z
Ey E, 3\ Ey 2E, 3 \E 2E,

=e+JS S +K(;- Sj)z, (A7)
where
—2t? —412( 1 1
J= , kK= —+—1 (A.8)
E, 3 Eg 2E,
4s2
P L (A.9)
3 E, E,
Parameters J, K, and € can be expressed explicitly via the initial interaction constants Uy and U; as follows
_ 942 942
j— 2 k- 27Uy , (A.10)
Uy + U; (Uo + U)(Uy — 2Uy)
2
= 4G . (A.11)
(U + Uy (U — 205
Now, the Hamiltonian takes the form
5 —4r?
Hee =Y qle+7Si-Sj+ K (Si-S$)*P + = | QB (A.12)
(i-f) 1

Finally, the relation B = Py + P!' + P** and the definition of Q, (16) allows us to reduce the Hamiltonian
to the form used in [31],
Her = > {le+7TSi-Sj+ K (Si- S)X(P + P¥) + [¢/ 4+ ]'S;i - S; + K’ (Si - $)°] P}, (A.13)
(i)

where we introduced

J = 2t2(EL - Ei) (A.14)
1 2
942
=22, 1L 3) (A.15)
3 \E, E B
_A42
e N S | (A.16)
3 \E, E, B

A.2.1. Onetype of bosons.  For the case of only one type of bosons, Hamiltonian (A.13) is equivalent to that of
[43]. For single type of bosons, the pseudospin operators become c-numbers: T = +1/2, T; - T; should be
replaced by T T7 = 1/4,and projectors P'' + P* = 1, By = 0. Then equation (A.13) is reduced to the
Hamiltonian considered in [43]
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Heff:Z{6+]Si‘Sj+K(S,"Sj)2}. (A.17)
(i.f)

A.2.2. No spin-dependent interaction.  If there is no spin-dependent interaction, i.e. U; = 0,then Ey = E, = E,
and] = K = —2£*/Up, e = 0,]) = K’ = 0,and ¢/ = —4t2/U, = 2J. The effective Hamiltonian,
equation (A.13), is reduced to
Heg =) {2Po + (Si - Sj + (Si - S)?) (P! + P}, (A.18)
(i)
And atlast, if in this case, there is only one type of bosons, then Py = 0, P!! + P* = 1,and the effective
Hamiltonian describing effective interaction between identical bosons has the FM character (J < 0)

—2t?
Her =7y {Si- S+ (Si-S)*), J= . (A.19)
(i) Uo

The systems with identical bosons with odd and even number bosons per site were discussed in [40, 41].
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