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Abstract
Wepresent new results for the systemwith two species of vector bosons in an optical lattice. In
addition to the standard parameters characterizing such a system,we are dealing herewith the ‘degree
of atomic nonidentity’, manifesting itself in the difference of tunneling amplitudes and on-site
Coulomb interactions.We obtain a cascade of quantumphase transitions occurringwith the increase
in the degree of atomic nonidentity.While in the systemof nearly identical vector bosons only one
phase transition between two phases occurs with the evolution of the interparticle interaction, atom
nonidentity increases the number of possible phases to six and the resulting phase diagrams are so
nontrivial that we can speculate about their evolution from the images similar to the ‘JMiró-like
paintings’ to ‘KMalewicz-like’ ones.

1. Introduction

Experimental researchofultracold atoms in optical lattices havedramatically expanded the possibilities of a tunable
simulation inquantummany-body physics [1–14].Moreover, ultracold atoms open the path to the parameter
range that is hardly possible or even impossible to achieve in the natural condensedmatter systems [15–21].

The typical example is the systemof vector bosons. This case corresponds to Bose–Hubbardmodel that is
absent in the standard solid state theory and is the topic of intensive research last time [22–34], and [35–37] for
review.Numerous striking effects, in particular, induced by themultispecie nature of boson systemhave been
found recently including quantumphase transitions,many-body localization, and topological order, as well as
the superfluidity and supersolidity of ultracold atomic systems [35–37]. Here, we focus on still unexplored
physical phenomena in the systemswith different species of vector bosons originating from the tunable interplay
of spin degrees of freedom and of those identifying different sorts of atoms. Then the situation becomes quite
intriguing: in addition to the standard parameters, there appear nontrivial ones related to the ‘degree of atomic
nonidentity’: the difference of tunneling amplitudes and on-site interactions.We address here newphysical
effects including quantumphase transitions driven by atomnonidentity.

Vector cold atoms in optical lattices are characterized in general by the following parameters: intersite
hopping amplitudes tα, whereα=1, 2 labels different atoms, on-siteU ,a a¢ Coulomb interactions, and spin
channel interaction parametersUs [31, 38].

In our recent paper [31], we have considered the simplest limiting case of nearly identical bosons in theMott
insulating state:U12;U11;U22=U0 and t1;t2=U0. Thismodel differs from the case of perfectly
identical bosons just by the absence of cross-tunneling term: tunnelingwith the change of boson identity
was forbidden. It has been shown in [31] that suchmodel can be reduced to theKugel–Khomskii [39] type
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spin-pseudospinmodel, but in contrast to the usual version of the lattermodel, here spin is S=1 and
pseudospin-1/2 (where pseudospin labels different bosons). New effects in [31] have been found, in particular,
that the ground state of the system always has the pseudospin domain structure while sign change ofUs switches
the spin arrangement of the ground state within domains from ferro to aniferromagnetic (AFM).

Here we also consider two species of vector bosons in an optical lattice, butwe get rid of the identity
conditionsU12;U11;U22=U0, t1;t2 and trace the evolution of the systemquantum state with the
increase in the degree of atomic nonidentity (β=t2/t1, ξ12=U12/U11 and ξ22=U22/U11) starting from
nearly identical atoms of [31].

Surprisingly, instead of some naive and predictablemodification of our previous results [31], wefind that the
boson system evolves between six quantum states instead of two in [31] and themanifold of quantumphase
transitions is so nontrivial that one can even compare the resulting phase diagramswithmodern art paintings
(we find some similarity with ‘JMiró-like paintings’ or ‘KMalewicz-like’ paintings depending on atom
nonidentity), see figures 1–9.

The rest of our paper is organized as follows: in section 2, we introduce themodelHamiltonian, then in
section 3, we reduce the initial general Hamiltonian for vector bosons to the effectiveHamiltonian appearing to
be anisotropic spin-pseudospinmodel of theKugel–Khomskii type [39]; in section 4, we investigate different
possible configurations in spin and pseudospin spaces andfind their energy; in section 5, we address the ground
state energy of the system and the quantumphase transitions. In particular, in section 5, we illustrate the
evolution of phase diagramswith the degree of atomic nonidentity, which looks like the transformation from the
JoanMiró style artistic image to that of KazimirMalewicz. Finally in the appendix, we present the analysis of
several special limiting cases of themodelHamiltonian that relate ourmodel system to somewell-known results.

2.Hamiltonian for two species of vector bosons

Weconsider two types of boson atomswith S=1 in the optical lattice with sites labeled by index i. The
corresponding creation operators cias

† whereσ={−1, 0, 1} is the spin index andα=1, 2 labels the type of
boson.

Figure 1.Phase diagrams for ξ12=U12/U11=0.Hereβ=t2/t1, ξ22=U22/U11 andλ=Us/U11. In this case, there is noCoulomb
interaction between atoms of different kinds. The colorbar defines different spin and pseudospin orders.

Figure 2.Phase diagrams for small Coulomb interaction between different kinds of atoms: ξ12=U12/U11=0.2. All the notations
follow figure 1.
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TheHamiltonian includes three terms:

H H H H . 1U U
t

s0= + + ( )( ) ( )

The interaction between bosons is given by two terms:

H U n n U n n
1

2
1 . 2U

i
i i

i
i i12 ,1 ,2

, 1,2
, ,

0 å å= + -
a

aa a a
=

( ) ( )( )

These terms corresponds to the repulsion between boson atoms at the same site [36]. Here,U11,U22, andU12 are
three interaction parameters and n c ci i i= åa s as as

† . Nowwe assume that the interaction constants can strongly
differ from each other, in contrast to the case considered in [31].

Figure 3.Phase diagrams for ξ12=U12/U11=0.4.

Figure 4.Phase diagrams for ξ12=U12/U11=0.6.

Figure 5.Phase diagrams for ξ12=U12/U11=0.8.
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The spin-dependent interaction term is taken in the standard form [40, 41]:

H U nS 2 2, 3i
U

s i i
2s = -( ) ( )( )

where ni=ni,1+ni,2 is the total number of bosons at site i.

Figure 6.Phase diagrams for ξ12=U12/U11=1.0.

Figure 7.Phase diagrams for ξ12=U12/U11=1.2.

Figure 8.Phase diagrams for ξ12=U12/U11=1.4.

Figure 9.Phase diagrams for ξ12=U12/U11=1.6.
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The hopping term

H h t c c c c , 4t
i j

t
i j

i j j i
, ,
å å= º +a as as as as
á ñ á ñ

( ) ( )† †

where i j,á ñmeans the summation only over the nearest-neighbor sites and ht is the hoppingHamiltonian for
one link. As usual, the repeated indices imply summation.

3. EffectiveHamiltonian

Belowwe focus on theMott insulating state, where cold atoms are localized at the sites of optical lattice with the
number of bosons at each site equal to unity.We remind that in such case, the hopping terms (4) can be treated
as perturbation compared to the interaction part of theHamiltonian, H HU Us0 +( ) ( ). Application of the
perturbation theory reduces the initial general Hamiltonian to a simpler effectiveHamiltonianwritten solely in
terms of the spin and pseudospin (p-spin) operators related to the lattice sites with atom filling equal to one.
These spin-1 Si and p-spin-1/2 i operators are defined in a standardway [42]

S c s c c c, , 5i
a

i
a

i i
a

i
a

i t= =as ss as as ab bs¢ ¢ ( )† †

where a=x, y, z.
Belowwe outline the algorithmof transforming the initialHamiltonian to the effective one.

3.1. Basis states
Inwhat follows, whenwe consider the link i j,á ñbetween the nearest-neighbor sites, we focus on the basis of
possible states for two bosonswith spins S1=1 and S2=1 at neighboring sites i=1 and j=2.We are
interested in the case with single occupation, i.e. when one boson of either type is located at each lattice site,
n n 1i i1 2+ = .We can pass now to the basis of the eigenstates of the total spin squared S S S2

1 2
2= +( ) and its z-

projection S S Sz z z
1 2= + .We designate these states as SM S, 0, 1, 2ñ =∣ andM=−S,K, S. This basis can be

written as follows

SM , 6SM
f

S
ffF = ñ ñ∣ ∣ ( )( ) ( )

where f=1,K, 4 enumerates theways to distribute two types of bosons over two sites. The coordinate part

S
ff ñ∣ ( ) is given explicitly in [31].
Applying ht, see equation (4), to the basis states (6), we obtain two kinds of intermediate (virtual) states. The

first typewill be realized for two identical bosons at one site (i or j), the second type is for twononidentical bosons
at one site. Intermediate energies depend on the spin and types of bosons. They are

E U U E U U

E U U E U U

E U U E U U

E U U

2 , ,

2 , ,

2 , ,

. 7

S
aa

s S
aa

s

S
bb

s S
bb

s

S
ab

s S
ab

s

S
ab

s

0 11 2 11

0 22 2 22

0 12 2 12

1 12

= - = +

= - = +

= - = +

= -

= =

= =

= =

= ( )

There are no intermediate states corresponding to the total spin S=1 for two identical a- or b-bosons due to the
symmetry of the total wave function [40].

The energy of the virtual states with the double site occupancy ismuch larger than the energy of the states
with the single site occupancywe are focusing at. Tofind corrections to the energy of the single occupancy states
related to the hoppings, we need the second-order terms of the perturbation theory. So, further it will be
convenient toworkwith the operator

h h h H h1 , 8t teff 0= - = ( ) ( )

where H H HU U
0

s0= +( ) ( ). In the basis of states (6), thematrix of h can be presented in the following block form

h

B
B B
B B

B

0 0 0
0 0
0 0
0 0 0

. 9

11

22 23

32 33

44

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

Thematrix h here is in fact the blockmatrix, where each block is a 9× 9matrix. Blocks
B h k l, , 1, 2, 3, 4kl S M

k
SM
l= áF F ñ =¢ ¢∣ ∣ are diagonalmatrices. Their explicit forms are the following
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B t

I

I

I

4 0 , 10
E

E

11 1
2

1
1

3
1

5

S
aa

S
aa

0

2

=
=

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
· ( )

B t

I

I

I

4 0 , 11
E

E

44 2
2

1
1

3
1

5

S
bb

S
bb

0

2

=
=

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
· ( )

B B t t

E
I

I

I

1

, 12
S
ab

E

E

22 33 1
2

2
2

0

1

1
3

1
5

S
ab

S
ab

1

2

= = +
=

=

=

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( ) ( )

B B t t

I

I

I

2 . 13

E

E

E

23 32 1 2

1
1

1
3

1
5

S
ab

S
ab

S
ab

0

1

2

= =

=

=

=

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )

Here In, n=1, 3, 5, are the identity n×nmatrices. I1 accounts for one state with S=0, I3 accounts for three
states with S=1, and I5 accounts forfive states with S=2.

Inwhat follows, we identify the single occupancy of site iwith a- or b-boson by the pseudospin-1/2 states
1 i iñ = +ñ∣ ∣ and 2 i iñ = -ñ∣ ∣ , respectively. It will be convenient to introduce explicitly two types of creation
operators: ais

† for bosons of typeα=1 and bis
† for bosons of typeα=2.

For this purpose, we rewrite the pseudospin operator i
g at sites i, see equation (5), in the form

a a a b b a b b . 14i is is is is is is is is11 12 21 22 t t t t= + + +g g g g g ( )† † † †

Wecan rewrite, as usual, the set of  g operators in the other equivalent form:

T a b T b a T a a b b, ,
1

2
. 15i is is i is is i

z
is is is is= = = -+ - ( ) ( )† † † †

Todescribe the occupancy of sites i and j, we introduce the basis of pseudospin states i jab a bñ = ñ ñ∣ ∣ ∣ . Then,
wefind the correspondence between two-boson orbital states (6) and pseudospin states abñ∣ . For
example, S

1f ñ ++ñ∣ ⟶ ∣( ) .
Inwhat follows, wemap thematrix h, equation (9), onto an effective spin-pseudospin operator in the space

SMi ja bñ ñ ñ∣ ∣ ∣ . This operatorwill be given in terms of spin S=1 operators Si, Sj and pseudospinT=1/2
operatorsTi,Tj and it has the same structure asmatrix h, equation (9).

Next, we introduce the projection operatorQS andPT onto the combination of states SMñ∣ and TMTñ∣
corresponding to the total spin S=0, 1, 2 and pseudospinT=0, 1 at the link i j,á ñ. The projectors in the spin
space Q SM SMS M S

S= å ñá=- ∣ ∣can bewritten as

Q

Q

Q

S S

S S S S

S S S S

1

3

1

3
,

1
1

2

1

2
,

1

3

1

2

1

6
, 16

i j

i j i j

i j i j

0
2

1
2

2
2

=- +

= - -

= + +

( · )

( · ) ( · )

( · ) ( · ) ( )

whereQ0+Q1+Q2=1.
Similarly, in the pseudospin space the projectors onto the singletT=0 and tripletT=1 states are

P PT T T T
1

4
,

3

4
. 17s i j t i j= - = +· · ( )
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It is also convenient to introduce the following projectors in the pseudospin space

P T T

P T T

P T T

P T T

1

2

1

2
,

1

2

1

2
,

1

2

1

2
,

1

2

1

2
, 18

i
z

j
z

i
z

j
z

i
z

j
z

i
z

j
z

11

22

33

44

= ++ñá++ = + +

= +-ñá+- = + -

= -+ñá-+ = - +

= --ñá-- = - -

⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣

∣ ∣

∣ ∣

∣ ∣ ( )

and

P T T

P T T

,

. 19

i j

i j

32

23

= -+ñá+- =

= +-ñá-+ =

- +

+ -

∣ ∣

∣ ∣ ( )

In addition, we use below the following identities:

P P T T

P P T T

P P T TT T

1

2
2 ,

1

2
2 ,

2 2 . 20

i
z

j
z

i
z

j
z

i j i
z

j
z

11 44

22 33

32 23

+ = +

+ = -

+ = -· ( )

With the help of projectors (16)–(19) and identities (20), we rewrite the blockmatrix h in terms of spin and
pseudospin operators as follows

h t P
Q

E

Q

E
t P

Q

E

Q

E
t t P P

Q

E

Q

E

Q

E

t t P P
Q

E

Q

E

Q

E

4 4

2 . 21

aa aa bb bb ab ab ab

ab ab ab

1
2 11 0

0

2

2
2
2 44 0

0

2

2
1
2

2
2 22 33 0

0

1

1

2

2

1 2
23 32 0

0

1

1

2

2

= + + + + + + + +

+ + + +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )[ ]

[ ] ( )

Substituting the explicit formof pseudospin projectors, we can rewrite h in the form

h
t

E

t

E

t

E

t

E
T T

t

E

t

E
T T Q

t

E

t

E

t

E

t

E
T T

t

E

t

E
T T Q

t t t t T T t t
Q

E

Q

E

Q

E
T T

2 4

2 4

1

2
2 4 . 22

aa bb aa bb i
z

j
z

aa bb i
z

j
z

aa bb aa bb i
z

j
z

aa bb i
z

j
z

i
z

j
z

i j ab ab ab

1
2

0

2
2

0

1
2

0

2
2

0

1
2

0

2
2

0

0

1
2

2

2
2

2

1
2

2

2
2

2

1
2

2

2
2

2

2

1
2

2
2

1 2
2

1 2
0

0

1

1

2

2

= + + - + + +

+ + + - + + +

+ + - + + + +

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎡
⎣⎢

⎤
⎦⎥{ }

( )

( )

( ) ( ) · ( )

Finally, the effectiveHamiltonian is written as the sumof h operators (22) over all i j,á ñ links

H h. 23
i j

eff
,
å= -
á ñ

( )

This is themost general formof the effectiveHamiltonian involving differentHubbard interaction parameters,
different hopping amplitudes, and spin-dependent interaction. In the appendix, we show that in a number of
limiting cases, thisHamiltonian can be simplified to somewell-known forms.

4. Energy of the ground state

Toproceedwith the calculation of the ground state energy, we rewrite the ‘kernel’ h of effectiveHamiltonian (23)
as follows

h
t

U
R Q R Q R

Q

E

Q

E

Q

E

2
, 24

ab ab ab
1
2

11
0 0 2 2 1

0

0

1

1

2

2

= + + + +
⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟ ( )
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where the coefficientsR0,R1 andR2 are

R
E E E E

T T
E E

T T
1

2

1 1
2

1
, 25

aa bb aa bb i
z

j
z

aa bb i
z

j
z

0
0

2

0 0

2

0 0

2

0

b b b
= + + - + + +

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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Here, we introduce the dimensionless parameterβ=t2/t1 that characterizes the difference of the tunnel
amplitudes for different boson species.

The energy E of the ground state can be formally written as the average of the effectiveHamiltonian over the
ground state wave function (wewillfind it later using the variational approach)

E h
2

, 28
n

= - á ñ ( )

where D2n = is the number of nearest neighbors for theD-dimensional cubic lattice.
Within themean-field approximation, we can neglect any correlations between spin and p-spin degrees of

freedom. Then, for example, R Q R Q0 0 0 0á ñ  á ñá ñ, and

h E R Q R Q R
Q

E

Q

E

Q

E
, 29u ab ab ab0 0 2 2 1

0

0

1

1

2

2

á ñ = á ñá ñ + á ñá ñ + á ñ
á ñ

+
á ñ

+
á ñ⎛

⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟ ( )

where Eu
t

U

2 1
2

11
= .

We take the trial wave function in the p-spin space as the ‘mixed orbital state’ on two-sublatticesA andB

i Acos sin , , 30i i ic q qñ = +ñ + -ñ Î∣ ∣ ∣ ( )
j Bcos sin , , 1. 31j j jc q h q hñ = +ñ + -ñ Î = ∣ ∣ ∣ ( )

For θ=0, it defines the p-spin ferromagnetic (FM) state

... . 32i j i j    ñ∣ ( )

For
2

q = p , it defines also the p-spin FM state

... . 33i j i j -   -  ñ∣ ( ) ( ) ( )

The FMandAFMp-spin states will occur at
4

q = p for η=+1 and η=−1, respectively. These states are

polarized in x direction:

1

2
, 34iñ + ñ(∣ ∣ ) ( )

1

2
. 35jhñ + ñ(∣ ∣ ) ( )

For other angles θ, themixed orbital state is a some intermediate state between the FMandAFMones. That is
why, it ismore correctly to refer to thismixed orbital state as themixed orbital state with η=+1, or η=−1
rather than the FMandAFM states.

Now,we find averages over the trialmixed orbital state of the p-spin operators enteringRi, i=0, 1, 2

T T
cos 2 , 1,

0, 1,
36i

z
j
z q h

h
á + ñ =

= +
= -

⎧⎨⎩ ( )

T T
cos 2 , 1,

cos 2 , 1,
37i

z
j
z

1

4
2

1

4
2

q h

q h
á ñ =

= +

- = -

⎧
⎨⎪
⎩⎪

( )

T T
, 1,

, 1.
38i j

1

4
1

4

h

h
á ñ =

= +

- = -

⎧
⎨⎪
⎩⎪

( )

Later on, wewillminimize the energy Ewith respect to the angle θ.
In contrast to the p-spin space, the effectiveHamiltonian in the spin space is isotropic. So, we do not expect

any exotic states there. Hence, we take for trial wave functions in the spin space the usual FM, AFM, and nematic
(NEM) states. It should be noted thatNEMnaturally appears for spin-1 isotropicHeisenbergHamiltonian, it has
zero average site spin, and it is discussed in detail in [40].
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Then, the coefficients for projectors in the spin space are

Q Q

Q

0, FM,

, AFM,

, NEM,

0, FM,

, AFM,

0, NEM,

1, FM,

, AFM,

, NEM.

39

0

1

3
1

3

1
1

2

2

1

6
2

3

á ñ = á ñ =

á ñ=

⎧
⎨
⎪⎪

⎩
⎪⎪

⎧
⎨⎪
⎩⎪

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

Finally, we have found all the averages and correlation functions entering equation (28) for the energy.We
minimize numerically the energy E(θ, η),find the ground stats at different values of the parameters, and draw the
corresponding phase diagrams.

5. Results and discussion

5.1. General properties of the phase diagrams
Weaddress here the ground state of the system and possible quantumphase transitions. Performing the energy
minimization, wefind the phase diagrams for different ranges of the parameters. The key parameters are
β=t2/t1,λ=Us/U11, ξ12=U12/U11, and ξ22=U22/U11. All these parameters (exceptλ responsible for spin
channel interaction) are related to the difference between the types of bosons.

There are six different phases: three phases have the FMpseudospin arrangement, while three others
correspond to the AFMpseudospin state. Evolution of these phases is illustrated infigures 1–9;figure 1 is
supplemented by the colorbar, where the correspondence between colors and phases is shown. Points at the
colorbar correspond to the following orders in spin and pseudospin systems:

E

E

E

E

E

E

1 ,

2 ,

3 ,

4 ,

5 ,

6 . 40

FM
p spin FM

AFM
p spin FM

NEM
p spin FM

FM
p spin AFM

AFM
p spin AFM

NEM
p spin AFM











 ( )

‐

‐

‐

‐

‐

‐

Here, for example, color ‘1’ corresponds to FM spin and pseudospin orders.
Infigures 1–9, we demonstrate the evolution of the phase diagramswithin thewide range of parameters

β=t2/t1,λ=Us/U11, ξ12=U12/U11 and ξ22=U22/U11. Themost interesting phase transition is that
accompanied by the change of atomdistribution over the optical lattice: p-spin FM↔ p-spin AFM.Note that
the cold colors correspond to FMp-spin, while thewarmones—to p-spin AFM. So the transitionswith p-spin
change can be found in the phase diagram at the lines, where cold colors change towarmones.

Evolution of the phase diagrams for ξ12=U12/U11=0with ξ22=U22/U11 on (λ,β)-plane is shown in
figure 1. In this case, there is noCoulomb interaction between different boson species.We see that there is always
quantumphase transition at the lineλ=0. This is true not only forfigure 1, but also for all phase diagrams in
figures 1–9. This phase transition is driven by the sign change of spin channel interactionUs. This transition has
been recently revealed in [31] for nearly identical vector bosons.Here, we show that this transition is quite robust
with respect to the evolution of the degree of nonidentity.

One can also see infigure 1, that the ‘left color’ is always blue. It corresponds to FM spin ordering (with FM
p-spin ordering). This situation is intuitively obvious: since the ‘left’ phase is determined by large negativeλ—
the interaction in the spin channel. In all the next figures, the ‘left color’ also corresponds to the FM spin
ordering, sometimes with the AFMp-spin ordering (yellow).

Looking through the complete set of phase diagrams, one can notice the absence of exact symmetrywith the
respect to reflectionsλ→−λ andβ→−β, though some traces are detectable. Theβ-symmetry is restored,
when ξ12?ξ22.

Let usmention that the intuitive speculations useful, for example, in the case of simpleHeisenbergmodel,
can bemisleading here, because the effectiveHamiltonian is rather nontrivial.

We also underline the evolution of the artistic image of the phase diagrams.Namely, at small ξ12 their style
resembles the JMiró paintings, while at large ξ12—those of KMalewicz.
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5.2. Phase diagrams: specific features
Figures 1 and 2 are themostmulticolored—there are quantumphase transitions nearly between all the possible
phases. These pictures correspond to the lowormoderate interspecies Coulomb interactionU12 as compared to
the single-species one. This feature can be attributed to small ormoderate difference in the parameters
characterizing their nonidentity. One can also notice that there aremany reentrant phase transitions in
figures 1–9, especially formoderate ξ12.

When ξ22 becomes sufficiently large, then theNEMspin phase prevails. The ξ22-threshold for this behavior
is the smallest at large ξ12, as can be seen infigures 1–9.

6. Conclusions

To conclude, we have investigated the evolution of the quantum state of vector two species bosons in optical
lattices with the ‘degree of atomic nonidentity’ that drives the cascade of quantumphase transitions.
Surprisingly, this quite simplemodel exhibits rather rich and complicatedmanifold of quantumphase
transitions between six different phases when interaction parameters of themodel change in rather limited
subspace. In fact, one can say that the system is ‘unstable’with the respect to small variation of parameters.

Technically, we have reduced the initial generalHamiltonian for vector bosons, using theMott insulating
state natural small parameters, to the anisotropic spin-pseudospinmodel of the Kugel–Khomskii type that
served as the effectiveHamiltonian. This procedure gave a chance for analytical progress in investigations of the
system ground state. The variational approach have been used to uncover the phase diagramof the system in
hand. Finally, we have investigated also limiting cases of the effectiveHamiltonian and demonstrated the
relation of our rather complicatedHamiltonian to thewell-known results. There are further perspectives tofind
new results in the two species fermion systems in optical lattices and hybrid boson-fermion ones looking at the
‘degree of atomic nonidentity’ as the driving parameter.
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Appendix. Special cases ofHamiltonian (22)–(23)

We remind that H hi jeff ,= -åá ñ .

A.1. EqualHubbard interaction parameters
Now,we take a look atmore special cases. First we consider the case with equalHubbard interaction parameters

U U U U . A.112 11 22 0= = = ( )

Then

E E E E S, 0, 1, 2, A.2S
ab

S
aa

S
bb

S= = = = ( )

and as follows from equation (22), the effectivematrix h reduces to the following form:
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T T
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A.2. EqualHubbard interaction parameters and equal hopping amplitudes
The effectivematrix h can be simplified further if one considers equal hopping amplitudes, t1=t2=t. For this
case, as it can be seen from equation (A.3), matrix h reduces to

h
Q

E
t t

Q

E
t t

Q

E
t t T T tT T T T T T3 4 3 4 8 4 . A.4i j i j i

z
j
z

i j
0

0

2 2 2

2

2 2 1

1

2 2 2= + + + + - +{ · } { · } { · } ( )

The last expression can be simplified if we take into account that

t t T T t t PT T8 4 4 , A.5i
z

j
z

i j t
2 2 2 2

0- + =· ( )

where P P P P T T T T1 4 2t t i
z

j
z

i j0
11 44= - + = - +( ) [ · ] is the projector onto the pseudospin state

T M1, 0T= = ñ∣ , when thematrix h can be reduced to the form

h t
Q

E
P

Q

E
P

Q

E
P4 . A.6t t t

2 0

0

2

2

1

1
0= + +

⎧⎨⎩
⎫⎬⎭ ( )

Note that due to the presence of the projectorPt0, the states with spin S=1will be automatically symmetric
in the orbital space, while the antisymmetric combination of orbital states is automatically excluded from the
effectiveHamiltonian.

Next, we rewrite theHamiltonian h in terms of the spin operators.We use the relation

t
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Parameters J,K, and ò can be expressed explicitly via the initial interaction constantsU0 andUs as follows

J
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U U
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Now, theHamiltonian takes the form
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Finally, the relation P P P Pt t0
11 44= + + and the definition ofQ1 (16) allows us to reduce theHamiltonian

to the formused in [31],

H J K P P J K PS S S S S S S S , A.13
i j

i j i j i j i j teff
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2 11 44 2
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wherewe introduced
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A.2.1. One type of bosons. For the case of only one type of bosons,Hamiltonian (A.13) is equivalent to that of
[43]. For single type of bosons, the pseudospin operators become c-numbers: T T T1 2,i

z
i j=  · should be

replaced byT T 1 4i
z

j
z = , and projectors P P P1, 0t

11 44
0+ = = . Then equation (A.13) is reduced to the

Hamiltonian considered in [43]
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H J KS S S S . A.17
i j

i j i jeff
,

2å= + +
á ñ

{ · ( · ) } ( )

A.2.2. No spin-dependent interaction. If there is no spin-dependent interaction, i.e.Us=0, thenE0=E2=E1
and J=K=−2t2/U0, ò=0, J′=K′=0, and t U J4 22

0 ¢ = - = . The effectiveHamiltonian,
equation (A.13), is reduced to

H J P P PS S S S2 . A.18
i j

t i j i jeff
,

0
2 11 44å= + + +

á ñ

{ ( · ( · ) )( )} ( )

And at last, if in this case, there is only one type of bosons, then P P P0, 1t0
11 44= + = , and the effective

Hamiltonian describing effective interaction between identical bosons has the FMcharacter (J<0)

H J J
t

U
S S S S ,

2
. A.19

i j
i j i jeff

,

2
2

0
å= + =

-

á ñ

{ · ( · ) } ( )

The systemswith identical bosonswith odd and even number bosons per site were discussed in [40, 41].
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