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Abstract—For each n and d, we describe the structure of trees with the maximal possible number
of greatest independent sets in the class of n-vertex trees of vertex degree at most d. We show that for
all even n an extremal tree is unique but uniqueness may fail for odd n; moreover, for d = 3 and every
odd n ≥ 7, there are exactly d(n− 3)/4e+ 1 extremal trees. In the paper, the problem of searching
for extremal (n, d)-trees is also considered for 2-caterpillars, i.e., trees in which every vertex lies
at distance at most two from some simple path. For each n and d ∈ {3, 4}, we completely reveal all
extremal 2-caterpillars on n vertices each of which has degree at most d.
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INTRODUCTION

An independent set in a graph is arbitrary set of its nonadjacent vertices. We assume that the empty

set is also independent. An independent set is called maximal if it is inclusion maximal. A greatest

independent set is an independent set of the greatest cardinality. The cardinality of the greatest inde-

pendent set in a graph G is denoted by α(G). In what follows, we use the abbreviations “i.s.,” “m.i.s.,”
and “g.i.s.” for the terms “independent set,” “maximal independent set,” and “greatest independent set”
respectively. The number of all i.s. (g.i.s.) in a graph G is denoted by i(G) (respectively, xi(G)).

A vast literature is devoted to enumerating i.s. (m.i.s. or g.i.s.) in different classes of graphs. The bulk

of the corresponding literature is constantly extending. In the famous article by Moon and Moser [8],

the value of the maximal possible number of m.i.s. and g.i.s. in graphs with n vertices was given

and all corresponding extremal graphs were described. They turned out to be disconnected. In [2],

the analogous result was obtained for connected graphs. In [4, 5, 7, 9], the maximal possible numbers

of m.i.s. were found in triangle-free graphs, unicyclic graphs, bipartite graphs, and in trees with n vertices

respectively.
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Concerning g.i.s., their maximal possible number in trees with n vertices was found in the review [6].

Also in [6], the maximal values were given for the number of g.i.s. in n-vertex graphs of some classes

(including connected graphs, unicyclic graphs, and triangle-free graphs).

In [3], for each d, there were completely described extremal trees maximizing the number of i.s.

in the class of trees with degrees of all vertices at most d. Later in [1], a method was exposed

for constructing n-vertex trees with maximal number of i.s. having a given sequence of degrees.

As usual, a tree of maximal degree d is a tree in which the degree of each vertex is at most d.

The maximal possible number of i.s. and g.i.s. in n-vertex trees of maximal degree d will be denoted

by id(n) and xid(n) respectively. A tree T of maximal degree d with n vertices will be called (i, d, n)-

maximal if i(T ) = id(n). Refer to a tree T of maximal degree d with n vertices as (xi, d, n)-maximal if

xi(T ) = xid(n).

The only tree of maximal degree is a simple path. All trees with at most three vertices are also simple

paths. Therefore, in what follows, speaking of (i, d, n)-maximal trees or of (xi, d, n)-maximal trees, we

mean d ≥ 3 and n ≥ 4.

The main result of this article is finding all (xi, d, n)-maximal trees for all values of d and n. It turned

out that for all even n such a tree is unique and uniqueness may fail for odd n; moreover, for d = 3 and

odd n ≥ 7, there are exactly d(n− 3)/4e+ 1 extremal trees.

Recall that a k-caterpillar is a tree whose each vertex is located at distance k from some its

simple path, called the ridge. A tree is called an (i, d, n)-maximal k-caterpillar (respectively, the

(xi, d, n)-maximal k-caterpillar) if it is a k-caterpillar on n vertices of maximal degree d and contains

the greatest number of i.s. (respectively, of g.i.s.) among all trees of such kind. In the article, we find all

(xi, 3, n)-maximal 2-caterpillars and all (xi, 4, n)-maximal 2-caterpillars for every n.

1. SOME NOTATIONS AND DEFINITIONS

We use the following notations:

Pn is a simple path on n vertices;

Kp,q is a complete bipartite graph with p vertices in one part and q vertices in the other;

G1 ∪G2 is the disjoint union of graphs G1 and G2 with disjoint vertex sets;

kG is the disjoint union of k copies of a graph G;

i+(G, v) (i−(G, v)) is the number of i.s. in a graph G containing (not containing) a vertex v;

xi+(G, v) (xi−(G, v)) is the number of g.i.s. in a graph G containing (not containing) a vertex v;

I(G) (XI(G)) is the number of i.s. (g.i.s.) in G.

We will use the following definitions: the size of a graph is the number of its vertices, an even (odd)

tree is a tree having even (odd) number of vertices. A vertex in a tree is adjacent to a subtree if it has

a neighbor in this subtree. A vertex in a k-caterpillar is located on the level s if its distance to the ridge

of the k-caterpillar is equal to s.
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ON TREES OF BOUNDED DEGREE WITH MAXIMAL NUMBER 3

Fig. 1. A tree and its extension.

Fig. 2. A tree and one of its spreads.

2. PRELIMINARY RESULTS

2.1. The Extension Operation

Given a graph G, denote by ext(G) the graph obtained by adding a leaf to each vertex of G. Refer

to the graph ext(G) as the extension of G (see Fig. 1).

Lemma 1. For every graph G and its extension ext(G), we have i(G) = xi(ext(G)).

Proof. Obviously, α(ext(G)) = |V (G)|. To a given set I ′ ∈ I(G), add all elements of the vertex set

V (ext(G)) \ V (G) whose neighbors do not occur in I ′. Clearly, the so-obtained vertex set is a g.i.s. in G.

Moreover, to different elements of I(G) there correspond different elements of XI(ext(G)). Conversely,

removing all elements of V (ext(G)) \ V (G) from an element of the set XI(ext(G)), we obtain a g.i.s.

of G. Thus, there is a bijection between I(G) and XI(ext(G)). This implies Lemma 1.

2.2. The Spread Operation

Two leaves are called duplicate leaves if they have a common neighbor. Refer as a collection of

duplicate leaves of a graph to the set of its duplicate leaves adjacent to some common vertex. Note that

each such set contains at least two elements. Obviously, we have

Lemma 2. If we remove all vertices but one from each collection of duplicate leaves from

a graph G then the obtained graph G′ satisfies xi(G) ≤ xi(G′).

Refer as an offshoot of a tree T to its subgraph consisting of a vertex of degree 2 and a leaf adjacent

to it. We will denote the offshoot with leaf v and adjacent vertex u by uv. Refer as a spread of a tree T

to a tree T ′ obtained by adjoining a new offshoot cd adjacent to a vertex a, where ab is an offshoot of T (see

Fig. 2). A tree for which we can construct a spread (i.e., containing at most one offshoot) will be called

spreadable.

Lemma 3. If T ′ is a spread of a tree T then xi(T ′) > xi(T ).
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Proof. Suppose that a tree T ′ is obtained from T by adding an offshoot cd adjacent to a vertex a,

where ab is an offshoot of T . Clearly, xi(T ′) = xi+(T ′, c) + xi+(T ′, d). Moreover, xi+(T ′, d) = xi(T )
and xi+(T ′, c) = xi+(T, b). Since

xi+(T, a) + xi+(T, b) = xi(T ), xi+(T, b) ≥ xi+(T, a),

we have xi+(T, b) ≥ 1. Lemma 3 follows.

Lemma 4. Every (xi, d, n)-maximal tree is spreadable.

Proof. Show that if a tree is not spreadable then it has at least two collections of duplicate leaves.

Assume that a (xi, d, n)-maximal tree T is not spreadable and consider an arbitrary path of greatest

length in it. Denote the ends of this path by u1 and u2 (they are leaves in T ) and designate the adjacent

vertices as v1 and v2 respectively. Since T is (xi, d, n)-maximal, we have v1 6= v2. All neighbors but

one of each of the vertices v1, v2 are leaves. Since T is not spreadable, we have deg(v1) ≥ 3 and

deg(v2) ≥ 3. Let m , min(deg(v1),deg(v2)). Then, removing m− 2 leaves adjacent to v1 and v2, we

obtain a spreadable tree T ′, and also xi(T ′) ≥ xi(T ) by Lemma 2. Applying the spread operation to T ′

m− 2 times consecutively, we obtain a tree T ′′; moreover,

|V (T ′′)| = |V (T )|, xi(T ′′) > xi(T ′) ≥ xi(T )

(by Lemma 3), which contradicts the (xi, d, n)-maximality of T . Lemma 4 is proved.

Lemma 5. For every d ≥ 3, the sequences xid(2k) and xid(2k + 1) grow strictly monotonely.

Proof. Suppose that we have a (xi, d, n)-maximal tree T that is spreadable by Lemma 4. Denote by T ′

an arbitrary spread of a tree T . Then Lemma 3 yields the double inequality

xid(n + 2) ≥ xi(T ′) > xi(T ) = xid(n).

Lemma 5 is proved.

Corollary 1. Every (xi, d, n)-maximal tree contains at most one collection of duplicate leaves,

and this collection contains exactly two elements.

3. PROPERTIES OF (xi, d, n)-MAXIMAL TREES

3.1. Absence of Fixed Vertices

Refer to a vertex v in a tree T as xi+-fixed if it occurs in every its g.i.s.; i.e., if xi+(T, v) = xi(T ). Call

a vertex u in a tree T xi−-fixed if it occurs in none of its g.i.s.; i.e., if xi−(T, u) = xi(T ). Obviously, all

neighbors of a xi+-fixed vertex are xi−-fixed. A path with 2m + 1 vertices (m ≥ 1) in a tree will be called

a xi-alternating chain if it begins and ends in a xi+-fixed leaf and also xi+-fixed vertices alternate in it

with xi−-fixed vertices.

It is not hard that, in every tree, duplicate leaves are always xi+-fixed vertices. If each vertex in a tree

is either xi+-fixed or xi−-fixed then it contains a unique g.i.s. It is intuitively clear that the trees with

maximal number of g.i.s. must contain as few such vertices as possible. Namely, the following assertions

hold: Each (xi, d, 2k)-maximal tree does not contain xi+-fixed vertices, and each (xi, d, 2k + 1)-

maximal tree contains exactly two xi+-fixed vertices—a pair of duplicate leaves. The proofs of these

propositions will be given below.

Lemma 6. Every odd tree contains a xi+-fixed leaf.
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Proof. Prove the assertion by induction on the size of the tree n = 2k + 1. The induction base k = 0 is

obvious. Suppose that the assertion holds for some tree of size 2k + 1. Consider any tree T of size 2k + 3.

If it contains duplicate leaves then there is nothing to prove. Otherwise, it contains an offshoot uv, where

the vertex u is adjacent to some subtree T ′ of size 2k + 1, which, by the induction assumption, contains

some xi+-fixed leaf z. In T , the vertex z is either a leaf or is adjacent to the offshoot uv. In both cases,

this vertex is xi+-fixed since each i.s. of T not containing z contains less than α(T ) = α(T ′) + 1 vertices

and is not greatest. If z is not a leaf of T then it contains a xi+-fixed leaf. If z is adjacent to u then v is

the xi+-fixed leaf. Lemma 6 is proved.

Lemma 7. In every tree with some xi+-fixed vertex, there is a xi-alternating chain containing

this vertex.

Proof. Suppose that a tree T contains some xi+-fixed vertex v. Consider the set of its neighbors

{u1, u2, . . . , uk}, which, obviously, are xi−-fixed vertices and show that each of them is adjacent

to at least one more xi+-fixed vertex. Assume that all neighbors of u1 but v are not xi+-fixed. Since

T is a tree, there exists I ∈ XI(T ) containing exactly one neighbor of u1, the vertex v. Consider the set

(I \ {v}) ∪ {u1} and again obtain a g.i.s. of T . Hence, there exists some xi+-fixed vertex v1 different

from v and adjacent to u1.

If v1 is not a leaf then consider its neighbor v′ different from u1 and, arguing by analogy, verify that

this vertex is adjacent to a xi+-fixed vertex v2 different from v1. Continuing these arguments, we will

sooner or later show the existence of a xi+-fixed leaf. If the initial vertex v is also a leaf then the lemma

is proved. If not then, considering its one more neighbor u2 and conducting analogous arguments, show

the existence of a second xi+-fixed leaf. Lemma 7 is proved.

Lemma 8. If some (xi, d, n)-maximal tree T contains a xi-alternating chain then it does not

contain xi+-fixed vertices outside this chain.

Proof. Suppose that we have a chain P , (z1, . . . , z2k+1) and one of the inclusion maximal subtrees

adjacent to the vertices of the chain and not containing its vertices contains a xi+-fixed vertex u. Then,

by Lemma 7, there exists a xi-alternating chain passing through u, and hence there exists a xi+-fixed

leaf w outside P . Remove from the chain the vertex z1 and adjoin it to w. Denote the new tree by T ′.
Show that, in result of our actions, the number of g.i.s. increased.

It is not hard to see that α(T ′) = α(T )− 1. Thus, every i.s. of T ′ containing α(T )− 1 vertices is

the greatest. Construct a mapping

F : XI(T ) → XI(T ′)

taking the g.i.s. I of T into the g.i.s. I \ {w} of T ′. The mapping is clearly injective. Moreover, for some

I ′ ∈ XI(T ′), we have w ∈ I ′. Therefore, I ′ does coincides with no F (I), I ∈ XI(T ). Then

xi(T ′) > xi(T );

a contradiction. Lemma 8 is proved.

Lemma 9. Every (xi, d, n)-maximal tree does not contain xi-alternating chains of length four
or more.
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Fig. 3. An example of a transformation in the case of d = 5.

Proof. Suppose that some (xi, d, n)-maximal tree T contains a xi-alternating chain P of length at least

four. Consider its initial part (z1, z2, z3, z4, z5). The vertex z1 is a leaf of T . Recall that, in the proof

of Lemma 7, it was shown that, in every tree with at least two vertices, every neighbor b of an arbitrary

xi+-fixed vertex a has a xi+-fixed neighbor cb 6= a. Then deg(z3) = 2 and deg(z5) = 2 (if the length

of P is at least five) by Lemma 8. Denote by C an inclusion maximal subtree in T adjacent to z5 and not

containing z4. The vertices z2 and z4 are adjacent to more than d− 2 inclusion maximal subtrees not

containing the vertices z1–z5 each, which we will denote by Ai and Bj respectively (Fig. 3).

Remove from T the edge z4z5 and add the edge z3z5. Adjoin all subtrees Ai to the vertex z1 and all

subtrees Bj , to the vertex z3. If the degree of z3 exceeds d then adjoin one of the subtrees to z1.

It is not hard that the degrees of all vertices in the obtained tree T ′ are at most d. Recall that

the vertices z1, z3, and z5 in T are xi+-fixed. Therefore, each its g.i.s. I is representable as

I = {z1, z3, z5} ∪ IA ∪ IB ∪ IC ,

where

IC , I ∩ (V (C) \ {z6}), IA , I ∩
⋃

i

V (Ai), IB , I ∩
⋃

j

V (Bj).

Denote by T ′′ the subtree in T ′ generated by the vertices z1, . . . , z5. Clearly, α(T ′′) = 3 and each its

g.i.s. contains z5. Moreover,

|{z2, z4, z5}|+ |IA|+ |IB|+ |IC | ≤ α(T ′) ≤ α(T ′′) + |IA|+ |IB|+ |IC |;
therefore, α(T ′) = α(T ). Suppose that a mapping F : XI(T ) → XI(T ′) takes the g.i.s.

{z1, z3, z5} ∪ IA ∪ IB ∪ IC

of the tree T to the g.i.s. {z2, z4, z5}∪ IA ∪ IB ∪ IC of T ′. Moreover, there exists at least one g.i.s. in T ′

containing the vertices z1, z4, and z5 since the subtrees Ai and Bj of T do not contain xi+-fixed vertices

by Lemma 8. Thus, xi(T ′) > xi(T ); a contradiction. Lemma 9 is proved.

Lemmas 7 and 9 imply that each xi+-fixed leaf of every (xi, d, n)-maximal tree belongs to a xi-

alternating chain of length two. Hence, the other end of the chain is the duplicate of this leaf.

Corollary 2. Each xi+-fixed leaf of every (xi, d, n)-maximal tree has a duplicate leaf.

Theorem 1. The following assertions hold:

(A) Every (xi, d, 2k + 1)-maximal tree contains exactly two xi+-fixed vertices—a pair of du-

plicate leaves.

(B) Every (xi, d, 2k)-maximal tree does not contain xi+-fixed vertices.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 12 No. 2 2018



ON TREES OF BOUNDED DEGREE WITH MAXIMAL NUMBER 7

Proof. (A) By Lemma 6, each (xi, d, 2k + 1)-maximal tree contains a xi+-fixed leaf, which, by Corol-

lary 2, has a duplicate leaf. Hence, by Corollary 1, the corresponding collection contains exactly two

duplicate leaves. These leaves are the ends of a xi-alternating chain of three vertices, outside which,

by Lemma 8, there are no other xi+-fixed vertices.

(B) If a (xi, d, 2k)-maximal tree contains xi+-fixed vertices then, by Lemma 7, it also contains xi+-

fixed leaves. By Lemma 8 and Corollaries 1 and 2, the tree contains a unique pair of duplicate leaves. Then

there exists a tree of size 2k− 1 containing at least the same number of g.i.s.; i.e., xid(2k− 1) ≥ xid(2k).

On the other hand, a (xi, d, 2k + 1)-maximal tree also contains a pair of duplicate leaves (see (А)).

Hence, we have the double inequality

xid(2k − 1) ≥ xid(2k) ≥ xid(2k + 1),

which contradicts Lemma 5. Theorem 1 is proved.

3.2. Extendability of (xi, d, 2k)-Maximal Trees

Prove the most important property of (xi, d, 2k)-maximal trees, which enables us to reduce our

problem to the problem for i.s. already solved in [3].

Lemma 10. The vertices of every tree of size 2k not containing xi+-fixed vertices can be
uniquely partitioned into k pairs A1, . . . , Ak of adjacent vertices so that every g.i.s. of the tree

contain exactly one vertex from each pair.

Proof. We carry out the proof by unduction on the size of the tree.

The induction base k = 1 is obvious. Suppose that T is arbitrary tree without xi+-fixed vertices

of size 2k and the lemma holds for every tree of size 2k − 2. The tree T contains no duplicate leaves

(otherwise they would be xi+-fixed vertices). Consequently, it contains some offshoot uv. Denote by T ′

the result of the removal of the vertices u and v from T . Clearly, α(T ′) = α(T )− 1 and each g.i.s. in T

contains either v or u; moreover, there exist g.i.s. of the tree T of both types; otherwise, u or v would be

a xi+-fixed point. Therefore, no neighbor of u is a xi+-fixed vertex in T ′. Obviously, no other vertex in T ′

is xi+-fixed. By the induction hypothesis, V (T ′) can be partitioned into pairs A1, . . . , Ak−1 in a unique

way. Putting Ak = {u, v}, we obtain a desired partition, which is also unique. Lemma 10 is proved.

Throughout the rest of the present section, by a vertex pair we mean one of the pairs with the property

of the statement of Lemma 10.

Lemma 11. For every offshoot uv of an arbitrary tree T , there holds xi−(T, u) ≥ xi(T )/2.

Proof. Since each g.i.s. of T contains exactly one of the vertices u and v, we have

xi−(T, u) + xi−(T, v) = xi(T ).

Clearly,

xi−(T, u) + xi+(T, u) = xi−(T, v) + xi+(T, v) = xi(T ).

Since v is a leaf vertex, xi+(T, v) ≥ xi+(T, u). Hence,

xi−(T, u) ≥ xi−(T, v),

which implies the lemma.
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Suppose that T is an arbitrary (xi, d, 2k)-maximal tree. Then, by Theorem 1, it does not contain

xi+-fixed vertices. Let {u, v} be a vertex pair of T . Denote by A1, . . . , Al all inclusion maximal subtrees

adjacent to u and not containing v and designate as B1, . . . , Br all inclusion maximal subtrees adjacent

to v and not containing u. Since {u, v} is a pair, by Lemma 10, each of the trees A1, . . . , Al, B1, . . . , Br

is even. Each of them contains no duplicate leaves; otherwise, T would contain duplicate leaves, which

would have to be its xi+-fixed vertices. Therefore, each of them must contain an offshoot.

For a tree T ∗, denote by rT ∗ its root and denote by p(T ∗) the quantity

xi(T ∗ \ {rT ∗})
xi(T ∗)

.

Define the following quantities:

a ,
l∏

i=1

xi(Ai), a0 ,
l∏

i=1

xi(Ai \ {rAi}), p(a) ,
l∏

i=1

xi(Ai \ {rAi})
xi(Ai)

=
l∏

i=1

p(Ai),

b ,
r∏

i=1

xi(Bi), b0 ,
r∏

i=1

xi(Bi \ {rBi}), p(b) ,
r∏

i=1

xi(Bi \ {rBi})
xi(Bi)

=
r∏

i=1

p(Bi).

Since each g.i.s. of T contains only one of the vertices u and v, we have

xi(T ) = a0 · b + a · b0.

Thus, p(a) > 0 and p(b) > 0; otherwise, u or v is a xi+-fixed vertex of T . Assume without loss

of generality that p(a) ≥ p(b). The tree A constituted by the vertex u and the vertices of the even trees

A1, . . . , Al is odd. By Lemma 6, A contains a xi+-fixed leaf. If p(a) = 1 then it must be a xi+-fixed leaf

of T ; therefore, p(a) < 1. By analogy, p(b) < 1. Refer to a subtree Ai as suitable if p(Ai) < 1. Obviously,

there is a suitable subtree among A1, . . . , Al.

Theorem 2. The tree T is an extension of some tree of size k.

Proof. Show that each of the k pairs contains a leaf of T . This will imply the theorem. Suppose that

both vertices in the pair {u, v} are nonleaf vertices.

Denote by X one of the suitable trees. An arbitrary inclusion maximal subtree adjacent to v and

not containing u will be denoted by Y . The remaining subtrees adjacent to u or to v are again denoted

by A1, . . . , Al and B1, . . . , Br, where l ≥ 0 and r ≥ 0. For A1, . . . , Al and B1, . . . , Br, the notations a, b,

a0, b0, p(a), and p(b) have the same sense as above. Introduce the notations

x , xi(X), y , xi(Y ), x0 , xi(X \ {rX}), y0 , xi(Y \ {rY }).
It is easy to see that

xi(T ) = b · y · a0 · x0 + a · x · b0 · y0.

Consider the tree T ′ obtained from T by removing the subtree X and attaching it to some offshoot wt

of the subtree Y (Fig. 4).

Let y+ , xi+(Y, w) and y− , xi−(Y, w). Denote by y+
0 the number of the g.i.s. in Y simultaneously

containing the vertex w and not containing rY . Denote by y−0 the number of g.i.s. in Y simultaneously

not containing w and rY .

Show that xi(T ′) > xi(T ). It is not hard to check that

xi(T ′) = a0 · b · (y+ · x0 + y− · x) + a · b0 · (y+
0 · x0 + y−0 · x).
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Fig. 4. Displacement of the subtree X .

Fig. 5. The structure of the tree Td+1,n.

Then

xi(T ′)− xi(T ) = a0 · b · y− · (x− x0)− a · b0 · y+
0 · (x− x0)

= (x− x0) · (a0 · b · y− − a · b0 · y+
0 ).

Since X is suitable, x > x0. Since p(a) ≥ p(b), we have a0 · b ≥ b0 · a > 0. By Lemma 11, y− ≥ 1/2.

By analogy with the proof of Lemma 11, we can show that y+
0 ≤ y0/2. Since p(Y ) > 0, we have

y+
0 < 1/2. Hence, xi(T ′) > xi(T ); a contradiction. Theorem 2 is proved.

4. THE STRUCTURE OF (xi, d, n)-MAXIMAL TREES

4.1. The Even Case

Denote the complete d-ary tree of height h− 1 by Cd,h. In particular, Cd,0 is the empty tree, and Cd,1

consists of a single vertex for arbitrary d. The following assertion was proved in [3]:

Theorem 3. For every d ≥ 2 and n ≥ 1, there exists a unique (i, d + 1, n)-maximal tree Td+1,n

which is representable in the form given in Fig. 5, where Mk,1, . . . ,Mk,d−1 ∈ {Cd,k, Cd,k+2} for

0 ≤ k ≤ l − 1 and either Ml,1 = · · · = Ml,d = Cd,l−1 or Ml,1 = · · · = Ml,d = Cd,l or

Ml,1, . . . , Ml,d ∈ {Cd,l, Cd,l+1, Cd,l+2},
where at least two of the subtrees Ml,1, . . . , Ml,d are equal to Cd,l+1.

Theorem 4. There exists a unique (xi, d, 2k)-maximal tree. It is isomorphic to the tree ext(Td−1,k).
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Fig. 6. The trees T3,6 and ext(T3,6).

Proof. By Theorem 2, every (xi, d, 2k)-maximal tree is an extension of some tree of maximal degree

d− 1 on k vertices. But then xid(2k) = id−1(k) by Lemma 1. Hence, every (xi, d, 2k)-maximal tree is

isomorphic to ext(Td−1,k) by Theorem 3.

Fig. 6 contains a (xi, 4, 12)-maximal tree obtained from a (i, 3, 6)-maximal tree.

4.2. The Odd Case

Lemma 12. Every (xi, d, 2k + 1)-maximal tree T satisfies

xi(T ) =
d′∏

i=1

xi(Ti),

where the tree Ti is (xi, d, 2ki)-maximal and

d′∑

i=1

ki = k − 1, d′ ≤ d− 2.

Proof. By Theorem 1, T contains xi+-fixed duplicate leaves u and v and also their common xi−-fixed

neighbor w. Then w is adjacent to d′ ≤ d− 2 inclusion maximal subtrees T1, . . . , Td′ each of which

contains neither v nor u. Then

xi(T ) =
d′∏

i=1

xi(Ti).

By Theorem 1, T contains exactly two xi+-fixed vertices and exactly one xi−-fixed vertex, and all

subtrees T1, . . . , Td′ are even. Since T is (xi, d, 2k + 1)-maximal, each of the subtrees T1, . . . , Td′ is

(xi, d, 2ki)-maximal. Lemma 12 is proved.

By Theorem 4 and Lemma 12, we have

d′⋃

i=1

Ti = ext(F ),

where F is a forest of size k − 1 of maximal degree d− 1. Thus, the problem of the maximization

of the number of g.i.s. in a tree of size 2k + 1 of maximal degree d is reduced to the problem of maximizing

the number of all i.s. in a forest of size k − 1 consisting of more than d− 2 connected components

of maximal degree d− 1 each.

Let T1 and T2 be the trees each of which has at least two vertices. Refer as the splice of T1 and T2

to the tree T obtained by identifying some leaf of T1 and some leaf of T2.

Lemma 13. Given arbitrary trees T1 and T2 consisting of more than one vertex and any their

splice T , we have

2i(T ) > i(T1) · i(T2).
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Proof. Suppose that a leaf v of T1 and a leaf u of T2 are identified. Put

A , i−(T1, v), A′ , i+(T1, v), B , i−(T2, u), B′ , i+(T2, u).

Here A > A′ and B > B′ because each of the trees T1 and T2 consists of more than one vertex (recall

that the empty set is also an i.s.). It is not hard to see that

i(T1) · i(T2) = (A + A′) · (B + B′), 2i(T ) = 2 ·A ·B + 2 ·A′ ·B′.

Then

2i(T )− i(T1) · i(T2) = 2 ·A ·B + 2 ·A′ ·B′ −A ·B −A′ ·B −A ·B′ −A′ ·B′

= A ·B + A′ ·B′ −A′ ·B −A ·B′ = (A−A′)(B −B′) > 0.

Lemma 13 is proved.

Lemma 14. Among all forests of maximal degree d and size n consisting of at most s ≤ n

connected components, the maximal number of all i.s. is possessed by the forest

(s− 1)P1 ∪ Td,n−s+1.

Proof. Suppose that there exists an optimal forest F containing two connected components T1 and T2

each of which differs from P1. Construct a tree T as an arbitrary split of T1 and T2 and replace T1 ∪ T2 by

P1 ∪ T . Clearly,

i(P1 ∪ T ) = 2i(T ) and i(T1 ∪ T2) = i(T1) · i(T2).

Therefore, by Lemma 13, the new forest F ′ satisfies the inequality i(F ′) > i(F ); a contradiction

to the optimality of the forest F .

Prove that, for every d′ and n′, there holds the inequality 2i(Td′,n′) > i(Td′,n′+1). Since it implies that

for every s′ < s we have

i((s− 1)P1 ∪ Td,n−s+1) > i((s′ − 1)P1 ∪ Td,n−s′+1),

this is insufficient for proving the lemma. Let x be a leaf of the tree Td′,n′+1. Then

i−(Td′,n′+1, x) > i+(Td′,n′+1, x);

therefore, we have the inequality

i(Td′,n′+1) = i−(Td′,n′+1, x) + i+(Td′,n′+1, x) < 2i−(Td′,n′+1, x) ≤ 2i(Td′,n′).

Lemma 14 is proved.

Denote by Sp the graph obtained by subdividing p− 2 edges of the graph K1,p. Refer as a d-build-up

of a tree T to a tree obtained by joining the central vertex of the graph Sd−1 to some vertex of ext(T )
of degree at most d− 1.

Theorem 5. If k ≥ d− 1 then the set of (xi, d, 2k + 1)-maximal trees coincides with the set of all

possible d-build-ups of the tree Td−1,k−d+2. If 1 ≤ k < d− 1 then the only (xi, d, 2k + 1)-maximal
tree is Sk+1.
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Fig. 7. The path P3 and its two different 4-build-ups.

Fig. 8. The graph R5.

Proof. By Lemma 14, the forest

F , (d− 3)P1 ∪ Td−1,k−d+2

has the maximal number of i.s. among all forests of maxial degree d− 1 of size k − 1 and at most d− 2
connected components. But then

d−2⋃

i=1

Ti = ext(F )

(in the notations of the proof of Lemma 12). Removing the central vertex and its two adjacent leaves

of Sd−1 from an arbitrary d-build-up of the tree Td−1,k−d+2, we obtain exactly the forest ext(F ). This

implies the theorem for k ≥ d− 1.

The validity of the assertion for 1 ≤ k < d− 1 stems from Lemmas 12–14.

Theorem 5 is proved.

Thus, a (xi, d, 2k + 1)-maximal tree can be nonunique. In Fig. 7, we consider the case of d = 4,

k = 5, and two 4-build-ups of the optimal forest T3,3 = P3.

4.3. The Case of d = 3

For d = 3, the structure of extremal trees is rather simple and it is possible to enumerate them com-

pletely. Therefore, in our opinion, this case deserves a separate consideration. Introduce the renotation

Rk , ext(Pk) (Fig. 8).

Lemma 15. The following hold:

(1) There exists a unique (xi, 3, 2k)-maximal tree, and it is isomorphic to Rk.

(2) Given k ≥ 3, there exist exactly d(k − 1)/2e+ 1 pairwise nonisomorphic (xi, 3, 2k + 1)-

maximal trees.

Proof. By Theorem 4, every (xi, 3, 2k)-maximal tree is isomorphic to the graph

ext(T2,k) = ext(Pk) = Rk.

Theorem 5 implies that each (xi, 3, 2k + 1)-maximal tree is obtained from Rk−1 by adding a vertex x,

two leaves adjacent to x, and an edge xy, where y is some vertex of the tree Rk−1 of degree less than
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three. If deg(y) = 2 then two possible candidates for y give isomorphic trees. If deg(y) = 1 then the k− 1
possible candidates for y partition into pairs according to the axisymmetry of Rk−1. Every such a pair

generates its own (xi, 3, 2k + 1)-maximal tree. Lemma 15 is proved.

5. THE STRUCTURE OF (xi, 4, n)-MAXIMAL 2-CATERPILLARS

Lemma 15 implies that all (xi, 3, n)-maximal trees are 2-caterpillars. In this section, we completely

describe all (xi, 4, n)-maximal 2-caterpillars. Let us first prove that all assertions analogous to Theo-

rems 1 and 2 are also valid for the class of 2-caterpillars.

Lemma 16. The following hold:

(A) Every (xi, d, 2k + 1)-maximal 2-caterpillar contains exactly two xi+-fixed vertices, i.e.,

a pair of duplicate leaves.

(B) Every (xi, d, 2k)-maximal 2-caterpillar does not contain xi+-fixed vertices.

Proof. It is not hard to check that all assertions of Section 2 are carried over unchanged also to the case

of k-caterpillars for k ≥ 1. Lemmas 6 and 7 are also carried over without changes.

Validate Lemma 8. Suppose that there exists a xi+-fixed point outside a xi-alternating chain P .

Hence, there also exists a xi+-fixed leaf v outside P . If v is on the ridge or on the first level then adjoin

the end of P to this leaf (similarly to the adjunction in the proof of Lemma 8) and obtain a 2-caterpillar

with a greater number of g.i.s. If the leaf v is on the second level then consider a neighboring vertex u.

If deg(u) = 2 then, removing the offshoot uv, we obtain a 2-caterpillar with the same number of g.i.s. and

the number of vertices less by two, which contradicts Corollary 1. Otherwise (when u is a neighborhodd

of duplicate leaves) consider one of the ends of P , which we denote by w. The vertex w cannot be

on the second level since otherwise it would be contained in some offshoot or there would exist two

collections of duplicate leaves, which is impossible by Corollary 1. Attaching the leaf v to w, we obtain

a 2-caterpillar with a greater number of g.i.s.

Let us now validate Lemma 9. Suppose that at least one end of a xi-alternating chain P ′ is

on the second level. Then either its neighbor has degree two, which is impossible because then these

two vertices could be removed without changing the number of g.i.s., or this leaf is a duplicate, but

then the only xi-alternating chain in the tree has length 3, which was required. If both sides of P ′ are

on the first level then it is easy to check that, after their removal, the number of g.i.s. remains the same,

which contradicts the (xi, d, n)-maximality of the 2-caterpillar. If at least one of the ends of P ′ is an end

of the ridge then consider an initial segment of P ′ starting from it and apply the arguments of Lemma 9.

As is easy to check, the arguments of Theorem 1 are also carried over without change. Lemma 16 is

proved.

Lemma 17. Every (xi, d, 2k)-maximal 2-caterpillar is an extension of some 1-caterpillar

of size k of maximal degree d− 1.

Proof. Assume that there exists a pair of nonleaf vertices {u, v} in some (xi, d, 2k)-maximal 2-

caterpillar. Show that then they both lie on the ridge of the 2-caterpillar. Suppose the contrary; then

u lies on the first level and v lies on the ridge. But then the neighbors of u lying on the second level have

no pairs. Thus, both vertices u and v lie on the ridge.
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Denote by X and Y some inclusion maximal subtrees with roots at neighbors of u and v, where

X is suitable. After that act by analogy to Theorem 2. It is not hard to see that the resulting tree is also

a 2-caterpillar since we can always choose an offshoot of Y lying on the ridge (if there is no such offshoot

then the the tree contains duplicate leaves, which is impossible by the previous lemma).

Lemma 17 is proved.

Denote by R′
k the graph obtained by adding a leaf to each vertex of degree two of the graph Rk (Fig. 9)

and designate as R′′
k the result of the addition of a leaf to one of its vertices of degree two. Denote by R′

k,s

the result of the removal of the vetex vs from R′
k.

Fig. 9. The graph R′k.

Lemma 18. For each k ≥ 2, the only (i, 3, 2k + 2)-maximal 1-caterpillar is the tree R′
k. For each

k ≥ 2, the only (i, 3, 2k + 1)-maximal 1-caterpillar is the tree R′
k,2.

Proof. By Remark 4.2 in [3], every (i, 3, n)-maximal 1-caterpillar has at most one vertex of degree two.

Therefore, every (i, 3, n)-maximal 1-caterpillar is isomorphic to one of the graphs R′
k, R′

k,s for some k

and 1 ≤ s ≤ dk/2e. Thus, the only (i, 3, 2k + 2)-maximal 1-caterpillar is the tree R′
k.

Now, let n = 2k + 1. Obviously, the equality

i(R′
k) = i−(R′

k, vs) + i+(R′
k, vs) = i(R′

k,s) + i(R′′
s−1) · i(R′′

k−s)

holds for all 3 ≤ s ≤ k (putting i(R′′
0) = 2 and i(R′′

1) = 5, we may assume it fulfilled also for s ∈ {1, 2}).

Therefore,

arg max
1≤s≤k

i(R′
k,s) = arg min

1≤s≤dk/2e
(
i(R′′

s−1) · i(R′′
k−s)

)
.

Introduce ik , i(R′′
k); then ik = 2ik−1 + 2ik−2 (k ≥ 2) and i0 = 2, i1 = 5. Put Φk,s , is−1 · ik−s.

Prove by induction that

arg min
1≤s≤dk/2e

Φk,s = {2}.

This is not hard to check for all 2 ≤ k ≤ 5. Suppose that k ≥ 6 and for all k′ < k we have the equality

arg min
1≤s≤dk′/2e

Φk′,s = {2}.

Using the equality Φk,2 = 2Φk−1,2 + 2Φk−2,2 and the inequality

min(a1, b1, c1) + min(a2, b2, c2) ≤ min(a1 + a2, b1 + b2, c1 + c2),

valid for all its real arguments, we can easy validate the inequality Φk,2 < min(Φk,1, Φk,3, Φk,4) by in-

duction. Assume from now on that 4 ≤ s ≤ dk/2e. Then k − s− 1 ≥ 2.
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We have

Φk,s − Φk,s+1 = is−1 · ik−s − is · ik−s−1

= is−1 · (2ik−s−1 + 2ik−s−2)− (2is−1 + 2is−2) · ik−s−1 = 2(is−1 · ik−s−2 − is−2 · ik−s−1)

= 2((2is−2 + 2is−3) · ik−s−2 − is−2 · (2ik−s−2 + 2ii−s−3))

= 4(is−3 · ik−s−2 − is−2 · ik−s−3) = 4(Φk−4,s−2 − Φk−4,s−1).

Thus, for 4 ≤ s′ ≤ s ≤ dk/2e, we have

Φk,s′ − Φk,s = 4(Φk−4,s′−2 − Φk−4,s−2).

Putting s′ = 4 and using the induiction assumption, we infer

Φk,4 − Φk,s = 4(Φk−4,2 − Φk−4,s−2) ≤ 0;

i.e., Φk,4 ≤ Φk,s for s ≥ 4. This and Φk,2 < min(Φk,1, Φk,3,Φk,4) imply that

arg min
1≤s≤dk/2e

Φk,s = {2}.

Hence, the only (i, 3, 2k + 1)-maximal 1-caterpillar is the tree R′
k,2.

Lemma 18 is proved.

Let n ≥ 5. By Lemma 18, there exists a unique (i, 3, n)-maximal 1-caterpillar T ∗n that is isomorphic

to the tree R′
n/2−1 for even n and to the tree R′

(n−1)/2,2 for odd n. There are exactly two nonisomorphic

trees with four vertices, i.e., P4 and K1,3; moreover, i(P4) = 8 and i(K1,3) = 9. Therefore, put T ∗4 , K1,3

and T ∗n , Pn if 1 ≤ n ≤ 3 and T ∗0 , P1. By Lemma 17, there exists a unique (xi, 4, 2k)-maximal 2-

caterpillar, and it is isomorphic to the tree ext(T ∗k ). Using Lemma 16, by analogy with Lemmas 12–14

and Theorem 5, we can prove that every (xi, 4, 2k + 1)-maximal 2-caterpillar is a 4-build-up of T ∗k−2.

Thus, we have

Theorem 6. There exists a unique (xi, 4, 2k)-maximal 2-caterpillar, and it is isomorphic

to the tree ext(T ∗k ). Each (xi, 4, 2k + 1)-maximal 2-caterpillar is a 4-build-up of T ∗k−2.
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