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Preface

Descriptor linear systems theory is an important part of control systems theory and
has attracted much attention in the last decades. Many researchers pay a great
attention to solving analysis and control design of descriptor systems. In the last 30
years, differential-algebraic equations have become a widely accepted tool for the
modeling and simulation of constrained dynamical systems in numerous applica-
tions, such as mechanical multibody systems, electrical circuit simulation, chemical
engineering, control theory, fluid dynamics, and many other areas.

Problems of sensitivity reduction or external disturbance attenuation are
well-known in modern control theory. The mostly studied ones are LQG/H2 and
H1 control problems. In LQG/H2 optimal theory the Gaussian white noise
sequence is considered as the input disturbance. In discrete-time H1 control
approach input disturbances are considered as sequences with limited power, i.e. the
sequences are square summable. The discrete-time LQG/H2 and H1 control
problems were successfully generalized on the class of descriptor systems.
Anisotropy-based approach deals with the stationary random Gaussian signals with
known mean anisotropy level a � 0, which has a sense of “spectral color” of the
signal. Similar to H2 and H1 norms, anisotropic norm defines a performance
index of the system from the input to output. The key feature of anisotropy-based
approach is that anisotropic norm of the system lies between the scaled H2-norm
and H1-norm. Anisotropy-based control theory allows to develop unified
theoretical framework to performance analysis and control synthesis, which covers
popular H2- and H1-approaches as limiting cases. From the practical point of
view additional information about the input disturbance allows to expend less
energy for control, and, at the same time, remove strong assumption that the input
disturbance is white noise sequence.

This book addresses the original research on anisotropy-based analysis and
control design theory for discrete-time descriptor systems. The book consists of
seven chapters. The first chapter illustrates a variety of practical applications of
descriptor systems. The aim of the second chapter is to provide a background
material on linear discrete-time descriptor systems. The rest part of the book
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consists of authors’ results on analysis and control of discrete-time descriptor
systems in presence of colored noise.

First of all, we are grateful to a number of people who helped in reviewing and
improving of the book, especially, Alexander B. Kurzhanski, Alexander S.
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Introduction

A process has to have qualitative and quantitative description as prerequisite for
solving control problems. The most common way of description is mathematical
model of control object or the workflow.

Mathematical models of control systems are designed based on well-known laws
of nature: physical, chemical, biological laws, etc.

These laws are usually described by differential and algebraic equations based on
laws like Newton’s second law or Kirchhoff’s law. Plant models are normally done
by differential or difference equations. However, in many cases, such description is
not sufficient.

Attempts to represent systems only by differential or difference equations might
result in a loss of relevant information and arrive to a description of the system in
abstract variables, so called phase variables. It can create problems for practical
realizations of controllers and diminish the quality of real object’s control.

During design of mathematical model with real physical values, a designer has to
account for the fact that system description could contain not only differential
equations, but also algebraic constraints and relations.

As a rule, a system of algebraic-differential equations, describing control system,
cannot be solved for the first derivative. This situation explains a new class of
systems, called algebraic-differential systems. Algebraic-differential systems [1] are
also called singular systems [2–4], generalized state-space systems (or generalized
systems) [5], implicit systems [6, 7] or descriptor systems [8, 9]. The origin of
descriptor systems theory dates back to the works of P. Dirac on generalized
Hamiltonian systems [10–12]. In modern science the main idea discussed in these
works, is called the differentiation index of semi-explicit descriptor systems.

A geometric method of studying the so-called constrained systems covered in
the works of Dirac. This method has found its application in mechanics [13–21].

Mechanical systems, represented as descriptor systems, have become a subject
of extensive research [22–24].

Further development of the theory on parametrized sets of bilinear form can be
found in works of K. Weierstrass and L. Kronecker [25, 26]. F. R. Gantmacher used

xiii
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matrix pencils [27] to analyze matrices of linear normal systems with possible
degeneracies of the main matrix coefficient.

A large number of works on descriptor systems also applies to the theory of
electrical circuits. Presence of differential and algebraic equations in such systems
involves a combination of differential equations describing the behavior of reactive
elements, and algebraic relations, based on Kirchhoff’s laws and characteristics of
elements [28–31].

Mathematical theory of differential-algebraic systems began to develop in the
1970s independently in various fields of technology. We can mention the works of
Gear [32], Takens [33], as well as monographs by Campbell [2, 3] and Petzold [34],
released in the early 1980s. In these works, the main attention was focused on
numerical aspects of descriptor systems modeling. Currently, much attention is paid
to differential-algebraic systems in partial derivatives [35–37] and stochastic
descriptor systems [38].

Descriptor systems have found their application in modeling the motion of
aircrafts [39], chemical processes [40], circuit technique [8, 9], economic systems
[41], description of interconnected systems of high order [42], technical systems
[43], energy systems [44] and robotics [45].

Descriptor systems have some specific differences from systems described
exclusively by differential or difference equations, which we will call normal
systems.

Descriptor systems are characterized by the following properties [46, 47].

• The transfer function of a descriptor system may not necessarily be strictly
proper.

• For arbitrary bounded initial conditions generalized functions:

– can be in the solutions of algebraic-differential equations (impulsive
behavior),

– can depend on future for algebraic-difference equations (noncausal
behavior).

• A solution of a linear algebraic-differential equation typically contains three
components:

– limited dynamic components, corresponding to the differential equations;
– non-dynamic components, corresponding to the algebraic equations;
– unlimited dynamic components from the set of generalized functions, the

presence of which depends on the smoothness of the input signal and on
initial conditions.

Study of descriptor systems is promising from the fundamental research point of
view as well as for practical applications. Significant differences of descriptor
systems from normal systems demanded development and generalization of
mathematical tools.

xiv Introduction
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A significant number of fundamental concepts and results for nominal systems
have been successfully generalized for descriptor systems:

• solvability of algebraic-differential equations, study of controllability and
observability [4];

• canonical, equivalent forms and representations of descriptor systems [48–50];
• minimal realizations [52–54];
• equivalence of systems [4, 47, 55, 56];
• regularity and regularization [57–62];
• stability and stabilization [63–66];
• modal control [4, 67–70];
• linear-quadratic optimal control [46, 71, 72];
• design of observers and filtering [73–77];
• Lyapunov’s theorems and equations [78–81];
• model reduction [82, 83];
• H2 and H1 control [66, 84–87].

Let us consider for a moment the tasks of LQG/H2 and H1 control. In this
case, the control system is designed, assuming that some external disturbance is
influencing the system.

Theory of design for linear-quadratic Gaussian controllers appeared at the end of
50s in 20th century and it is associated with the name of R. Kalman.

This theory provided a powerful tool for multidimensional control systems
design with quadratic quality criterion [88].

The algorithm of control was designed with the assumption that systems are
under disturbances in the form of Gaussian white noise.

This assumption reduced the design problem to the problem of minimizing the
quality criterion, that is quadratic for control and state.

This problem can be reduced to the problem of H2-optimization, where H2-
norm of the system’s transfer function supports the quality criterion.

The most significant disadvantage of this approach is loss of stability of the
system under a small perturbation in model description. This deficiency was
investigated in [89].

For the closed-loop system, the design problem for stabilizing controllers that
minimize H1-norm of the transfer function was stated and solved in [90], this
problem got its further development in works [91–95].

Such a problem belongs to optimal control problems, where H1-norm of the
transfer function is the quality criterion for the closed-loop system. Another
important factor of the resulting control law in real life application is the degree of
conservatism, it stands for the energy cost actuators of the control object, imple-
menting the law. It is known that H2-controllers are not robust against the intensity
of input disturbance [89], while H1-controllers are too conservative.

Among approaches allowing reduction of conservatism of controllers, is the
approach in which the system is subjected to random disturbances with imprecisely
known probability characteristics.

Introduction xv
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Additional information about the input disturbance allows to expend less energy
for control, and, at the same time, remove the strong assumption that the input
disturbance is white noise sequence.

This concept is related to an application of information-theoretical quality cri-
teria, and it is called stochastic H1-optimization.

One of such information criteria is a stochastic norm of the closed-loop system.
Stochastic norm is induced by power norm of random signals that belong to specific
class of probability distributions. Anisotropic norm is a special case of a stochastic
norm. This norm is used when input disturbance is a Gaussian random sequence
with zero mean and bounded mean anisotropy [96, 97]. The latter is a measure of
correlation for random vector components in a sequence or, in other words, a
measure of random sequence deviation from Gaussian white noise sequence also
known as “spectral color”.

Minimization of anisotropic norm of the transfer function for a closed-loop
system in anisotropy-based controllers was first stated in [97] and solved in [98].
Paper [99] shows that a-anisotropic norm as a function of its parameter a� 0, has
H2- and H1-norms as its limiting cases. This implies that design problem of
anisotropy-based controllers includes classical problems of H2- and H1-optimi-
zation as limiting cases.

[100] shows that H2- and H1-controllers are limiting cases of
anisotropy-based controller. This monograph introduces reader to the solutions
of the anisotropy-based analysis and design for linear stationary descriptor systems.

The content of the book: Chapter 1 deals extensively with practical applications
of descriptor systems. Chapter 2 is dedicated to theory basics of discrete-time
descriptor systems. Chapter 3 is dedicated to anisotropy-based performance anal-
ysis using Riccati and convex optimization techniques. Chapter 4 deals with
optimal anisotropy-based control for descriptor systems. Chapter 5 deals with
suboptimal anisotropy-based control for descriptor systems. Chapter 6 develops
anisotropy-based performance analysis with nonzero mean input sequences.
Chapter 7 presents anisotropy-based analysis and robust control problems for
uncertain descriptor systems.
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Chapter 1
Practical Application of Descriptor
Systems

Mathematical Modeling Using Descriptor Systems

Systems whose variables describe some physical processes are called descriptor
systems. Let’s consider the following simple example of such systems.

The object of mass m shown in Fig. 1.1 has position x(t) and speed v(t). It is
driven by force F(t). Equations describing the system have the form:

ẋ(t) = v(t), (1.1)

mv̇(t) = F(t). (1.2)

Introducing notations x(t) = ξ1(t) and v(t) = ξ2(t), these equations can bewritten
in a state-space representation as

[
1 0
0 m

] [
ξ̇1(t)
ξ̇2(t)

]
=

[
0 1
0 0

] [
ξ̇1(t)
ξ̇2(t)

]
+

[
0
1

]
F(t). (1.3)

System (1.3) is descriptor because its variables describe physical processes. Sys-
tem (1.3) is nonsingular and can easily be rewritten in the form of the normal system.

However, there are situations when additional restrictions affect the physical sys-
tem. Then a mathematical model of the plant or process includes not only differential
but algebraic equations as well.

In general, a descriptor system is given by the relation:

F(ẋ(t), x(t), t) = 0, (1.4)

the output equation is given as

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Practical Application of Descriptor Systems

Fig. 1.1 Body moved by
force F(t).

h(x(t), t) = 0. (1.5)

BeforeGear’sworks appeared [1], descriptor systems in the form (1.4) had usually
been rewritten by means of analytical transformations in ODE form:

ẏ(t) = g(y(t), t). (1.6)

This made it possible to reduce the dimension of the original system; on the other
hand, that representation required solving complex algebraic equations that in the
general case had no analytical solutions for high-order systems.

Another possible way to get rid of algebraic equations was their differentiation in
order to obtain an ordinary differential equation with the same number of variables
as for the original system. The approach described above is time-consuming because
of the need to use the implicit function theorem.

However, due to a possible change of basis, obtained state variables would have no
physical meaning (i.e., they were abstract phase variables). Moreover, as a result of
the numerical integration of the resulting system of ordinary differential equations,
the solution could exceed the area limits defined by algebraic equations. Descriptor
systems given in so-called special forms are the most studied at present. Take a closer
look. Suppose that the relation in system (1.4) could be extracted with respect to the
derivative ẋ(t). Then descriptor system (1.4) and (1.5) is

E(x(t))ẋ(t) = F̃(x(t), u(t), t), (1.7)

y(t) = H̃ (x(t), u(t), t).

Assuming that rank
(

∂E(x(t))
∂x

)
= const, we can rewrite (1.7) in the form
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1 Practical Application of Descriptor Systems 3

ẋ1(t) = f1(x1(t), x2(t)),

0 = f2(x1(t), x2(t)).

This form is called semi-explicit.
A linear stationary system is also one of the special descriptions of descriptor

systems and has the form:

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).

As mentioned above, algebraic relations between variables do not allow us to
solve the original equations with respect to the derivative. For example, in the case
of linear stationary systems matrix E is singular; that is, rank (E) < n. This fact does
not allow inverting matrix E and transforming the descriptor system to the system
of ordinary differential equations.

Here we consider some practical applications related to the construction of math-
ematical models of processes and control plants in descriptor form.

1.1 Chemistry and Biology

Descriptor systems found theirwide application in thefields of chemistry andbiology.
This is due to laws such as the transfer of mass and energy. We start a review of
mathematical models with an isothermal reactor.

1.1.1 Isothermal Reaction in an Isothermal Batch Reactor
System

A kinetic model describing the chemical reaction in an isothermal batch reactor
system is obtained in [2]. The reaction occurs in an anhydrous, homogeneous, liquid
phase catalyzed by a completely dissociated species.

The desired reaction is given by

HA + 2BM → AB + MBMH

where AB is the desired product.
The reaction is initiated by adding the catalystQM to the batch reactor containing

two miscible reactants with reactant BM in excess.
The catalyst QM is initially assumed to be 100% dissociated to Q+ andM−ions.

The following mechanism is proposed to describe the reaction.
Slow Kinetic Reactions
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4 1 Practical Application of Descriptor Systems

M− + BM ⇐k−1
k1 ⇒ MBM−,

A− + BM k2 ⇒ ABM−,

M− + AM ⇐k−3
k3 ⇒ ABM−.

Rapid Acid-Base Reactions

MBMH ⇐ K1 ⇒ MBM− + H+,

HA ⇐ K2 ⇒ A− + H+,

HABM ⇐ K3 ⇒ ABM− + H+.

In order to derive a model to account for these reactions, it is necessary to distinguish
between the overall concentration of species and concentration of its neutral form.
Overall concentrations are defined for three components based on neutral and ionic
species.

[MBMH ] = [(MBMH )N ] + [MBM−],

[HA] = [(HA)N ] + [A−],

[HABM ] = [(HABM )N ] + [ABM−],

where [ ] denotes concentration of the species in gmol/kg. By assuming the rapid
acid-base reactions are at equilibrium, the equilibrium constants K1, K2, K3 can be
defined as follows.

K1 = [MBM−][H+]
[(MBMH )N ] ,

K2 = [A−][H+]
[(HA)N ] ,

K3 = [ABM−][H+]
[(HABM )N ] .

Anionic species may then be represented by

[MBM−] = K1[MBMH ]
(K1 + [H+]) ,

[A−] = K2[HA]
K2 + [H+] ,

[ABM−] = K3[HABM ]
K3 + [H+] .

Material balance equations for the three reactants in slow kinetic reactions yield
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1.1 Chemistry and Biology 5

d [M−]
dt

= −k1[M−][BM ] + k−1[MBM−] − k3[M−][AB] + k−3[ABM−],

d [BM ]
dt

= −k1[M−][BM ] + k−1[MBM−] − k2[A−][BM ],

d [AB]
dt

= −k3[M−][AB] + k−3[ABM−].

As we can see from stoichiometry, rate expressions can also be written for the
total species

d [MBMH ]
dt

= k1[M−][BM ] + k−1[MBM−],

d [HA]
dt

= k2[A−][BM ],

d [HABM ]
dt

= k2[A−][BM ] + k3[M−][AB] − k−3[ABM−].

An electroneutrality constraint gives the hydrogen ion concentration [H+] as

[H+] + [Q+] = [M−] + [MBM−] + [A−] + [ABM−].

We also assume
k3 = k1 and k−3 = 0, 5k−1

in terms of similarities of the reacting species. Denoting the amount of the ith reactant
by xi, we get a mathematical model in the form:

ẋ1 = −k2x2x8,

ẋ2 = −k1x2x6 + k−1x10 − k2x2x8,

ẋ3 = k2x2x8 + k1x4x6 − 0.5k−1x9,

ẋ4 = −k1x4x6 + 0.5k−1x9,

ẋ5 = k1x2x6 + k−1x10,

ẋ6 = −k1x2x6 − k1x4x6 + k−1x10 + 0.5k−1x9,

0 = −x7 + x6 + x8 + x9 + x10 − Q+,

0 = −x8(K2 + x7) + K2x1,

0 = −x9(K3 + x7) + K3x3,

0 = −x10(K1 + x7) + K1x5.

This mathematical model is a nonlinear descriptor system, and consists of six differ-
ential and four algebraic equations.
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6 1 Practical Application of Descriptor Systems

Parameter Q+, that stands for the amount of catalyst in the reactor, is known, as
paid before the reaction.

1.1.2 Chemical Reaction of Urethane

Consider a chemical process that takes place in the urethane reactor system. The
reactions are given as follows.

A + B → C,

A + C � D,

3A → E,

where A is phenyl isocyanate, B is butanol, C is urethane, D is allophanate, and E is
isocyanurate.

A mathematical model describing the reaction of isocyanate (n1), butanol (n2),
urethane (n3), allophanate (n4), and isocyanurate (n5) consists of three differential
and three algebraic equations.

ṅ3 = V (r1 − r2 + r3),

ṅ4 = V (r2 − r3),

ṅ5 = V r4,

0 = n1 + n3 + 2n4 + 3n5 − na1 − n1ea(t),

0 = n2 + n3 + n4 − na2 − n2eb(t),

0 = n6 − na6 − n6ea(t) − n6eb(t),

where n6 is the solvent of dimethylsulfoxide, n3(0) = 0, n4(0) = 0, n5(0) = 0, and
the following parameters are

V = ∑6
i=1

Mini
ρi

, k1 = kref 1 exp(−Ea1(1/T (t)−1/Tref 1(t))
R ),

r1 = k1
n1n2
V 2 , k2 = kref 2 exp(−Ea2(1/T (t)−1/Tref 2(t))

R ),

r2 = k2
n1n2
V 2 , k3 = k2/kc,

r3 = k3
n4
V , k4 = kref 4 exp(−Ea4(1/T (t)−1/Tref 4(t))

R ),
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1.1 Chemistry and Biology 7

r4 = k4
n21
V 2 , kc = kc2 exp(− dh2(1/T (t)−1/Tg2(t))

R ).

Two control feeds have the form of nonincreasing functions feeda(t) and feedb(t),
and determine n1ea = na1ea feeda(t), n2eb = na2eb feedb(t), n6ea = na6ea feeda(t),
and n6eb = na6eb feedb(t). Mole ratios of the active ingredients and the initial volume
satisfy the constraints

0.1 ≤ MV1 ≤ 10,

0 ≤ MV2 ≤ 1000,

0 ≤ MV3 ≤ 10,

0 ≤ ga ≤ 0, 8,

0 ≤ gaea ≤ 0, 9,

0 ≤ gaeb ≤ 1,

0 ≤ Va ≤ 0.00075,

and they are connected with the other parameters by the following algebraic rela-
tionships.

MV1(na1 + na1ea) = na2 + na2eb,

MV2na1 = na1ea,

MV3na1 = na2eb,

ga(na1M1 + na2M2 + na6M6) = na1M1 + na2M2,

gaea(na1eaM1 + na6eaM6) = na1eaM1,

gaeb(na2ebM2 + na6ebM6) = na2ebM2,

Va = na1M1/ρ1 + na2M2/ρ2 + na6M6/ρ6,

that are nonlinear constraints. Numerical values of the parameters can be found in [3].

1.1.3 Evaporator

Consider a single-component system of phase equilibrium where there are gaseous
and liquid phases. The plant is shown in Fig. 1.2. Vapor (denoted by subscript V ) and
liquid (subscript L) are in a heated container. There are two components with masses
MV , ML, and temperatures TV and TL inside the tank. The system has a feed with
a flow F . In this model, two volume balance equations are under consideration for
the gaseous and liquid phases. Equations describing the dynamics of the process are
discussed below.
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8 1 Practical Application of Descriptor Systems

Conservation Laws
Mass balance is described by

ṀV = E − V,

ṀL = F − E − L.

Energy balance is given in the form:

U̇V = EhLV − VhV + QE,

U̇L = FhF − EhLV − LhL + Q − QE .

Transfer equations of mass and energy are given below.

E = (kLV + kVL)A(P∗ − P), (1.8)

QE = (uLV + uVL)A(TL − TV ), (1.9)

where the subscript LV in transfer coefficients of mass and energy ki and ui means
a transfer from liquid to vapor, and VL from vapor to liquid. The coefficients for VL

and LV are usually different.
Balance of volumes equation is

VV = VT − VL. (1.10)

Control laws are
L = f1(ML,P) or L = f2(ML).

The relation between the variables is expressed as

hV = hV (TV ,P),

hL = hL(TL,P),

hLV = hLV (TL,P),

hF = hF (TF ,P),

kLV = kLV (TL,TV ,P),

kVL = kVL(TL,TV ,P),

uLV = uLV (TL,TV ,P),

uVL = uVL(TL,TV ,P),

ρL = ρL(TL,P).
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1.1 Chemistry and Biology 9

Notations and variables shown in the example are the following.

MV Mass of vapor
UV Internal energy of vapor
F Feed speed
L Flow rate of liquid
TV Temperature of vapor
Q Power of a heat source
P System pressure
A Surface area of the phase boundary
VV Vapor volume
hV Vapor enthalpy
hF Feed enthalpy
ρL Liquid density
VL Liquid volume
ML Liquid mass
UL Internal energy of liquid
V Vapor flow rate
E Speed of phase separation
TL Liquid temperature
P∗ Vapor pressure
R Universal gas constant
VT Tank volume
hL Liquid enthalpy
mw Molecular mass
hLV Vapor enthalpy at the interface
ki Exchange ratio weight
ui Heat transfer coefficient

1.1.4 Multispecies Food Chain

This problem concernsmodeling of themultispecies ratio of predator-prey in a closed
area [4]. We assume that the model consists of s individuals where the individuals
with numbers s/2 + 1, . . . , s (predators) have an infinitely fast reaction. Then we
have

∂ci

∂t
= fi(x, y, t, c) + di(c

i
xx + ciyy), (i = 1, 2, . . . , s/2), (1.11)

0 = fi(x, y, t, c) + di(c
i
xx + ciyy), (i = s/2 + 1, . . . , s), (1.12)

where

fi(x, y, t, c) = ci(bi +
s∑

j=1

aijc
j). (1.13)
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10 1 Practical Application of Descriptor Systems

Fig. 1.2 Evaporator

cx stands for the partial derivative for the corresponding variable.
In the general case, coefficients of mutual influence and interpenetration (aij, bi,

di) can depend on (x, y, t).
In the simplest case, if we consider a model consisting of p species of predators

and p species of prey with the total number of individuals (s = 2p), located in vector
c in series, the coefficients would be equal to

aii = −1, ∀i
aij = −0.5 · 10−6 (i ≤ p, j > p),

aij = 104 (i > p, j ≤ p);

the other coefficients are aij = 0,

bi = (1 + αxy + β sin(4πx) sin(4πy)), (i � p),

bi = −(1 + αxy + β sin(4πx) sin(4πy)), (i > p),

di = 1, (i < p), (1.14)

di = 0.05, (i > p). (1.15)

All boundary conditions have zero derivatives on the normal. Parameters α and
β are chosen positive in order to get stable solutions. Initial conditions are chosen
in such a way that they satisfy boundary conditions and are close to the limits of the
following type.
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1.1 Chemistry and Biology 11

ci = 10 + i(16x(1 − x)(1 − y))2, (i = 1, s/2),

ci = −(bi +
s/2∑
j=1

aijc
j)/aii, (i = s/2 + 1, s).

1.2 Economic Systems

A distinctive feature of theoretical interindustry dynamic models is the description
of the relations “input – output” in the form of an interbranch balance matrix, where
each product is represented by only one production method, and each method pro-
duces only one product. Benefits of dynamic interindustry among the economic
dynamics models are determined by the following factors. First, they are detailed
(disaggregated) analogues of reproduction of the social product and national income
models. Second, they represent a generalization of the static (balance and optimiza-
tion) interindustry models. Third, they serve as the theoretical and methodological
basis for application of dynamic models with matrices of interindustry balance.

Example 1.1 The dynamic interindustrymodel, proposed byW. Leontief in the early
1950s, is a classic example of systems of difference and algebraic equations in the
study of economic growth. This model is represented as disaggregation of simple
reproduction elements of the social product dynamic model, where endogenous and
exogenous macro variables are replaced by vectors, and technological macro param-
eters are given by matrices. The model has the form [5]

x(k) = Ax(k) + E(x(k + 1) − x(k)) + d(k),

where x(k) is the n-dimensional production vector of n sectors; E(x(k+1)−x(k)) is
the overall amount for capacity expansion (see [6]), which often appears in the form
of capital; d(k) is the vector that includes demand or consumption; and E ∈ R

n×n is
the capital coefficient matrix.

A ∈ R
n×n is an input-output (or production) matrix; Ax(k) stands for the fraction

of production required as input for the current production. The model’s equation can
be given as

Ex(k + 1) = (I − A + E)x(k) − d(k).

In multisector economic systems, the increased production in one sector often
needs investments in all other sectors of the economy. Moreover, in practical cases,
only a few sectors can offer investment of capital to other sectors. Thus, most of the
elements of matrix B are equal to zero, except for a few elements. E is often singular.
In the general case, the system considered in this example is a typical discrete-time
descriptor system.
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12 1 Practical Application of Descriptor Systems

1.3 Large-Scale Systems

In a computer simulation, representation of large-scale systems in descriptor form is
quite attractive in the context of computation.

This is because transformation from the implicit descriptor form into a normal
one requires matrix inversion. For large-scale systems it may take considerable time;
in addition, the inversion of matrices can be ill-conditioned, which may lead to
increased computational errors.

In some cases, such a transition to normal systems is not necessary. As an example
consider the following system, given in descriptor form [7].

Example 1.2 [7] Consider a class of interconnected large-scale systems with sub-
systems of

ẋi(t) = Aixi(t) + Biai(t), (1.16)

bi(t) = Cixi(t) + Diai(t), i = 1, 2, . . . ,N ,

where xi(t), ai(t), bi(t) are substate, control input, and output of the ith subsystem,
respectively. By denoting

x(t) =

⎡
⎢⎢⎢⎣
x1(t)
x2(t)

...

xN (t)

⎤
⎥⎥⎥⎦ , a(t) =

⎡
⎢⎢⎢⎣
a1(t)
a2(t)

...

aN (t)

⎤
⎥⎥⎥⎦ , b(t) =

⎡
⎢⎢⎢⎣
b1(t)
b2(t)

...

bN (t)

⎤
⎥⎥⎥⎦ .

A = diag(A1,A2, . . . ,AN ), B = diag(B1,B2, . . . ,BN ),

C = diag(C1,C2, . . . ,CN ), D = diag(D1,D2, . . . ,DN ),

the expression (1.16) can be rewritten as

ẋ(t) = Ax(t) + Ba(t), (1.17)

b(t) = Cx(t) + Da(t).

Assume that the subsystems’ interconnection is linear

a(t) = L11b(t) + L21u(t) + R11a(t) + R12y(t), (1.18)

y(t) = L21b(t) + L22u(t) + R21a(t) + R22y(t)

where u(t) is the overall input of the large-scale system; y(t) is its overall measurable
output; Lij, Rij, i, j = 1, 2 are constant matrices of appropriate dimensions. Equa-
tions (1.17) and (1.18) form a large-scale system that cannot be given in the normal
form. In fact, S.P. Singh and R.-W. Liu [8] and L.R. Petzold [9] have proved that the
system composed by (1.17) and (1.18) could not be equivalent to a normal one. On
the other hand, if we choose a state variable as
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1.3 Large-Scale Systems 13

[
xT aT bT yT

]T
,

we get a system

⎡
⎢⎢⎣
I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ẋ(t)
ȧ(t)
ḃ(t)
ẏ(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A B 0 0
C D −I 0
0 R11 − I L11 R12

0 R21 L21 R22 − I

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x(t)
a(t)
b(t)
y(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0
0
L12
L22

⎤
⎥⎥⎦ u(t),

y(t) = [
0 0 0 I

] [
xT aT bT yT

]T
.

Consider interconnected subsystems via a simple example of parallel connection of
two capacitors in more detail.

Example 1.3 Consider two capacitors with capacities C1 and C2, respectively. Volt-
age changes on both capacitors are described by an ordinary differential equation
individually,

v̇1(t) = i1(t)

C1
, (1.19)

v̇2(t) = i2(t)

C2
. (1.20)

If these two subsystems are interconnected in parallel, we get the following equa-
tions:

v̇1(t) = i1(t)

C1
, (1.21)

v̇2(t) = i2(t)

C2
, (1.22)

0 = i1(t) + i2(t), (1.23)

0 = v1(t) − v2(t). (1.24)

This system has a differentiation index equal to 2, thus in order to get expressions
for i̇1(t) and i̇2(t) it is necessary to differentiate the first three equations.

This leads to the appearance of the second derivatives v̈1(t) and v̈2(t). Differentiat-
ing (1.24) twice, we can remove variables v̈1(t) and v̈2(t). Thus, differential equations
become solvable for i̇1(t) and i̇2(t). Combining differential equations for i̇1(t) and
i̇2(t) with (1.21) and (1.22), one can rewrite the initial descriptor system in the stan-
dard state-space form. However, in modeling behavior of the system with a parallel
connection of capacitors, voltages v1(t) and v2(t) cannot be selected independently
of each other.

Even if we choose the initial values of voltages v1(0) and v2(0) equal and known,
the unknown initial values v̇1(0), v̇2(0), i1(0), and i2(0) cannot be found, as the four
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14 1 Practical Application of Descriptor Systems

equations with four variables obtained are degenerate with respect to these unknown
variables.

Therefore the transition from a descriptor system to a normal one is not possible
for this example.

1.4 Constrained Mechanical Systems

Constrained linear mechanical systems can be described as follows.

M z̈(t) + Dż(t) + Kz(t) = Lf (t) + Jλ(t), (1.25)

Gż(t) + Hz(t) = 0, (1.26)

where z(t) ∈ R
n is the vector of coordinates, f (t) ∈ R

n is the input vector of
forces, λ(t) ∈ R

q is the vector of Lagrangian multipliers, M is a matrix of inertial
characteristics (usually,M is symmetric and positive definite),D is the damping and
gyroscopic matrix, K is the stiffness and circulator matrix, L is the force distribution
matrix, J is the Jacobian of the constraint, andG andH are the coefficient matrices of
the constraint equation. Allmatrices in (1.25) and (1.26) are known and constant ones
of appropriate dimensions. Relation (1.25) is a differential equation, whereas (1.26)
is the constraint equation.

Assume that a linear combination of positions (Cp) and velocities (Cv) is measur-
able; then the output equation has the form

y(t) = Cpz(t) + Cvż(t), Cp,Cv ∈ R
m×n. (1.27)

By choosing a state vector and an input vector as

x(t) =
⎡
⎣ z(t)
ż(t)
λ(t)

⎤
⎦ and u(t) = f (t),

equations (1.25)–(1.27) can be given in the form

Eẋ(t) = Ax(t) + Bu(t), (1.28)

y(t) = Cx(t), (1.29)

where

E =
⎡
⎣ I 0 0
0 M 0
0 0 0

⎤
⎦ , B =

⎡
⎣ 0
L
0

⎤
⎦ , A =

⎡
⎣ 0 I 0

−K −D J
H G 0

⎤
⎦ , C = [

Cp Cv 0
]
.

andrianovaog@gmail.com



1.4 Constrained Mechanical Systems 15

Fig. 1.3 Two connected one-mass oscillators

Consider some specific examples of constrained mechanical systems below.

1.4.1 Two Connected One-Mass Oscillators

Consider the mechanical system shown in Fig. 1.3 [10]. This system consists of two
one-mass oscillators connected by a dashpot element. Let

m1 = m2 = 5 kg , d = 1N · s/m , k1 = 2N/m , k2 = 1N/m.

Then equations (1.25)–(1.27) for this system can be obtained as follows.

[
5 0
0 5

] [
z̈1
z̈2

]
+

[
1 1
1 1

] [
ż1
ż2

]
+

[
2 0
0 1

] [
z1
z2

]
=

[−1
1

]
f +

[
1
1

]
λ,

[
1 1

] [
z1
z2

]
= 0,

y = [
1 0

] [
z1
z2

]
.

Matrices are given as

M =
[
5 0
0 5

]
, D =

[
1 1
1 1

]
, K =

[
2 0
0 1

]
,
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16 1 Practical Application of Descriptor Systems

L =
[−1

1

]
, J =

[
1
1

]
,

G = [
0 0

]
, H = [

1 1
]
,

Cp = [
1 0

]
, Cv = [

0 0
]
.

Based on these matrices, a linear descriptor system of the form (1.28) and (1.29)
for the system can be readily written out.

1.4.2 Cart Pendulum

Now we consider a rigid pendulum of length l with point mass m2 attached to a cart
with mass m1 that moves only in a horizontal direction. A cart is moved by external
force u; g denotes gravitational acceleration. Denote by x1, x2, x3 the cart position,
horizontal position, and vertical position of the cart, and mass m2, respectively.
The motion of the system can be described by the Euler–Lagrange equations. The
Lagrange function is given by

L (x, ẋ, λ) = T (x, ẋ) −U (x) −
N∑

k=1

λkhk(x),

where T (x, ẋ) denotes the kinetic energy, U (x) denotes the potential energy, λk are
elements of the vector of the Lagrangemultipliersλ, and hk(x) denotes the constraints
that restrict the motion of the system.

The Euler–Lagrange equation can be rewritten as

d

dt

(
∂

∂ ˙̂xL ( x̂, ˙̂x )

)
− ∂

∂ x̂
L ( x̂, ˙̂x ) = Fex, (1.30)

where x̂ = [
x λ

]T
, Fex is some external force (Fig. 1.4).

The kinetic energy of the cart pendulum is defined as

T (x, ẋ) = 1

2

(
m1ẋ

2
1 + m2(ẋ

2
2 + ẋ23)

)
,

the potential energy is
U (x) = m2gx3,

And the constraint is defined by

h(x) = (x2 − x1)
2 + x23 − l2 = 0.
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1.4 Constrained Mechanical Systems 17

Fig. 1.4 Cart pendulum

Denoting x4 = ẋ1, x5 = ẋ2, and x6 = ẋ3, we have the following dynamical model of
the cart pendulum.

ẋ1 = x4,

ẋ2 = x5,

ẋ3 = x6,

m1ẋ4 = 2λ(x2 − x1) + u, (1.31)

m2ẋ5 = −2λ(x2 − x1),

m3ẋ6 = −2λx3 − m2g,

0 = (x2 − x1)
2 + x23 − l2.

The measurable output is considered as a position of the pendulum. Hence, the
output equation takes the form

y = Cx =
[
0 1 0 0 0 0 0
0 0 1 0 0 0 0

]
x =

[
x2
x3

]
.

Linearizationof system (1.31) along the equilibriumpoint x0 = [
0 0 −l 0 0 0 m2g

2l

]T
gives us a system model of the form

Eδẋ(t) = Aδx(t) + Bu(t) + f (t),

δy(t) = Cδx(t),

where matrices A, B, and C are constructed in the form (1.28) and (1.29) with
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18 1 Practical Application of Descriptor Systems

M =
⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦ , K =

⎡
⎣

m2g
l −m2g

l 0
−m2g

l
m2g
l 0

0 0 m2g
l

⎤
⎦ , D = 03×3,

J = 2l, H = [
0 0 −2l

]
, G = 01×3, L = [

1 0 0
]T

, f (t) = [
0 0 0 0 0 −m2g 0

]T ;

δx(t) and δy(t) are deviations of x(t) and y(t), respectively.

1.4.3 Planar Crane Model

A crane is a mechanical system in plane Cartesian coordinates. It is represented in
Fig. 1.5. The coordinates x and z represent a horizontal and vertical position of the
load. The horizontal distance traveled by the cart of the crane from its initial position
d , and the length of the rope lowered from the top of the crane r, are also state
variables. State equations have the form:

Fig. 1.5 Planar crane model
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1.4 Constrained Mechanical Systems 19

M2ẍ = −τ sin(θ), (1.32)

M2z̈ = −τ cos(θ) + mg, (1.33)

M1d̈ = −C1ḋ + u1 + τ sin(θ), (1.34)

J r̈ = −C2ṙ − C3u2 + C2
3τ, (1.35)

0 = θ − ctg

(
x − d

z

)
, (1.36)

0 = r2 − (x − d)2 − z2, (1.37)

x = ϕ1(t), (1.38)

z = ϕ2(t), (1.39)

whereM1,M2, m are the masses of the cart, the cable with the handling system, and
the cargo, respectively. C1, C2, C3 are known constants. J is the moment of inertia
of the roller through which the cable is spanned. The tension of the cable τ and
deflection angle of the rope from the vertical axis θ are algebraic variables. Control
signals are the horizontal thrust of the cart u1 and the torque on the shaft of the
roller u2.

1.5 Robotics

In this section, we consider the model of a three-link planar manipulator, which is a
simplified model of a cleaning robot. Figure1.6 shows a schematic illustration of a
mobile manipulator cleaning the facade of a building [11]. The problem of develop-
ment of this kind of manipulator is mentioned in [12, 13]. The mobile manipulator
appertains to an important type of service robot widely utilized in disaster and emer-
gency relief, construction, public services, and environmental protection [14].

A simplified scheme of a three-link planarmanipulator is depicted in Fig. 1.7. This
manipulator cleans the region between points A and B. The robot fulfills its task by
repetitively moving the end-effector of the manipulator from point A to point B.

It is assumed that the cleaning flat surface is a rigid body and the end of the third
arm is a smooth and rigid plate. Thus, there are two constraints on the motion of the
robot:

• The restriction on the motion in the x direction, usually given as x ≤ 1.
• Orthogonality of the third arm to the cleaning surface, which can be described by

θ1 + θ2 + θ3 = 0.

Obviously, during the cleaning process these two constraints should be kept active.

Nonlinear Model

A motion of constrained robots can be easily modeled by the descriptor system
framework. The problem of modeling free robot motion is studied in [15].
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20 1 Practical Application of Descriptor Systems

Fig. 1.6 Three-link planar
manipulator

Dynamics of the three-link planar manipulator depicted in Fig. 1.7 is described
by the following equations in joint coordinates.

Mθ (θ)θ̈ + Cθ (θ, θ̇ ) + Gθ (θ) = uθ + FT
θ λ, (1.40)

ψθ(θ) = 0, (1.41)

where
θ = [

θ1 θ2 θ3
]T

is a vector of joint positions; uθ ∈ R
3 is a vector of control torques applied at the

joints. Fθ = ∂φθ/∂θ , λ ∈ R
3 is a vector of Lagrangian multipliers, and FT

θ λ is a
generalized constraint force. The constraint function ψθ(θ) is given by

ψθ =
[
l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3) − l

θ1 + θ2 + θ3

]
, (1.42)

where Mθ (θ) ∈ R
3×3 is a mass matrix, given in the form Mθ (θ) = [mij(θ)]3×3,
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Fig. 1.7 Simplified scheme
of three-link manipulator

m11(θ) = m1l
2
1 + m2(l

2
1 + l22 + 2l1l2 cos θ1) +

+m3(l
2
1 + l22 + l23 + 2l1l2 cos θ2) +

+m3(2l2l3 cos θ3 + 2l2l3 cos(θ2 + θ3)),

m12(θ) = m2(l
2
2 + l1l2 cos θ2) +

+m3(l
2
2 + l23 + l1l2 cos θ2 + 2l2l3 cos θ3) +

+m3l1l3 cos(θ2 + θ3),

m22(θ) = m2l
2
2 + m3(l

2
2 + l23 + 2l2l3 cos θ3),

m23(θ) = m3(l
2
3 + l2l3 cos θ3),

m33(θ) = m3l
2
3 .

Cθ (θ, θ̇ ) ∈ R
3 is the centrifugal and Coriolis vector, and is given by

Cθ (θ, θ̇ ) = CI (θ)ΘN + CII (θ)ΘS ,

where

ΘN = [
θ̇1θ̇2 θ̇1θ̇3 θ̇2θ̇3

]T
,

ΘS = [
θ̇2
1 θ̇2

2 θ̇2
3

]T
,
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and
CI (θ) = [cI ,ij(θ)]3×3, CII (θ) = [cII ,ij(θ)]3×3.

Coefficients cI ,ij(θ) and cII ,ij(θ) are equal to

cI ,11(θ) = −2m2l1l2 sin θ2 − 2m3l1(l2 sin θ2 + l3 sin(θ2 + θ3)),

cI ,12(θ) = −2m3l3(l2 sin θ3 + l1 sin(θ2 + θ3)),

cI ,13(θ) = cI ,12(θ),

cI ,21(θ) = cI ,32(θ) = cI ,33(θ) = 0,

cI ,22(θ) = cI ,23(θ) = −cI ,31(θ) = −2m3l2l3 sin θ3,

cII ,11(θ) = cII ,22(θ) = cI ,33(θ) = 0,

cII ,21(θ) = −cII ,12(θ) = (m2 + m3)l1l2 sin θ2 + m3l1l3 sin(θ2 + θ3),

cII ,31(θ) = −cII ,13(θ) = m3l3(l2 sin θ3 + l1 sin(θ2 + θ3),

cII ,32(θ) = −cII ,23(θ) = m3l2l3 sin θ3.

Gθ (θ) ∈ R
3 is a vector of gravity, which is given by

Gθ (θ) = [
g1(θ) g2(θ) g3(θ)

]T
with

g1(θ) = gm1l1 cos θ1 + gm2(l1 cos θ1 + l2 cos(θ1 + θ2)) +
+gm3(l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)),

g2(θ) = gm2l2 cos(θ1 + θ2) +
+gm3(l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)),

g3(θ) = gm3l3 cos(θ1 + θ2 + θ3).

Linearized Model

It is useful to represent the dynamics of the manipulator in Cartesian coordinates.
This is because the constraints on the environment as well as on the motion are often
easily described in these coordinates. Let

z = [
x y ϕ

]T
be a Cartesian vector representing position and orientation of the end effector. In
Cartesian coordinates, the equations (1.40) and (1.41) are written as follows.

Mz(θ)z̈ + Cz(θ, θ̇ ) + Gz(θ) = uz + FT
z λ, (1.43)

ψz(θ) = 0, (1.44)

where
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Mz(θ) = J−T (θ)Mθ (θ)J−1(θ),

Gz(θ) = J−T (θ)Gθ (θ),

Cz(θ, θ̇ ) = J−T (θ)
[
Cθ (θ, θ̇ ) − Mθ (θ)J−1(θ)J̇ (θ)θ̇

]
,

and
uz = J−T (θ)uθ ,

where Jacobian J (θ) satisfies ż = J (θ)θ̇ and is given by

J (θ) =
⎡
⎣−l1s1 − l2s12 − l3s123 −l2s12 − l3s123 −l3s123

l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123
1 1 1

⎤
⎦

with
s1 = sin θ1, s12 = sin(θ1 + θ2), s123 = sin(θ1 + θ2 + θ3),

c1 = cos θ1, c12 = cos(θ1 + θ2), c123 = cos(θ1 + θ2 + θ3).

Due to relations

x = l1c1 + l2c12 + l3c123, ϕ = θ1 + θ2 + θ3,

we obtain
ψz(z) = F0z − L0,

where

F0 =
[
1 0 0
0 0 1

]
, L0 =

[
l
0

]
.

Therefore,

Fz = ∂ψz(z)

∂z
= F0.

This means that the considered robot model has linear constraints in Cartesian
coordinates. This outcome is favorable in linearizing the model.

Choose the operating point of linearization as

zω = [
l l + Δl

2 0
]T

, żω = [
0 ẏω 0

]T
.

Then the linearized model can be obtained as follows.

M0δz̈ + D0δż + K0δz = S0δu + FT
0 δλ, (1.45)

F0δz = 0, (1.46)

where
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M0 = Mz |z=zω , (1.47)

D0 = ∂Cz

∂z
| z = zω
ż = żω

, (1.48)

K0 = ∂Cz

∂z
| z = zω
ż = żω

+∂Gz

∂z
|z=zω , (1.49)

S0 = J−T |θ=θω
, (1.50)

F0 = Fz. (1.51)

Here, δu = u − uω, δλ = λ − λω, δz = z − zω, angle θω is determined by zω
through inverse kinematics. Vector λω is two-dimensional. The first element of λω

is chosen to be equal to the desired contact force in the x direction, and the second
element is chosen to be zero. Then uω is suitably determined such that (1.45) remains
balanced.

Define the state vector:
xT = [

δzT δżT δλT
]

where
δz = [

δx δy δϕ
]T

and δλ = [
δλ1 δλ2

]T
.

Choosing δy, δλ1, and δλ2 as tracking outputs, system (1.45) and (1.46) can be
written in the linear descriptor form

Eẋ = Ax + Bu, (1.52)

y = Cx + Du, (1.53)

where

E =
⎡
⎣ I 0 0
0 M0 0
0 0 0

⎤
⎦ , A =

⎡
⎣ 0 I 0

−K0 −D0 FT
0

F0 0 0

⎤
⎦ , B =

⎡
⎣ 0
S0
0

⎤
⎦ , (1.54)

and

C =
⎡
⎣0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎦ , D = 0. (1.55)

1.6 Electrical Networks

Following [16], consider an electrical network that consists of B branches connected
to N nodes. Denote a current variable at each branch by iB(t) and a voltage variable
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at each node by vN (t). Equations of the circuit can be derived from the following
Kirchhoff’s laws.

1. The algebraic sum of currents in a node at any loop is zero.
2. The algebraic sum of voltage drops at any loop is zero.

Let the current be the flow of positive charge. Therefore we can define a current
direction from a positive node to a negative one. The structure of the circuit can be
described via a B × N network incidence matrix A. Element A(i, j) = ±1 if node j
is the ± node for the ith branch.

Denote the vector of current variables by iB(t). Then, from Kirchhoff’s current
law, ATiB = 0. By definition, the voltage drop across each branch is the difference
between the voltage at the positive node and the voltage at the negative node. Branch
and nodal voltages (vB(t) and vN (t)) are connected by the expression vB(t) = AvN (t).

Consider circuits with branches that include capacitors, inductors, and resistors.
Energy can be stored as a charge or an electrical field in a capacitor, and as amagnetic
field in an inductor. Resistors are used to reduce or increase power in a branch. Sup-
pose that the relationship between current andvoltage across branches is linear in such
circuits. The voltage-current relation across a branch with a resistor satisfies Ohm’s
law vR(t) = RiR(t) where positive definite matrix. For a linear capacitor and a linear
inductor voltage-current relations are given as iC(t) = Cv̇C(t) and vL(t) = Li̇L(t).
Networks with linear resistors, capacitors, and inductors are commonly referred to
as linear RLC-circuits.

There may also be voltage sources where vE(t) = e(t) for any current iE(t), and
current sources where iS(t) = i(t) for any voltage vS(t).

Divide the incidence matrix, branch currents, and branch voltages as follows.

A =

⎡
⎢⎢⎢⎢⎣

AE

AC

AR

AL

AS

⎤
⎥⎥⎥⎥⎦ , iB(t) =

⎡
⎢⎢⎢⎢⎣

iE(t)
iC(t)
iR(t)
iL(t)
iS(t)

⎤
⎥⎥⎥⎥⎦ , vB(t) =

⎡
⎢⎢⎢⎢⎣

vE(t)
vC(t)
vR(t)
vL(t)
vS(t)

⎤
⎥⎥⎥⎥⎦ .

The subscripts R, C, L, E, and S stand for a resistor, a capacitor, an inductor,
a voltage source, and a current source, respectively. The circuit’s equation can be
written as

Eẋ(t) + Gx(t) = f (t), (1.56)

where
E = diag(0,C, 0, 0, 0, 0, 0, 0,L, 0, 0),
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G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −I 0 0 0 0
0 0 0 0 0 0 0 −R 0 0 0

−I 0 0 0 0 0 0 0 0 0 AE

0 −I 0 0 0 0 0 0 0 0 AC

0 0 −I 0 0 0 0 0 0 0 AR

0 0 0 −I 0 0 0 0 0 0 AL

0 0 0 0 −I 0 0 0 0 0 AS

0 0 0 −I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 AT

E AT
C AT

R AT
L AT

S 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

x(t) =
[
vB(t)
iB(t)

]
,

f (t) = [
e(t)T 0 0 0 0 0 0 0 0 i(t)T 0

]T
.

The inductance matrix L is diagonal if inductors are uncoupled, and L � 0 if
they are mutually coupled. R and C are diagonal matrices with positive diagonal
elements, and I is an identity matrix. Therefore system (1.56) is quite sparse and can
be transformed to a semi-explicit form by changing variables. Equation (1.56) is still
valid if E and G depend on time.

Example 1.4 Consider a simple circuit network [7, 17] as shown in Fig. 1.8, where
voltage source Vs(t) is a driver (control input), R, L, and C stand for the resistor,
inductor, and capacity, respectively, as well as their quantities, and their voltages
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Fig. 1.8 RLC-circuit

are denoted by VR(t), VL(t), and VC(t), respectively. Then according to Kirchhoff’s
laws, we have the following circuit’s equation (descriptor system).

⎡
⎢⎢⎣
L 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

İ(t)
V̇L(t)
V̇C(t)
V̇R(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
1/C 0 0 0
−R 0 0 1
0 1 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

I(t)
VL(t)
VC(t)
VR(t)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
0

−1

⎤
⎥⎥⎦ Vs(t). (1.57)

Now we consider a linear circuit, composed only of voltage sources, resistors
with constant resistance matrix R, and capacitors with constant capacitance matrix
C. We suppose that the circuit is grounded; that is, there exists a path from each
node along branches to the ground. This assumption leads to linear independence of
rows of the incidence matrix A, so that rank (A) = N and N ≥ B. Note that each
row of A contains only two nonzero entries, +1 and −1. It means that two rows
of A are linearly dependent if and only if they are identical. In this case, the circuit
contains a two-branch loopbetween these twonodes, andonebranch could effectively
be eliminated from the circuit. For a linear RC-circuit with voltage sources, the
circuit must be connected, the voltage sources are independent, and there must be
no loops containing only capacitors. Such kinds of systems can easily be reduced to
the ODE system by straightforward algebraic computation. However, the sparsity of
the original system is generally destroyed by this process.

Descriptor systems with impulsive modes arise in circuits containing differential
amplifiers, which can be realized using operational amplifiers. An operational ampli-
fier is a three-terminal device with two input terminals and one output terminal, as
shown in Fig. 1.9. It is supposed that an ideal operational amplifier has no voltage
drop or current across the input branch, and its gain is said to be infinite.

For example, the operational amplifier in Fig. 1.9 satisfies the relation v3 = K(v1−
v2) for K ≈ 105. Consider a circuit with one differential amplifier as depicted in
Fig. 1.10. If we assume that an operational amplifier is ideal, the circuit’s equations
lead to the relation v3 = −CRė(t) where e(t) is a voltage source. The solution to
the circuit’s equations involves at least one derivative of the input function. These
equations have a differentiation index of DAE at least two. This index defines a
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Fig. 1.9 Operational amplifier

Fig. 1.10 Electrical circuit with one operational amplifier

Fig. 1.11 Electrical circuit with cascade connection of operational amplifiers

minimum number of differentiations of the initial DAE that is required to obtain
equivalent ordinary differential equations.

By cascading a series of differential amplifiers in a circuit as in Fig. 1.11, the
index of the resulting system can be made arbitrarily high. The index of the system
in Fig. 1.11 is at least four because v3 = −C3R3C2R2C1R1

...
e (t).
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1.7 Discretization of Partial Differential Equations

Themethod of solution of partial differential equations (PDEs) can lead to descriptor
systems [4]. Such methods are the method of lines (MOL) and moving grids.

Numerical methods for solving PDEs usually involve substituting all derivatives
by discrete difference approximations. MOL is also based on this discretization.
However, MOL provides several advantages of the existing software. For parabolic
PDEs, the typical MOL approach consists of discretization of the spatial derivatives.
This can be made, for example, by finite differences, which convert the PDE system
into an ODE initial conditions problem.

TheMOL approach has two important advantages. The first is computational effi-
ciency. Most ODE software is developed to be robust and computationally efficient.
The second one is discretization only of spatial derivatives. This fact allows reducing
the work required to develop a computer code.

As a rule, manyMOL problems lead to an explicit ODE. However, many practical
problems are more easily handled as algebraic-differential systems.

Example 1.5 As a first simple example consider the equation of MOL

∂y

∂t
= ∂2y

∂x2
,

defined in the region t ≥ 0 and 0 ≤ x ≤ 1 with boundary conditions given for y(t, 0)
and y(t, 1), and initial conditions given for y(0, x).

Taking a uniform spatial mesh of Δx, and mesh points xj = (j + 1)Δx, 1 ≤
j ≤ (1/Δx) − 1 = N , and using centered differences, we obtain the semi-explicit
algebraic-difference equation for the variables yi(t) = y(t, xi)

ẏj − yj−1 − 2yj + yj+1

(Δx)2
= 0, j = 2, . . . ,N − 1,

y1 − y(t, 0) = 0,

yN − y(t, 1) = 0.

This particular problem is easily reformulated as an ODE, but this is not always
the case.

Example 1.6 Consider the following equations for ignition of a single-component
nonreacting gas in a closed cylindrical vessel in Lagrangian coordinates [16]

∂T

∂t
− 1

ρcp

∂p

∂t
= 1

cp

∂

∂ψ

(
ρr2λ

∂T

∂ψ

)
, (1.58)

0 = ∂r

∂ψ
− 1

ρr
, (1.59)

0 = ∂p

∂ψ
, (1.60)

0 = p − ρ
RT

W
(1.61)
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with conservation of mass ∫ R

0
ρrdr = ψR.

Because (1.61) can be used to evaluateρ, we consider a descriptor systemobtained
by discretizing (1.58)–(1.60) with state variables r in the sense of spatial coordinates,
T is temperature, and p stands for pressure. Boundary conditions are given at the
center (ψ = 0)

r = 0, ∂T
∂ψ

= 0,

and at the vessel boundary (ψ = ψR)

r = R, T = Tw.

Notice that after discretization, time derivatives appear only in the equations
derived from (1.58) and do not appear from (1.59) and (1.60). There are only two
boundary conditions on r and T , but none on p. Boundary implicit conditions on p
can also be given in algebraic form.

Now we show one more example of the system where the MOL and descriptor
representation are appropriate.

Example 1.7 Consider the flow of an incompressible viscous fluid described by
Navier–Stokes equations

∂u

∂t
+ (u · ∇)u = −∇ρ + γ∇2u, (1.62)

∇ · u = 0, (1.63)

where u is a velocity (u may have a dimension equal to two or three), p is a scalar
pressure, and γ is a kinematic viscosity. Equation (1.62) is the momentum equation.
Equation (1.63) is the incompressibility condition. After spatial discretization of the
expressions with a finite difference or finite element method, the equations take the
form

MU̇ (t) + (K + N (U (t)))U (t) + CP(t) = f (U (t),P(t)),

CTU (t) = 0,

where vectors U (t) and P(t) are approximations of u(t, x) and p(t, x), respectively,
mass matrix M is either an identity matrix if the finite differences method is used
or a symmetric positive definite matrix in the case of the finite elements method,
discretization of the operator ∇ is C, and the forcing function f comes from the
boundary conditions.

As can be seen from Example 1.7, PDEs can be easily approximated by virtue of
algebraic-differential equations.
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Conclusion

The variety of differential-algebraic systems is not limited only by the above-
mentioned examples and applications. Different examples of technical systems can
be found, for example, in [7, 9, 10, 16, 18].

The main purpose of this chapter is to show the features of descriptor systems
and to give an idea of their use in different applications. Many of the considered
examples can also be rewritten in the form of ordinary equations, but there can be
difficulties in some transformations. In addition, the equations, written in descriptor
variables, are more suitable from the modeling process visualization point of view,
because in this case state variables represent physical processes in the system, and
there is no need to use the inverse transform to obtain them.

References

1. Gear, C.W.: The simultaneous numerical solution of differential-algebraic equations. IEEE
Trans. Circuit Theory 18, 89–95 (1971)

2. Biegler, L.T., Damiano, J.J., Blau, G.E.: Nonlinear parameter estimation: a case study compar-
ison. AlChE J. 32(1), 29–45 (1986)

3. Bauer, I., Bock, H.G., Korkel, S., Schloder, J.P.: Numerical methods for optimum experimental
design in DAE systems. J. Comput. Appl. Math. 120, 1–25 (2000)

4. Kee, R.J., Petzold, L.R.: A Differential/Algebraic Equations Formulation of the Method-of-
Lines Solution of Partial Differential Equations. Sandia Report (1986)

5. Luenberger, D.G., Arbel, A.: Singular dynamic Leontief systems. Econometrica 45, 991–995
(1977)

6. Stengel, D.N., Larson, R.E., Luenberger, D.G., Cline, T.B.: A descriptor variable approach
to modeling and optimization of large-scale systems. In: Precision Engineering Foundation
Conference on Systems En 8 for power: Organization Forms for Larse-Scale Systems, Dares,
Switzland, vol. 7 (1979)

7. Dai, L.: Robust Control and Filtering of Singular Control Systems. Lecture Notes in Control
and Information Sciences. Springer, New York (1989)

8. Singh, S.P., Liu, R.-W.: Existence of state equation representation of linear large-scale dynamic
systems. IEEE Trans. Circuit Theory Cf-20(5), 239–246 (1973)

9. Petzold, L.R.: Differential/algebraic equations are not ODE’s. SIAM J. Sci. Slat. Camput. 3,
367–384 (1982)

10. Duan, G.-R.: Analysis and Design of Descriptor Linear Systems. Advances in Mechanics and
Mathematics 23, Springer, Berlin (2010)

11. Wanner, M.C., Baumeister, K., Kohler, G.W., Walze, H.: Hochflexible handhabungs system.
Ergebnisse Einer Einsatzfalluntersuchung Robotersysteme 2(4), 217–224 (1986)

12. Schraft, R.D., Wanner, M.C.: The aircraft cleaning robot skywash. Indust. Robot. 20, 21–24
(1993)

13. Wanner, M.C., Kong, R.: Roboter Auberhalb der Fertigungstechnik. In: Warnecke, H.-J.,
Schraft, R.D. (eds.) Industrieroboter: Handbuch fur Industrie und Wissenschaft. Springer,
Berlin (1990)

14. Hiller M.: What technical developments are on the horizon? In: Proceedings of the 11th
ISARC’94, Brighton, England (1994)

15. Craig, J.J.: Introduction toRobotics:Mechanics andControl.Addison-WesleyPublishingCom-
pany, Reading (1986)

andrianovaog@gmail.com



32 1 Practical Application of Descriptor Systems

16. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. SIAM, Philadelphia (1996)

17. Vardulakis, A.I., Karampetakis, N. P., Antoniou, E., Tzekis, P., Vologiannidis, S.: A Descriptor
Systems Package for MATHEMATICA. Department of Mathematics Aristotle University of
Thessaloniki (2003)

18. Riaza, R.: Differential-algebraic Systems: Analytical Aspects and Circuit Applications. World
Scientific, Singapore (2008)

andrianovaog@gmail.com



Chapter 2
Basics of Discrete-Time Descriptor
Systems Theory

2.1 Equivalent Forms of Descriptor Systems

The state-space representation of a LDTI descriptor system P is

Ex(k + 1) = Ax(k) + B f (k), (2.1)

y(k) = Cx(k) + Df (k) (2.2)

where x(k) ∈ R
n is the state, f (k) ∈ R

m and y(k) ∈ R
p are the input and output

signals, respectively, k ∈ Z, k � 0. E, A, B, C, D are constant real matrices of
appropriate dimensions, and rank E = r < n.

We also use the following denotation for system (2.1) and (2.2).

P =
[
E,

A B
C D

]
. (2.3)

Mathematical models of control systems depend on the choice of state variables.
Obviously, this choice is not unique. This leads to nonuniqueness of the system’s
model. In this section, the relationship between state variables and models is exam-
ined.

Definition 2.1 Two realizations

[
E,

A B
C D

]
. and

[
E,

A B
C D

]
are called restricted

system equivalent if there exist such nonsingular matrices W and V , that

E = W E V , A = W A V , B = W B, C = C V

with coordinate transformation x(k) = V x(k).Matrix pair (W , V ) is called system
equivalence transformation.

Definition 2.1 is also true for continuous-time descriptor systems.

© Springer International Publishing AG, part of Springer Nature 2018
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34 2 Basics of Discrete-Time Descriptor Systems Theory

Example 2.1 ([1]) Consider a simple RLC-circuit as shown in Fig. 1.8. Recall that
its mathematical model can be written in the form:

⎡
⎢⎢⎣
L 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

İ (t)
V̇L(t)
V̇C(t)
V̇R(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
1/C 0 0 0
−R 0 0 1

0 1 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

I (t)
VL(t)
VC(t)
VR(t)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0
0

−1

⎤
⎥⎥⎦ VS(t). (2.4)

On the other hand, if we choose the following state variables:

x̃ =

⎡
⎢⎢⎣

I (t)
VR(t) + VL(t)

VR(t) + VL(t) + VC(t)
VR(t)

⎤
⎥⎥⎦ , (2.5)

the system will take the form

⎡
⎢⎢⎣
L 0 0 0
L 1 −1 0
0 −1 1 0
L 0 0 0

⎤
⎥⎥⎦ ˙̃x(t) =

⎡
⎢⎢⎣

0 1 1 −1
−1/C 1 1 −1

1/C − 2R 0 0 2
−R 1 0 0

⎤
⎥⎥⎦ x̃(t) +

⎡
⎢⎢⎣

−1
−1
0
0

⎤
⎥⎥⎦ VS(t). (2.6)

Both equations (2.4) and (2.6) are mathematical models that describe the behavior
of the circuit shown in Fig. 1.8. Despite the fact that Eqs. (2.4) and (2.6) are different,
it is easy to check that the systems are equivalent; transformation matrices are the
following.

W =

⎡
⎢⎢⎣
1 0 0 1
1 −1 0 1
0 1 2 0
1 0 1 0

⎤
⎥⎥⎦ , V =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 −1
0 −1 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Remark 2.1 A continuous-time descriptor system of the form

Ecẋ(t) = Acx(t) + Bcu(t)

can be easily transformed to a discrete-time system, driven by

Ed x̃(k + 1) = Ad x̃(k) + Bdũ(k)

with the matrices:
Ed = Ec, Ad = hAc + Ec, Bd = hBc.

Here h stands for the step of discretization.

andrianovaog@gmail.com



2.1 Equivalent Forms of Descriptor Systems 35

Now we give some definitions from the theory of matrices necessary for further
presentation.

Definition 2.2 Square matrix N is called the nilpotent of index h, if Nh = 0, and
Ni �= 0, i = 1, (h − 1).

Definition 2.3 For any two given matrices E, A ∈ R
n×n a matrix pair (E, A) is

called regular if there exists a constant scalar λ ∈ C, for which det(λE + A) �= 0.

As shown in [1], a matrix pair (E, A) is regular if and only if there exist two
nonsingular matrices W and V such that

WEV = diag(Ir , N ), W AV = diag(A1, In−r ) (2.7)

where rank (E) = r , A1 ∈ R
r×r , N ∈ R

(n−r)×(n−r) is a nilpotent matrix.
Unfortunately, existenceof equivalent form (2.7) is connectedwith nilpotent trans-

formations and difficult to check. Verification of the existence and uniqueness of
solutions to descriptor systems can be carried out on the basis of the Definition 2.3.
Thus, to guarantee the existence and uniqueness of solutions for system (2.1), we
assume that E and A are square matrices, and the pair (E, A) is regular.

The most used equivalent forms of descriptor systems are discussed below.

2.1.1 Weierstrass Canonical Form

For any regular descriptor system (2.1) and (2.2) there are two nonsingular matrices
W and V such that equations (2.1) and (2.2) are equivalently described by

x1(k + 1) = A1x1(k) + B1 f (k), (2.8)

y1(k) = C1x1(k),

Nx2(k + 1) = x2(k) + B2 f (k), (2.9)

y2(k) = C2x2(k),

y(k) = C1x1(k) + C2x2(k) + Df (k) = y1(k) + y2(k) + Df (k) (2.10)

with the change of variables

[
x1(k)
x2(k)

]
= V

−1
x(k), x1(k) ∈ R

r , x2(k) ∈ R
n−r (2.11)
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and
WEV = diag(Ir , N ), W AV = diag(A1, In−r ),

WB =
[
B1

B2

]
, CV = [C1 C2

]
,

(2.12)

where N ∈ R
(n−r)×(n−r) is a nilpotent matrix.

Equations (2.8)–(2.10) determine canonical form, commonly called standard
decomposition. For this form, subsystems (2.8) and (2.9) are called slow and fast
subsystems, respectively, and x1(t) and x2(t) are slow and fast states, respectively.

Definition 2.4 The nilpotency index of N is called the index of matrix pencil
(λE − A).

Typically, matrices W and V that put the system into canonical form are not unique,
and thus matrices A1, B1, B2, C1, C2, and N are not unique. Suppose that Ŵ and V̂
are nonsingular, and system (2.1) and (2.2) is transformed into canonical form. In
other words, (2.1) and (2.2) is a system of restricted equivalence for the system

x1(k + 1) = A1x1(k) + B1 f (k), (2.13)

y1(k) = C1x1(k),

Nx2(k + 1) = x2(k) + B2 f (kt), (2.14)

y2(k) = C2x2(k),

y(k) = C1x1(k) + C2x2(k) + D f (k) = y1(k) + y2(k) + D f (k) (2.15)

with change of variables

V̂−1x(k) =
[
x1(k)
x2(k)

]
.

It is shown in [1], that systems (2.8)–(2.10) and (2.13)–(2.15) are standard decom-
positions of the system (2.1) and (2.2) if and only if

dim x1(k) = dim x1(k)

and there exist two nonsingular matrices T1 ∈ R
r×r , T2 ∈ R

(n−r)×(n−r) such that

W = diag(T1, T2)Ŵ , V = V̂ diag(T1, T2).

This implies that this form is unique up to the similarity transformations.
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If A1 is given in Jordan canonical form, then system (2.8)–(2.10) is calledWeier-
strass canonical form. Weierstrass canonical form plays an important role in time
domain analysis of descriptor systems. The regularity property (i.e., existence and
uniqueness of solution) of a descriptor system is connected with the existence of the
Weierstrass canonical form.

Example 2.2 Consider a RLC-circuit from Example 1.4. Suppose L = 1, R = 100,
C = 0.1, and an output equation is

y(t) = Vc(t) = [0 0 1 0
]
x(t),

x(t) = [ I (t) VL(t) VC(t) VR(t)
]T

,

thus the descriptor system can be written in the form

⎡
⎢⎢⎣
1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ẋ(t) =

⎡
⎢⎢⎣

0 1 0 0
10 0 0 0

−100 0 0 1
0 1 1 1

⎤
⎥⎥⎦ x(t) +

⎡
⎢⎢⎣

0
0
0

−1

⎤
⎥⎥⎦ Vs(t), (2.16)

y(t) = [0 0 1 0
]
x(t).

Choose the following transformation of coordinates.

W
−1
x(t) =

[
x1(t)
x2(t)

]
, x1(t) ∈ R

2, x2(t) ∈ R
2,

W =

⎡
⎢⎢⎣
1 0 1 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , V =

⎡
⎢⎢⎣

1 0 0 0
−100 −1 1 1

0 1 0 0
100 0 1 0

⎤
⎥⎥⎦ .

Then the initial system takes the form

ẋ1(t) =
[−100 −1

10 0

]
x1(t) +

[
1
0

]
Vs(t),

0 = x2(t) +
[−1

0

]
Vs(t),

y(t) = [0 1
]
x1(t) + [0 0

]
x2(t).

System (2.16) can be easily transformed into a discrete-time system, using dis-
cretization from Remark 2.1.
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2.1.2 SVD Equivalent Form

Let r = rank (E). From matrix theory it is known that there are two nonsingular
matrices W̃ and Ṽ that W̃ EṼ = diag(Ir , 0). Applying the coordinate transforma-

tion Ṽ−1x(k) =
[
x1(k)
x2(k)

]
, x1(k) ∈ R

r , x2(k) ∈ R
n−r , system (2.1) and (2.2) is

equivalent to the system:

x1(k + 1) = A11x1(k) + A12x2(k) + B1 f (k), (2.17)

0 = A21x1(k) + A22x2(k) + B2 f (k), (2.18)

y(k) = C1x1(k) + C2x2(k) + Df (k) (2.19)

where

W̃ AṼ =
[
A11 A12

A21 A22

]
, W̃ B =

[
B1

B2

]
, CṼ = [C1 C2

]
. (2.20)

System (2.17)–(2.19) is the second equivalent form (singular value decomposi-
tion, SVD, equivalent form) of system (2.1) and (2.2). Transformation matrices W̃
and Ṽ are not the only thing that leads to nonuniqueness of SVD equivalent form.
Two SVD forms can have a quite complex relation.

Matrices W̃ and Ṽ can be found, for example, from the SVD

E = Udiag(S, 0)HT. (2.21)

HereU and H are real orthogonal matrices and S is a diagonal r × r -matrix, that
is formed by nonzero singular values of the matrix E

W̃ = diag(S−1, In−r )U
T, Ṽ = H. (2.22)

The SVD equivalent form accurately reflects the physical meaning of descrip-
tor systems. Equation (2.17) is the difference and forms a dynamic subsystem, and
equation (2.18) is algebraic and reflects the relation between subsystems. Thus a
descriptor system can be considered as a complex system formed by several inter-
connected subsystems. Furthermore, states x1(k) and x2(k) are in two different sub-
spaces: one subspace has dynamic properties (described by differential equations),
and another subspace contains restrictions, relation and sequencing (described by
algebraic equations).

Example 2.3 Consider the system fromExample 2.2. Applying the coordinate trans-
formation

Ṽ−1x(t) =
[
x1(t)
x2(t)

]
, x1(t) ∈ R

2, x2(t) ∈ R
2,
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W̃ = I4, Ṽ =

⎡
⎢⎢⎣
1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

system (2.16) is equivalent to the system:

ẋ(t) =
[
0 0
10 0

]
x1(t) +

[−1 0
0 0

]
x2(t) +

[
0
0

]
Vs(t),

0 =
[−100 0

0 1

]
x1(t) +

[
0 1

−1 1

]
x2(t) +

[
0

−1

]
Vs(t), (2.23)

y(t) = [0 1
]
x1(t) + [0 0

]
x2(t).

2.1.3 Generalized Upper Triangular Equivalent Form

Under the regularity assumption on system (2.1), there always exist suchmatrices [2]
V and U , that

E = V

[
E f Eu

0 E∞

]
, A = V

[
A f Au

0 A∞

]
. (2.24)

Matrix pencil (λE f − A f ) is quasi-triangular and contains only finite eigenvalues
(eigenvalues attributable to a differential subsystem), and matrix pencil (λE∞ −
A∞) is triangular and contains only infinite eigenvalues. It is obvious that matrices
E f and A∞ are nonsingular, and matrix E∞ is a nilpotent. The generalized upper
triangular form is a special case of the generalized Schur form for regular matrix
pencils. This form is convenient for solving generalized Lyapunov equations arising
in stability analysis of descriptor systems, and also in computation of controllability
and observability Gramians, which are mentioned below.

2.2 Discrete-Time Descriptor Systems on a Finite Horizon

Consider a LDTI descriptor system described by

Ex(k + 1) = Ax(k) + Bu(k), (2.25)

y(k) = Cx(k) (2.26)

where x(k) ∈ R
n is a state vector, u(k) ∈ R

m is a control signal, y(k) ∈ R
p an

output; E, A ∈ R
n×n, B ∈ R

n×m,C ∈ R
p×n are constant matrices. Matrix E is
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singular (rank (E) < n). Consider system (2.25) and (2.26) on a finite horizon
[0, L]; L ≥ n is a fixed finite number.

For input values u(0), u(1), . . . , u(L) states x(0), x(1), . . . , x(L) of system (2.25)
can be found from the relation

⎡
⎢⎢⎢⎢⎢⎣

−A E
−A E

. . .

E
−A E

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x(0)
x(1)

...

x(L − 1)
x(L)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Bu(0)
Bu(1)

...

Bu(L − 1)
Bu(L)

⎤
⎥⎥⎥⎥⎥⎦

. (2.27)

The left multiplier in (2.27) is an nL×n(L+1)-matrix. Thus, equation (2.27) has
n independent solutions if they exist. If the initial and final conditions are different in
at least one point and give rise to different solutions of the given system, then these
conditions are called full.

Luenberger [3] noticed that if the pair (E, A) of system (2.25) is regular (i.e.,
det(zE − A) �= 0), there exists a full state such that a vector x(k) is uniquely
determined by initial and terminal states x(0) and x(L), and an input signal u(k).
Hereinafter, k = 0, L .

For normal systems, full state is determined by initial conditions only.
In accordance with regularity of the matrix pair (E, A), there are two nonsingular

matrices W and V such that

x1(k + 1) = A1x1(k) + B1u(k), (2.28)

Nx2(k + 1) = x2(k) + B2u(k), (2.29)

y(k) = C1x1(k) + C2x2(k). (2.30)

In this system, (2.28) is a direct recurrent equation, where the state at each step
is unique, determined only by the initial conditions x1(0) and the input signal u(·),
and has the form

x1(k) = Ak
1x1(0) +

k−1∑
i=0

Ak−i−1
1 B1u(i). (2.31)

Equation (2.29) determines backward recursion, where the state uniquely defines
the terminal state x2(L) and u(·) in accordance with the expression

x2(k) = NL−k x2(L) −
L−k−1∑
i=0

Ni B2u(k + i). (2.32)

Equations (2.31) and (2.32) show how the initial state x1(0) and the final state
x2(L) form the full state in accordance with which the solution is defined as

andrianovaog@gmail.com



2.2 Discrete-Time Descriptor Systems on a Finite Horizon 41

x(k) = V

[
I
0

](
Ak
1x1(0) +

k−1∑
i=0

Ak−i−1
1 B1u(i)

)
+

+V

[
0
I

](
NL−k x2(L) −

L−k−1∑
I=0

Ni B2u(k + i)

)
,

y(k) = Cx(k).

Example 2.4 Consider the system on a finite horizon, given as [1]

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ x(k + 1) =

⎡
⎢⎢⎣

1 1 0 0
0.3 0.9 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ x(k) +

⎡
⎢⎢⎣

0
1
2

−0.5

⎤
⎥⎥⎦ u(k), (2.33)

y(k) = [ 0 2 1 0
]
x(k), (2.34)

Denote x(k) =
[
x1(k)
x2(k)

]
, where x1(k), x2(k) ∈ R

2. Then system (2.33) and (2.34)

can be given in the form

x1(k + 1) =
[

1 1
0.3 0.9

]
x1(k) +

[
0
1

]
u(k), (2.35)

[
0 1
0 0

]
x2(k + 1) = x2(k) +

[
2

−0.5

]
u(k), (2.36)

y(k) = [0 2
]
x1(k) + [1 0

]
x2(k), (2.37)

Then the solution of this system is defined by expressions

x1(k) = Ak
1x1(0) +

k−1∑
i=0

Ak−i−1
1 B1u(i), 0 ≤ k ≤ L ,

x2(k) = NL−k x2(L) +
L−k−1∑
i=0

Ni B2u(k + i) =

=

⎧⎪⎪⎨
⎪⎪⎩

[
0 1
0 0

]
x2(L) −

[
2

−0.5

]
u(k), k = L − 1;[−0.5

0

]
u(k + 1) −

[
2

−0.5

]
u(k), 0 ≤ k ≤ L − 2.

This shows that x2(k) does not depend on terminal state when k ≤ (L − 2).
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The state of the system at eachmoment is determined not only by initial conditions
and current input, as in case of normal systems of differential equations, but also by
terminal conditions and future values of the input signal until the moment L .

For simplicity, we assume that system (2.25) and (2.26) is given in Weierstrass
canonical form.

The following definitions are given for system (2.25).

Definition 2.5 System (2.25) on a finite horizon is called causal, if its state x(k),
(0 ≤ k ≤ L) at each moment k is defined only by initial conditions x(0) and formed
by input signal u(0), u(1), . . . , u(k); otherwise the system is called noncausal.

Causality is a very important property. Thus causal systems, defined on a finite
horizon, constitute an important class of systems, the advantage of which is a simple
physical implementation.

If follows from (2.32) that system (2.25) is causal if and only if deg(det(zE −
A)) = rank (E), or N = 0; that is, the system has no poles at infinity.

In the next section we discuss controllability and observability of system (2.25)
and (2.26).

2.3 Controllability of Discrete-Time Descriptor Systems

Previously it was shown that in contrast to normal systems descriptor systems have
several types of controllability and observability [1, 2, 4].We consider these concepts
in more detail.

2.3.1 C-Controllability (Complete Controllability)

As mentioned earlier, descriptor systems are not always causal, thus the state of
the system at the current time k depends not only on initial conditions (for a direct
subsystem) but also on terminal conditions (for a backward subsystem).

Definition 2.6 Known initial conditions for the direct subsystem and terminal con-
ditions for the backward subsystem are called boundary conditions. They are denoted

as

[
x1(0)
x2(L)

]
.

Definition 2.7 System (2.25) is called complete controllable (C-controllable) if for

any boundary conditions

[
x1(0)
x2(L)

]
and w ∈ R

n there exists such a moment k1, 0 ≤
k1 ≤ L , and control signal u(0), u(1), . . . , u(L), that x(k1) = w.

Thus, C-controllability is determined at each point [1]. According to the assump-
tion on C-controllability, state x(k) can fill the entire state vector. Therefore sys-
tem (2.25) is C-controllable if and only if its forward and backward recursions
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are controllable. As the state x1(k) is controlled by input sequences u(k), u(k +
1), . . . , u(L − 1), it is possible to select the appropriate control input for certain
components x1(k) and x2(k). If the system is written in Weierstrass canonical form,
then C-controllability property is equivalent to the following rank conditions [1]

rank [B1, A1B1, . . . , A
r−1
1 B1] = r,

rank [B2, N B2, . . . , N
n−r−1B2] = n − r.

2.3.2 R-Controllability (Controllability in the Initial
Reachable Set)

For any fixed terminal conditions x2(L) ∈ R
n−r introduce a notation R(x2(L)) for

description of reachable set for (2.25) with an arbitrary initial state, which we simply
call the initial reachable set

R(x2(L)) = {w|w ∈ R
n, ∃x1(0), 0 ≤ k1 ≤ L ,

u(0), u(1), . . . , u(L) : x(k1) = w}.

Evidently, the initial reachable set R(x2(L)) depends on x2(L). For different x2(L)

reachable sets R(x2(L)) can be different.

Definition 2.8 System (2.25) is called controllable in the initial reachable set (R-
controllable) if for any fixed terminal condition x2(L) the system’s state from any
initial condition can be transferred to any point of R(x2(L)) at a finite time by a
control input.

R-controllability guarantees controllability for any condition from the initial
reachable set. System (2.25) is R-controllable if and only if subsystem (2.28) is
controllable [1]; that is,

rank [B1, A1B1, . . . , A
r−1
1 B1] = r.

2.3.3 Y-Controllability (Causal Controllability)

While selecting a control in the form of feedback as

u(k) = Kx(k) + v(k), (2.38)

where K ∈ R
m×n is a constant matrix, v(k) is a new control signal, the closed-loop

system (2.25) is given as
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Ex(k + 1) = (A + BK )x(k) + Bv(k). (2.39)

Here k = 0, L .

Definition 2.9 System (2.25) is called causally controllable (Y-controllable) if there
exists a state feedback (2.38) such that the closed-loop system (2.39) is causal.

In real systems, violation of causality principle can yield a lot of troubles when
solving problems of control, identification, and state estimation. Y-controllability
provides the ability to control causality with feedback condition (2.38). In [1] it is
shown that Y-controllability condition can easily be checked by the following rank
equality

rank

[
E 0 0
A E B

]
= rank (E) + n.

In [2], the following equivalent definitions of all types of controllability are given.

Definition 2.10 1. System (2.25) or the triple (E, A, B) is called R-controllable
if

rank [λE − A, B] = n for any finite λ ∈ C. (2.40)

2. System (2.25) or the triple (E, A, B) is called Y-controllable if

rank [E, AKE , B] = n, where KE = span(KerE). (2.41)

3. System (2.25) or the triple (E, A, B) is called C-controllable if (2.40) and
rank [E, B] = n are satisfied.

C-controllability implies that for any initial condition x(0) ∈ R
n and terminal

condition x(L) ∈ R
n there exists a control input u(k) which transfers the system

from the state x(0) into x(L) for a finite time. This concept is given in [5], and it
agrees with the definition of controllability from [1], introduced above.

R-controllability ensures that for any given finite values of x(0), x(L) ∈ X where

X =
⎧⎨
⎩x ∈ R

n : (I − Pr )x =
h−1∑
j=0

F− j−1Bw( j), w( j) ∈ R
m

⎫⎬
⎭ , (2.42)

Pr = V
−1
[
In f 0
0 0

]
V , Fk = V

−1
[
0 0
0 −N−k−1

]
W

−1
, (2.43)

matrices W and V transform the initial system to (2.28) and (2.29), and h is a
nilpotency index of N , there is a control sequence u(k) that transfers the system
from the state x(0) into x(L) for a finite time. If E = I , R-controllability coincides
with C-controllability and stands for classical controllability of normal systems [6].
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Y-controllability means that for any initial condition x(0) ∈ R
n there exists a

feedback control of the form u(k) = Fx(k) + v(k), where F ∈ R
m×n is a state-

feedback gain, and v(k) ∈ R
m is a new control input, such that the closed-loop

system is causal. Note that descriptor system (2.25) with the matrix pencil (λE − A)

with nilpotency index at most one is Y-controllable.

2.4 Observability of Discrete-Time Descriptor Systems

Controllability, R-controllability, and Y-controllability define the ability to change
the state of the system via control input signals. Observability is dual to control-
lability, which describes the possibility of restoring the system state vector using
measurements y(k) where k = 0, L .

As shown earlier, state x(k), is fully defined by terminal condition

[
x1(0)
x2(L)

]
∈ R

n

and the control signal u(k). As control input u(k) is a known vector, observabil-
ity of (2.25) and (2.26) is, in fact, a possibility to recover the complete condition[
x1(0)
x2(L)

]
∈ R

n via measurements of y(k).

Definition 2.11 1. System (2.25) and (2.26) is called observable if its state x(k)
is uniquely defined by {u(i), y(i), i = 0, 1, . . . , L} at any time k.

2. System (2.25) and (2.26) is called R-observable, if it is observable in the initial
reachable set R(x2(L)) for any terminal condition x2(L) ∈ R

n−r .
3. System (2.25) and (2.26) is called causally observable (Y-observable), if its state

vector x(k) is determined uniquely by initial condition x1(0), control input u(i),
i = 1, k, and the measurable output y(i), i = 0, 1, . . . , L at any time k.

Dual to controllability, the rank criteria of observability, R-observability, and
Y-observability for descriptor systems can be formulated as follows [1].

Let the system be given in Weierstrass canonical form, then

1. System (2.25) and (2.26) is observable if and only if

rank

⎡
⎢⎢⎢⎣

C1

C1A1
...

C1A
r−1
1

⎤
⎥⎥⎥⎦ = r and rank

⎡
⎢⎢⎢⎣

C2

C2N
...

C2An−r−1

⎤
⎥⎥⎥⎦ = n − r.

2. System (2.25) and (2.26) is R-observable if and only if

rank

⎡
⎢⎢⎢⎣

C1

C1A1
...

C1A
r−1
1

⎤
⎥⎥⎥⎦ = r.
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System (2.25) and (2.26) is causally observable (Y-observable) if and only if

rank

⎡
⎣ E A

0 E
0 C

⎤
⎦ = n + rank (E).

2.5 Discrete-Time Descriptor Systems on an Infinite
Horizon

In this section, we discuss the main concepts and definitions of discrete-time descrip-
tor systems, defined on an infinite horizon. Such concepts are characteristics of
discrete-time descriptor systems in frequency and time domains, controllability, and
observability properties. It is shown, that the solution of a system on a finite horizon
differs from the solution on an infinite horizon.

Consider a LDTI descriptor system in the form

Ex(k + 1) = Ax(k) + Bu(k), (2.44)

y(k) = Cx(k) + Du(k), (2.45)

Here k = 0, 1, 2, . . . .
In (2.44) and (2.45) x(k) ∈ R

n is a state vector, u(k) ∈ R
m is a control signal,

y(k) ∈ R
p is a measurable output; and E, A ∈ R

n×n, B ∈ R
n×m,C ∈ R

p×n are
constant matrices. Matrix E is singular; that is, (rank (E) = r < n). The matrix pair
(E, A) is supposed to be regular. Without loss of generality we assume that D = 0.
Indeed, if D �= 0, then we can consider an extended descriptor system

[
E 0
0 0

]
ξ(k + 1) =

[
A 0
0 I

]
ξ(k) +

[
B
D2

]
u(k), (2.46)

y(k) = [C −D1
]
ξ(k), (2.47)

where D = D1D2 is a factorization of D; for example, D1 = I and D2 = D.
System (2.44) and (2.45) is equivalent to (2.46) and (2.47) if ξ(k) with control
input u(k) is the solution of the initial system. This condition holds if and only if

ξ(k) =
[

x(k)
−D2u(k)

]
.

The difference between a descriptor systemon an infinite horizon (2.44) and (2.45)
and a descriptor system on a finite horizon (2.25) and (2.26) is that system (2.25)
and (2.26) has both initial and finite conditions, whereas system (2.44) and (2.45)
has only initial conditions.
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2.5.1 Time Domain Analysis

Because system (2.44) is regular, there are two nonsingular matrices W and V
such that system (2.44) and (2.45) is restricted system equivalence in Weierstrass
canonical form, where

x(k) = V

[
x1(k)
x2(k)

]
, x1(k) ∈ R

r , x2(k) ∈ R
n−r ,

and it takes the form

x1(k + 1) = A1x1(k) + B1u(k), (2.48)

y1(k) = C1x1(k),

Nx2(k + 1) = x2(k) + B2u(k), (2.49)

y2(k) = C2x2(k),

y1(k) = y1(k) + y2(k), k = 0, 1, 2, . . . , (2.50)

and
WEV = diag(Ir , N ), W AV = diag(A1, In−r ),

WB =
[
B1

B2

]
, CV = [C1, C2

]
,

(2.51)

where A1 ∈ R
r×r and N ∈ R

(n−r)×(n−r) is a nilpotent of index h. In (2.48) and (2.49)
measurements of y1 and y2 are inaccessible.

Direct subsystem (2.48) is a LDTI normal system, which state is defined as

x1(k) = Ak
1x1(0) +

k−1∑
i=0

Ak−i−1
1 B1u(i). (2.52)

In this subsystem, there is a causal relation between state and control.
The backward subsystem (2.49) is the inverse recursion of state. By left multi-

plying it on N 0 = I , N 1, N 2, …, Nh−1, we have

x2(k) = Nx2(k + 1) − B2u(k),

Nx2(k + 1) = N 2x2(k + 2) − N B2u(k + 1),

N 2x2(k + 2) = N 3x2(k + 3) − N 2B2u(k + 2),

.............................

Nh−1x2(k + h − 1) = Nhx2(k + h) − Nh−1B2u(k + h − 1).
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Taking into account Nh = 0, the state of the backward subsystem can be defined
by

x2(k) = −
h−1∑
i=0

Ni B2u(k + i), (2.53)

which shows that in order to determine the state x2(k) it is necessary to know future
values of the control signal u(i), k ≤ i ≤ k + h.

Comparison of (2.32) with (2.53), allows us to conclude that they are identical
for k ≤ L − h. Differences begin to appear when L − h < k ≤ L . Thus, if
we consider (2.44) as a limiting case of (2.25), equation (2.53) is a limiting case
of (2.32).

If we put together (2.51)–(2.53), we get a full state of system (2.44)

x(k) = V

[
I
0

]
x1(k) + V

[
0
I

]
x2(k) =

= V

[
I
0

] (
Ak
1x1(0) +∑k−1

i=0 Ak−i−1
1 B1u(i)

)
− V

[
0
I

]∑h−1
i=0 Ni B2u(k + i) =

= V

[
I
0

](
Ak
1

[
I
0

]
V

−1
x(0) +∑k−1

i=0 Ak−i−1
1 B1u(i)

)
−

−V

[
0
I

]∑h−1
I=0 N

i B2u(k + i).

(2.54)
It is well known that causality is performed for LDTI normal systems, although

descriptor systems are not always causal. In order to determine the current state of
a descriptor system, the future values of the input signal are often required. In fact,
causality may not appear in real physical systems. For example, the fundamental
dynamic Leontief model of economic systems is described by the equation

x(k) = Ax(k) + E(x(k + 1) − x(k)) + d(k),

where d(k) is an input signal, which may include various elements such as demand.
The purpose of production is the sale of goods. But there is a temporary delay between
these two moments. Thus the possible future consumption of goods (input) is often
used to estimate production at the current time (state). The absence of the causality
principle is true for systems where state variables are deployed in space, not in
time. Noncausality is one of the important characteristics of discrete-time descriptor
systems.

In discrete-time descriptor systems there are several types of causality.

• Causality between state and control input

Without loss of generality we suppose that system (2.44) and (2.45) is given in the
form (2.48)–(2.50). It is obvious that causality is present in system (2.48)–(2.50),
if its backward subsystem (2.49) is causal. It follows from (2.53) that causality
between state and control exists if and only if

andrianovaog@gmail.com



2.5 Discrete-Time Descriptor Systems on an Infinite Horizon 49

N B2 = 0. (2.55)

• Causality between measurable output and control input

Because the input–output relation is defined only for controllable and observable
systems, it is no loss of generality to assume that the triple (N , B2,C2) is control-
lable and observable. Thus causality between y(k) and u(k) exists only when such
a ratio exists between y2(k) and u(k), and

y2(k) = C2x2(k) = −
h−1∑
i=0

C2N
i B2u(k + i), (2.56)

therefore causality between y2(k) and u(k) exists if and only if

C2N
i B2 = 0, i = 1, 2, . . . , h − 1,

that is,

[
C2 C2N · · · C2Nh−1

]T
N
[
B2 N B2 · · · Nh−1B2

] = 0. (2.57)

Controllability and observability of the triple (N , B2,C2) gives N = 0.

Another difference between normal and descriptor systems in discrete time is that
descriptor systems do not always have solutions for any initial conditions. This fact
is easy to show using (2.54) when k = 0. We have

x(0) = V

[
I
0

] [
I 0
]
V

−1
x(0) − V

[
0
I

] h−1∑
i=0

Ni B2u(i)

or, in another form,
[
0 I
]
V

−1
x(0) =

h−1∑
i=0

Ni B2u(i), (2.58)

that are called the consistent initial conditions which state x(0) satisfies.
If we pay attention to (2.53), we can see that consistency of the initial conditions is

achieved only by a backward subsystem. As descriptor systems can describe a class
of systems of high order, consisting of several interconnected subsystems, their state
x2(k) is more like a pseudo-state in the sense that it only reflects connections between
subsystems. As expected, the initial state loses its physical meaning as the normal
initial state of the system, because it determines coupling between the subsystems at
zero time.

For example, considering N = 0, expression (2.53) can be written as

x2(k) = −B2u(k),
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that is just a linear combination of control signal u(k) at the current time.
Let Io denote a set of consistent initial conditions in the form:

Io =
{
x(0) ∈ R

n| [0 I
]
V

−1
x(0) =

h−1∑
i=0

Ni B2u(i)

}
. (2.59)

When u(k) = 0, free motion of system (2.44) is defined by the expression

x1(k) = Ak
1x1(0), (2.60)

x2(k) = 0.

The state of the backward subsystem x2(k) is equal to zero.
Equations (2.54) and (2.58) do not only show the differences between normal

and descriptor systems in discrete time but also demonstrate the differences between
continuous-time and discrete-time descriptor systems [1].

A continuous-time descriptor system is given as

Eẋ(t) = Ax(t) + Bu(t), (2.61)

y(t) = Cx(t).

It has a solution

x(t) = V

[
I
0

]
eA1t x1(0) + ∫ t

0 e
A1(t−τ)B1u(τ )dτ−

−V

[
0
I

]∑h−1
i=0 δ(i)(0)Ni+1x2(0) − V

[
0
I

]∑h−1
i=0 Ni B2u(i)(t)

(2.62)

where δ(i)(t) is the i th derivative of the Dirac function δ(t).
Comparison (2.54) with (2.62) shows that the presence of impulse components

in the state equation of a continuous-time system entails a lack of causality in the
state equation of a discrete-time system. Impulse components and derivatives of
the input signal, which are contained in the state equation of a continuous system,
indicate noncausal behavior (it is necessary to know the derivative of the input signal).
Moreover, the expression u(k + i) in the state equation of a discrete-time system
simply matches the expression di u

dt i (t) in the continuous case.

Definition 2.12 Consider system (2.44) and (2.45)

1. The system is called controllable (R-controllable and Y-controllable) if for any
sufficiently large L > n the finite time series of (2.27) are controllable (R-
controllable and Y-controllable).

2. The system is called observable (R-observable and Y-observable) if the finite
time series of (2.27) are observable (R-observable and Y-observable) for any
sufficiently large L > n.
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Obviously, the two definitions are generalizations of corresponding notions for
normal systems. They are introduced to system (2.44) and do not depend on L .

2.5.2 Frequency Domain Analysis

Thus, consider a discrete-time descriptor system

Ex(k + 1) = Ax(k) + Bu(k), (2.63)

y(k) = Cx(k). (2.64)

As the matrix pair (E, A) is regular, system (2.63) and (2.64) can be transformed
into Weierstrass canonical form [7]. There exist nonsingular matrices W and V that

E = W

[
In f 0
0 N

]
V and A = W

[
J 0
0 In∞

]
V , (2.65)

where J and N are matrices in the Jordan canonical form; besides in addition N is a
nilpotent of index h. The values n f and n∞ are dimensions of subspaces (λE − A),
corresponding to finite and infinite eigenvalues. Also, n f = r = rank (E). Matrices

Pr = V
−1
[
In f 0
0 0

]
V , Pl = W

[
In f 0
0 0

]
W

−1
(2.66)

are spectral projections of the matrix pencil (λE − A) onto the left and right root
subspaces, that are responsible for finite eigenvalues.

Using Weierstrass canonical transformation (2.65), we get the following decom-
position of the generalized resolvent into the Laurent series

(λE − A)−1 =
∞∑

k=−∞
Fkλ

−k−1, (2.67)

where coefficients Fk are

Fk =

⎧⎪⎪⎨
⎪⎪⎩
V

−1
[
J k 0
0 0

]
W

−1
, k = 0, 1, 2, . . .

V
−1
[
0 0
0 −N−k−1

]
W

−1
, k = −1,−2, . . .

(2.68)

Note that Fk = 0 for k < −h, where h is the nilpotency index of N . Matrices
Fk are called fundamental matrices. They are important for discrete-time descriptor
systems (2.63).
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It iswell known [1, 4] that if thematrix pair (E, A) is regular, and initial conditions
x(0) are consistent, we have

(I − Pr )x(0) =
h−1∑
j=0

F− j−1Bu( j).

It means that discrete-time descriptor system (2.63) has a unique solution x(k) for
all k ≥ 0. Using fundamental matrices Fk , this solution can be represented by the
expression:

x(k) = FkEx(0) +
k+h−1∑
j=0

Fk− j−1Bu( j), k ≥ 0. (2.69)

It is easy to show that the solution belongs to the region (2.42), called the solution
space for descriptor systems (2.63) and (2.64). Moreover, equation (2.69) shows that
to determine x(k) it is necessary to know not only the previous control values u( j),
j ≤ k, but also future values of the control u( j), k < j ≤ k+h−1. Such a property
is called noncausality of discrete-time descriptor systems. For a causal system (2.63)
the solution x(k) is completely determined by the initial conditions x(0) and control
u(0), u(1), …, u(k). It is obvious that system (2.63) is causal if it has the nilpotency
index equal to one.

2.5.3 Transfer Functions and Realizations

Consider a two-way Z-transform [8], that transfers a sequence { f (k)}k∈Z, where
f (k) ∈ R

n , into the function F(z) of a complex variable z defined by the expression

F(z) = Z[ f (k)] =
∞∑

k=−∞
f (k)z−k .

Complex variable z is called the frequency in the discrete case. Applying the
Z-transform to descriptor system (2.63), we get Y (z) = C(zE − A)−1BU (z), where
U (z) and Y (z) are Z-transform of sequences {u(k)}k∈Z and {y(k)}k∈Z, respectively.
Definition 2.13 The rational matrix function P(z) = C(zE − A)−1B is called a
transfer function of a discrete-time descriptor system (2.63) and (2.64).

The transfer function is a ratio between Z-transforms of input u(k) and output
y(k). In other words, the transfer function P(z) describes the input–output behavior
of system and (2.64) in the frequency domain.

For any rational matrix transfer function P(z) there exist such matrices E , A, B,
and C , that P(z) = C(zE − A)−1B; see [1]. Descriptor system (2.63) and (2.64)
with these matrices is called the realization of P(z). Note that the realization of P(z)
is not unique in the general case [1].
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A characteristic of system (2.63) and (2.64) is said to be an input–output invari-
ant if it does not depend on the transformation of equivalent systems. The transfer
function is an input–output invariant, because

P(z) = C(zE − A)−1B = Ĉ V̂ V̂−1(z Ê − Â)−1Ŵ−1Ŵ B̂ = Ĉ(z Ê − Â)−1 B̂.

2.5.4 Impulse and Frequency Characteristics

Using (2.67) the transfer function can be expanded by a Laurent series [8] at the
point z = ∞ in the following way.

P(z) =
∞∑

k=−∞
Pkz

−k, (2.70)

where Pk = CFk−1B and Fk are defined by the formula (2.68). The sequence {Pk}k∈Z
determines an impulse transfer function of the discrete-time descriptor system (2.63)
and (2.64). It is easy to see that the transfer functionG(z) representsZ-transformation
of the impulse response function. Note that Pk = 0 for all k ≤ −h, where h is
the nilpotency index of the matrix N . The physical impulse transfer function of
system (2.63) and (2.64) can be interpreted in the following way.

Consider the system of difference equations of the form

EXk+1 = AXk + BUk, Yk = CXk, (2.71)

where Xk ∈ R
n×m , Uk ∈ R

m×m , and Yk ∈ R
p×m . For the impulse pulse input

Uk = δ0,k I , where δ j,k means the Kronecker symbol, system (2.71) takes the form
Yk = CFk−1B = Gk . Thus, elements Pk of the impulse transfer function of the
system (2.63) and (2.64) coincide with the output matrices of the difference equa-
tion (2.71) caused by the impulse input.

Definition 2.14 The transfer function P(z) is called proper if limz→∞ P(z) < ∞,
and improper otherwise. If limz→∞ P(z) = 0, then P(z) is called strictly proper.

Taking into account (2.70), the transfer function G(z) can be decomposed into
components in the form P(z) = Psp(z) + Pip(z), where Psp(z) = ∑∞

k=1 Pkz
−k and

Pip(z) =∑h−1
k=0 P−k zk are strictly proper and polynomial parts of P(z), respectively.

The transfer function P(z) is strictly proper if and only if Pk = 0 for all k ≤ 0.
Moreover, P(z) is proper if and only if Pk = 0 for k ≤ −1. Obviously, if the matrix
pencil (λE − A) is of index at most one, P(z) is proper.

Note that the causal descriptor system (2.63) and (2.64) has a proper transfer
function P(z). However, system (2.63) and (2.64) with the proper transfer function
P(z) is not necessarily causal.
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Example 2.5 Descriptor system (2.63) and (2.64) with matrices

E =
⎡
⎣ 1 0 0
0 0 1
0 0 0

⎤
⎦ , A =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ , B =

⎡
⎣ 1
0
1

⎤
⎦ = CT

is not causal, despite the fact that its transfer function

P(z) = 2 − z

z − 1

is proper.

As in the standard state-space case [9], frequency characteristics of the discrete-
time descriptor system (2.63) and (2.64) are determined by the values of its transfer
function on the unit circle P(eiω). It follows from (2.70) that

P(eiω) =
∞∑

k=−∞
Pke

−iωk; (2.72)

that is, the impulse transfer function Pk , k ∈ Z, is the sequence of Fourier coeffi-
cients [8, 10] of the frequency characteristics P(eiω). System (2.63) and (2.64) with
an input sequence eiωku(0), k ∈ Z where ω ∈ R and u(0) ∈ R

m has the output

y(k) =
∞∑

j=−∞
CFk− j−1Be

iω j u(0) =

=
⎛
⎝ ∞∑

j=−∞
Pje

−iω j

⎞
⎠(eiωku(0)

) = P(eiω)
(
eiωku(0)

)
.

Thus the frequency characteristic P(eiω) establishes a relationship between the input
sequence and the output sequence of system (2.63) and (2.64).

2.5.5 Controllability and Observability Gramians

Consider matrices of causal controllability and observability, given by expressions

C+ = [F0B, . . . , Fk B . . .] (2.73)

O+ = [FT
0 C

T, . . . , FT
k C

T . . .
]T

(2.74)

where matrices Fk are defined by (2.68). Suppose that a matrix pair (E, A) is stable.
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Definition 2.15 1. Causal controllability Gramian of system (2.63) and (2.64) is
given in the form

Gdcc = C+CT
+ =

∞∑
k=0

Fk BB
TFT

k , (2.75)

2. Causal observability Gramian has the form

Gdco = O+OT
+ =

∞∑
k=0

FT
k C

TCFk, (2.76)

In turn, noncausal controllability and observability matrices are defined as

C− = [F−h B, . . . , F−1B
]

(2.77)

O− = [FT
−hC

T, . . . , FT
−1C

T
]T

, (2.78)

respectively.

Definition 2.16 1. The matrix:

Gdnc = C−CT
− =

−1∑
k=−h

Fk BB
TFT

k (2.79)

is called the noncausal controllability Gramian of system (2.63) and (2.64)
2. The matrix

Gdno = O−OT
− =

−1∑
k=−h

FT
k C

TCFk (2.80)

is called the noncausal observability Gramian.

Definition 2.17 The controllability Gramian of a discrete-time descriptor sys-
tem (2.63) and (2.64) is determined by the formula Gdc = Gdcc + Gdnc, and the
observability Gramian is Gdo = Gdco + Gdno.

If E = I , then Gdcc = Gdc and Gdco = Gdo are controllability and observability
Gramians of discrete-time normal systems [2].

The following theorem holds true.

Theorem 2.1 [2] Consider a discrete-time descriptor system given in the form
(2.63) and (2.64). Let the matrix pair (E, A) be stable. Then

1. Causal controllability and observability Gramians Gdcc and Gdco are the unique
symmetric positive definite solutions of the projected generalized discrete-time
Lyapunov equations

AGdcc AT − EGdccET = −Pl BBTPT
l ,

Gdcc = PrGdcc PT
r

(2.81)
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and
ATGdco A − ETGdcoE = −PT

r C
TCPr ,

Gdco = PT
l Gdco Pl ,

(2.82)

respectively.
2. Noncausal controllability and observability Gramians Gdnc and Gdno are the

only symmetric positive definite solutions of the projected generalized discrete-
time Lyapunov equations

AGdnc AT − EGdncET = (I − Pl)BBT(I − Pl)T,
PrGdnc PT

r = 0
(2.83)

and
ATGdno A − ETGdnoE = (I − Pr )TCTC(I − Pr ),

PT
l GdnoPl = 0,

(2.84)

respectively.
3. Controllability and observability Gramians Gdc and Gdo are the unique symmet-

ric positive definite solutions of the projected generalized discrete-time Lyapunov
equations

AGdc AT − EGdcET = −Pl BBTPT
l + (I − Pl)BBT(I − Pl)T,

Gdc = (I − Pr )Gdc(I − Pr )T
(2.85)

and

ATGdoA − ETGdoE = −PT
r C

TCPr + (I − Pr )TCTC(I − Pr ),
Gdo = (I − Pl)TGdo(I − Pl),

(2.86)

respectively.

The proof of this theorem can be found in [2, 11].

2.6 Stability of Discrete-Time Descriptor Systems

Consider a LDTI descriptor system given by the equations:

Ex(k + 1) = Ax(k) + Bu(k), (2.87)

y(k) = Cx(k) (2.88)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the control signal, y(k) ∈ R
p

is the measurable output. The matrix E ∈ R
n×n can be singular. We assume that

rank (E) = r ≤ n. A, B,C are known real matrices of appropriate dimensions.
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Definition 2.18 The discrete-time system (2.87) is called autonomically globally
stable or, simply, stable if for u(k) = 0 the following inequality is satisfied.

‖x(k)‖ ≤ αβk‖x(0)‖, k ∈ Z, k � 0 α > 0, 0 < β < 1

for any consistent initial condition x(0).

Definition 2.19 System (2.87) is called admissible if it is regular, causal, and stable.

Definition 2.20 The discrete-time system (2.87) is called asymptotically stable if
limk→∞ x(k) = 0 for any solutions of the system Ex(k + 1) = Ax(k).

For descriptor systems, written in various equivalent forms, it is easy to obtain
the following relations.

Let system (2.87) and (2.88) be given in Weierstrass canonical form. Then

• The pair (E, A) is causal if and only if N = 0.
• The pair (E, A) is stable if and only if ρ(A1) < 1.
• The pair (E, A) is admissible if and only if N = 0 and ρ(A1) < 1.

Let system (2.87) and (2.88) be given in SVD equivalent form. Then

• The pair (E, A) is causal if and only if A22 is nonsingular.
• The pair (E, A) is admissible if and only if A22 is nonsingular and ρ(A11 −

A12A
−1
22 A21) < 1.

Example 2.6 Let the system have the state-space representation:

[
0 1
0 0

]
x(k + 1) =

[
1 0
0 1

]
x(k) +

[
1
1

]
f (k), (2.89)

The solution is defined as

x2(k) = − f (k),

x1(k) = − f (k) − f (k + 1).

System (2.89) is noncausal. The transformation matrices W and V for system

(2.89) can be selected as W =
[
1 0
0 1

]
, V =

[
0 −1
1 0

]
. Then WEV =

[
1 0
0 0

]
and

W AV =
[
0 −1
1 0

]
. Here A22 = 0.

It is obvious that asymptotic stability of a descriptor system (2.87) can be described
in terms of the generalized spectrum of the matrix pencil (λE − A). Note also
that infinite eigenvalues do not affect asymptotic stability of the system (2.87). The
conditions introduced above are based on the decomposition of the system’smatrices,
which can lead to computational difficulties. Given this, we suggest another form
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of admissibility conditions expressed by the following theorems. These conditions
involve no equivalent transformations.

The following theorem gives strict admissibility conditions for a discrete-time
descriptor system in terms of LMI.

Theorem 2.2 ([12] The system (2.87) is admissible if and only if there exist such
matrices R > 0 and Q that the following inequality holds.

ATRA − ETRE + QSTA + ATSQT < 0, (2.90)

where S ∈ R
n×(n−r) is a full column rank matrix, satisfying the condition ETS = 0.

Note that in the case of E = I system (2.87) becomes nonsingular; it is easy to
show that S = 0. Theorem 2.2 coincides with Lyapunov’s theorem in [13].

The above theorem demonstrates the LMI-based approach to check admissibil-
ity of descriptor system (2.87). Another approach is based on the solution of the
generalized discrete-time Lyapunov equation.

Theorem 2.3 ([2]) A regular discrete-time descriptor system (2.87) is admissible if
there exists a solution X = XT ∈ R

n×n of the generalized Lyapunov equation

ATX A − ETXE + Q = 0, (2.91)

satisfying the condition ETXE � 0 for some matrix Q = QT > 0.

Note that the discretized model of the continuous descriptor system, obtained by
relation

E
x(k + 1) − x(k)

h
= Ax(k) (2.92)

where h is a discretization step of the continuous-time system Eẋ(t) = Ax(t), is
admissible if matrix pair (E, E + Ah) is admissible.

Conclusion

In this chapter, basic concepts of linear discrete-time descriptor systems theory are
discussed. Unlike continuous-time systems, discrete-time ones should be considered
not only on an infinite, but also on a finite, horizon. It is shown that the solution
of systems defined on finite and infinite horizons are substantially different. The
solution of a discrete-time system on a finite horizon is completely determined by
its terminal conditions, some of which are initial and determine the position of the
system at the initial moment, and the other part stands for terminal conditions and
determines the position of another part of the system for a finite time.

In the case of an infinite horizon, another feature of discrete-time descriptor sys-
tems appears. The solution of the system can depend on future values of the input
signal. Thus, noncausal behavior of the system (dependence on future values of the
input signal) is analogous to the impulsive behavior of a continuous-time system.
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Chapter 3
Anisotropy-Based Analysis of LDTI
Descriptor Systems

3.1 Preliminaries of Anisotropy-Based Control Theory

3.1.1 Anisotropy of the Random Vector and Mean Anisotropy
of the Signal

Let W = {w(k)}k∈Z be a stationary sequence of random m-dimensional vectors.
Assembling the elements of W , associated with the interval [0, N −1], into a random

vector W0:N−1 =
⎡
⎢⎣

w0
...

wN−1

⎤
⎥⎦ , we assume that W0:N−1 is absolutely continuously

distributed for every N > 0.

Definition 3.1 Anisotropy A(W0:N−1) is defined as the minimal value of relative
entropy [1] with respect to the Gaussian distributions in R

m with zero mean and
scalar covariance matrix described by

A(W0:N−1) = m

2
ln

(
2πe

m
E(|W0:N−1|2)

)
− h(W0:N−1)

where h(W0:N−1) = E ln f (W0:N−1) = − ∫
Rm

f (w) ln f (w)dw is a differential

entropy, f : R
m N −→ R+ is the probability density function (PDF) of the vec-

tor W0:N−1.

Definition 3.2 Mean anisotropy of the sequence W is defined by the expression

A(W ) = lim
N→+∞

A(W0:N−1)

N
. (3.1)
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62 3 Anisotropy-Based Analysis of LDTI Descriptor Systems

It is shown in [2] that

A(W ) = A(w0) + I(w0; (wk)k<0) (3.2)

where I(w0; (wk)k<0) = lims→−∞ I(w0; Ws:−1) is the Shannon mutual informa-
tion [3] between w0 and the past history (wk)k<0 of the sequence W .

Now suppose that W is generated from the Gaussian white noise sequence V =
{v(k)}k∈Z with zero mean and identity covariance matrix by an admissible shaping
filter G(z) = CG(zEG − AG)−1BG + DG ; that is, the pair (EG, AG) is admissible.
Then,

I(w0; (wk)k<0) = 1

2
ln det(cov(w0)cov−1(w̃0)) (3.3)

where
w̃0 = w0 − E(w0|(wk)k<0) (3.4)

is the error of the mean-square optimal prediction of w0 by the past history (wk)k<0,
provided by the conditional expectation.

Suppose w( j) = ∑+∞
k=0 g(k)v( j − k), j ∈ Z. The impulse response of the filter

g(k) ∈ R
m×m is assumed to be square summable over k � 0, ensuring mean square

convergence of the series.
Transfer function of the filter G(z) = ∑+∞

k=0 g(k)zk is supposed to belong to
Hardy space H2

m×m , that is, the space of matrix-valued functions, analytic in the
disc |z| < 1 on the complex plane. Space is equipped with theH2 -norm, defined by

‖G‖2 =
(+∞∑

k=0

Tr (g(k)gT(k))

)1/2

=
⎛
⎝ 1

2π

π∫

−π

Tr S(ω)dω

⎞
⎠

1/2

(3.5)

where S(ω) = Ĝ∗(ω)Ĝ(ω), (−π � ω � π) is a spectral density of W , and
Ĝ(ω) = G(eiω) is the boundary value of the transfer function G(z).

The covariance matrix of the prediction error (3.4) and the spectral density S(ω)

are related by the Kolmogorov-Szegö formula as

1

2π

π∫

−π

ln det S(ω)dω = ln det cov(w̃0). (3.6)

Using the (3.2)–(3.4), Szegö limit theorem[4], and (3.6), themeananisotropy (3.1)
of the stationary Gaussian random sequence W = GV can be computed in terms of
spectral density S(ω) and theH2 -norm of the shaping filter G .

A(W ) = − 1

4π

π∫

−π

ln det
mS(ω)

‖G‖22
dω = − 1

4π
ln det

mcov(w̃0)

‖G‖22
. (3.7)
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Fig. 3.1 Random signals with different mean anisotropy level A(W )

Themean anisotropy of the signal is the Kullback-Leibler information divergence
from the PDF of the signal to the PDF of the white Gaussian noise sequence. It
characterizes divergence between the signal and white Gaussian noise sequence. For
more information see [2, 5] (Fig. 3.1).

Remark 3.1 The mean anisotropy of random sequence W , generated by shaping
filter G(z), is fully defined by its parameters; thus the notations A(G) and A(W ) are
equivalent.

For more details, see [6].

3.2 System Norms

Consider a descriptor system of the form

Ex(k + 1) = Ax(k) + B f (k), (3.8)

y(k) = Cx(k) + D f (k). (3.9)

System (3.8)–(3.9) is equal to its transfer function

P(z) = C(zE − A)−1B + D.
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64 3 Anisotropy-Based Analysis of LDTI Descriptor Systems

Now we describe norms of the transfer function P(z), widely used in control
theory [7].

3.2.1 L p×m
2 - andH2 -Norms

Let Lp×m
2 (Γ ) be a space of matrix-valued functions P : Γ → C

p×m that have finite
L

p×m
2 (Γ )-norm

‖P‖
L

p×m
2 (Γ ) =

(
1

2π

∫ 2π

0
Tr
(
P∗(eiω)P(eiω)

)
dω

) 1
2

. (3.10)

The subspace of Lp×m
2 (Γ ), denoted byH2 , consists of all rational transfer func-

tions that are analytic in the exterior of the closed unit disk. The H2 -norm of the
transfer function P(z) ∈ H2 is defined by

‖P‖2 =
(

1

2π

∫ 2π

0
Tr
(
P∗(eiω)P(eiω)

)
dω

) 1
2

=
(

1

2π

∫ 2π

0
‖P(eiω)‖dω

) 1
2

.

If P(z) is strictly proper, and the matrix pencil (λE − A) is d-stable (i.e., ρ(E, A) <

1), then P(z) ∈ H2 . On the other hand, if P(z) ∈ H2 , then P(z) is strictly proper,
but (λE − A) is not necessarily d-stable.

Recall that, in control theory, a proper transfer function is a transfer function in
which the numerator degree does not exceed the degree of the denominator. A strictly
proper transfer function is a transfer function where the degree of the numerator is
less than the degree of the denominator.

Example 3.1 Let the system be given as

E =
⎡
⎣
1 0 0
0 1 0
0 0 0

⎤
⎦ , A =

⎡
⎣
2 0 0
0 0.5 0
0 0 1

⎤
⎦ , B =

⎡
⎣
0
1
0

⎤
⎦ = CT.

Transfer function P(z) = 2
2z−1 ∈ H2 is proper, but the matrix pencil (λE − A) is

not d-stable.

The transfer function P(z) of system (3.8) and (3.9) may not be proper. In this
case, if the matrix pencil (λE − A) has no eigenvalues on the unit circle, then
P(z) ∈ L

p×m
2 (Γ ).

H2 -Norm Computation

Now consider the Hilbert space l p×m
2 (Z) that contains matrix-valued sequences S =

{Sk}k∈Z, Sk ∈ R
p×m which have a bounded l p×m

2 (Z)-norm
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‖S‖l p×m
2 (Z) =

( ∞∑
k=−∞

Tr (ST
k Sk)

) 1
2

=
( ∞∑

k=−∞
‖Sk‖2F

) 1
2

.

Using the Parseval identity, from (2.67) we get

‖P‖
L

p×m
2 (Γ ) = ‖P‖l p×m

2 (Z) =
( ∞∑

k=−∞
‖Pk‖2F

) 1
2

(3.11)

where P = {Pk}k∈Z is an impulse transfer function of the system (3.8) and (3.9).
Moreover, if the matrix pencil (λE − A) is d-stable, then substituting Pk = C Pk−1B
into (3.11), we have

‖P‖2
L

p×m
2 (Γ )

=∑∞
k=−∞ Tr (BTPT

k−1C
TC Pk−1B) =

=∑∞
k=−∞ Tr (C Pk−1B BTPT

k−1C
T) = Tr (BTPdo B) = Tr (C PdcCT).

This relation leads to the algorithm ofLp×m
2 (Γ )-norm computation of the transfer

function P(z) with a d-stable matrix pencil (λE − A) [7].
Consider the following projected generalized discrete-time algebraic Lyapunov

equation.

ATX A − ETX E = −PT
r CTC Pr + (I − Pr )

TCTC(I − Pr ), (3.12)

PT
l X = X Pl . (3.13)

Matrices Pr and Pl are defined in (2.66). We have to find the solution of (3.12)–
(3.13) X = LTL .

• Transform the matrices E and A to the upper-triangular form

E = V

[
E f Eu

0 E∞

]
UT, A = V

[
A f Au

0 A∞

]
UT (3.14)

where thematrix pencil (λE f −A f ) is quasi-triangular and has only finite eigenval-
ues. The pencil (λE∞− A∞) is triangular and has infinite generalized eigenvalues.

• Solve the generalized Sylvester equation

E f Y − Z E∞ = −Eu, (3.15)

A f Y − Z A∞ = −Au . (3.16)

• Compute the matrix CU = [C1 C2
]
.

• Using the generalized Hammarling algorithm, find the Cholesky decomposition
UX11 for the solution X11 = UT

X11
UX11 of the regular generalized discrete-time

Lyapunov equation
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66 3 Anisotropy-Based Analysis of LDTI Descriptor Systems

AT
f X11A f − ET

f X11E f = −CT
1 C1. (3.17)

• Using the generalized Hammarling algorithm, find the Cholesky decomposition
UX∞ for the solution X∞ = UT

X∞UX∞ of the regular generalized discrete-time
Lyapunov equation

AT
∞ X∞ A∞ − ET

∞ X∞E∞ = (C1Y + C2)
T(C1Y + C2). (3.18)

• The full-rank matrix L can be found from QR-decomposition, applying House-
holder and Givens transformations

[
UX11 −UX11 Z
0 UX∞

]
V T = Q

[
L
0

]
. (3.19)

Remark 3.2 When system (3.8) and (3.9) is admissible, the simplified method of
H2 -norm computation can be applied. The procedure consists of the following steps.

1. Calculate matrices W1 and V1 and transform the initial system into the singular
value decomposition (SVD) equivalent form with

W1AV1 =
[

A11 A12

A21 A22

]
.

2. Construct matrices W2 and V2 as follows.

W2 =
[

Ir −A12 A−1
22

0 In−r

]
, V2 =

[
Ir 0

−A−1
22 A21 A−1

22

]
.

3. Define W = W1W2 and V = V1V2. Matrices W and V transform the initial
system to Weierstrass canonical form with

W EV = diag(Ir , 0), W AV = diag(A1, In−r ),

W B =
[

B̄1

B̄2

]
, CV = [ C̄1 C̄2

]
,

After transformations, the generalized projected Lyapunov equation (3.12) can
be rewritten as

AT
1 Gco A1 − Gco = −C̄T

1 C̄1. (3.20)

The H2 -norm of the system can be computed as

‖P‖2 =
√
Tr
(
B̄T
1 Gco B̄1 + (D − C̄2 B̄2)T(D − C̄2 B̄2)

)
.

Example 3.2 Let the system be given by the following matrices.
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E =

⎡
⎢⎢⎣
3 0 2 −5
0 3 −2 2
2 2 0 −2
2 −4 4 −6

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0.7 −3.25 −0.7 0
1.8 0.4 −6.4 2.6
1 −1.9 −5.4 2.4

−0.6 −2.7 5.4 −2.8

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣
2.1 −0.8
0.2 1
1.5 1.3
0 2

⎤
⎥⎥⎦ , C = [1.5 0 −2 1

]
, D = [1 1

]
.

Matrices W and V have the form:

W =

⎡
⎢⎢⎣
1 0 2.2847 −2.1209
0 1 1.4593 5.2108
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , W =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−0.1713 −0.2585 −3.2481 0.6194
−0.1705 −0.0758 −1.7412 1.1245

⎤
⎥⎥⎦ ,

The system is transformed into Weierstrass canonical form with

A1 =
[

0.2371 −0.8616
−0.0031 −0.5371

]
, W B =

[
B̄1

B̄2

]
=

⎡
⎢⎢⎣

−0.4428 −6.0760
−5.6722 12.7570
−0.2187 0.0877
−0.6087 2.4927

⎤
⎥⎥⎦ ,

CV = [ C̄1 C̄2
] = [0.1568 0.1570 3.0786 0.5697

]
.

Solution Gco of equation (3.20) takes the form

Gco =
[
0.0260 0.0173
0.0173 0.0843

]
.

Finally, ‖P‖2 = 4.4.

3.2.2 L p×m
∞ - andH∞ -Norms

Let Lp×m
∞ (Γ ) (where Γ is a unit circle on the complex plane) be a space of matrix-

valued functions P : Γ → C
p×m that are essentially bounded on Γ . The subspace of

L
p×m
∞ (Γ ), denoted byH∞ , consists of all rational transfer functions that are analytic

in the exterior of the closed unit disk. Therefore theH∞ -normof the transfer function
P(z) ∈ H∞ is defined by

‖P‖∞ = sup
ω∈[0,2π]

σ
(
P(eiω)

) = sup
ω∈[0,2π]

‖(P(eiω)‖2.
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68 3 Anisotropy-Based Analysis of LDTI Descriptor Systems

Evidently, the H∞ -norm of the transfer function P(z) is finite if and only if
P(z) ∈ L

p×m
∞ (Γ ) is proper.

For LDTI descriptor system given in the form (3.8) and (3.9) the following
bounded real lemma can be formulated. This lemma allows computing the H∞ -
norm of the system. Its formulation can be found in [8].

Lemma 3.1 For a given real value γ > 0 system (3.8)–(3.9) is admissible, and its
transfer function

P(z) = C(zE − A)−1B + D (3.21)

satisfies the condition
‖P‖∞ < γ (3.22)

if and only if there exists a matrix R̃ = R̃T, such that the following LMIs hold true.

ET R̃E ≥ 0, (3.23)[
AT R̃ A − ET R̃E + CTC AT R̃B + CTD

BT R̃ A + DTC BT R̃B + DTD − γ 2 I

]
< 0. (3.24)

H∞ -Norm Computation

Conditions of Lemma 3.1 can be used in H∞ -norm calculation. Denoting ξ = γ 2

the problem of H∞ -norm calculation is to find

ξ∗ = inf ξ

on the set
{ξ, R̃}

that satisfies (3.23)–(3.24). If the minimum value ξ∗ is found, then theH∞ -norm of
system (3.21) can be approximately calculated as

‖P‖∞ ≈ √ξ∗. (3.25)

Example 3.3 The system parameters are taken from Example 3.2.
Compute the H∞ -norm of the transfer function, using a bounded real lemma

for descriptor systems. Matrix R, which corresponds to the minimal value of the
parameter γ , is equal to

R =

⎡
⎢⎢⎣

0.1120 −9.0655 5.1750 −5.6424
−9.0655 −12.2041 13.4356 −1.5472
5.1750 13.4356 11.4013 5.1043

−5.6424 −1.5472 5.1043 2.8984

⎤
⎥⎥⎦ .
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3.2 System Norms 69

The system’s norm is γ = 9.0478. Note that the exact value of theH∞ -norm for
the equivalent normal system is γeq = 9.0386.

3.2.3 a-Anisotropic Norm

Consider an admissible linear discrete-time descriptor system P written in a state-
space representation

Ex(k + 1) = Ax(k) + Bw(k), (3.26)

y(k) = Cx(k) + Dw(k). (3.27)

W = {w(k)}k∈Z is a stationary Gaussian sequence of m-dimensional random vectors
with a boundedmean anisotropy levelA(W ) � a (a � 0) and zeromean, x(k) ∈ R

n ,
y(k) ∈ R

p. Recall that rank (E) = r < n.
For a given system P with the input signal W = {w(k)}k∈Z the root mean-square

(RMS) gain is defined as [6, 9]

Q(P, W ) = ‖Y‖P

‖W‖P

(3.28)

where

‖Y‖P =
√√√√ lim

N→∞
1

2N + 1

N∑
k=−N

E|y(k)|2

is power norm of the square summable stationary sequence Y = {y(k)}k∈Z.

Definition 3.3 For a given parameter a � 0 a-anisotropic norm of the system
P (3.26) and (3.27) is defined by

|||P|||a = sup
A(W )�a

Q(P, W ). (3.29)

Thus the a-anisotropic norm |||P|||a describes the “stochastic gain” of the system P
with respect to W .

Sequence W = {w(k)}k∈Z can be generated as [9]

w(k) = Cgx(k) + Dgv(k) (3.30)

where x(k) is the state of the system (3.26).
Using (3.30), we can choose Cg and Dg such that filter G with a state-space

representation
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Ex(k + 1) = (A + BCg)x(k) + B Dgv(k), (3.31)

w(k) = Cgx(k) + Dgv(k) (3.32)

is admissible.
The ratio of power norms of outputs of systems (3.26) and (3.27), and (3.31) and

(3.32) may be written as
‖Y‖P

‖W‖P

= ‖PG‖2
‖G‖2 .

Therefore the anisotropic norm can be defined as follows.

Definition 3.4 For a given scalar value a � 0 a-anisotropic norm of system P can
be defined as

|||P|||a = sup
G∈Ga

‖PG‖2
‖G‖2 . (3.33)

The right-hand side of the expression (3.33) stands for the maximal value of the
system’s gain (the ratio of power norms of output Y and input W ) against the class
of shaping filters

Ga = {G ∈ H2
m×m : A(G) � a

}
.

Definition 3.5 The setGa , for which the supremum from (3.33) is reached, is called
the set ofworst-case shaping filters, and filterG ∈ Ga is called theworst-case shaping
filter.

a-Anisotropic Norm Computation

As system P , given in the state space by (3.26) and (3.27), is admissible, there exist
such nonsingular matrices W̃ and Ṽ that

W̃ EṼ = diag(Ir , 0).

Thus system (3.26) and (3.27) can be transformed to SVD equivalent form (see
Chap. 2)

x1(k + 1) = A11x1(k) + A12x2(k) + B1w(k), (3.34)

0 = A21x1(k) + A22x2(k) + B2w(k), (3.35)

y(k) = C1x1(k) + C2x2(k) + Dw(k), (3.36)

matrix A22 in (3.35) is nonsingular. Matrices W̃ and Ṽ can be found from SVD
decomposition (2.21) and (2.22). The nonsingularity ofmatrix A22 allows the expres-
sion of x2(k) from equation (3.35)

x2(k) = −A−1
22 (A21x1(k) + B2w(k)). (3.37)
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Substitution of (3.37) into (3.34) leads to

x1(k + 1) = Ãx1(k) + B̃w(k), (3.38)

y(k) = C̃x1(k) + D̃w(k) (3.39)

where
Ã = A11 − A12 A−1

22 A21, B̃ = B1 − A12 A−1
22 B2,

C̃ = C1 − C2 A−1
22 A21, D̃ = D − C2 A−1

22 B2.
(3.40)

The obtained system (3.38) and (3.39) is equal to the initial descriptor system (3.26)
and (3.27) in the sense of an input-output operator. But its state vector x1(k) of lower
dimension is driven by the normal difference equation.

Now we formulate the following theorem for anisotropic norm computation [10].

Theorem 3.1 Let system P in the form (3.26) and (3.27) be admissible. Then its a-
anisotropic norm can be computed as the anisotropic norm of the equivalent normal
system (3.38) and (3.39), using the expression

|||P|||a =
(
1

q

(
1 − m

Tr (LΠ LT + Σ)

))1/2

where q ∈ [0, ‖P‖−2∞ ). The matrices Π , L, and Σ are found from the solution of the
following three expressions.

Algebraic Riccati equation

R = ÃTR Ã + qC̃TC̃ + LTΣ−1L ,

L = Σ(B̃TR Ã + q D̃TC̃),

Σ = (Im − B̃TRB̃ − q D̃T D̃)−1

(with the additional condition ρ( Ã + B̃L) < 1)
Lyapunov equation

Π = ( Ã + B̃L)Π( Ã + B̃L)T + B̃Σ B̃T,

and the special type equation

a = −1

2
ln det

(
m Σ

Tr (LΠ LT + Σ)

)
.

The matrices Ã, B̃, C̃ , and D̃ are defined by (3.40).

Note that we use parameters of the worst-case shaping filter while computing the
anisotropic norm of descriptor systems according to Theorem 3.1, that is,
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72 3 Anisotropy-Based Analysis of LDTI Descriptor Systems

G =
[

Ã + B̃L B̃Σ1/2

L Σ1/2

]
.

This filter is designed for the equivalent normal system; its state vector x1(k) has
lower dimension than the initial descriptor system. This feature has to be taken into
account when constructing anisotropic control laws for descriptor systems.

Example 3.4 Compute the anisotropic norm for the system, given in Example 3.2.
Here rank (E) = 2. To transform the system into the SVD equivalent form we

use the following matrices.

W̃ =

⎡
⎢⎢⎣

−0.5228 0.3220 −0.1338 −0.7779
−0.5233 −0.4659 −0.6595 0.2723
0.1736 0.7599 −0.5536 0.2932

−0.6501 0.3190 0.4906 0.4846

⎤
⎥⎥⎦ ,

Ṽ =

⎡
⎢⎢⎣

−0.0292 −0.1028 −0.7935 0.1742
0.0328 −0.1669 0.4113 0.2662

−0.0413 0.0427 0.2347 0.8396
0.0705 0.0601 −0.3822 0.4403

⎤
⎥⎥⎦ ,

which transform matrix E to the form

W̃ EṼ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Matrix A is converted to

W̃ AṼ =
[

A11 A12

A21 A22

]
=

⎡
⎢⎢⎣

0.5249 −0.8132 −0.4367 2.1266
−0.4712 0.0136 4.1626 −6.9268
−0.0338 −0.0947 −0.4369 0.2406
0.0993 −0.0792 −0.6765 1.2619

⎤
⎥⎥⎦,

W̃ B =
[

B1

B2

]
=

⎡
⎢⎢⎣

−1.2341 −0.9895
−2.1814 −0.3600
−0.2187 0.0877
−0.6087 2.4927

⎤
⎥⎥⎦ ,

CṼ = [C1 C2
] = [0.1094 −0.1795 −1.7304 1.4597

]
.

Matrix A22 is not singular; therefore the system is causal. Moreover, matrix Ã =
A11 − A12 A−1

22 A21 has the following spectral radius ρ( Ã) = 0.5405 < 1; it means
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Fig. 3.2 Relation between the a-anisotropic norm of the system P and mean anisotropy level of
the input disturbance a

that the system is stable. Consequently, the SVD equivalent form is represented by an
asymptotically stable normal system (3.38) and (3.39), which matrices are computed
according to the expressions (3.40):

Ã =
[

0.2371 −0.8616
−0.0031 −0.5371

]
, B̃ =

[−0.4428 −6.0760
−5.6722 12.7570

]
,

C̃ = [
0.1568 0.1570

]
, D̃ = [

2.0200 −0.6900
]
.

The results of a-anisotropic norm computation |||P|||a according to Theorem 3.1 for
different values a are depicted in Fig. 3.2. When a = 0 the value of the anisotropic
norm is equal to

|||P|||a = 3.1112 = 4.4√
2

= ‖P‖2√
2

.
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3.3 Anisotropy-Based Performance Analysis

The method described above for anisotropic norm computation is useful only for
admissible systems. However, it is preferable to check admissibility of a system
simultaneously with anisotropic norm computation. Such methods are more useful
for solving not only the analysis problembut also that of control design. The following
section describes an approach to anisotropy-based performance analysis, which is
used for solving control design problems.

Problem Statement

A linear discrete-time stationary descriptor system in a state-space representation is
given by

Ex(k + 1) = Ax(k) + Bw(k), (3.41)

y(k) = Cx(k) + Dw(k) (3.42)

where x(k) ∈ R
n is the state vector, w(k) ∈ R

m is a random stationary sequence
with bounded mean anisotropy A(W ) � a (a � 0), y(k) ∈ R

p is a measurable
output, E , A, B, C , and D are known matrices of appropriate dimensions. Matrix E
is singular; that is, rank (E) = r < n. Hereinafter, we suppose that the following
rank condition is true for the system (3.41).

rank
[
E B
] = rank (E). (3.43)

System (3.41) and (3.42) is equal to P ∈ H∞ p×m , given by its transfer function

P(z) = C(zE − A)−1B + D.

We also use the denotation [11]

P =
[

E,
A B
C D

]
.

Let system P be admissible. Suppose that the input sequence W is a stationary
sequence of random Gaussian vectors with bounded mean anisotropy A(W ) � a; it
means that W is generated from the m-dimensional Gaussian white noise sequence
V with zero mean and identity covariance matrix by an unknown stable shaping filter
G from the set Ga . For system P given by (3.41) and (3.42), for the known mean
anisotropy boundary value a � 0, and a value γ > 0we have to obtain the conditions
of anisotropic norm |||P|||a boundedness by γ .
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3.3.1 Riccati Equations Technique

In order to prove an anisotropy-based bounded real lemma we have to describe some
results from the theory of all-pass systems.

Definition 3.6 A systemwith a transfer function P(z) such that P∗ P = Im is called
the all-pass system.

Lemma 3.2 [11] System (3.41) and (3.42) is the all-pass system if there exists
R̂ = R̂T that satisfies the conditions ET R̂E � 0 and

BT R̂B + DTD = Im,

BT R̂ A + DTC = 0,

AT R̂ A + CTC − ET R̂E = 0.

The conditions of anisotropic norm boundedness for descriptor systems can be for-
mulated as follows.

Theorem 3.2 Let P ∈ H∞ p×m be an admissible system with a state-space repre-
sentation (3.41) and (3.42) where ρ(E, A) < 1. For given scalar quantities a � 0
and γ > 0 the a-anisotropic norm is bounded by γ , that is, |||P|||a � γ if and only if
there exists q ∈ [0,min(γ −2, ‖P‖−2∞ )) such that the inequality

− 1

2
ln det((1 − qγ 2)Σ) � a (3.44)

is satisfied for matrix Σ associated with the stabilizing solution1 R̂ = R̂T of the
algebraic Riccati equation

ET R̂E = AT R̂ A + qCTC + LTΣ−1L , (3.45)

L = Σ(BT R̂ A + q DTC), (3.46)

Σ = (Im − BT R̂B − q DTD)−1, (3.47)

in addition, ET R̂E � 0.

Proof The power norm ratio ‖PG‖2/‖G‖2 on the right-hand side of (3.33) andmean
anisotropy A(G) in (3.7) are both invariant under the scaling of the shaping filter
G. Assuming system P to be fixed, they are completely specified by the normalized
spectral density [12]:

Π(ω) = mS(ω)

‖G‖22
= 2πmS(ω)

π∫
−π

Tr S(v)dv
, (3.48)

1The stabilizing solution of the Riccati equation (3.45) stands for solution R̂, that the pair (E,

A + BL) is admissible.
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then

A(G) = α(Π) = − 1

4π

π∫

−π

ln detΠ(ω)dω, (3.49)

‖PG‖2
‖G‖2 = ν(Π) =

⎛
⎝ 1

2πm

π∫

−π

Tr (Λ(ω)Π(ω))dω

⎞
⎠

1/2

(3.50)

where functionΠ(ω), defined on the interval [−π, π) by (3.48), takes values from the
set of positive definite Hermitian m-dimensional matrices and satisfies the condition

π∫

−π

TrΠ(ω)dω = 2πm.

Let the function Λ(ω) be given by

Λ(ω) = P̂∗(ω)P̂(ω). (3.51)

Note that the squared functional ν2(Π) is linear on the variable Π(ω), and α(Π)

is strictly convex with respect to Π(ω). Strict convexity of α follows from strict
concavity of the function ln det(·) considered on a convex cone of positive definite
matrices [13]. Strict convexity ofα(Π) can also be obtained directly from the positive
definiteness of its second variation

δ2α(Π) = 1

4π

π∫

−π

Tr (Π−1(ω)δΠ(ω)Π−1(ω)δΠ(ω))dω =

= 1

4π

π∫

−π

‖Π−1/2(ω)δΠ(ω)Π−1/2(ω)‖2dω (3.52)

where δΠ(ω) is a variation ofΠ , and ‖M‖ = (Tr (M∗M))1/2 denotes the Frobenius
norm of the matrix. In the equation (3.52) we used the property of matrix trace

ln det� = Tr ln�

and the first variation of the inverse nonsingular matrix

δ(�−1) = −�−1(δ�)�−1.

Thus the minimum value of the mean anisotropy of disturbance W , necessary to
achieve the given level γ > 0 for the power norm ratio of the system, is
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min
ν(Π)�γ

α(Π) = − 1

4π
max

ν2(Π)�γ 2

π∫

−π

ln detΠ(ω)dω. (3.53)

By using the Lagrange multipliers method, the first minimum in (3.53) is shown
to be achieved at a spectral density proportional to

Sq(ω) = (Im − qΛ(ω))−1 (3.54)

where q is a subsidiary variable satisfying 0 � q < ‖P‖−2∞ .
Accordingly, functions

A (q) = α(Πq), N (q) = ν(Πq) (3.55)

are defined by evaluating the functionals α(Π) and ν(Π) from (3.49) and (3.50) at
the normalized spectral density

Πq(ω) = 2πmSq(ω)
π∫

−π

Tr Sq(v)dv
, (3.56)

obtained by substituting (3.54) into (3.48). Excluding from consideration the trivial
case when the function Λ in (3.51) is a constant matrix, A (q) and N (q) are both
strictly increasing over q (see [6, 9]). This allows the minimum value of the mean
anisotropy in (3.53) to be computed as A (N −1(γ )) where N −1(γ ) denotes the
functional inverse of N (q). Therefore, the inequality |||P|||a � γ is equivalent to
A (N −1(γ )) � a. Now (3.54) implies that Λ(ω) = (Im − Sq(ω)−1)/q and, hence

1

2πm

π∫

−π

Tr
(
Λ(ω)Sq(ω)

)
dω = 1

q

⎛
⎝ 1

2πm

π∫

−π

Tr Sq(ω)dω − 1

⎞
⎠ ,

which, in combination with the definition of the function N (q) via (3.50), (3.55),
and (3.56) yields

1

2πm

π∫

−π

Tr Sq(ω)dω = 1

1 − qN 2(q)
. (3.57)

Substituting (3.49), (3.56), and (3.57) into (3.55), we get function A (q) in the
form

A (q) = A (q,N (q)) (3.58)
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where

A(q, γ ) = − 1

4π

π∫

−π

ln det Sq(ω)dω − m

2
ln(1 − qγ 2). (3.59)

Because − ln(1 − qγ 2) is monotonically increasing for γ ∈ [0, 1/√q), then
so is A(q, γ ). A remarkable property of the function A(q, γ ) is that it achieves its
maximum with respect to q at the point q = N −1(γ ), where, in view of (3.58), it
coincides with function A (q):

max
0�q<‖P‖−2∞

A(q, γ ) = A(N −1(γ ), γ ) = A (N −1(γ )). (3.60)

The significance of this property for formulating the criterion of boundedness
|||P|||a � γ is explained by expression (3.60) implying the equivalence between
realization of the inequality A (N −1(γ )) � a and the existence of the parameter
q ∈ [0, ‖P‖−2∞ ), satisfying A(q, γ ) � a. Therefore, |||P|||a � γ if A(q, γ ) �
a for some q ∈ [0, ‖P‖−2∞ ).

Property (3.60) is verified by differentiating the functionA(q, γ ) from (3.59) with
respect to its first argument:

∂A(q, γ )

∂q
= 1

4π

∫ π

−π

∂ ln det(Im − qΛ(ω))

∂q
dω + mγ 2

2(1 − qγ 2)
=

− 1

4π

∫ π

−π

Tr
(
Λ(ω)Sq (ω)

)
dω + mγ 2

2(1 − qγ 2)
= − mN 2(q)

2(1 − qN 2(q))
+ mγ 2

2(1 − qγ 2)
=

= m(γ 2 − N 2(q))

2(1 − qγ 2)(1 − qN 2(q))
. (3.61)

Function N (q) is strictly monotonic; the representation (3.61) implies that ∂A(q,γ )

∂q

is positive for q < N −1(γ ) and negative for q > N −1(γ ). Now we have to
represent the inequality A(q, γ ) � a for the function (3.59) in terms of the state-
space dynamics of the system P . Note that (3.54) describes the parametric set of the
worst-case spectral densities of the input disturbance W for the admissible values
of q. Because the subsidiary variable q is fixed for the rest of the proof, we use the
notation

S�(ω) = (Im − q�Λ(ω))−1 (3.62)

where q� = A −1(a).
Now we get a state-space representation of the worst-case input disturbance W�

with a spectral density S�. In view of (3.51), the relation (3.62) is equivalent to

Θ̂∗(ω)Θ̂(ω) = Im, −π � ω < π (3.63)
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where Θ̂ =
[√

q� P̂(ω)

Ĝ−1
� (ω)

]
.

Here, Ĝ� is a shaping filterwhich, in accordancewith [9], factorizes theworst-case
spectral density (3.62) as S� = Ĝ∗

�Ĝ�. The condition (3.63) means that the system
Θ̂ is the all-pass system.

Let L ∈ R
m×n be amatrix such that the pair (E, A+BL) is admissible;Σ ∈ R

m×m

is a positive definite symmetric matrix. We consider the worst-case input disturbance
W� = G�V , which can be generated as

w�(k) = Lx(k) + Σ1/2v(k). (3.64)

Find such matrices L and Σ , that the input disturbance W� is the worst case. A
state-space representation of the shaping filter G� is

G� =
[

E,
A + BL BΣ1/2

L Σ1/2

]
.

Because G� is invertible, its inverse is described by

G−1
� =

[
E,

A B
−Σ−1/2L Σ−1/2

]
.

A state-space representation of the closed-loop system Θ is

Θ =
⎡
⎣E,

A B
q1/2C q1/2D

−Σ−1/2L Σ−1/2

⎤
⎦ .

According to Lemma 3.2, there exists a matrix R̂ = R̂T, satisfying the condition
ET R̂E � 0 such that

BT R̂B + [q1/2DT (Σ−1/2)T
] [ q1/2D

Σ−1/2

]
= Im, (3.65)

BT R̂ A + [q1/2DT (Σ−1/2)T
] [ q1/2C

−Σ−1/2L

]
= 0, (3.66)

AT R̂ A + [q1/2CT −LT(Σ−1/2)T
] [ q1/2C

−Σ−1/2L

]
− ET R̂E = 0. (3.67)

Inasmuch as Σ is a positive definite symmetric matrix, from equations (3.65) and
(3.66) we get

Σ = (Im − BT R̂ B − q DTD)−1, (3.68)
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L = Σ(BT R̂ A + q DTC). (3.69)

These equations coincide with the equalities (3.46) and (3.47). The expression (3.67)
can be rewritten as

ET R̂E = AT R̂ A + qCTC + LTΣ−1L . (3.70)

The worst-case input disturbance is described by (3.64), where {vk}k∈Z is a white
noise sequence with an identity covariance matrix; thus the prediction error (3.4)
takes the form w̃(0) = Σ1/2v(0) and, hence, cov(w̃(0)) = Σ . Therefore, in combi-
nation with Kolmogorov-Szegö formula (3.6), we have

1

2π

π∫

−π

ln det S�(ω)dω = ln detΣ.

Substituting this equation into (3.59), we obtain

A(q, γ ) = −1

2
ln det

(
(1 − qγ 2)Σ

)
.

Hence, the condition A(q, γ ) � a is equivalent to the inequality (3.44) for the
matrix Σ , associated with the generalized Riccati equation (3.45)–(3.47).

The theorem is proved. �

Example 3.5 Consider the system (3.41) and (3.42) with the following parameters:

E =
⎡
⎣
1 0 0
0 1 0
0 0 0

⎤
⎦ , A =

⎡
⎣
0.3500 1.0000 −0.7800
0.6300 −0.1100 0.9700
0.6177 0.8038 0.7851

⎤
⎦ , B =

⎡
⎣

−0.3
0.1
0

⎤
⎦ ,

C = [0.70 2.00 −1.56
]
, D = [0.6] .

The system is admissible; that is, ρ(E, A) = 0.9799, and the rank condition (3.43)
holds true. The H∞ -norm of the transfer function ‖P‖∞ is equal to 6.8364.

To satisfy the conditions of Theorem 3.2 for given a and γ , parameter q should
satisfy the condition q ∈ [0,min(γ −2, ‖P‖−2∞ )) where ‖P‖−2∞ = 0.0214, and the
inequality ET R̂E � 0 should be true for the matrix R̂.

Consider the results for different values of γ . For a = 0.1 the results are given in
Table 3.1. The anisotropic norm is equal to |||P|||a = 3.1537.

As we can see, the conditions of Theorem 3.2 are satisfied for |||P|||a < γ ; for
|||P|||a > γ the conditions not only on q, but also on R̂ get broken.

Therefore the conditions of Theorem 3.2 can be used for anisotropic norm com-
putation with a given accuracy.
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Fig. 3.3 Block diagram of anisotopic norm computation algorithm

Anisotropic Norm Computation on Basis of an Anisotropy-Based Bounded Real
Lemma
Using the conditions of an anisotropy-based bounded real lemma (Theorem 3.2), one
can compute the anisotropic normwith prescribed accuracy εmin. A block diagram of
the algorithm is shown in Fig. 3.3 where εmax is the accuracy, taken from the previous
step.
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3.3.2 Convex Optimization Approach

In this section, conditions of an anisotropy-based bounded real lemma are given in
terms of LMIs, which form convex constraints. To solve the analysis problem we
formulate sufficient conditions of anisotropic norm boundedness for a descriptor
system (3.41) and (3.42).

Theorem 3.3 Let W = {w(k)}k∈Z be a stationary Gaussian random sequence whose
mean anisotropy does not exceed the given value a � 0. System P ∈ H∞ p×m with
a state-space representation (3.41) and (3.42) is admissible and its a-anisotropic
norm is bounded by a positive scalar γ > 0; that is,

|||P|||a < γ

if there exist a scalar q ∈ (0,min(γ −2, ‖P‖∞)), and a symmetric matrix R satisfying

E RET � 0,

− (det(Im − BT RB − q DT D))1/m < −(1 − qγ 2)e2a/m, (3.71)

[
ATR A − ETRE ATRB

BTR A BTRB − Im

]
+ q

[
CT

DT

] [
C D

]
< 0. (3.72)

Proof Use the following denotations.

Σ = (Im − BTRB − q DTD)−1 and L = Σ(BTR A + q DTC).

Proof of this theorem includes the following steps.

1. First show that inequality (3.44) can be rewritten in the form (3.71).
2. Prove that (3.72) holds true for an admissible system P .
3. Show that the pair (E, A + BL) is admissible. Note that the pair (E, A + BL) is

connected with the worst-case shaping filter [9].

Using logarithm properties, we transform inequality (3.44) and get

− ln det((1 − qγ 2)Σ) > 2a,

− ln detΣ − ln det(Im(1 − qγ 2)) > 2a,

then
− ln detΣ > m ln(1 − qγ 2) + 2a,

−1/m ln detΣ > ln
(
e2a/m(1 − qγ 2)

)
,
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(detΣ)−1/m > (1 − qγ 2)e2a/m .

By multiplication on (−1) we get

−(detΣ)−1/m < −(1 − qγ 2)e2a/m .

Remark 3.3 It is known that [14]

1. Function (detΨ )p of (m × m)-matrix Ψ = Ψ T � 0 is concave over its argument
for any 0 � p � 1

m .

2. Function (detΨ )
1
m of the (m × m)-matrix Ψ = Ψ T � 0 is the geometric mean

of its eigenvalues m
√

λ1(Ψ ) . . . λm(Ψ ).

3. Set
{(λ1, λ2, t) ∈ R

3|λ1, λ2 � 0, t �
√

λ1λ2}

can be represented as a second-order cone

{
(λ1, λ2, t)|∃τ : t � τ ; τ � 0,

∥∥∥∥
[

τ
λ1−λ2

2

]∥∥∥∥
2

� λ1 + λ2

2

}
,

and the set {(λ1, . . . , λ2l , t) ∈ R
2l+1|λi � 0, I = 1, . . . , 2l , t � (λ1λ2 . . . λ2l )1/2

l },
l ∈ N is an intersection of a finite number of second-order cones.

4. If p ∈ R is a rational number 0 ≤ p ≤ 1
m , then a convex function (detΨ )p of

the (m × m)-matrix Ψ = Ψ T ≥ 0 can be represented in the LMI form. Namely,
the set

{(Ψ, t)|Ψ = Ψ T ≥ 0, t ≤ (detΨ )p}

can be represented as

{
(Ψ, t)|Ψ = Ψ T ≥ 0,

[
Ψ Δ

ΔT diagΔ

]
≥ 0, t ≤ (δ1 . . . δm)p

}

whereΔ is the lower triangular (m×m)-matrix, constructed of auxiliary variables
with elements δi , i = 1 . . . m on the main diagonal. The subgraph of the concave
term t ≤ (δ1 . . . δm)p can be expressed via a second-order cone, and, hence, as
LMI. See [14] for more details.

For (Im − BTRB − q DTD) > 0, using the Schur complement [15], rewrite the
inequality (3.72) in the form

ATR A − ETRE + qCTC+
+ (ARBT + qCTD)(Im − BTRB − q DTD)−1(B R AT + q DTC) < 0.

(3.73)
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System P is admissible; thus there exists such R that (3.73) (or equivalently (3.72))
holds true. Now if (3.73) is satisfied then there exists a nonnegative matrix � such
that

ATR A − ETRE + qCTC + (ARBT + qCTD)(Im − BTRB − q DTD)−1×
× (B R AT + q DTC) + � = 0.

(3.74)

Stationary sequence W is generated from the Gaussian white noise sequence by the
shaping filter G with a state-space representation

G =
[

E,
A + BL BΣ1/2

L Σ1/2

]
.

Prove that the pair (E, A + BL) is admissible.

(A + BL)T R̃(A + BL) − ET R̃E = AT R̃ A − ET R̃E+
+ LTBT R̃ A + AT R̃ BL + LTBT R̃ BL .

System (3.41) is admissible. According to the conditions of Theorem 2.2 there exists
a matrix R̂ such that

AT R̂ A − ET R̂E + LTBT R̂ A + AT R̂BL < 0.

It means that there exists a matrix R̃ such that

AT R̃ A − ET R̃E + LTBT R̃ A + AT R̃BL + LTBT R̃BL < 0

holds true.
This completes the proof. �

Remark 3.4 Convex conditions (3.71) and (3.72) cannot be directly applied for min-
imal value of γ computation because of the product of q and γ 2 on the right-hand
side of (3.71).

Transform the inequalities (3.71) and (3.72). Define η = q−1 and ξ = γ 2. Mul-
tiplying both inequalities on η and substituting ξ conditions of Theorem 3.3 can be
rewritten as

η − (e−2a det(ηIm − BTΦB − DTD))1/m < ξ, (3.75)

[
ATΦ A − ETΦE + CTC ATΦB + CTD

BTΦ A + DTC BTΦB + DTD − ηIm

]
< 0, (3.76)

ETΦE � 0 (3.77)

where Φ = ηR. Conditions (3.75) and (3.76) are linear on ξ .
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Fig. 3.4 Anisotropic norm of the system computed using Riccati- and LMI-based algorithms

They allow us to calculate the minimum value of γ by solving the following
convex optimization problem: to find ξ∗ = inf ξ on the set {Φ, η, ξ} that satisfies
(3.75)–(3.77). If the minimum value ξ∗ is found, then the a-anisotropic norm of the
system P can be approximately calculated as

|||P|||a ≈ √ξ∗.

Example 3.6 The system is described by equations

E =

⎡
⎢⎢⎣
3 0 2 −5
0 3 −2 2
2 2 0 −2
2 −4 4 −6

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0.7 −3.25 −0.7 0
1.8 0.4 −6.4 2.6
1 −1.9 −5.4 2.4

−0.6 −2.7 5.4 −2.8

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

3.2 −3.5
2.5 −7.9
3.8 −7.6

−1.2 8.2

⎤
⎥⎥⎦ ,

C = [ 0.2 0.4 0.45 0.6
]
, D = [ 0.2 1

]
.

Rank condition (3.43) holds true. The results of anisotropic norm computation using
an LMI-based algorithm and Riccati-based algorithms are presented in Fig. 3.4.
Figure3.5 shows an absolute error between the obtained values. Simulation results
show that the suggested algorithm allows computing the anisotropic norm of descrip-
tor systems with high accuracy. This method can be applied without using algebraic
transformation for the given system in contrast to the algorithm in Sect. 3.2.3. For
more information, see [10].
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Fig. 3.5 Absolute error of anisotropic norm computation between LMI- and Riccati-based algo-
rithms

Limiting Cases

Consider the conditions of Theorem 3.3 for two limiting cases whenmean anisotropy
level a of the input disturbance goes to zero and to infinity. AsH2 - andH∞ -norms
are limiting cases of the anisotropic norm for a = 0 and a → ∞, one can expect
that the inequalities (3.71) and (3.72) transform to the criteria of boundedness of the
scaled H2 -norm and H∞ -norm of system P .

Prove the following lemma, which allows us to compute theH2 -norm of descrip-
tor systems.

Lemma 3.3 Let T be a solution of the following generalized Lyapunov equation

ATT A − ETT E + CTC = 0 (3.78)

for system (3.41) and (3.42). Then the H2 -norm of system (3.41) and (3.42) can be
computed as

‖P‖2 =
√
Tr (BTT B + DTD). (3.79)

Proof Condition (3.43) means that there exists a matrix W such that

W B =
[

B1

B2

]
=
[

B1

0

]
.
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and, therefore, the condition B1BT
2 = 0 holds. Hence, the solution of the general-

ized Lyapunov equation (3.78) defines a observability Gramian of system (3.41)
and (3.42). Using the definition of an H2 -norm we get (3.79) that completes the
proof. �

Now we give the conditions of H∞ -norm boundedness for descriptor
systems [16].

Lemma 3.4 The following statements are equivalent.

1. A is a stable matrix, ‖C(zE − A)−1B + D‖∞ < γ .
2. There exists a matrix R = RT such that ETRE > 0 and

ATR A − ETRE + CTC + (ATRB + CTD)×
× (γ 2 Im − BTRB − DTD)−1(BTR A + DTC) < 0

(3.80)

where γ 2 Im − BTRB − DTD > 0.

Consider now limiting cases of anisotropic norm boundedness conditions for
a = 0 and a → ∞.

1. If a = 0, then the inequality (3.75) is equal to

η − (det(ηIm − BTΦB − DTD))1/m < γ 2. (3.81)

Taking into account the relation between arithmetic and geometric means [17],
we get

(det(ηIm − BTΦB − DTD))1/m � 1

m
Tr (ηIm − BTΦB − DTD)).

The inequality (3.81) leads to

Tr (BTΦB + DTD) < mγ 2. (3.82)

It is easy to verify that the inequality (3.76) is satisfied if

ATΦ A − ETΦE + CTC < 0. (3.83)

The conditions (3.82) and (3.83) are equivalent to the inequality

1√
m

‖P‖2 < γ.

2. If a → ∞, then η → γ 2, and condition (3.75) is violated. For Φ̄ = γΦ it is easy
to notice that the inequality (3.76) is equivalent to (3.80). Thus for a → ∞ the
condition |||P|||a < γ coincides with the condition ‖P‖∞ < γ .
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3.3.3 Novel Anisotropy-Based Bounded Real Lemma: Strict
Conditions

The result obtained in the previous section deals with nonstrict LMIs. This may lead
to some inaccuracies while computing the a-anisotropic norm of a descriptor system.
Moreover, inequality (3.80) leads to nonlinearities in control design problems. The
following results represent strict inequalities that can be used for solving the control
design problem.

Novel Bounded Real Lemma for Normal Systems

Before we formulate a novel anisotropy-based bounded real lemma for descriptor
systems, we consider the standard state-space case:

x(k + 1) = Ax(k) + Bw(k), (3.84)

y(k) = Cx(k) + Dw(k) (3.85)

where x(k) ∈ R
n is the state, w(k) ∈ R

m is a random stationary sequence with
known mean anisotropy level A(W ) � a, y(k) ∈ R

q is an observable output, and
A, B, C , and D are constant real matrices of appropriate dimensions. The transfer
function of system (3.84) and (3.85) is defined by

T (z) = C(z In − A)−1B + D.

We suppose that system (3.84) and (3.85) is stable, and constants a � 0 and
γ > 0 are known. The problem is to satisfy the inequality

|||T |||a < γ.

The following lemma gives the answer to this problem [18].

Lemma 3.5 Let system (3.84) and (3.85) with a transfer function T (z) ∈ H∞ q×m

be stable. For the given scalar values a � 0 and γ > 0 the a-anisotropic norm is
bounded by a given scalar value γ ; that is,

|||T |||a < γ

if there exist such scalar value η > γ 2 and n × n-matrix Φ = ΦT > 0 that the
following inequalities hold true.

η − (e−2a det(ηIm − BTΦB − DTD))1/m < γ 2, (3.86)

[
ATΦ A − Φ + CTC ATΦB + CTD

BTΦ A + DTC BTΦB + DTD − ηIm

]
< 0. (3.87)
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Based on Lemma 3.5, we introduce the following theorem.

Theorem 3.4 For given scalar values a � 0 and γ > 0 system (3.84) and (3.85)
with the transfer function T (z) ∈ H∞ q×m is stable and its a-anisotropic norm is
bounded by γ ; that is,

|||T |||a < γ

if there exist such scalar values η > γ 2, n × n-matrix Φ = ΦT > 0 and a random
n × n-matrix Y that the following inequalities hold true.

η − (e−2a det(ηIm − BTΦB − DTD))1/m < γ 2, (3.88)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1

2
Y − 1

2
Y T Y A Y B ΦT − Y T − 1

2
Y 0

ATY T −Φ 0 ATY T CT

BTY T 0 −ηIm BTY T DT

Φ − Y − 1

2
Y T Y A Y B −Y − Y T 0

0 C D 0 −Iq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.89)

Proof Suppose the inequalities (3.88) and (3.89) hold true. Rewrite the expres-
sion (3.89) in the form

� + ϒTY TΔ + ΔTYϒ < 0 (3.90)

where Δ = [ In 0 0 In
]
, ϒ =

[
−1

2
In A B −In

]
, and a symmetric matrix � is

given by

� =

⎡
⎢⎢⎣

0 0 0 Φ

0 CTC − Φ CTD 0
0 DTC DTD − ηIm 0
Φ 0 0 0

⎤
⎥⎥⎦ .

Using the projection lemma [19], we get that inequality (3.90) is solvable for the
n × n-matrix Y if and only if

MT�M < 0 and NT�N < 0

for

MT =
⎡
⎣

0 In 0 0
0 0 Im 0

−In 0 0 In

⎤
⎦ , NT =

⎡
⎢⎢⎣

In 0 0 −1

2
In

0 In 0 AT

0 0 Im BT

⎤
⎥⎥⎦ .

Also, columns of the matrix N form the basis of the kernel of ϒ , and columns of the
matrix M form the basis of the kernel of Δ.
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Note that

NT�N =
⎡
⎣

−Φ Φ A ΦB
ATΦ CTC CTD
BTΦ DTC DTD

⎤
⎦ < 0. (3.91)

As Φ = ΦT > 0, using the Schur complement, we may transform the inequal-
ity (3.91) into

[
CTC CTD
DTC DTD

]
−
[

AT

BT

]
Φ(−Φ)−1Φ

[
A B
]

< 0.

Hence, [
ATΦ A − Φ + CTC ATΦB + CTD

BTΦ A + DTC BTΦB + DTD − ηIm

]
< 0.

Consequently, the conditions of this theorem are equivalent to the conditions of
Lemma 3.5, proved in [18].

The theorem is proved. �

Remark 3.5 In order to avoid product DTD in inequality (3.88) we introduce a new
variable Ψ :

Ψ < ηIm − BTΦB − DTD. (3.92)

Transform (3.92) according to Schur’s lemma

Ψ − ηIm + BTΦB − DT
(−Iq

)
D < 0,

[
Ψ − ηIm + BTΦB DT

D −Iq

]
< 0.

Thus the inequality (3.88) can be rewritten as a system of inequalities

η − (e−2a det(Ψ ))1/m < γ 2

and [
Ψ − ηIm + BTΦB DT

D −Iq

]
< 0.

Novel Bounded Real Lemma for Descriptor Systems

Consider a discrete-time descriptor system (3.41) and (3.42). As it is regular, there
exist two transformation matrices W̃ and Ṽ , and the system (3.41) and (3.42) can be
rewritten in the equivalent form (2.17)–(2.19). We use the denotations: Ed = W̃ EṼ ,
Ad = W̃ AṼ , Bd = W̃ B, Cd = CṼ , and Dd = D.

Now we formulate conditions of anisotropic norm boundedness for the sys-
tem (3.41) and (3.42).
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Theorem 3.5 For given scalar values a � 0 and the γ > 0 system (3.41) and (3.42)
with a transfer function P(z) ∈ H∞ p×m is admissible and its a-anisotropic norm is
bounded by γ ; that is,

|||P|||a < γ

if there exist matrices L ∈ R
r×r , L > 0, Q ∈ R

r×r , R ∈ R
r×(n−r), S ∈ R

(n−r)×(n−r),
Ψ ∈ R

m×m, scalar values η > γ 2 and α > 0 that the following inequalities hold
true.

η − (e−2a det(Ψ ))1/m < γ 2, (3.93)

[
Ψ − ηIm + BT

d Θ Bd DT
d

Dd −Ip

]
< 0, (3.94)

and

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
2 Q − 1

2 QT Γ Ad Γ Bd LT − QT − 1
2 Q 0

AT
d Γ T Π Ad + AT

d ΠT − Θ Π Bd AT
d Γ T CT

d + αAT
d ΠTCT

d

BT
d Γ T BT

d ΠT −ηIm BT
d Γ T DT

d + αBT
d ΠTCT

d

L − Q − 1
2 QT Γ Ad Γ Bd −Q − QT 0

0 Cd + αCdΠ Ad Dd + αCdΠ Bd 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0,

(3.95)

where Θ =
[

L 0
0 0

]
, Π =

[
0 0
0 S

]
, Γ = [ Q R

]
.

Proof Suppose inequalities (3.93)–(3.95) hold true. For the equivalent form (2.17)–
(2.19) of system (3.41) and (3.42) it is not difficult to get

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11 z12 z13 z14 z15 0

zT12 −L z23 0 z25 z26
zT13 zT23 z33 z34 z35 z36
zT14 0 zT34 −ηIm z45 z46
zT15 zT25 zT35 zT45 z55 0

0 zT26 zT36 zT46 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

where

z11 = −1

2
Q − 1

2
QT, z12 = Q A11 + R A21,

z13 = Q A12 + R A22, z14 = Q B1 + RB2,

z15 = LT − QT − 1

2
Q, z23 = AT

21ST,

z25 = AT
11QT + AT

21RT, z26 = CT
1 + αAT

21STCT
2
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z33 = S A22 + AT
22ST, z34 = SB2,

z35 = AT
12QT + AT

22RT, z36 = CT
2 + αAT

22STCT
2

z45 = BT
1 QT + BT

2 RT, z46 = DT + αBT
2 STCT

2 ,

z55 = −Q − QT.

As Z < 0, we can choose a nonsingular matrix K , such that

K Z K T < 0.

By setting

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ir 0 0 0 0 0
0 Ir 0 0 0 0
0 0 0 Im 0 0
0 0 0 0 Ir 0
0 0 0 0 0 Ip

0 0 In−r 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

we get

K Z K T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11 z12 z14 z15 0 z13
zT12 −L 0 z25 z26 z23
zT14 0 −ηIm z45 z46 zT34
zT15 zT25 zT45 z55 0 zT35
0 zT26 zT46 0 −Ip zT36

zT13 zT23 z34 z35 z36 z33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

Consider expression K Z K T = W + WT where

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

w11 0 0 0 0 0
w21 w22 0 w24 w25 w26

w31 0 w33 w34 w35 w36

w41 0 0 w44 0 0
0 0 0 0 w55 0

w61 0 0 w64 w65 w66

⎤
⎥⎥⎥⎥⎥⎥⎦

,

w11 = −1

2
Q, w21 = w24 = AT

11QT + AT
21RT,

w22 = −1

2
L , w25 = CT

1 + αAT
21STCT

2 ,
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w26 = AT
21ST, w31 = w34 = BT

1 QT + BT
2 RT,

w33 = −η

2
Im, w35 = DT + αBT

2 STCT
2 ,

w36 = BT
2 ST, w41 = L − Q − 1

2
QT,

w44 = −Q, w55 = −1

2
Ip, w65 = CT

2 + αAT
22STCT

2 ,

w61 = w64 = AT
12QT + AT

22RT, w66 = AT
22ST.

Thus
W + WT < 0. (3.96)

As z33 = AT
22ST + S A22 < 0, both matrices A22 and S are nonsingular. The sys-

tem (3.41) is causal; it can be transformed into a normal system T̂ of reduced dimen-
sion

x̂(k + 1) = Âx̂(k) + B̂w(k), (3.97)

ŷ(k) = Ĉ x̂(k) + D̂w(k) (3.98)

where x̂(k) ∈ R
r ,

Â = A11 − A12 A−1
22 A21 , B̂ = B1 − A12 A−1

22 B2 ,

Ĉ = C1 − C2 A−1
22 A21 , D̂ = D − C2 A−1

22 B2.

According to the rank condition, B2 = 0. Hence, the inequality (3.93) coincides
with (3.88) for the equivalent system (3.97) and (3.98).

Now show that the matrix Â is stable, and |||T̂ |||a < γ . As S A22 and AT
22ST are

invertible, AT
22ST < 0 and S A22 < 0; applying Schur’s lemma to (3.96), we get

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

2
Q − 1

2
QT Q Â Q B̂ LT − QT − 1

2
Q 0

ÂTQT −L 0 ÂTQT ĈT

B̂TQT 0 −ηIm B̂TQT D̂T

L − Q − 1

2
QT Q Â Q B̂ −Q − QT 0

0 Ĉ D̂ 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.99)

According to Theorem 3.4, we have ρ( Â) < 1 and |||T̂ |||a < γ . Thus |||P|||a < γ.

The theorem is proved. �
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Fig. 3.6 a-Anisotropic norm computation, using novel BRL

Remark 3.6 Denote ξ = γ 2.While computing the a-anisotropic norm for descriptor
systems one should solve the optimization problem: to find ξ∗ = inf ξ on the set
{L , Q, R, S, Ψ, η, ξ}, that satisfies the inequalities (3.93)–(3.95). If the minimum
value ξ∗ is found, the a-anisotropic norm of the system P is calculated as

|||P|||a ≈ √ξ∗. (3.100)

Here the scalar value α > 0 is set.

Example 3.7 Let the matrices of system (3.41) and (3.42) be equal to

E =

⎡
⎢⎢⎣
3 0 2 −5
0 3 −2 2
2 2 0 −2
2 −4 4 −6

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0.7 −3.25 −0.7 0
1.8 0.4 −6.4 2.6
1.0 −1.9 −5.4 2.4

−0.6 −2.7 5.4 −2.8

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

3.2 −3.5
2.5 −7.9
3.8 −7.6

−1.2 8.2

⎤
⎥⎥⎦ , C = [ 0.2 0.4 0.45 0.6

]
, D = [0.2 1.0

]
, and α = 100.

It is easy to check that the system is causal and stable. Results of the a-anisotropic
norm computation on basis of the novel bounded real lemma are given in Fig. 3.6.
Figure3.7 depicts the absolute error of anisotropic norm computation compared with
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Fig. 3.7 Absolute error of anisotropic norm computation between novel LMI- and Riccati-based
algorithms

the results of anisotropic norm calculating based on the Riccati equations method
from Sect. 3.3.1. For more information, see [20].

Conclusion

In this chapter, different approaches to anisotropy-based analysis for descriptor sys-
tems are introduced. It is shown that the definition of the anisotropic norm of descrip-
tor systems in the frequency domain coincides with the same one for standard state-
space systems. However, the conditions and methods of norm computation are dif-
ferent. Different versions of anisotropy-based bounded real lemma are introduced in
order to solve control design problems.
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Chapter 4
Optimal Control

4.1 State Feedback Control

Problem Statement

Consider a discrete-time descriptor system P in the form:

Ex(k + 1) = Ax(k) + Bww(k) + Buu(k), (4.1)

z(k) = Cx(k) + Dww(k) + Duu(k) (4.2)

where w(k) ∈ R
m1 and z(k) ∈ R

p are the input and output signals, respectively, and
u(k) ∈ R

m2 is the control vector. E , A, Bw, Bu ,C , Dw, and Du are constant realmatri-
ces of appropriate dimensions. The system is assumed to be causally controllable
and stabilizable. The input signal is a “colored” Gaussian disturbance with known
mean anisotropy level A(W ) � a (a � 0).

The anisotropy-based control problem for descriptor systems is similar to such a
problem for the normal ones [1] and can be formulated as follows.

Problem 4.1 For a given system (4.1) and (4.2) find an admissible state feedback
control u(k) = Kx(k) that minimizes the a-anisotropic norm of the closed-loop
system:

|||Pcl |||a = sup
G(z)∈Ga

‖PclG‖2
‖G‖2 → inf

K
. (4.3)

Physically, a-anisotropic norm minimization for system (4.1) and (4.2) means
minimization of the closed-loop impact of an external disturbance w(k) with known
spectral color to improve the robust performance of the system.

Recall that Ga = {
G ∈ H2

m×m : A(G) � a
}
.

Substituting control law u(k) into equations (4.1) and (4.2), we can write the
closed-loop system Pcl as

© Springer International Publishing AG, part of Springer Nature 2018
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Ex(k + 1) = (A + BuK )x(k) + Bww(k), (4.4)

z(k) = (C + DuK )x(k) + Dww(k). (4.5)

Problem Solution

The idea of optimal control Problem 4.1 solution is based on a saddle point condition
that can be formulated as follows. For any admissible shaping filter G ∈ Ga and any
stabilizing control law K ∈ K(P) we introduce the following sets.

K
�
a(G)

.= Arg min
K∈K(P)

‖Pcl‖2, G ∈ Ga,

G�
a(K )

.= Arg max
G∈Ga

‖Pcl‖2
‖G‖2 , K ∈ K(P).

Set K�
a(G) consists of control laws, which are solutions of the weighted H2 -

optimization problem. Here input signal W = GV is supposed to be “colored”
(correlated). Any control law, given in the form K ∈ K(P), minimizes the output
dispersion of the input signal W = GV . K(P) is a set of all controllers that make
the closed-loop system admissible. The set G�

a(K ) consists of the shaping filters,
which generate Gaussian input disturbances with the worst spectral density of the
closed-loop system.

Lemma 4.1 [2] If the control law K is a saddle point of the mappingK�
a ◦ G�

a , then
it is the solution to Problem 4.1.

Hence, the solution is composed of two steps. The first step is to find the worst-
case shaping filter G(z) ∈ Ga with mean anisotropy level A(G) � a. The second
step deals with solving the weighted H2 -control problem.

In order to define the state-space representation of the worst-case shaping filter
we give some definitions from dynamical systems theory. Consider a normal system
F (z) in state-space representation

x(k + 1) = A x(k) + B f (k), (4.6)

y(k) = C x(k) + D f (k). (4.7)

Here, x(k) ∈ R
n , f (k) ∈ R

m and y(k) ∈ R
p. Recall that the transfer function of

system (4.6) and (4.7) is given by

F (z) = C (z I − A )−1B + D .

Definition 4.1 The system F (z), satisfying the condition F ∗(z)ΨF (z) = Ψ for

a nonzero matrix Ψ = Ψ T ∈ R
p×p and a nonsingular matrix Ψ = Ψ

T ∈ R
m×m , is

called the weighted all-pass system. Here m � p.
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The system, satisfying conditionF ∗F = Im , is called the all-pass system. For more
information, see [3].

Lemma 4.2 ([3]) For given matrices Ψ and the Ψ system F ∈ H∞ p×m is the
weighted all-pass system if there exists a matrixR = RT, which satisfies the follow-
ing Riccati equation:

R = A TRA + C TΨC , (4.8)

0 = BTRA + DTΨC , (4.9)

Ψ = BTRB + DTΨD . (4.10)

Now we formulate similar conditions for all-pass descriptor systems

Ẽ x(k + 1) = Ãx(k) + B̃w(k), (4.11)

y(k) = C̃x(k) + D̃w(k), (4.12)

supposing that the following rank assumption takes place,

rank (Ẽ) = rank [ Ẽ B̃ ] = rank [ Ẽ C̃T ]. (4.13)

Lemma 4.3 Admissible system (4.11) and (4.12) is the all-pass system if there exists
a matrix R̃ = R̃T, satisfying the condition ẼT R̃ Ẽ � 0, such that

B̃T R̃ B̃ + D̃T D̃ = I, (4.14)

B̃T R̃ Ã + D̃TC̃ = 0, (4.15)

ÃT R̃ Ã + C̃TC̃ − ẼT R̃ Ẽ = 0. (4.16)

Proof For the admissible system there exist two nonsingular matrices W and V that
transform the initial system (4.11) and (4.12) to the form

C̃V = [
C1 C2

]
, W ẼV =

[
Ir 0
0 0

]
, W Ã V =

[
A1 0
0 In−r

]
, W B̃ =

[
B1

B2

]
.

Here r = rank (Ẽ), x(k) ∈ R
n . Then rank assumption (4.13) is equivalent to

rank
(
W ẼV

) = rank [W ẼV , W B̃ ] = rank [W ẼV , V
T
C̃T ].

It means that

rank

[
I 0
0 0

]
= rank

[
I 0 B1

0 0 B2

]
= rank

[
I 0 CT

1
0 0 CT

2

]
,

consequently,
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B2 = 0, C2 = 0. (4.17)

Introduce matrix R̃ in the following way.

R̃ = W
T
RW = W

T
[
R11 R12

R21 R22

]
W . (4.18)

Substitute R̃ from (4.18) into (4.16)

ÃTW
T
RW Ã + C̃TC̃ − ẼTW

T
RW Ẽ = 0. (4.19)

Left-hand and right-hand multiplying on nonsingular matrices V
T
and V gives

V
T
ÃTW

T
RW ÃV + V

T
C̃TC̃V − V

T
ẼTW

T
RW ẼV = 0. (4.20)

We can rewrite (4.20) as

[
AT
1 0
0 I

] [
R11 R12

R21 R22

] [
A1 0
0 I

]
+

[
CT
1

CT
2

] [
C1 C2

]−

−
[
I 0
0 0

] [
R11 R12

R21 R22

] [
I 0
0 0

]
= 0,

(4.21)

or [
AT
1 R11A1 AT

1 R12

R21A1 R22

]
+

[
CT
1C1 CT

1C2

CT
2C1 CT

2C2

]
−

[
R11 0
0 0

]
= 0. (4.22)

It leads to

AT
1 R11A1 + CT

1C1 − R11 = 0, AT
1 R12 + CT

1C2 = 0,

R21A1 + CT
2C1 = 0, R22 + CT

2C2 = 0. (4.23)

Now consider equation (4.15): B̃TW
T
RW Ã + D̃TC̃ = 0. By right-hand multipli-

cation on V we have

BT
1 R11A1 + D̃TC1 = 0, (4.24)

BT
1 R12 + D̃TC2 = 0. (4.25)

Using the same transformation for (4.14), we have

BT
1 R11B1 + BT

1 R12B2 + BT
2 R22B2 + D̃T D̃ = I. (4.26)

Taking into account condition (4.17), equations (4.23) and (4.26) are equivalent to
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AT
1 R11A1 + CT

1C1 − R11 = 0, (4.27)

BT
1 R11A1 + D̃TC1 = 0, (4.28)

BT
1 R11B1 + D̃T D̃ = I. (4.29)

Evidently, the initial descriptor system is equivalent to the following normal one.

x1(k + 1) = A1x1(k) + B1u(k),

y(k) = C1x1(k) + Du(k),

for which conditions (4.23), (4.24), (4.26) coincide with the conditions of Lemma 4.2
if Ψ = Ip, Ψ = Im .

The proof is completed. �

Now we formulate conditions of H2 -norm computation for system (4.11) and
(4.12).

Lemma 4.4 Let the system with state-space representation (4.11) and (4.12) be
admissible. Let the following assumption hold:

rank (Ẽ) = rank [ Ẽ B̃ ]. (4.30)

Consider a generalized Lyapunov equation

ÃG̃ ÃT − ẼG̃ ẼT + B̃ B̃T = 0. (4.31)

Then the H2 -norm of the system can be computed as

‖P‖2 = Tr (C̃G̃ C̃T + D̃T D̃). (4.32)

Proof In [4] it is shown that the solution of the generalized projectedLyapunov equa-
tion (2.85) coincides with the solution of the generalized Lyapunov equation (4.31)
if B1BT

2 = 0. Under rank assumption (4.30) B2 = 0 and, therefore, the condition
B1BT

2 = 0 holds. Hence, the solution of the generalized Lyapunov equation (4.31)
defines a controllability Gramian of system (4.11) and (4.12). Using the definition
of anH2 -norm we get (4.32) that completes the proof. �

Denote Â = A + BuK , Ĉ = C1 + DuK , and suppose that the closed-loop system
is admissible. The following theoremgives conditions on the parameters of theworst-
case shaping filter with a bounded mean anisotropy level A(G) � a.

Theorem 4.1 Let system (4.1) and (4.2) be stabilizable and causally controllable.
Then for any mean anisotropy level a � 0 there exists a single pair (q, R) where
a scalar parameter q satisfies the condition q ∈ [0, ‖Pcl‖−2∞ ), and R = RT with
ETRE � 0 is an admissible solution to the generalized algebraic Riccati equation
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ETRE = ÂTR Â + qĈTĈ + LT�−1L , (4.33)

� = (Im1 − qDT
wDw − BT

w RBw)−1, (4.34)

L = �(BT
w R Â + qDT

wĈ). (4.35)

Moreover,

− 1

2
ln det

(
m1�

Tr (LPGLT + �)

)
= a (4.36)

where PG ∈ R
n×n is a controllability Gramian for the shaping filter G. It satisfies

the projected generalized Lyapunov equation

E PGE
T = ( Â + BwL)PG( Â + BwL)T − Bw�BT

w . (4.37)

Thus the shaping filter with a state-space representation

G =
[
E,

Â + BwL Bw�1/2

L �1/2

]
(4.38)

is the worst-case shaping filter for the closed-loop system. The mean anisotropy level
of the signal generated by this filter is equal to a.

Proof Using the definition of an a-anisotropic norm (3.33), we can construct a
Lagrange function

L = ‖PclG‖22 − μ‖G‖22 − λA(G). (4.39)

It can be shown [5] that the Lagrange function (4.39) reaches its maximum when

q�(ω) − Im1 + σ S−1(ω) = 0 (4.40)

where �(ω) = P̂∗
cl(ω)P̂cl(ω), S(ω) = Ĝ∗(ω)Ĝ(ω).

Equation (4.40) implies that

S(ω) = σ(Im1 − q�(ω))−1

and defines the spectral density of the worst-case input disturbance. Without loss of
generality we may put σ = 1 and rewrite equation (4.40) as

q P̂∗
cl(ω)P̂cl(ω) + (Ĝ∗)−1(ω)Ĝ−1(ω) = Im1 .

Define

Θ =
[√

q P̂cl(ω)

Ĝ−1(ω)

]
.
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Then the closed-loop system with the worst-case shaping filter must satisfy the fol-
lowing factorization Θ∗Θ = Im1 . Noting that the shaping filter G is assumed to be
invertible we get

G−1 =
[
E,

Â Bw

−�−1/2L �−1/2

]
.

The state-space representation of Θ is

[√
qPcl
G−1

]
=

[
E,

Â Bw

	 


]

where

	 =
[ √

qĈ
−�−1/2L

]
, 
 =

[√
qDw

�−1/2

]
.

Using Lemma 4.3 and substituting the state-space representation of Θ into (4.14)
and (4.16) we get (4.33)–(4.35). Under conditions of Lemma 4.4 the H2 -norm of
the shaping filter is defined by the formula

‖G‖2 = Tr (LPGL
T + �). (4.41)

Taking into account the definition of mean anisotropy (3.7) and (4.41), we get
equation (4.36). The proof is completed. �

Consider an extended system given as

E∗ x̂(k + 1) = A∗ x̂(k) + Bu∗u(k) + Bv∗v(k), (4.42)

z(k) = C∗ x̂(k) + Dwv(k) (4.43)

where x̂(k) ∈ R
2n , z(k) ∈ R

p, and v(k) ∈ R
m1 is a Gaussian white noise sequence.

Here E∗ =
[
E 0
0 E

]
,

A∗ =
[
A BwL
0 A + BwL

]
, Bu∗ =

[
Bu

0

]
, C∗ = [

C DwL
]
. As the shaping filter

G is assumed to be invertible, this problem is equivalent to the standard H2 -
optimization problem (see [6] and references therein).

Theorem 4.2 Let system (4.42) and (4.43) be stabilizable and causally controllable.
The optimal state-space control law, which solves the weighted H2 -optimization
problem, can be found in the following form:

K = Γ1 + Γ2 (4.44)

where� andΓ = [Γ1 Γ2 ] are found from the solution of the following generalized
algebraic Riccati equation
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ET
∗ T E∗ = AT

∗T A∗ + CT
∗C∗ + Γ T�Γ, (4.45)

� = (BT
u∗T Bu∗ + DT

wDw), (4.46)

Γ = −�−1(BT
u∗T A∗ + DT

wC∗). (4.47)

The solution to the optimal control problem includes solving coupled general-
ized Riccati equations (4.33)–(4.35) and (4.45)–(4.47), the projected generalized
Lyapunov equation (4.37), and nonlinear special type equation (4.36).

If a = 0, parameters of the worst-case shaping filterG(z) are L = 0 and� = Im1 .
In this case the solution of the anisotropy-based optimal control problem is equivalent
to the solution of the H2 -optimal control problem.

Example 4.1 Consider the system:

E =
[
1 0
0 0

]
, A =

[
1.15 −0.3
0.1 0.3

]
, Bw =

[
0.5
0

]
, Bu =

[
1
0

]
,

C = [
1 0

]
, Dw = 0.2, Du = 0.1.

It is easy to see that rank (E) = rank [ E Bw ] = 1. The system is causal, but
unstable, ρ(E, A) = 1.25.

Nowwefind a state-feedback controlu(k) = Kx(k) for the givenmean anisotropy
level a = 0.4, using the techniques from the proven theorems.

The optimal controller is K ∗ = [−1.6514 0
]
. The closed-loop system is admis-

sible. Its spectral radius is ρ(E, A + BuK ∗) = 0.4014 and the a-anisotropic norm
is |||PSF

cl |||a = 0.4978.

4.2 Output Feedback Control

Problem Statement

The plant is given in the form

Ex(k + 1) = Ax(k) + B1w(k) + B2u(k), (4.48)

z(k) = C1x(k) + D11w(k) + D12u(k), (4.49)

y(k) = C2x(k) + D21w(k) + D22u(k), (4.50)

where x(k) ∈ R
n is the state, w(k) ∈ R

m1 is the reference input or disturbance,
u(k) ∈ R

m2 is a control signal, z ∈ R
p1 is the controllable output, and y ∈ R

p2 is
the measurable output.

We assume that signalw(k) is a stationary Gaussian sequence with boundedmean
anisotropy level a � 0. Without loss of generality we suppose that D22 = 0.
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Suppose also that the following assumptions on the system hold.

A1. The system is stabilizable and causally controllable.
A2. The system is detectable and causally observable.
A3. Dimension of the controllable output z(k) is less than the dimension of the

input disturbance w(k): p1 < m1.
A4. Matrix D21 has full row rank: rank (D21) = p2 � m1.
A5. Matrix D12 has full column rank: rank (D12) = m2 � p1.

Then the design problem for an anisotropy-based controller can be formulated as
follows.

Problem 4.2 For a given mean anisotropy level a � 0 of the input sequence w(k)
and for system (4.48) and (4.49), find a dynamical controller K that makes the
closed-loop system admissible and minimizes its a-anisotropic norm

sup
‖Fl(P, K )G‖2

‖G‖2 ;G ∈ Ga → min
K

. (4.51)

Here Fl(P, K ) is a linear fractional transformation (LFT) of the closed-loop system.
Because the initial plant might be noncausal, it is impossible to design an output

feedback controller. Therefore, we partition the design procedure into two steps.
In the first step, we design a static output feedback control law that makes the
closed-loop system causal (causalization). In the second step, we construct an output
feedback controller that stabilizes the system and minimizes its a-anisotropic norm.

Problem Solution

Causalization of the System

Under assumption A1, the system is causally controllable; that is, there exists a
control law ũ(k) = K1y(k) such that the pair (E, A + B2K1C2) is causal.

Let us consider a procedure for finding coefficients K1 [7]. Because the sys-
tem (4.48) and (4.49) is regular, there exist two nonsingular matrices W̃ and Ṽ such
that W̃ EṼ = diag(Ir , 0) where r = rank (E). A coordinate transformation

Ṽ−1x(k) =
[
x1(k)
x2(k)

]
, (4.52)

where x1(k) ∈ R
r and x2(k) ∈ R

n−r , reduces the system (4.48) and (4.49) to SVD
equivalent form [8].

Matrices W̃ and Ṽ are found from SVD decomposition, using the expres-
sions (2.21) and (2.22).

If the initial plant is noncausal, then A22 is a singular matrix [9].
Applying coordinate transformation (4.52) to

Ex(k + 1) = (A + B2K1C2)x(k),
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and left multiplying the result on matrix W̃ , we have

W̃ EṼ

[
x1(k + 1)
x2(k + 1)

]
= (

W̃ AṼ + W̃ B2K1C2Ṽ
) [

x1(k + 1)
x2(k + 1)

]
.

The last expression can be rewritten as

[
Ir 0
0 0

] [
x1(k + 1)
x2(k + 1)

]
=

([
A11 A12

A21 A22

]
+

[
B21

B22

]
K1

[
C21 C22

]) [
x1(k + 1)
x2(k + 1)

]
.

If rank (A22) = s < n − r , we consider the matrix block (A22 + B22K1C22). The
system is causally controllable if there exists a matrix K1 such that rank (A22 +
B22K1C22) = n − r . Based on SVD decomposition, represent matrix A22 as

SA22 A22UA22 =
[
Is 0
0 0

]
. (4.53)

By left and right multiplication of the expression (A22 + B22K1C22) onmatrices SA22

and UA22 ,we get [
Is 0
0 0

]
+ B̃22K1C̃22, (4.54)

where B̃22 = SA22B22 and C̃22 = C22UA22 . Then the causalization problem can be
represented as a problem of finding amatrix of coefficients K1 such that matrix (4.54)
is nonsingular. For simplicity assume that we need to find a matrix K1 such that the
following equality holds.

[
Is 0
0 0

]
+ B̃22K1C̃22 =

[
2Is 0
0 In−r−s

]
,

or
B̃22K1C̃22 = In−r .

This implies that
K1 = B̃+

22C̃
+
22, (4.55)

where M+ is the Moore-Penrose inverse of M .

Design of Output Feedback Stabilizing Controller

Consider a control law of the form:

u(k) = K1y(k) + u1(k). (4.56)

Substituting the expression (4.56) into the equations (4.48) and (4.49), we get
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Ex(k + 1) = (A + B2K1C2)x(k) + (B1 + B2K1D21)w(k) + B2u1(k),

z(k) = (C1 + D12K1C2)x(k) + (D11 + D12K1D21)w(k) + D12u1(k),

y(k) = C2x(k) + D21w(k).

Introduce the following notation: A = A + B2K1C2,C1 = C1 + D12K1C2,C2 =
C2, B1 = B1 + B2K1D21, B2 = B2, and D11 = D11 + D12K1D21.

Applying change of variables (4.52) and left-multiplying the equations on matrix
W̃ , we get

x1(k + 1) = A11x1(k) + A12x2(k) + B11w(k) + B21u1(k), (4.57)

0 = A21x1(k) + A22x2(k) + B12w(k) + B22u1(k), (4.58)

z(k) = C11x1(k) + C12x2(k) + D11w(k) + D12u1(k), (4.59)

y(k) = C21x1(k) + C22x2(k) + D21w(k), (4.60)

where

W̃ AṼ =
[
A11 A12

A21 A22

]
, W̃ Bi =

[
Bi1

Bi2

]
, Ci Ṽ = [

Ci1 Ci2
]
, i = 1, 2.

The causalization procedure allows transforming the original system to an equiv-
alent system that contains explicit expressions for the dynamical and algebraic sub-
systems. Expressing x2(k) via x1(k) and substituting it into equations (4.57) and
(4.60), we get the normal system:

x1(k + 1) = A x1(k) + B1w(k) + B2u1(k),

z(k) = C1x1(k) + D11w(k) + D12u1(k),

y(k) = C2x1(k) + D21w(k) + D22u1(k),

A = A11 − A12A
−1
22 A21, Bi = Bi1 − A12A

−1
22 Bi2,

Ci = Ci1 − Ci2A
−1
22 A21, Di j = Di j − Ci2A

−1
22 B j2,

where i, j = 1, 2.
After introducing this causalizing feedback, the original algebraic-difference sys-

tem can be reduced to a normal one. However, in the general case, the equivalent
system does not satisfy standard restrictions imposed on the control plant. Namely,
an equivalent state-space system does not necessarily demand that

D22 = 0, (4.61)

To satisfy constraint (4.61) we use the following change of variables [10].

y(1)(k) = y(k) − D22u1(k).
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This change of variables setsmatrixD22 of the control plant to zero by static feedback
with the gain −D22 from control u1(k) to the measured output y(k).

After all the above transformations, the resulting system satisfies standard require-
ments, thus we can apply the already solved design problem for an anisotropy-based
output controller [2]. In this work, we briefly recall the design procedure for solving
an anisotropy-based optimal control problem. A more comprehensive description of
optimal anisotropy-based controller design can be found in, for example, [11].

The solution of anisotropy-based optimal output feedback control problem con-
sists of several steps.

1. Design of the worst-case shaping filter for the closed-loop system.
2. Design of the full-order observer for the system weighted with the shaping filter.
3. Solving the H2 -optimization problem for the control object weighted with the

shaping filter.

The controller’s state-space representation has the following form [2].

K̃ =
[
Ã B̃
C̃ 0

]
, (4.62)

where

Ã = A + B1M + B2(Γ1 + Γ2) − �(C2 + D21M), B̃ = �, C̃ = Γ1 + Γ2.

(4.63)
Parameters Γ1, Γ2, M , and � can be found from the solution of the following

equations.
1. Riccati equation with respect to the closed-loop system:

R = AT
cl RAcl + qCT

clCcl + LT�−1L ,

� = (Im1 − qDT
11D11 − BT

cl RBcl)
−1,

L = �(BT
cl RAcl + qDT

11Ccl)

where q ∈ R, R ∈ R
2n×2n , and

Acl =
[

A B2C̃
B̃C2 Ã

]
, Bcl =

[
B1

B̃D21

]
, Ccl = [

C1 D12C̃
]
.

2. The special type equation

a = −1

2
ln det

(
m1�

Tr (LPLT + �)

)
.

3. Lyapunov equation

P = (Acl + Bcl L)P(Acl + Bcl L)T + Bcl�BT
cl .
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4. Riccati equation for observation

S = (A + B1L1)S(A + B1L1)
T + B1�BT

1 − �Θ�T,

Θ = (C2 + D21L1)S(C2 + D21L1)
T + D21�DT

21,

� = (
(A + B1L1)S(C2 + D21L1)

T + B1�DT
21

)
Θ−1

where L1 is an (m1 × n) block of the matrix L such that L = [
L1 L2

]
. Matrix M

from (4.63) is defined as M = L1 + L2.
5. Riccati equation for solving the H2 -optimization problem for the extended

control object

T = AT
∗T A∗ + CT

∗C∗ − Γ T�Γ,

� = BT
∗ T B∗ + DT

12D12,

Γ = −�−1(BT
∗ T A∗ + DT

12C∗),

where T ∈ R
2n×2n , Γ = [

Γ1 Γ2
]
, and

A∗ =
[
A B1M
0 A + B1M + B2(Γ1 + Γ2)

]
, B∗ =

[
B2

0

]
C∗ = [

C1 D11M
]
.

Then, finally, the closed-loop system’s structure assumes the form depicted in
Fig. 4.1. As the figure indicates, the controller has two parts. The first part is required
to causalize the backward (algebraic) subsystem; the second one stabilizes the direct
(dynamical) subsystem. The coefficient −D22 serves to turn off constraint (4.61).

Taking into account (4.62), the controller’s representation is transformed to

x̃(k + 1) = Ãx̃(k) + B̃ y(1)(k),

u1(k) = C̃ x̃(k),

where x̃(k) ∈ R
n is the estimator’s state. Because y(1)(k) = y(k) − D22u1(k), we

have
y(1)(k) = y(k) − D22u1(k) = y(k) − D22C̃ x̃(k),

and the controller’s parameters for the original observation signal are

K =
[
Ã − B̃D22C̃ B̃

C̃ 0

]
.

Show that this decomposition of the problem into two components lets us solve the
original problem where we have to find a single unified controller. Indeed, according
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Fig. 4.1 Structural scheme
of the closed-loop system

to Fig. 4.1 the controller can be represented as a unified control system with the hier-
archical structure consisting of several links. Because the original system is assumed
to be regular, it can be represented in the equivalent form (4.53)–(4.55), wherematrix
A22 is singular for noncausal systems. Causal controllability and observability allow
us to find a control law ũ(k) = K1x(k) such that matrix A22 becomes nonsingular.
Thus, we get an opportunity to express coordinates x2(k) via x1(k) and pass to an
equivalent input-output operator of lower dimension for which the design procedure
is already well known. Because the operator is equivalent, we can solve the original
problem for the full-dimension operator by solving the problem for a normal sys-
tem of lower dimension. Feedback gains that solve the causalization problem for the
initial plant are indirectly present in the resulting operator; therefore they are also
taken into account in solving the design problem for the optimal output feedback
controller.

Example 4.2 Consider a numerical example that demonstrates the method of an
anisotropy-based controller design for descriptor systems. Suppose that the control
object’s parameters are

E =

⎡

⎢⎢⎢
⎣

−2 0 0 25

−1 0.5 0 6

1 −24 0 1

−1 −0.5 0 20

⎤

⎥⎥⎥
⎦

, A =

⎡

⎢⎢⎢
⎣

−2 −0.01 0.125 25.005

−0.9975 0.4925 0.03 5.995

0.88 −23.875 0 0.005

−1.0025 −0.5025 0.1 20.015

⎤

⎥⎥⎥
⎦

,
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B1 =

⎡

⎢⎢⎢
⎣

0.0105 −0.0093

0.005 −0.0011

−0.0015 −0.0249

0.004 −0.0092

⎤

⎥⎥⎥
⎦

, B2 =

⎡

⎢⎢⎢
⎣

0.005 0

−0.005 −0.0025

0.005 −0.12

0.015 −0.0025

⎤

⎥⎥⎥
⎦

,

C1 = [
1 0 0 0

]
, D11 = [

0 0
]
, D12 = [

0 0.1
]
,

C2 =
[
1 0 0 1.5

0 0 1.3 0

]

, D21 =
[
0.15 0

0 −0.5

]

, D22 =
[
0 0

0 0

]

.

Check whether the system is causal. The system’s characteristic polynomial
is det(zE − A) = 0.0057z2 − 0.0114z − 0.00567. The degree of the characteris-
tic polynomial is deg det(zE − A) = 2, and rank (E) = 3. Thus the system is not
causal.

Check that causal controllability and causal observability criteria hold:

rank

[
E 0 0
A E B2

]
= 7, rank

⎡

⎣
E A
0 E
0 C2

⎤

⎦ = 7.

The system is causally controllable and causally observable; therefore we can
design causalizing static output feedback.

The controller’s parameters are

K1 =
[
0 −37.74
0 0

]
.

The finite eigenvalues of the system are

λ(E, A + B2K1C2) = [
1.0001 1.0031 0.9919

]
.

The system is unstable. Its characteristic polynomial is det(zE − (A + B2K1C2)) =
−55.93z3 + 167.5z2 − 167.2z + 55.6, that has degree equal to 3.

Thus deg det(zE − A) = rank (E), and the system can be transformed into an
equivalent normal system.

After transformations, we get a control object with parameters

Table 4.1 Closed-loop system’s norm as a function of the level a

a 0 0.05 0.5 1.0 5 ∞
|‖P‖|a 0.0398 0.2372 0.5010 0.61995 0.7502 0.7510
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A =
⎡

⎣
1.0001 0 −0.013

0 0.9945 −0.159
0 −0.0001 1.004

⎤

⎦ ,

B1 =
⎡

⎣
−0.015 −0.0489
0.0006 0.026

0 −0.0002

⎤

⎦ , B2 =
⎡

⎣
−0.033 −0.0097
0.0001 0.1197

0 −0.0002

⎤

⎦ ,

C1 = [
0.0021 −0.0021 −1.3978

]
, C2 =

[−0.0436 0.0014 −1.5488
−0.0008 0.0001 −0.0027

]
,

D11 = [
0 0

]
, D12 = [

0 0.1
]
,

D21 =
[

0.15 0
−0.0106 −0.0029

]
, D22 =

[
0 0

0.0265 0

]
.

Design a full-order estimating controller for the resulting equivalent system for
different levels of mean anisotropy. The results are summarized in Table 4.1.

The solution of the stabilization problem for the original system under a distur-
bance on the system’s input with mean anisotropy a = 0.1 is represented in Fig. 4.3.
Controllable outputs for different control laws are given in Fig. 4.2. AC stands for
anisotropy-based control.

Fig. 4.2 Controllable output of the system
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Fig. 4.3 Control signals
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Conclusion

In this chapter, a problem of optimal control design is solved. In both state feedback
and output feedback cases to solve the problem it’s necessary to find parameters of
the worst-case shaping filter and to transform the anisotropy-based control problem
into a weighted H2 -optimization problem.

Unlike the analysis problem, the control problem cannot be reduced to its equiv-
alent standard state-space representation due to the presence of noncausal behavior.
Thus the solution of the state feedback optimal control problem consists of solving
generalized Riccati and Lyapunov equations. In the output feedback case noncausal
behavior can be neglected by the causalization procedure. This procedure provides
a framework to design a controller of order rank (E) using the equivalent standard
state-space model.

Inasmuch as ‖P‖2/√m � |||P|||a � ‖P‖∞, we can tune the sensitivity of the
closed-loop system by setting the mean anisotropy level from 0 to +∞. It is shown
that the H∞ -controller provides fast response speed, but the system, closed by the
H∞ -controller, is too sensitive to noise. This leads to higher energy losses. The
LQG/H2 -controller provides the optimal attenuation level of white Gaussian noise.
However, the H2 -controller may not satisfy the desirable transient response speed.
An anisotropic controller provides bothH2 andH∞ advantages. It ensures a good
disturbance attenuation level, and the system’s operation speed is fast enough.
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Chapter 5
Suboptimal Control

Problem Statement
Consider a discrete-time descriptor system given in a state-space representation as

Ex(k + 1) = Ax(k) + B1w(k) + B2u(k), (5.1)

z(k) = Cx(k) + D1w(k) + D2u(k), (5.2)

x(k) ∈ R
n is a state,w(k) ∈ R

m1 is a random stationary sequencewith boundedmean
anisotropy level A(W ) � a, a � 0, z(k) ∈ R

p is a controllable output, u(k) ∈ R
m2

is a control vector, and E , A, B1, B2, C , D1, D2 are known matrices of appropriate
dimensions, rank (E) = r < n.

Suppose that

1. System (5.1) is causally controllable and stabilizable.
2. The following rank condition holds true

rank (E) = rank [ E B1 ].

Problem 5.1 We have to find a state feedback control in the form uSF (k) = F2x(k)
such that the closed-loop system PSF

cl

Ex(k + 1) = (A + B2F2)x(k) + B1w(k), (5.3)

z(k) = (C + D2F2)x(k) + D1w(k) (5.4)

is causal and stable; its anisotropic norm |||PSF
cl |||a is bounded by the given value

γ > 0.
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118 5 Suboptimal Control

5.1 GDARI Approach

In this section, we find conditions in terms of generalized discrete-time algebraic
Riccati inequalities (GDARI) in order to design a static state feedback in the form
uSF (k) = F2 x(k) for the system (5.1) and (5.2), which solves Problem 5.1.

The following theorem gives sufficient conditions for solution of this problem.

Theorem 5.1 For given scalars a � 0 and γ > 0 the state feedback anisotropy-
based control Problem 5.1 is solvable if there existΦ ∈ R

n×n,Φ = ΦT,Ψ ∈ R
m1×m1 ,

Ψ = Ψ T > 0, and a positive scalar η satisfying the following conditions:

ETΦE ≥ 0,

BT
1 ΦB1 + DT

1 D1 − ηIm1 < 0,

BT
2 ΦB2 + DT

2 D2 > 0,

Ψ < ηIm1 − BT
1 ΦB1 − DT

1 D1,

η − (e−2a det(Ψ ))1/m1 < γ 2,

ATΦA − ETΦE + CTC − (ATΦB + S)(BTΦB + R)−1(BTΦA + ST) < 0

where B = [
B1 B2

]
, S = [

CTD1 CTD2
]
, R =

[
DT

1 D1 − ηIm1 DT
1 D2

DT
2 D1 DT

2 D2

]

.

Moreover, F2 = − [
0 Im2

]
(BTΦB + R)−1(BTΦA + ST).

Proof Recall that the closed-loop system iswritten in the form (5.3) and (5.4).Denote
N = ηIm1 − BT

1 ΦB1 − DT
1 D1 > 0. For this system the inequality (3.75) may be

rewritten as
η − (e−2a det(N ))1/m1 < γ 2.

Consider a matrix Ψ = Ψ T > 0, satisfying the inequality Ψ < N .

Thus the following condition holds true:

η − (e−2a det(Ψ ))1/m1 < γ 2.

Denote

M = −(BTΦB + R) =
[

N −BT
1 ΦB2 − DT

1 D2

−BT
2 ΦB1 − DT

2 D1 −BT
2 ΦB2 − DT

2 D2

]
.

M is invertible (see [1]) because N > 0 and −BT
2 ΦB2 − DT

2 D2 < 0.
Let

F =
[
F1

F2

]
= M−1(BTΦA + ST),

which can be easily rewritten as

FT
1 N = (A + B2F2)

TΦB1 + (C + D2F2)
TD1 (5.5)
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Table 5.1 Conditions and results of anisotropy-based control design for different mean anisotropy
levels

a 0.1 0.5 0.9

γ 0.050 0.055 0.060

Φ

[
1.0610 0.7604

0.7604 0.4337

] [
1.0769 0.7714

0.7714 0.4414

] [
1.0791 0.7730

0.7730 0.4425

]

F2 [2.5455,–0.8763] [2.4077,–0.8772] [2.3883,–0.8773]

ρ(E, A + B2F2) 0.7403 0.7555 0.7577

|||PSF
cl |||a 0.0420 0.0423 0.0424

and

FT
1 (BT

1 ΦB2 + DT
1 D2) = −((A + B2F2)

TΦB2 + (C + D2F2)
TD2). (5.6)

Using Eqs. (5.5) and (5.6), it is not difficult to show that [2]

(A + B2F2)
TΦ(A + B2F2) − ETΦE + (C + D2F2)

T(C + D2F2)+
+ ((A + B2F2)

TΦB1 + (C + D2F2)
TD1)N

−1(BT
1 Φ(A+ B2F2) + DT

1 (C + D2F2)) =
= ATΦA − ETΦE + CTC − (ATΦB + S)(−M)−1(BTΦA + ST) < 0. (5.7)

After applying Schur’s lemma, inequality (5.7) for the closed-loop system gives the
same condition as (3.76); therefore by Theorem 3.3 and Remark 3.4, system (5.3)
and (5.4) is admissible and the a-anisotropic norm of its transfer function is limited
by the given value γ for the set mean anisotropy level a.

The theorem is proved. �

Example 5.1 Consider the following system:

E =
[
0.9 0
0 0

]
, A =

[
0.85 −0.3
0.1 0.3

]
, B1 =

[−0.02
0

]
, B2 =

[−0.1
0

]
,

C = [
0.35 0.09

]
, D1 = [ 0.035 ], D2 = [ 0.1 ].

It is easy to check that rank (E) = rank
[
E B1

] = 1. The system is causal, but
unstable (ρ(E, A) = 1.0556).

Now we find a state feedback control uSF (k) = F2x(k) for the given mean
anisotropy level a and scalar value γ , using the technique from Theorem 5.1. Results
of control design for different a and γ are represented in Table5.1.

As we can see, the obtained F2 guarantees that the anisotropic norm of the closed-
loop system is bounded by the given value: |||PSF

cl |||a < γ , and system PSF
cl is admis-

sible.
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5.2 GDARE Approach

In this section, suboptimal anisotropy-based state feedback (SF) and full information
(FI) control laws are designed for discrete-time descriptor systems. The obtained
conditions are formulated in terms of GDARE.

5.2.1 State Feedback Control

Theorem 5.2 Let the initial conditions for system (5.1) and (5.2) satisfy Ex(0) = 0.
Then the closed-loop system PSF

cl , defined by (5.3) and (5.4) is admissible, and the
inequality |||PSF

cl |||a � γ holds true if there exist a matrix Φ = ΦT ∈ R
n×n and a

positive scalar η > γ 2, satisfying the conditions:

ETΦE � 0, (5.8)

BT
1 ΦB1 + DT

1 D1 − γ 2 Im1 < 0, (5.9)

BT
2 ΦB2 + DT

2 D2 > 0, (5.10)

− 1
2 ln(det((η − γ 2)(ηIm1 − BT

1 ΦB1 − DT
1 D1)

−1)) � a, (5.11)

ETΦE = ATΦA + CTC−
−(ATΦB + S)(B

T
ΦB + R)−1(B

T
ΦA + ST) (5.12)

where B = [
B1 B2

]
, S = [

CTD1 CTD2
]
, R =

[
DT

1 D1 − ηIm1 DT
1 D2

DT
2 D1 DT

2 D2

]
.

A state feedback control law is defined as

F2 = −(BT
2 ΦB2 + DT

2 D2)
−1(BT

2 ΦA + DT
2C). (5.13)

Proof The proof consists of two steps. In the first step, we prove that the system,
closed by a given state feedback u(k) = F2x(k), is admissible. In the second step
anisotropic norm boundedness by positive scalar γ is proved.

Let M1 = BT
1 ΦB1 + DT

1 D1 − ηIm1 . We get M1 < 0 because BT
1 ΦB1 + DT

1 D1 −
γ 2 Im1 < 0 and η > γ 2.

Denote

M2 = BT
2 ΦB2 + DT

2 D2 > 0,

M3 = BT
1 ΦB1 + DT

1 D1 − γ 2 Im1 < 0,

N = BT
1 ΦB2 + DT

1 D2,

Acl = A + B2F2, Ccl = C + D2F2.

Note that the matrix

andrianovaog@gmail.com



5.2 GDARE Approach 121

M = B
T
ΦB + R =

[
M1 N
NT M2

]
< 0.

Consider an auxiliary variable

F =
[
F1

F2

]
= −M−1(B

T
ΦA + ST). (5.14)

The expression (5.14) can be rewritten in the form

MF = −(B
T
ΦA + ST).

Consequently,
M1F1 + NF2 = −(BT

1 ΦA + DT
1C),

NTF1 + M2F2 = −(BT
2 ΦA + DT

2C).

Without loss of generality one can choose F1, satisfying the conditions:

M1F1 = 0,

NTF1 = 0.

Hence,
(A + B2F2)

TΦB1 + (C + D2F2)
TD1 = 0. (5.15)

Inasmuch as M < 0, GDARE (5.12) can be rewritten as

ETΦE = ATΦA +
[

C
(−M)1/2F

]T [
C

(−M)1/2F

]
. (5.16)

Equation (5.16) is equivalent to the generalized Lyapunov equation (2.91) for

E, Acl = A + B2F2, and Q =
[

C
(−M)1/2F

]T [
C

(−M)1/2F

]
> 0. Hence, the pair

(E, Acl) is admissible.
Now we show that |||PSF

cl |||a � γ . Introduce a function

T (x(k))
.= xT(k)ETΦEx(k) � 0.

Consider an auxiliary function

H(x(k),w(k))
.= T (x(k + 1)) − T (x(k)) + ||z(k)||2 − γ 2||w(k)||2.

Show that H(x(k),w(k)) � 0:
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H(x(k),w(k)) = xT(k + 1)ETΦEx(k + 1) − xT(k)ETΦEx(k) +
+||Cx(k) + D1w(k) + D2u(k)||2 − γ 2||w(k)||2 =

= {substitute Ex(k + 1) from (5.1)} =
= (Ax(k) + B1w(k) + B2u(k))TΦ(Ax(k) + B1w(k) + B2u(k)) −

−xT(k)ETΦEx(k) + ||Cx(k) + D1w(k) + D2u(k)||2 − γ 2||w(k)||2 =
= {u(k) = F2x(k)} =

= (Ax(k) + B1w(k) + B2F2x(k))TΦ(Ax(k) + B1w(k) + B2F2x(k)) −
−xT(k)ETΦEx(k) + ||Cx(k) + D1w(k) + D2F2x(k)||2 − γ 2||w(k)||2 =

= {Θ = (ATΦB2 + CTD2)F2} = wT(k)M3w(k) +
+wT(k)((A + B2F2)

TΦB1 + (C + D2F2)
TD1)

Tx(k) +
+xT(k)((A + B2F2)

TΦB1 + (C + D2F2)
TD1)w(k) +

+xT(k)(ATΦA + CTC − ETΦE + FT
2 M2F2 + Θ + ΘT)x(k) =

= {from (5.13), (5.15) and ATΦA + CTC − ETΦE = −FT
2 M2F2 we get

} =
= wT(k)M3w(k) −

−2xT(k)((ATΦB2 + CTD2)M
−1
2 (BT

2 ΦA + DT
2C))x(k) � 0. (5.17)

Summing the expressions H(x(k),w(k)), defined by (5.17), from k = 0 to k = ∞,
we get

∞∑

k=0

H(x(k),w(k)) = T (x(∞)) − T (x(0)) +
∞∑

k=0

(||z(k)||2 − γ 2||w(k)||2) � 0.

The closed-loop system is stable thus T (x(∞)) = xT(∞)ETΦEx(∞) = 0, and as
Ex(0) = 0, we get T (x(0)) = xT(0)ETΦEx(0) = 0, then

∞∑

k=0

(||z(k)||2 − γ 2||w(k)||2) � 0

and, hence,

sup
W

∑∞
k=0 ||z(k)||2

∑∞
k=0 ||w(k)||2 � γ 2.

Consequently, sup
W :A(W )�a

∑∞
k=0 ||z(k)||2∑∞
k=0 ||w(k)||2 � γ 2, which means |||PSF

cl |||2a � γ 2. As γ > 0,

we have |||PSF
cl |||a � γ .

Using denotations η = q−1 and Φ = q−1 R̂, it is straightforward to show that
GDARE (3.45)–(3.47) for the closed-loop system (5.3) and (5.4) agrees with
equation (5.12).

The theorem is proved. �
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Remark 5.1 Consider a limiting case when a → +∞. Transform the expression
(5.11) in the following way.

− ln
(
det(ηIm1 − BT

1 ΦB1 − DT
1 D1)

−1
)

� 2a + m1 ln(η − γ 2). (5.18)

As ηIm1 − BT
1 ΦB1 − DT

1 D1 � ηIm1 , the inequality (5.18) may be rewritten as

− ln
(
det(η−1 Im1)

)
� 2a + m1 ln(η − γ 2).

Thus

η � γ 2

1 − e−2a/m1

and

γ 2 < η � γ 2

1 − e−2a/m1
. (5.19)

For a → +∞ from the condition (5.19) we get η → γ 2, and the inequality (5.11)
becomes invalid. Substituting γ 2 instead of η into (5.8)–(5.12), we get the conditions
forH∞ -control design [3]. Thus lim

a−→+∞ |||PSF
cl |||a = ‖PSF

cl ‖∞ � γ.

5.2.2 Full Information Control

In this subsection, we state and solve the anisotropy-based suboptimal full informa-
tion control problem for discrete-time descriptor systems. Full information means
information about the system’s state and input disturbance.

Problem 5.2 For system (5.1) and (5.2) and for the known mean anisotropy level a
we have to find a full information control law uF I (k) = F1w(k) + F2x(k) such that
the closed-loop system PF I

cl

Ex(k + 1) = (A + B2F2)x(k) + (B1 + B2F1)w(k), (5.20)

z(k) = (C + D2F2)x(k) + (D1 + B2F1)w(k) (5.21)

is causal and stable, and its anisotropic norm is bounded by γ > 0, that is,
|||PF I

cl |||a � γ .

Sufficient conditions may be formulated as follows.

Theorem 5.3 Let the initial conditions for system (5.1) and (5.2) satisfy the con-
straint

Ex(0) = 0.
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Then the closed-loop system PF I
cl given in the form (5.20) and (5.21) is admissible,

and the inequality |||PF I
cl |||a � γ is satisfied if there exist a matrix Φ = ΦT ∈ R

n×n

and a positive scalar value η > γ 2 that satisfy the following conditions:

ETΦE � 0,

M2 = BT
2 ΦB2 + DT

2 D2 > 0,

M3 = BT
1 ΦB1 + DT

1 D1 − γ 2 Im1 − NTM−1
2 N < 0,

− 1
2 ln det

(
(η − γ 2)(−M1)

−1
)

� a, (5.22)

ETΦE = ATΦA + CTC−
−(ATΦB + S)(B

T
ΦB + R)−1(B

T
ΦA + ST)

where
M1 = BT

1 ΦB1 + DT
1 D1 − ηIm1 − NTM−1

2 N ,

N = BT
2 ΦB1 + DT

2 D1, B = [
B1 B2

]
,

S = [
CTD1 CTD2

]
, R =

[
DT

1 D1 − ηIm1 DT
1 D2

DT
2 D1 DT

2 D2

]
.

Coefficients of the control law can be found as

F1 = −(BT
2 ΦB2 + DT

2 D2)
−1(BT

2 ΦB1 + DT
2 D1), (5.23)

F2 = −(BT
2 ΦB2 + DT

2 D2)
−1(BT

2 ΦA + DT
2C).

Proof The structure of the proof is similar to the proof of the Theorem 5.2 feedback
case if we consider an extended state vector x̃(k) = [

x(k) w(k)
]
. We show how to

obtain the special type inequality (5.22).
Using the denotations η = q−1 and Φ = q−1 R̂, rewrite the inequality (3.44) for

the closed-loop system (5.20) and (5.21)

−1

2
ln

(
det

(
(η − γ 2)(ηIm1 − (B1 + B2F1)

TΦ(B1 + B2F1)−
−(D1 + D2F1)

T(D1 + D2F1))
−1

))
� a. (5.24)

Denote

Ψ = ηIm1 − (B1 + B2F1)
TΦ(B1 + B2F1) − (D1 + D2F1)

T(D1 + D2F1). (5.25)

Substituting F1 from (5.23) into (5.25), we get

Ψ = ηIm1 − BT
1 ΦB1 − DT

1 D1 + NTM−1
2 N = −M1.
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Thus the inequality (5.24) is equal to (5.22).
The theorem is proved. �

Remark 5.2 In the case of FI control, it is also easy to show that for a → +∞ the
conditions of Theorem 5.3 coincide with the conditions of a H∞ -based bounded
real lemma for the closed-loop system (5.20) and (5.21) [3].

Example 5.2 Consider the following discrete-time descriptor system:

E =
[
0.9 0
0 0

]
, A =

[
0.85 −0.3
0.1 0.3

]
, B1 =

[−0.02
0

]
,

B2 =
[−0.1

0

]
, C = [

0.35 0.09
]
, D1 = 0.035, D2 = 0.1.

It is easy to check that rank (E) = rank [ E B1 ] = 1. The system is causal, but
unstable (ρ(E, A) = 1.0556).

Find the state feedback and full information control laws in the forms uSF (k) =
F2x(k) and uF I (k) = F1w(k) + F2x(k) for the given mean anisotropy level a and
for the known scalar value γ , using the conditions of theorems from this section.
Results of suboptimal control law design are given in Tables5.2, 5.3, and 5.4.

Numerical results show that the FI-control law allows us to obtain less anisotropic
norm of the closed-loop system compared to SF-control because of the information
about the input disturbance used in the control law design.

Table 5.2 Anisotropy-based suboptimal SF-control design for different mean anisotropy levels

a 0.2 0.5 0.8

γ 0.050 0.055 0.060

|||PSF
cl |||a 0.0336 0.0422 0.0423

ρ(E, A + B2F2) 0.7611 0.7672 0.7631

γ 2 0.0025 0.0030 0.0036

η 0.0042 0.0038 0.0041

Φ

[
1.0468 0.7327

0.7327 0.5129

] [
1.0531 0.7372

0.7372 0.5160

] [
1.0489 0.7342

0.7342 0.5139

]

F2 [2.3498, –0.9] [2.2956, –0.9] [2.3319, –0.9]

ETΦE

[
0.8479 0

0 0

] [
0.8530 0

0 0

] [
0.8496 0

0 0

]

M2 0.0205 0.0205 0.0205

M3 −8.5629 · 10−4 −0.0014 −0.0020

andrianovaog@gmail.com



126 5 Suboptimal Control

Table 5.3 Anisotropy-based suboptimal FI-control design for different mean anisotropy levels

a 0.1 0.3 0.5

γ 0.050 0.080 0.060

|||PF I
cl |||a 0.0162 0.0202 0.0230

ρ(E, A + B2F2) 0.7247 0.7239 0.7477

γ 2 0.0025 0.0064 0.0036

η 0.0134 0.0141 0.0056

Φ

[
1.0082 0.7057

0.7057 0.4940

] [
1.0074 0.7052

0.7052 0.4936

] [
1.0325 0.7228

0.7228 0.5059

]

F1 –0.2747 –0.2747 –0.2738

F2 [2.6781, –0.9] [2.6849, –0.9] [2.4711, –0.9]

ETΦE

[
0.8167 0

0 0

] [
0.8160 0

0 0

] [
0.8363 0

0 0

]

M2 0.0201 0.0201 0.0203

M3 −0.0024 −0.0063 −0.0035

Table 5.4 Comparison of SF- and FI-laws for a = 0.5 and γ = 0.06

Case η Φ ρ(E, A +
B2F2)

|||Pcl |||a

F I 0.0056

[
1.0325 0.7228

0.7228 0.5059

]

0.7477 0.0230

SF 0.0047

[
1.0406 0.7284

0.7284 0.5099

]

0.7553 0.0423

5.3 Convex Optimization Technique

In this section, we introduce a solution of the suboptimal anisotropy-based control
problem using a strict LMI approach. Here we solve a suboptimal state feedback
control design problem for the system (5.1) and (5.2) with D2 = 0.

The system (5.1) is regular, thus there exist two nonsingular matrices, W̃ and Ṽ ,
that transform the system (5.1) and (5.2) to the equivalent form (2.17)–(2.19). Now
we use denotations

Ed = W̃ EṼ , Ad = W̃ AṼ , B1d = W̃ B1, B2d = W̃ B2,Cd = CṼ , D1d = D1.

The following theorem contains sufficient conditions of anisotropic norm bound-
edness for the closed-loop system; it also gives us the feedback gain, which makes
the closed-loop system causal and stable.
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To solve the control design problem, apply Theorem 3.5 to the closed-loop system

Ex(k + 1) = (A + B2F2)x(k) + B1w(k), (5.26)

z(k) = Cx(k) + D1w(k). (5.27)

Direct implementation of the conditions of Theorem 3.5 to system (5.1) and (5.2),
closed by the control law in the form u = F2x(k), leads to nonlinear terms for which
the application of inequality (3.95) as LMI is not possible.

To solve the control problem a better way is to deal with a system dual to (5.26)
and (5.27). A state-space representation of a closed-loop dual system is

ETx ′(k + 1) = (A + B2F2)
Tx ′(k) + CTw′(k), (5.28)

z′(k) = BT
1 x

′(k) + DT
1w

′(k), (5.29)

It is obvious that H2 and H∞ norms of the closed-loop system coincide with the
same ones of the dual system (5.28) and (5.29). Being a semi-norm, the a-anisotropic
norm does not satisfy this property. However, in p � m1, the design specification is
satisfied. To show this fact we recall that the a-anisotropic norm of an admissible
system is a convex and monotonic function over a. In addition, when a = 0 we get

|||Pcl |||0 = ‖Pcl‖2√
m1

� ‖Pcl‖2√
p

= |||Pdual
cl |||0. (5.30)

It should be pointed out that |||Pcl |||a = |||Pdual
cl |||a when p = m1.

Theorem 5.4 Consider system (5.1) and (5.2). Assume that rank (ET) =
rank

[
ET CT

]
and p � m1. For a given scalar value γ > 0 and for a known

mean anisotropy level of the input disturbance a � 0 the closed-loop system PSF
cl

is admissible, and |||PSF
cl |||a < γ if there exist matrices L ∈ R

r×r , L > 0, Q ∈ R
r×r ,

R ∈ R
r×(n−r), S ∈ R

(n−r)×(n−r), Z ∈ R
n×m2 , Ψ ∈ R

m1×m1 , a scalar value η > γ 2,
such that ⎡

⎢⎢⎢
⎢
⎣

Λ11 ΛT
21 ΛT

31 ΛT
41 0

Λ21 Λ22 ΛT
32 Λ21 ΛT

52
Λ31 Λ32 −ηIp Λ31 ΛT

53
Λ41 ΛT

21 ΛT
31 −(Q + QT) 0

0 Λ52 Λ53 0 −Im1

⎤

⎥⎥⎥
⎥
⎦

< 0, (5.31)

η − (e−2a det(Ψ ))1/m1 < γ 2, (5.32)

[
Ψ − ηIm1 + CdΘCT

d DT
1d

D1d −Ip

]
< 0 (5.33)
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where

Λ11 = −1

2
Q − 1

2
QT, Λ21 = Ad	

T + B2d Z
TΩT,

Λ31 = Cd	
T, Λ41 = L − Q − 1

2
QT,

Λ22 = �AT
d + Ad�

T + ΦZ BT
2d + B2d Z

TΦT − Θ,

Λ52 = BT
1d , Λ53 = DT

1d , Λ32 = Cd�
T.

In addition, Θ =
[
L 0
0 0

]
, � =

[
0 0
0 S

]
, Φ =

[
0 0
0 In−r

]
, Ω = [

Ir 0
]
, 	 = [

Q R
]
.

A feedback gain is given as

F2 = ZT

[
Q−T 0

−S−TRTQ−T S−T

]
Ṽ−1. (5.34)

Proof We show that the controller, which solves the stated design problem for the
singular value decomposition (SVD) canonical form of the system, solves it also for
the initial system. The transfer function of the closed-loop system may be written in
the form

PSF
cl (z) = CṼ Ṽ−1(zE − A − B2F2)

−1W̃−1W̃ B1 + D1 =
= CṼ (zW̃ EṼ − W̃ AṼ − W̃ B2F2Ṽ )−1W̃ B1 + D1 =
= Cd(zEd − Ad − B2d Fd)

−1B1d + D1d

where Fd = F2Ṽ .
Suppose that inequalities (5.31)–(5.33) hold.Then the (1, 1) entry of (5.31) implies

the matrix Q is invertible. We also suppose that the matrix S is invertible. If this
condition does not hold, there exists a scalar ε ∈ (0, 1) such that the inequality (5.31)
holds true for the scalar S = S + ε In−r . Thus we can use S instead of S. Replacing

Z with

[
Q R
0 S

]
FT
d in (5.31), we get conditions of the anisotropy-based bounded

real lemma for the system, dual to system (5.1) and (5.2). Thus according to the
anisotropy-based bounded real lemma, the closed-loop system (5.26) and (5.27) is
admissible, and the a-anisotropic norm of its transfer function is bounded by the
given scalar γ .

If the design control problem is solvable, the conditions of Theorem 3.5 hold
true for system (5.1) and (5.2). These conditions also hold for the dual system. By

the linear change of variables

[
Q R
0 S

]
FT
d = Z , which implies that

[
Q R

]
FT
d =

[
Ir 0

]
Z and

[
0 0
0 S

]
FT
d =

[
0 0
0 In−r

]
Z , we get the inequality (5.31).

Moreover, as pointed out before, Q and S are invertible. Thus the feedback gain
Fd for the closed-loop system in SVD equivalent form is
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Table 5.5 Results of control design for different mean anisotropy levels

a 0 0.1 0.2 0.5 1 2 4.5

|||PSF
cl |||a 0.2739 0.3266 0.3430 0.3662 0.3796 0.3855 0.3866

ρ(E, A + B2F2) 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

Fd = ZT

[
Q−T 0

−S−TRTQ−T S−T

]
.

By inverse change of variables we get F2 for system (5.3) and (5.4) in the form (5.34).
The theorem is proved. �

Remark 5.3 To solve the γ -optimal control problem it is necessary to find ξ∗ = inf ξ

on the set {L , Q, R, S, Z , Ψ, η, ξ},which satisfies inequalities (5.31)–(5.33).Here
ξ = γ 2.

Example 5.3 A numerical example illustrates the computational efficiency of the
proposed method. Consider the system with the parameters:

E =

⎡

⎢⎢⎢⎢
⎣

0.3 0.5 0.1 0 0.5
0.7 0.8 3.3 0 0.6
0.6 0.8 0.3 0 0.8
0.7 0.5 0.9 0 1
0.6 0.7 0.3 0 0.4

⎤

⎥⎥⎥⎥
⎦

, A =

⎡

⎢⎢⎢⎢
⎣

0.3 0.5001 0.1002 0.0005 0.5006
0.7 0.7941 3.2909 0.0006 0.6002
0.6 0.8 0.2999 0.0008 0.8004
0.7 0.4989 0.8978 0.001 1.0003
0.6 0.7 0.2998 0.0004 0.4013

⎤

⎥⎥⎥⎥
⎦

,

B1 =

⎡

⎢⎢⎢⎢
⎣

0.0003 −0.0002
−0.0058 0.0019
0.0002 −0.0013

−0.0013 −0.0015
0.0001 0.0017

⎤

⎥⎥⎥⎥
⎦

, B2 = 10−3

⎡

⎢⎢⎢⎢
⎣

0.1 −0.125
0.2333 0.2

0.2 0.2
0.2333 0.125

0.2 0.175

⎤

⎥⎥⎥⎥
⎦

,

C =
[
1 1 0 0 0
0 2 0 0 0

]
, D1 =

[
0.1 0.2
0.1 0.3

]
.

The system is not causal (deg det(zE − A) = 3, rank (E) = 4), and it is not stable
(ρ(E, A) = 1.000). Control design results are given in Table5.5.

5.4 Transient Response Shaping for Closed-Loop Systems

The problem of pole placement for linear descriptor systems is discussed in different
works, for example, [4–6]. Pole placement is a well-known technique for shaping
desired transient performance. In this section, an anisotropy-based control problem
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with regional pole placement for discrete-time descriptor systems is considered. The
solution to this problem makes it possible to find a state-feedback control law such
that the closed-loop system is admissible, its transient response satisfies the desired
performance, and anisotropic gain from input disturbance to the controllable output
does not exceed the specified level.

Definition 5.1 Consider a region on the complex plane, defined by

D = {z ∈ C : d + 2bRe(z) + c|z|2 < 0}. (5.35)

The pair (E, A) is called D–admissible if it is admissible and its finite eigenvalues
lie inside region D.

For system (5.1) and (5.2) and given scalar numbers a and γ the problem is to
find a state-feedback control law

u(k) = F2x(k), (5.36)

such that the closed-loop system with transfer function

Pcl(z) = C(zE − A − B2F2)
−1B1 + D1

1. is D-admissible;
2. its a-anisotropic norm satisfies the condition

|||Pcl |||a < γ.

The following lemma, introduced in [4], is useful below.

Lemma 5.1 [4] Let D be a disc centered around the origin and of radius ω; that
is, d = −ω2, b = 0, and c = 1. The pair (E, A) has g poles insideD and (n − g)
poles outside D if and only if there exist X = XT ∈ R

n×n with g positive, (n − g)
negative, and 0 zero eigenvalues satisfying inequality

− ω2EXET + AX AT < 0. (5.37)

Theorem 5.5 Suppose that

rank E = rank [E B1d].

For given scalar values γ > 0, 0 < ω < 1, and a � 0 the a-anisotropic norm of
the system is bounded by the value γ ; that is, |||P|||a < γ, and unforced system P is
D-admissible with radiusω, if there exist matrices L ∈ R

r×r , L > 0, Q ∈ R
r×r , R ∈

R
r×(n−r), S ∈ R

(n−r)×(n−r), X = XT ∈ R
n×n, and scalar value η > γ 2, satisfying

inequalities
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η − (e−2a det(ηIm1 − BT
1dΘB1d − DT

1d D1d))
1/m1 < γ 2, (5.38)

⎡

⎢⎢⎢
⎢
⎣

Φ11 	Ad 	B1d ΦT
41 0

AT
d	

T Φ22 �B1d AT	T ΦT
52

BT
1d	

T BT
1d�

T −γ 2 Im1 BT
1d	

T ΦT
53

Φ41 	Ad 	B1d −Q − QT 0
0 Φ52 Φ53 0 −Ip

⎤

⎥⎥⎥
⎥
⎦

< 0, (5.39)

[−ω2X 0
0 X

]
+ sym

([
Ad

−Ed

]
GΔ

)
< 0 (5.40)

where

Φ11 = − 1
2Q − 1

2Q
T, Φ22 = �Ad + AT

d�
T − Θ,

Φ41 = L − Q − 1
2Q

T, Φ52 = Cd + αCd�Ad ,

Φ53 = D1d + αCd�B1d ,

Θ =
[
L 0
0 0

]
, � =

[
0 0
0 S

]
, 	 = [

Q R
]
,

G =
[
QT 0
RT ST

]
, (5.41)

and

Δ =
[
0 0 Ir 0
0 In−r 0 0

]
. (5.42)

A scalar α > 0 is supposed to be sufficiently large.

Proof The proof of a-anisotropic norm boundedness can be found in Theorem 3.5.
Now we need to prove (5.40), which guarantees that all finite eigenvalues lie inside
the D-region.

If the unforced system (5.1) and (5.2) is D-admissible, then inequality (5.37)
holds true for some matrix X .

Left- and right-multiplying (5.37) on W and W
T
, respectively, we get

− ω2WEXETW
T + W AX ATW

T
< 0. (5.43)

Let X = V XV
T
. It is possible because V is nonsingular. Taking into account this

notation, inequality (5.43) can be represented as

− ω2Ed XET
d + Ad X AT

d < 0. (5.44)
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Note that the pair (E, A) is admissible. Hence, A22 is invertible. Introduce matri-
ces:

W =
[
Ir −A12A

−1
22

0 In−r

]
, V =

[
Ir 0

−A−1
22 A21 A−1

22

]
,

Defining X̂ = V XV
T
and by left- and right-multiplying (5.44) on W and W ,

respectively, we get

− ω2

[
Ir 0
0 0

]
X̂

[
Ir 0
0 0

]
+

[
Â 0
0 In−r

]
X̂

[
ÂT 0
0 In−r

]
< 0 (5.45)

with Â = A11 − A12A
−1
22 A21.

Let X̂ be divided as X̂ =
[
X̂11 X̂12

X̂T
12 X̂22

]
, X̂11 ∈ R

r×r .

It follows from (5.45) that X̂11 > 0. The expression (5.45) is equivalent to

− ω2 X̂11 + Â X̂11 Â
T < 0, (5.46)

X̂22 < 0. (5.47)

We are interested in inequality (5.46). This inequality is strict, hence, there exists
a sufficiently small μ such that

− ω2 X̂11 + Â X̂11 Â
T + μω2A12A

T
12 < 0. (5.48)

Introduce the matrices:

Y =
[
0 0 Ir 0
0 In−r 0 0

]T

,

Z =
[
AT
11 AT

21 −Ir 0
AT
12 In−r 0 0

]
.

One can check that

KerY =
[
Ir 0 0 0
0 0 0 In−r

]T

,

KerZ =
[
Ir −A12 Â 0
0 0 0 In−r

]T

.

Under (5.48) the following inequalities hold true:

{
KerY ΥKerY T < 0,
KerZ TΥKerZ < 0

(5.49)
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with

Υ =

⎡

⎢
⎢
⎣

−ω2 X̂11 −μω2A12 0 0
−μω2AT

12 −μω2 In−r 0 0
0 0 X̂11 0
0 0 0 −μIn−r

⎤

⎥
⎥
⎦ .

By the Projection Lemma [7] there exists a matrix G such that

Υ + sym (Z TGY T) < 0 (5.50)

or
⎡

⎢⎢
⎣

−ω2 X̂11 0 0 0
0 −μω2 In−r 0 0
0 0 X̂11 0
0 0 0 −μIn−r

⎤

⎥⎥
⎦ +

+ sym

(
Z T

([
0 0
0 −μω2 In−r

]
+ G

)
Y T

)
< 0. (5.51)

Denote

G =
[
0 0
0 −μω2 In−r

]
+ G

and

X =
[
X11 X12

XT
12 X22

]
=

[−ω2 X̂11 0
0 −μω2 In−r

]
.

Then (5.51) can be rewritten as

[−ω2X 0
0 X

]
+ Z TGY T + Y GZ < 0. (5.52)

Finally, we need to prove that G is invertible. If G is not invertible, there
exists a nonzero vector c = [

c1 c2
]
such that Gc = 0. Let c1 ∈ R

r . Then left and
right multiplication of (5.52) on

[
0 c2 c1 0

]
and its transpose, respectively, yield

−c2X22cT2 + c1X11cT1 < 0 which is impossible because X11 > 0 and X22 < 0.
By choosingG = G as in (5.41) and substituting it into (5.52) we get (5.40). Note

that D-admissibility is stronger than the admissibility property for ω < 1. Taking
into account that (5.39) guarantees admissibility of the system, selection (5.41) does
not contradict (5.39). �

Introduce the following linear change of variables

[
Q R
0 S

]
FT = Z . (5.53)
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Expression (5.53) implies that

[
Q R

]
FT = [

Ir 0
]
Z and

[
0 0
0 S

]
FT =

[
0 0
0 In−r

]
Z .

Theorem 5.6 For given scalar values γ > 0, 0 < ω < 1, andmean anisotropy level
a � 0 the control design problem is solvable if there exist scalars η > γ 2, ε1 > 0,
ε2 > 0, and matrices X = XT ∈ R

n×n, Q ∈ R
r×r , R ∈ R

r×(n−r), S ∈ R
(n−r)×(n−r),

L ∈ R
r×r , L > 0, and Z ∈ R

n×m2 such that

η − (e−2a det(ηIp − CdΘCT
d − D1d D

T
1d)))

1/p < γ 2, (5.54)

[−ω2X 0
0 X

]
+ sym

(([
Ad

−Ed

]
G +

[
B2d

0

]
ZT

)
Δ

)
< 0, (5.55)

⎡

⎢⎢⎢⎢
⎣

Λ11 ΛT
21 ΛT

31 ΛT
41 0

Λ21 Λ22 ΛT
32 Λ21 ΛT

52
Λ31 Λ32 −ηIp Λ31 ΛT

53
Λ41 ΛT

21 ΛT
31 −(Q + QT) 0

0 Λ52 Λ53 0 −Im1

⎤

⎥⎥⎥⎥
⎦

< 0 (5.56)

with

Λ11 = − 1
2Q − 1

2Q
T,Λ21 = Ad	

T + B2d ZTΩT,

Λ31 = Cd	
T,Λ41 = L − Q − 1

2Q
T,

Λ22 = �AT
d + Ad�

T + ΦZ BT
2d + B2d ZTΦ − Θ,

Λ32 = Cd�
T,Λ52 = BT

1d ,Λ53 = DT
1d ,

Θ =
[
L 0
0 0

]
, � =

[
0 0
0 S

]
, Φ =

[
0 0
0 In−r

]
, Ω = [

Ir 0
]
, 	 = [

Q R
]
.

The gain matrix can be obtained as

F2 = ZT

[
Q−T 0

−S−TRTQ−T S−T

]
V

−1
. (5.57)

Proof Taking into account the linear change of variables (5.53) and substituting it
into (5.40) we get (5.55) for the closed-loop system (5.28) and (5.29). By anal-
ogy, substitution of (5.53) into (5.39) gives us Λ21 and Λ22 entries from (5.56),
which coincide with the conditions of Theorem 5.5 for unforced system (5.28) and
(5.29). Thus according to Theorem 5.5, the closed-loop system (5.1) and (5.2) is
D-admissible, and the a-anisotropic norm of its transfer function is bounded by the
given scalar γ .
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In addition, as inequality (5.32) holds, the Λ11 entry implies matrix Q is invert-
ible. The invertibility of S is guaranteed by (5.55) (see the proof of Theorem 5.5).
Therefore the feedback gain Fd for the closed-loop system is defined as

Fd = ZT

[
Q−T 0

−S−TRTQ−T S−T

]
.

Note that Fd = F2V . The last expression implies F2 from (5.57). �

Example 5.4 Consider the system with parameters:

E =

⎡

⎢⎢
⎣

3 0 2 −5
0 3 −2 2
2 2 0 −2
2 −4 4 −6

⎤

⎥⎥
⎦ , A =

⎡

⎢⎢
⎣

4.7 −3.25 −0.7 0
0.8 0.4 −6.4 2.6
1 −1.9 −5.4 2.4

−0.6 −2.7 5.4 −2.8

⎤

⎥⎥
⎦ ,

B2 =

⎡

⎢⎢
⎣

0
0
1
1

⎤

⎥⎥
⎦ , B1 =

⎡

⎢⎢
⎣

3.2 −3.5
2.5 −7.9
3.8 −7.6

−1.2 8.2

⎤

⎥⎥
⎦ , C = [

1 1 0 −1
]
, D1 = [

1.2 1.3
]
.

The system considered in the example is causal, but not stable. Its finite eigenval-
ues are {λ1, λ2} = {1.2523; 0.5994}.

The goal is to design a state-feedback control minimizing the a-anisotropic norm
of the closed-loop system, such that finite eigenvalues of the closed-loop system lie
inside a circle with radius ω = 0.5. We choose the mean anisotropy level a = 0.2.

The state-feedback gain is

F (1)
2 = [−2.9193 3.4906 −3.8471 2.3996

]
.

One can check that the closed-loop system is admissible. Its finite eigenvalues are

{λ(1)
1 , λ

(1)
2 } = {−0.4744; 0.4997}, |||P (1)

cl |||a = 4.4558.

Application of the anisotropy-based control design procedure without a pole
placement constraint gives us the following result:

F (2)
2 = [−6.2855 5.7999 12.8111 −6.0253

]
.

Finite eigenvalues of the closed-loop system are

{λ(2)
1 , λ

(2)
2 } = {0.1443; 0.6134}, |||P (2)

cl |||a = 4.1198.

A solution of the pole placement problem without the anisotropy-based quality
criterion [4] is
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F (3)
2 = [−3.0863 4.6807 −1.8345 1.2492

]
.

Finite eigenvalues of the closed-loop system are

{λ(3)
1 , λ

(3)
2 } = {0.0001; 0.4532}, |||P (3)

cl |||a = 4.9568.

An illustrative example demonstrates an effectiveness of the developed control
design procedure. It is shown that using one of the criteria may not satisfy the
designer’s requirements. Taking into account both criteria we can achieve better
performance of the closed-loop system while solving control problems.

Conclusion

In this chapter, the state feedback anisotropy-based suboptimal control problem for
LDTI descriptor systems is studied. In this case, a design specification ensures bound-
edness of the a-anisotropic norm of the closed-loop system. New sufficient condi-
tions for suboptimal control design procedure are established. These results allow
developing computationally effective algorithms for anisotropy-based state feedback
control.
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Chapter 6
Anisotropy-Based Analysis for LDTI
Descriptor Systems with Nonzero-Mean
Input Signals

6.1 Mean Anisotropy of the Gaussian Sequence
with Nonzero Mean

Anisotropy of the m-dimensional random vector w is introduced in Sect. 3.1.1 as a
minimal value of the relative entropy ofwwith respect to theGaussianm-dimensional
vector with probability density function (PDF)

pm,λ(x) = (2πλ)−m/2 exp

(
− xT x

2λ

)
, x ∈ R

m,

and is described by

A(w) = min
λ>0

E f ln
f (x)

pm,λ(x)
(6.1)

where the function f is the PDF of w.
Suppose w is an m-dimensional Gaussian random vector with nonzero mean ν

and covariance matrix S, the PDF of which is given by

f (x) = (
(2π)m |S|)−1/2

e− 1
2 (x−ν)T S−1(x−ν), x ∈ R

m .

By definition (6.1) the anisotropy of the random vector w is expressed as

A(w) = −1

2
ln det

(
mS

Tr S + |ν|2
)

.

One can show that if S = γ Im and ν = 0, then A(w) = 0. Here γ is a known
constant.

Let W be a stationary sequence of random m-dimensional vectors. Mean aniso-
tropy of the stationary ergodic sequence W = {w(k)}k∈Z is defined in [1] by the
following expression
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A(W ) = lim
N→∞

A(W0:N−1)

N

where W0:N−1 is an extended vector of the sequence:

W0:N−1 =
⎡
⎢⎣

w(0) <
...

w(N > −1)

⎤
⎥⎦ .

Let the sequence W = {w(k)}k∈Z be generated from the Gaussian white noise
V = {v(k)}k∈Z by an admissible shaping filter G

Egx(k + 1) = Agx(k) + Bg(v(k) + μ), (6.2)

w(k) = Cgx(k) + Dg(v(k) + μ) (6.3)

where Eg ∈ R
n1×n1 , Ag ∈ R

n1×n1 , Bg ∈ R
n1×m, Cg ∈ R

m×n1 , Dg ∈ R
m×m .

In addition, rank (Eg) = n < n1 and |μ| < ∞. The connection between mean
anisotropy A(W ) of the sequence W and state-space representation (6.2) and (6.3)
of the shaping filter is given by the following theorem [2].

Theorem 6.1 For a given state-space representation (6.2) and (6.3) of the shaping
filter G mean anisotropy A(W ) is determined by

A(W ) = −1

2
ln det

(
m(Σ + Ξ)

TrΣ + |M |2
)

where Σ and Ξ are connected with solutions of Lyapunov and Riccati equations P
and R by formulas

Σ = Ĉ PĈT + D̂ D̂T ,

P = ÂP ÂT + B̂ B̂T ,

Ξ = Ĉ RĈT ,

R = ÂR ÂT − Λ(Σ + Ξ)−1ΛT ,

Λ = B̂ D̂T + Â(P + R)ĈT

with matrices

Â = A11 − A12A
−1
22 A21, B̂ = B1 − A12A

−1
22 B2,

Ĉ = C1 − C2A
−1
22 A21, D̂ = Dg − C2A

−1
22 B2,

connected with matrices Ai j , Bi , Ci (i, j = 1, 2) of the SVD equivalent form of the
system (6.2) and (6.3), and vector M is represented by

M = (D̂ + Ĉ(In×n − Â)−1 B̂)μ.
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Proof System (6.2) and (6.3) in SVD equivalent form is given by

x1(k + 1) = A11x1(k) + A12x2(k) + B1(v(k) + μ), (6.4)

0 = A21x1(k) + A22x2(k) + B2(v(k) + μ), (6.5)

w(k) = C1x1(k) + C2x2(k) + Dd(v(k) + μ) (6.6)

where x1(k) ∈ R
n, x2(k) ∈ R

n1−n . As the system is causal, det A22 �= 0 (see [3]),
then

x2(k) = −A−1
22 (A21x1(k) + B2(v(k) + μ)). (6.7)

Substituting x2(k) into (6.4) and (6.6), one can get

x1(k + 1) = Âx1(k) + B̂(v(k) + μ), (6.8)

w(k) = Ĉx1(k) + D̂(v(k) + μ). (6.9)

Applying Theorem 1 from [4] to the system (6.8) and (6.9), we finish the proof. �

Example 6.1 Let the shaping filter (6.2) and (6.3) be formed by the following
matrices:

Eg =
⎡
⎣ 1 0 1
0 −1 −1
1 1 2

⎤
⎦ , Bg =

⎡
⎣ 0.03
0.10
0.07

⎤
⎦ , Ag =

⎡
⎣ 0.7649 0.7572 −0.0581

−0.0424 0.2854 0.2218
0.7706 0.6003 0.7157

⎤
⎦ ,

Cg = [
1 2 1.5

]
, Dg = [0.5] ,

and vector μ = [0.1]; rank (Eg) = 2, m = 1. The system in SVD equivalent form
is defined by matrices

Â =
[
0.7187 0.0253
0.9639 −0.3064

]
, B̂ =

[−0.1213
−0.2673

]
,

Ĉ = [−2.2291 0.9010
]
, D̂ = [0.7324] .

Therefore vector M = [0.065]. Solving Lyapunov and Riccati equations from
Theorem 6.1, we obtain

Σ = [0.5873] , Ξ = [−0.0510] .

Consequently,

A(W ) = −1

2
ln det

(
m(Σ + Ξ)

TrΣ + |M |2
)

= 0.049.
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6.2 Anisotropic Norm of Descriptor Systems
with Nonzero-Mean Input Signals

Consider an admissible LDTI descriptor system P written in a state-space represen-
tation

Ex(k + 1) = Ax(k) + Bw(k), (6.10)

z(k) = Cx(k) + Dw(k) (6.11)

where x(k) ∈ R
n1 is the state, andw(k) ∈ R

m and z(k) ∈ R
p are input and output sig-

nals, respectively. E, A, B, C, D are constant real matrices of appropriate dimen-
sions. Suppose thatmatrix E is singular, That is, rank (E) = n < n1.W = {w(k)}k∈Z
is the stationary Gaussian sequence of m-dimensional random vectors with a given
mean anisotropy level A(W ) = a � 0 and known nonzero mean Ew∞ = M ,
|M | < ∞.

For a given system P with the input signal W the RMS gain is defined as

Q(P,W ) = ‖z‖P

‖w‖P

(6.12)

where ‖y‖P is the power norm of the signal {y(k)}k∈Z.
Let the sequence {w(k)}k∈Z be represented in the form

w(k) = Cgx(k) + Dg(v(k) + μ) (6.13)

where x(k) is the state of the system (6.10), and μ is a known vector. Using (6.13),
we obtain an admissible filter G

Ex(k + 1) = (A + BCg)x(k) + BDg(v(k) + μ), (6.14)

w(k) = Cgx(k) + Dg(v(k) + μ). (6.15)

Power norms of outputs (6.11) and (6.15) are written as

‖w‖2
P

= lim
k→∞

(
Tr cov(w(k)) + |Ew(k)|2) = ‖G‖22 + |M |2,

‖z‖2
P

= lim
k→∞

(
Tr cov(z(k)) + |Ez(k)|2) = ‖PG‖22 + |PM |2

where
P = P(1) = D + C(E − A)−1B.

RMS gain (6.12) for the system with a nonzero-mean input signal is given by the
expression:
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Q(P,W ) = Q(P,G) =
√

‖PG‖22 + |PM |2
‖G‖22 + |M |2 . (6.16)

Finally, the anisotropic norm of the system is defined as [5]

|||P|||a = sup
G:A(G)�a

Q(P,G). (6.17)

The following theorem represents an algorithm of anisotropic norm computation in
the frequency domain [2].

Theorem 6.2 Consider the system defined by (6.10) and (6.11). Let W be a sequence
of nonzero-mean m-dimensional Gaussian random vectors, generated by an admis-
sible shaping filter G in the form (6.14) and (6.15), with mean anisotropyA(W ) = a
and Ew∞ = M . Then the anisotropic norm of system (6.10) and (6.11) can be
computed in a frequency domain as

|||P|||a = sup
q∈[0;‖P‖−2∞ )

{N (q) | A (q) = a} (6.18)

where

A (q) = m

2

(
ln

(
Φ(q) + 1

m
|M |2

)
− 
(q)

)
,

N (q) =
√

Φ(q) − 1 + q
m |PM |2

qΦ(q) + q
m |M |2 ,

Φ(q) = 1

2πm

π∫
−π

Tr S(q, ω)dω , (6.19)


(q) = 1

2πm

π∫
−π

ln det S(q, ω)dω , (6.20)

S(q, ω) = (Im − qΛ(ω))−1, q ∈ [0; ‖F‖2∞).

Here Λ(ω) = P̂∗(ω)P̂(ω), and P = P(1). In addition, N (0) =
√

‖P‖22+|PM |2
m+|M |2 .

Proof Using the definition of mean anisotropy and some notations from Sect. 3.1.1
and the Szegö limit theorem [6], the mean anisotropy of the stationary Gaussian
random sequence W may be computed in terms of spectral density S(ω) and the
H2 -norm of the shaping filter G as
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A(G) = − 1

4π
ln det

m cov(w̃0)

‖G‖22 + |M |2 = − 1

4π

π∫
−π

ln det
mĜ∗(ω)Ĝ(ω)

‖G‖22 + |M |2 dω. (6.21)

Using (6.16) and (6.17), we have

|||P|||2a = sup
G:A(G)�a

‖PG‖22 + |PM |2
‖G‖22 + |M |2 =

= sup
‖G‖22�1+|M |2

⎧⎨
⎩

1

2π

π∫
−π

Tr (Λ(ω)S(ω))dω + |PM |2 : A(G) � a, ‖G‖22 + |M |2 < γ

⎫⎬
⎭

where γ > 1 is a positive real constant.
Construct a Lagrange function as

L = ‖PG‖22 + |PM |2 − α1(‖G‖22 + |M |2) − α2A(G).

Using the definitions of theH2 -norm and anisotropic norm of descriptor systems,
we get

L =
π∫

−π

(
Tr (Λ(ω)S(ω) − α1S(ω)) + 1

2
α2 ln det S(ω)

)
dω+

+|PM |2 − α1|M |2. (6.22)

Find an extremum point of function (6.22) from the condition

∂L

∂S(ω)
= 1

2π

π∫
−π

Tr
(
Λ(ω) − α1 Im + α2

2
S−1(ω)

)
dω = 0.

Hence,
Λ(ω) − α1 Im + α2

2
S−1(ω) = 0. (6.23)

Let q = 1
α1

, σ = α2
2α1

, then equation (6.23) can be rewritten as

qΛ(ω) − Im + σ S−1(ω) = 0.

The expression

S(ω) = S(q, ω) = G∗(ω)G(ω) = σ(Im − qΛ(ω))−1 (6.24)

defines the spectral density for theworst case of the input disturbance.Without loss of
generality we consider σ = 1 [5]. Substituting (6.24) into (6.21) and using notations
(6.19) and (6.20), we obtain
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A(G) = m

2

(
ln

(
Φ(q) + 1

m
|M |2

)
− 
(q)

)
= A (q).

Finally, substituting spectral density S(q, ω) into (6.17), we have

Q2(P,G) = m Φ(q)−1
q + |PM |2

mΦ(q) + |M |2 = N 2(q).

Function Φ(q) satisfies the following properties.

lim
q→0+0

Φ(q) = 1, and lim
q→0+0

Φ(q)−1
q = 1

m ‖P‖22. Thus N (0) =
√

‖P‖22+|PM |2
m+|M |2 .

The theorem is proved. �
Example 6.2 Let system P be described by

E =
[
0.9 0
0 0

]
, A =

[
0.7 −0.3
0.1 0.3

]
, B =

[−0.02
0.07

]
,

C = [
0.50 0.09

]
, D = [0.035].

The transfer function of the system is

P(z) = 0.235

9z − 8
+ 0.014.

The spectral density of the system is

Λ(ω) = 0.031(1 + cosω)

−144 cosω + 145
.

The spectral density of the worst-case shaping filter is

S(q, ω) = 144 cosω + 145

(−144 − 0.031q) cosω + 145 − 0.031q
.

Figures6.1 and 6.2 showA (q) andN (q) plots for different values ofM , respec-
tively.

For large values of M functions, A (q) and N (q) lose their monotony (see
Fig. 6.3). The set {N (q) |A (q)=a} can be empty or contain several values ofN (q).
Therefore, the anisotropic norm is defined as a supremum function by (6.18).

When a = 0.34, the anisotropic norm of the system is equal to |||P|||a = 0.1841
for M = 0, |||P|||a = 0.1823 for M = 1 and cannot be computed for M = {2, 3}
(see Figs. 6.4 and 6.5).

Remark 6.1 In the general case functions A (q) and N (q) are not monotonic [4],
but if the condition ‖G‖22 +|M |2 = 1 is satisfied, they become monotone increasing
and get the form
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Fig. 6.1 A (q) for different values of M

Fig. 6.2 N (q) for different values of M
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Fig. 6.3 A (q) and N (q) for M = 3

Fig. 6.4 N (A (q)) for different M
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Fig. 6.5 N (A (q)) plots for different M (magnified)

A (q) = A(W ) = m

2

(
ln

(
Φ(q)

1 − |M |2
)

− 
(q)

)
, (6.25)

N (q) = Q (P,W ) =
√

Φ(q) − 1

qΦ(q)
(1 − |M |2) + |PM |2. (6.26)

Moreover, the constraint A (q) � a gives a convex set now.

Conclusion

In this chapter, we provide an anisotropy-based analysis problem subject to nonzero-
mean random input signals. It is shown that for a nonzero mean of random input sig-
nals the anisotropic norm function loses monotonicity. This may result in nonunique-
ness of the solution of equation N (A (q)) = a. However, some limitations on a
value of mathematical expectationM of input random signals can lead to monotonic
behavior of both N (q) and A (q).
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Chapter 7
Robust Anisotropy-Based Control

7.1 Problem Statement

Consider the following discrete-time descriptor system:

Ex(k + 1) = AΔx(k) + BΔ1w(k) + B2u(k), (7.1)

y(k) = CΔx(k) + DΔ1w(k) (7.2)

where x(k) ∈ R
n is the state, w(k) ∈ R

m1 is a random stationary sequence with
bounded mean anisotropy levelA(W ) � a, y(k) ∈ R

p is the output, and u(k) ∈ R
m2

is the control input. The matrix E is singular; that is, rank (E) = r < n. AΔ =
A+MAΔNA, BΔ1 = B1+MBΔNB ,CΔ = C+MCΔNC , and DΔ1 = D1+MDΔND .

Matrix Δ ∈ R
s×s is unknown norm-bounded, that is, ‖Δ‖2 � 1. Note that

‖Δ‖2 := σ(Δ) � 1 if and only if ΔTΔ � Is .
Introduce notations

Ad = ˜W A˜V =
[

A11 A12

A21 A22

]

, B1d = ˜WB1 =
[

B1
1

B2
1

]

, B2d = ˜WB2,

Cd =C˜V = [

C1 C2
]

, D1d = D1.

(7.3)

Md
A = ˜WMA, N

d
A = NA˜V , Md

B = ˜WMB =
[

Md
B1

Md
B2

]

,Nd
B = NB, Md

C = MC ,

Nd
C = NC ˜V = [

Nd
C1 Nd

C2

]

,

© Springer International Publishing AG, part of Springer Nature 2018
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Suppose that

rank
(

ET
) = rank

[

ET,CT, NT
C

]

, (7.4)

rank (E) = rank [E, B1, MB] . (7.5)

Matrices ˜W and ˜V are found from the SVD of matrix E .
We consider two problems.

• Anisotropy-based analysis of system (7.1) and (7.2). This problem is solved in
Sect. 7.2;

• State feedback anisotropy-based control design for (7.1) and (7.2). The solution
of this problem is given in Sect. 7.3.

7.2 Anisotropy-Based Analysis for Uncertain Descriptor
Systems

In an anisotropy-based analysis problem control input is assumed to be zero; that is,
B2 = 0. Output y(k) is considered as a measurable output. System (7.1) and (7.2) is
supposed to be admissible for all Δ from the given set. Its transfer function is given
by PΔ(z) = CΔ(zE − AΔ)−1BΔ1 + DΔ1.

For known values a � 0 and γ > 0 the problem is to find the conditions which
allow us to check that the inequality

|||PΔ|||a < γ

holds true.
To solve the anisotropy-based analysis problem for uncertain systems, we use the

following Petersen’s lemma.

Lemma 7.1 [1] Let matrices M ∈ R
n×p and N ∈ R

q×n be nonzero, and G = GT ∈
R

n×n. The inequality
G + MΔN + NTΔTMT � 0 (7.6)

is true for all Δ ∈ R
p×q : ‖Δ‖2 � 1 if there exists a scalar value ε > 0 such that

G + εMMT + 1

ε
NTN � 0. (7.7)

Theorem 7.1 [2] For given scalars a � 0 and γ > 0 system (7.1) and (7.2) is
admissible and its a-anisotropic norm |||PΔ|||a < γ if there exist scalars η > γ 2,
ε1 > 0, ε2 > 0, and matrices Q ∈ R

r×r , R ∈ R
r×(n−r), S ∈ R

(n−r)×(n−r),
Ψ ∈ R

m1×m1 , L ∈ R
r×r , L > 0, Υ ∈ R

r×r , and Υ > 0, such that
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Υ L = Ir , (7.8)

η − (e−2a det(Ψ ))1/m1 < γ 2, (7.9)

[

� + ε1NT
1 N1 M1

MT
1 −ε1 I2s

]

< 0, (7.10)

[

Σ + ε2NT
2 N2 M2

MT
2 −ε2 I4s

]

< 0. (7.11)

Here

� =
⎡

⎣

Ψ − ηIm1 DT
1d

(

B1
1

)T

D1d −Ip 0
B1
1 0 −Υ

⎤

⎦ ,

M1 =
⎡

⎣

0 0
MD 0
0 Md

B1

⎤

⎦ , N1 =
[

ND 0 0
Nd

B 0 0

]

,

Σ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

− 1
2Q − 1

2Q
T Γ Ad Γ B1d LT − QT − 1

2Q 0

AT
dΓ

T Π Ad + AT
dΠ

T − Θ ΠB1d AT
dΓ

T CT
d

BT
1dΓ

T BT
1dΠ

T −ηIm1 BT
1dΓ

T DT
1d

L − Q − 1
2Q

T Γ Ad Γ B1d −Q − QT 0

0 Cd D1d 0 −Ip

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(7.12)

M2 =

⎡

⎢

⎢

⎢

⎢

⎣

Γ Md
A Γ Md

B 0 0
ΠMd

A ΠMd
B 0 0

0 0 0 0
Γ Md

A Γ Md
B 0 0

0 0 Md
C MD

⎤

⎥

⎥

⎥

⎥

⎦

, N2 =

⎡

⎢

⎢

⎣

0 Nd
A 0 0 0

0 0 Nd
B 0 0

0 Nd
C 0 0 0

0 0 ND 0 0

⎤

⎥

⎥

⎦

,

Θ =
[

L 0
0 0

]

, Π =
[

0 0
0 S

]

, Γ = [

Q R
]

.

Proof Under assumptions (7.4) and (7.5) B2
1 = 0 and C2 = 0. It is easy to check

that in (3.95) αCdΠ Ad = 0 and αCdΠB1d = 0. Consider inequality (3.94) from
Theorem 3.5. Taking into account B2

1 = 0, transform the expression BT
1dΘB1d =

[

(

B1
1

)T
0
]

[

L 0
0 0

] [

B1
1
0

]

= (

B1
1

)T
LB1

1 > 0. Thus the inequality (3.94) is equal to

[

Ψ − ηIm1 + (

B1
1

)T
LB1

1 DT
1d

D1d −Ip

]

< 0,
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using Schur’s lemma and denoting Υ = L−1, we have

⎡

⎣

Ψ − ηIm1 DT
1d

(

B1
1

)T

D1d −Ip 0
B1
1 0 −Υ

⎤

⎦ < 0. (7.13)

Now we write the inequality of the form (7.13) for system (7.1) and (7.2) with
norm-bounded uncertainties:

⎡

⎣

Ψ − ηIm1 (D1d + MDΔND)T (B1
1 + Md

B1ΔNd
B)T

D1d + MDΔND −Ip 0
B1
1 + Md

B1ΔNd
B 0 −Υ

⎤

⎦ < 0 (7.14)

or
� + sym (M1ΔN1) < 0. (7.15)

Using the conditions of Schur’s and Petersen’s lemmas, we can rewrite inequal-
ity (7.15) as (7.10). Now we transform expression (3.95) for system (7.1) and (7.2)

Σ + sym (M2ΔN2) < 0. (7.16)

Applying the same lemmas to inequality (7.16), we get

Σ + 1

ε2
M2M

T
2 + ε2N

T
2 N2 < 0,

Σ + ε2N
T
2 N2 − M2(−ε2 I )

−1MT
2 < 0,

[

Σ + ε2NT
2 N2 M2

MT
2 −ε2 I

]

< 0.

The last inequality coincides with (7.11). Expression (7.9) is equal to (3.93). Con-
sequently, conditions of Theorem 3.5 hold true for system (7.1) and (7.2); it means
that its anisotropic norm is bounded by a positive scalar value, that |||PΔ|||a < γ . �

Remark 7.1 Themutually inversematrices search procedure can be found, for exam-
ple, in [3].

Remark 7.2 If MB = 0 and NB = 0, then conditions of Theorem 7.1 become
simpler:

η − (e−2a det(Ψ ))1/m1 < γ 2,

[

� + ε1NT
1 N1 M1

MT
1 −ε1 I

]

< 0,

[

Σ + ε2NT
2 N2 M2

MT
2 −ε2 I

]

< 0.
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Here

� =
[

Ψ − ηIm1 + (

B1
1

)T
LB1

1 DT
1d

D1d −Ip

]

,

M1 =
[

0
MD

]

, N1 = [

ND 0
]

.

In this case, the algorithm of mutually inverse matrices computation in order to find
Υ is no longer required.

The procedure of a-anisotropic norm calculation of an uncertain descriptor sys-
tem (7.1) and (7.2) is based on conditions of Theorem 7.1 and can be formulated
as follows. Introduce the notation ξ = γ 2. Thus the a-anisotropic norm calculation
problem is to find

ξ∗ = inf ξ

on the set
{η, ξ, L , Ψ, Υ, Q, R, S, ε1, ε2}

that satisfies (7.8)–(7.11). If the minimum value ξ∗ is found, then the a-anisotropic
norm of system PΔ(z) can be approximately calculated as

|||PΔ|||a ≈ √

ξ∗. (7.17)

Example 7.1 Consider a descriptor system with parameters:

E =
⎡

⎣

1 0 0
0 0 0
2 0 1

⎤

⎦, A =
⎡

⎣

−0.25 0 0
−0.5 0.5 2
0.13 −0.18 −0.66

⎤

⎦, B =
⎡

⎣

0 0
0 0
0.2 0.1

⎤

⎦, C = [

2 2 0
]

,

D = [

0.01 −0.01
]

, MA = [

0.1 −0.1 0.05
]T

and NA = [

0 0.1 0.1
]

.

UncertaintyΔ is scalar, thereforeΔ ∈ [−1, 1]. It is easy to check that the system
is admissible for all values of Δ. The lower and upper values of the a-anisotropic
norm of uncertain systems are shown in Fig. 7.4. The dashed line in Fig. 7.4 displays
the result of γ -minimization using conditions of Theorem 7.1. The estimation error
is shown in Fig. 7.5.

Example 7.2 We consider a model of a hydraulic tank system with three tanks rep-
resented in Fig. 7.3 [4]. A linearized discrete-time state-space model in descriptor
form is given by
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Fig. 7.1 a-Anisotropic
norm of uncertain system
and its estimation

Fig. 7.2 Error of
a-anisotropic norm
estimation

Eq(k + 1) = Aq(k) + Buu(k) + Bξ ξ(k), (7.18)

y(k) = Cq(k) + 0.3η(k) (7.19)

where q(k) is a vector consisting of volumes in the tanks, u(k) is a pump flow, ξ(k) is
a plant noise, and η(k) is ameasurement noise.Matrices in state-space representation
(7.18) and (7.19) are given by

E =
⎡

⎣

1 0 0
0 1 0
0 0 0

⎤

⎦, A =
⎡

⎣

0.9692 0 0
0.0095 0.9867 0

1 2.3328 1

⎤

⎦,
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Fig. 7.3 Hydraulic tank system

Bu =
⎡

⎣

0.056
0.003
0

⎤

⎦, Bξ =
⎡

⎣

0.02
0.01
0

⎤

⎦ , C = [

0 1 0
]

,

Define w = [ξ η]T. Then B1 =
⎡

⎣

0.02 0
0.01 0
0 0

⎤

⎦ , D1 = [

0 0.3
]

. In addition,

MA = [

0.1 −0.1 0.3
]T

and NA = [

0.2 0.1 0.1
]

.

One can check that the system is admissible for all Δ ∈ [−1; 1]; its worst-case
generalized spectral radius is ρ(E, A) < 1.

The exact upper bound of the a-anisotropic normof uncertain systems for different
mean anisotropy levels a is shown in Fig. 7.4. The dashed line in Fig. 7.4 displays
the result of γ -minimization using the conditions of Theorem 7.1. The estimation
error is shown in Fig. 7.5.
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Fig. 7.4 a-Anisotropic norm
of uncertain hydraulic tank
system and its estimation

Fig. 7.5 Error of
a-anisotropic norm
estimation

7.3 State-Space Anisotropy-Based Robust Control Design
for Uncertain Descriptor Systems

In the state-space anisotropy-based robust control design problem the system is
supposed to be noncausal and unstable; y(k) stands for controllable output. The
problem is to find a feedback gain u(k) = Fx(k) such that the closed-loop system
with a transfer function

Pcl
Δ (z) = CΔ(zE − (AΔ + B2F))−1BΔ1 + DΔ1
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is admissible and
|||Pcl

Δ |||a < γ

for all Δ from the given set.
Assume that

1. System (7.1) is causally controllable.
2. System (7.1) is stabilizable.
3. Mean anisotropy of the input disturbance is bounded: A(W ) � a (a is a known

value).
4. A scalar value γ > 0 is given.
5. p � m1.

Definitions of causal controllability and stabilizability can be found in Sect. 2.6.
The following theorem defines the control design procedure.

Theorem 7.2 For a given scalar γ > 0 and a known mean anisotropy level a
(A(W ) � a) the control design problem is solvable if there exist scalars η > γ 2,
ε1 > 0, ε2 > 0, andmatrices Q ∈ R

r×r , R ∈ R
r×(n−r), S ∈ R

(n−r)×(n−r),Ψ ∈ R
p×p,

L ∈ R
r×r , L > 0, Υ ∈ R

r×r , Υ > 0, and Z ∈ R
n×m2 such that

Υ L = Ir (7.20)

η − (e−2a det(Ψ ))1/p < γ 2, (7.21)

[

� + ε1MT
1 M1 N1

NT
1 −ε1 I2s

]

< 0, (7.22)

[

Λ + ε2MT
2 M2 N2

NT
2 −ε2 I4s

]

< 0 (7.23)

where

� =
⎡

⎣

Ψ − ηIp D1d C1

DT
1d −Im1 0

CT
1 0 −Υ

⎤

⎦ ,

M1 =
[

(MD)T 0 0
(

Md
C

)T
0 0

]

, N1 =
⎡

⎣

0 0
(ND)T 0

0
(

Nd
C1

)T

⎤

⎦ ,
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M2 =

⎡

⎢

⎢

⎣

0 (Md
A)

T 0 0 0
0 0 (Md

C)T 0 0
0 (Md

B)T 0 0 0
0 0 (MD)T 0 0

⎤

⎥

⎥

⎦

, (7.24)

N2 =

⎡

⎢

⎢

⎢

⎢

⎣

Γ (Nd
A)

T Γ (Nd
C)T 0 0

Π(Nd
A)

T Π(Nd
C)T 0 0

0 0 0 0
Γ (Nd

A)
T Γ (Nd

C)T 0 0
0 0 (Nd

B)T (ND)T

⎤

⎥

⎥

⎥

⎥

⎦

, (7.25)

Λ =

⎡

⎢

⎢

⎢

⎢

⎣

Λ11 ΛT
21 ΛT

31 ΛT
41 0

Λ21 Λ22 ΛT
32 Λ21 ΛT

52
Λ31 Λ32 −ηIp Λ31 ΛT

53
Λ41 ΛT

21 ΛT
31 −(Q + QT) 0

0 Λ52 Λ53 0 −Im1

⎤

⎥

⎥

⎥

⎥

⎦

, (7.26)

Λ11 = − 1
2Q − 1

2Q
T, Λ21 = AdΓ

T + B2d ZTΩT,

Λ31 = CdΓ
T, Λ41 = L − Q − 1

2Q
T,

Λ22 = Π AT
d + AdΠ

T + ΦZ BT
2d + B2d ZTΦT − Θ,

Λ32 = CdΠ
T, Λ52 = BT

1d , Λ53 = DT
1d .

Θ =
[

L 0
0 0

]

, Π =
[

0 0
0 S

]

, Φ =
[

0 0
0 In−r

]

,

Ω = [

Ir 0
]

, Γ = [

Q R
]

.

The gain matrix can be obtained as

F = ZT

[

Q−T 0
−S−TRTQ−T S−T

]

˜V−1. (7.27)

Proof Show that controller (7.27) is a solution of the anisotropy-based control prob-
lem for initial system (7.1) and (7.2). Indeed,

Pcl(z) = C˜V ˜V−1(zE − A − B2F)−1
˜W−1

˜WB1 + D1 =
=C˜V (z ˜WE˜V − ˜W A˜V − ˜WBuF˜V )−1

˜WB1 + D1 =
= Cd(zEd − Ad − B2d Fd)

−1B1d + D1d ,

where Fd = F˜V .

Introduce the following linear change of variables

[

Q R
0 S

]

FT
d = Z .
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It implies that
[

Q R
]

FT
d = [

Ir 0
]

Z and

[

0 0
0 S

]

FT
d =

[

0 0
0 In−r

]

Z . Substitut-

ing the last expression into (7.12) we get Λ21 and Λ22 entries from (7.26), which
coincide with the conditions of Theorem 7.1 for the system, dual to the system (7.1)
and (7.2). Therefore according to Theorem 7.1, the closed-loop system (7.1) and
(7.2) is admissible, and the a-anisotropic norm of its transfer function is bounded by
the given scalar γ .

Because inequality (7.23) holds, the (1,1) entry implies matrix Q is invertible.
We also suppose that matrix S is invertible. If it does not hold, there exists a scalar
ε ∈ (0, 1), such that inequality (7.23) holds true for matrix S = S + ε In−r . Thus we
can use S instead of S.

As pointed out before, Q and S are invertible. Therefore the feedback gain Fd

for the closed-loop system is defined as Fd = ZT

[

Q−T 0
−S−TRTQ−T S−T

]

. Note that

Fd = F˜V . By the inverse change of variables we get F from (7.27).
This completes the proof. �

Example 7.3 Consider the system:

E =

⎡

⎢

⎢

⎣

2 1 0 3
0 1 0 0.5
1 2 0 −1

−2 3 0 0

⎤

⎥

⎥

⎦

, A =

⎡

⎢

⎢

⎣

2.02 0.99 3 3
0.02 0.97 0.5 1
1.04 1.95 −1 −1

−1.94 2.89 0 0.5

⎤

⎥

⎥

⎦

,

Bu =

⎡

⎢

⎢

⎣

5.9
2.3
1.15
4.05

⎤

⎥

⎥

⎦

, Bw =

⎡

⎢

⎢

⎣

0.05 0.1
−0.2 0

0 0.33
0 0

⎤

⎥

⎥

⎦

,

C =
[

1 0 0 0
0 1 0 0

]

, Dw =
[

0.03 0.07
0.09 0.12

]

,

Matrix A is assumed to be uncertain with Δ ∈ [−1; 1] and

MA = [

0.2 0.3 0.5 0.1
]T

, NA = [

1 1 1 0.3
]

.

The system is neither causal nor stable. It is easy to check that all assumptionsA1–
A5 hold. The generalized spectral radius of the nominal system is ρ(E, A) = 1.054.

We consider the mean anisotropy level a = 0.2. The design objective is to find
the minimal value of γ for which conditions of Theorem 7.2 hold.

Minimization of γ gives γmin = 9.0370. The controller’s parameters are

Frob = [−0.2460 −0.1821 0.6837 0.0172
]

.
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Fig. 7.6 Finite eigenvalues of the closed-loop uncertain system with control gain Frob

The lower and upper bounds of |||Pcl
Δ |||a are γ = 1.5419 and γ = 6.0066, respectively.

Hence, the design objective is satisfied. Arrangement of finite eigenvalues of the
closed-loop system for all uncertainties is depicted in Fig. 7.6. It is obvious that the
closed-loop system is stable for all Δ ∈ [−1; 1].

In order to compare the system performance, we minimized γ for the nominal
system (i.e., without uncertainties) and substituted obtained feedback gain into the
uncertain system.

Fnom = [−0.1942 −0.1109 0.3419 0
]

.

The uncertain system, closed by feedback gain u(k) = Fnomx(k) loses stability. The
arrangement of finite eigenvalues of the closed-loop system for all uncertainties is
depicted in Fig. 7.7.

Conclusion

In this chapter, the state feedback control design problem for discrete-time descrip-
tor systems with norm-bounded uncertainties in the presence of colored noise is
examined. It has been shown that the above problem can be solved via the matrix
inequality approach involving no parameter uncertainties. Thus the derived result
can be applied to design anisotropy-based controllers with a guaranteed robust per-
formance for descriptor systems.
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Fig. 7.7 Finite eigenvalues of the closed-loop uncertain system with control gain Fnom

References

1. Petersen, I.R.: A stabilization algorithm for a class of uncertain linear systems. Syst. Control
Lett. 8, 351–357 (1987)

2. Andrianova, O., Belov, A.: Anisotropy-based, analysis for descriptor systems with norm-
bounded parametric uncertainties. In: Proceeding of the International Conference Stability and
Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference), 2016 p. Russia, Moscow
(2016)

3. Balandin, D., Kogan, M.: Synthesis of controllers on the basis of a solution of linear matrix
inequalities and a search algorithm for reciprocal matrices. Autom. Remote Control. 66(1),
74–91 (2005)

4. Araujo, J.M., Barros, P.R., Dorea, C.E.T.: Design of observers with error limitation in discrete-
time descriptor systems: a case study of a hydraulic tank system. IEEE Trans. Control Syst.
Technol. 20(4), 1041–1047 (2012)

andrianovaog@gmail.com



Conclusion

In conclusion, note that stochastic anisotropy-based robust control theory was devel-
oped for systems described by linear difference equations in the mid 1990s. The
basic concepts of anisotropy-based control theory are anisotropy of the random vec-
tor, mean anisotropy of the random sequence, and anisotropic norm of the system.

The concepts of anisotropy of the random vector, mean anisotropy of the sequence
of randomvectors, and anisotropic norm of linear stationary systemswere introduced
in [1] in 1994. Anisotropy of the random vector is defined asminimal relative entropy
(Kullback-Leibler information divergence) between the probability density functions
of the random vector and the Gaussian signal with zero mean and scalar covariance
matrix.

Mean anisotropy is defined as the limit of the ratio of anisotropy of the vector,
composed of n random vectors, to the number n, when n goes to infinity. Mean
anisotropy characterizes “spectral color” of the input sequence, or its difference
from the Gaussian white noise that has zero “spectral color.”

The inducedH2 -norm of the systemwith random input signals with limitedmean
anisotropy is called the anisotropic norm of the stationary system. To distinguish
the anisotropic norm from other norms, the authors of the anisotropy-based theory
introduced the notation for the anisotropic norm of a matrix transfer function |||P|||a
corresponding to a given level of mean anisotropy of the input sequence. In [2], a
homotopy method for solving the anisotropy-based analysis problem is introduced.
The anisotropic norm of the system lies between theH2 -norm of the system scaled
over the square root of the McMillan control object degree and theH∞ -norm of the
system.

Both these values are limiting cases of the anisotropic norm (when the mean
anisotropy is equal to 0 and tends to ∞, respectively). Therefore, anisotropy-based
controlmethods, in some sense, generalizemethods ofH2 - andH∞ -optimal control
design.

Thus, by the end of the 1990s the basis of stochastic (anisotropy-based) robust
control theory had been established. This theory has been successfully developed in
subsequent years.Generalizingmethods formanywell-knownproblemsof stochastic
control in the case of unknown probabilistic characteristics of input signals and

© Springer International Publishing AG, part of Springer Nature 2018
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in Systems, Decision and Control 157, https://doi.org/10.1007/978-3-319-78479-3
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different kinds of parametric disturbances were created. This monograph represents
an extension of the stochastic anisotropy-based theory of robust control to discrete-
time descriptor systems.

Important results were obtained while developing a suboptimal anisotropy-based
theory of stochastic robust control. Much attention in the present work was paid to
the development of effective computational methods of anisotropy-based controller
design.
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