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What is the optimal way to cut a convex bounded domain K in Euclidean
space (Rn, | · |) into two halves of equal volume, so that the interface between
the two halves has least surface area? A conjecture of Kannan, Lovász and
Simonovits asserts that, if one does not mind gaining a universal numeri-
cal factor (independent of n) in the surface area, one might as well dissect
K using a hyperplane. This conjectured essential equivalence between the
former nonlinear isoperimetric inequality and its latter linear relaxation, has
been shown over the last two decades to be of fundamental importance to the
understanding of volume-concentration and spectral properties of convex do-
mains. In this work, we address the conjecture for the subclass of generalized
Orlicz balls

K =
{
x ∈R

n;
n∑

i=1

Vi(xi) ≤ E

}
,

confirming its validity for certain levels E ∈ R under a mild technical as-
sumption on the growth of the convex functions Vi at infinity [without which
we confirm the conjecture up to a log(1 + n) factor]. In sharp contrast to
previous approaches for tackling the KLS conjecture, we emphasize that no
symmetry is required from K . This significantly enlarges the subclass of con-
vex bodies for which the conjecture is confirmed.

1. Introduction.

1.1. A conjecture of Kannan–Lovász–Simonovits. Given a separable metric
space (X,d) endowed with a Borel probability measure μ, Minkowski’s (exte-
rior) boundary measure of a Borel set A ⊂ X, denoted μ+(A), is defined as
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2 A. V. KOLESNIKOV AND E. MILMAN

μ+(A) := lim infε→0
μ(Ad

ε )−μ(A)

ε
, where Ad

ε := {x ∈ X; ∃y ∈ A d(x, y) < ε} de-
notes the ε-neighborhood of A in (X,d). The Cheeger constant is then defined
as

(1.1) DChe(X,d,μ) := inf
A⊂X

μ+(A)

min(μ(A),1 − μ(A))
,

measuring a certain isoperimetric property of the space (X,d,μ). In this work,
we restrict our scope to the Euclidean setting (X,d) = (Rn, | · |), and simply write
DChe(μ) = DChe(R

n, | · |,μ). In the latter linear setting, we can also introduce the
following linear relaxation of the Cheeger constant, defined as

DLin
Che(μ) := inf

H⊂R
n

H is a halfspace

μ+(H)

min(μ(H),1 − μ(H))
.

Note that when A has smooth boundary and μ is supported on a set � hav-
ing Lipschitz boundary and has continuous density � in �, then μ+(A) =∫
∂A∩int(�) �(x) dHn−1(x), where Hk denotes the k-dimensional Hausdorff mea-

sure.
Clearly, DLin

Che(μ) ≥ DChe(μ), and in general it is not hard to see that this in-
equality cannot be reversed in any weak sense, as the right-hand side may be
zero. However, when μ = λK , where λK denotes the uniform (Lebesgue) prob-
ability measure on K ⊂ R

n, a convex compact set with nonempty interior (“con-
vex body”), Kannan, Lovász and Simonovits (KLS) conjectured in [37] (using an
equivalent formulation) that

(1.2) DChe(λK) ≥ cDLin
Che(λK),

for some universal numeric constant c > 0, independent of any other parameters
such as n or K . We reserve in this work the use of c,C,C1,C2, c

′,C′,C′′, etc. to
denote such positive universal numeric constants.

Recall that a measure μ on R
n is called log-concave if μ = exp(−V (x)) dx

with V :Rn →R∪ {+∞} convex; in particular, μ = λK is log-concave. The class
of log-concave probability measures on affine subspaces of RN for all N ≥ 1 is the
smallest class containing λK for all convex bodies K ⊂ R

N (for all N ≥ 1) which
is in addition closed under taking marginals and weak limits (see, e.g., [1]). It is
not hard to see that a positive answer to the KLS conjecture would also lead to a
positive answer to the analogous question for the entire class of log-concave prob-
ability measures, so it is also interesting to study the conjecture in this extended
generality.

REMARK. It is known that for a log-concave measure μ, the infimum in (1.1)
is attained for a Borel set A of measure 1/2 (see Sternberg–Zumbrun [68] for
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λK , Bobkov [10] for the one-dimensional case and [56] in general), and the same
applies to its linear relaxation:

DChe(μ) = 2 inf
A⊂Rn

{
μ+(A);μ(A) = 1/2

}
,

DLin
Che(μ) = 2 inf

H⊂R
n

H is a halfspace

{
μ+(H);μ(H) = 1/2

}
.

So the KLS conjecture ultimately pertains to the isoperimetric behaviour of sets
having measure 1/2.

The KLS conjectured essential equivalence between the former nonlinear
isoperimetric inequality and its latter linear relaxation, has been shown over the
last two decades to be of fundamental importance to the understanding of volu-
metric and spectral properties of convex domains, revealing numerous connections
to other central conjectures on the concentration of volume in convex bodies (see,
e.g., [4, 16, 23–25, 49, 51] or the monograph [1] for a nice overview). Let us only
mention here the following equivalent formulation of the KLS conjecture, which
has a clear analytic interpretation.

Denote by DPoin(μ) the Poincaré constant of μ, namely the best possible con-
stant in the following Poincaré inequality:

(1.3)

∥∥∥∥f −
∫

f dμ

∥∥∥∥
L2(μ)

≤ DPoin(μ)
∥∥|∇f |∥∥L2(μ)

for all Lipschitz f :Rn →R.

When μ = λK , DPoin(λK) = 1/
√

λ1(K) where λ1(K) denotes the first nonzero
eigenvalue of the Neumann Laplacian on K (a similar interpretation holds for a
general μ using an appropriate weighted Laplacian). We denote by DLin

Poin(μ) the
linear relaxation obtained by only testing (1.3) on linear functionals f (x) = 〈x, θ〉;
clearly, DLin

Poin(μ) ≤ DPoin(μ). It is known by results of Maz’ya [54], Cheeger [22],
Buser [20] and Ledoux [51], that for all log-concave probability measures μ on R

n:

1

2
DChe(μ) ≤ 1

DPoin(μ)
≤ CDChe(μ),

for some universal constant C > 1/2; the same inequality also holds for the cor-
responding linear relaxations DLin

Che(μ) and DLin
Poin(μ). Consequently, the KLS con-

jecture may be equivalently reformulated as asserting that

(1.4) DPoin(μ) ≤ CDLin
Poin(μ),

for some universal constant C > 1 and all log-concave measures μ. In other words,
the KLS conjecture asserts that for log-concave measures (and in particular, on
convex bodies), the Poincaré inequality (1.3) should be essentially saturated by
linear functionals.
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1.2. Previously known results. More than two decades after being put forth,
the KLS conjecture is still unresolved, and the presently best known (dimension-
dependent) estimate on C = Cn in (1.4) is Cn ≤ Cn1/4, obtained very recently
(after this work was posted on the arXiv) by Y. T. Lee and S. Vempala [52] by
employing the remarkable stochastic localization method of R. Eldan [23]; previ-
ous contributions include those by KLS [37], S. Bobkov [11], B. Klartag [40, 41],
B. Fleury [26] and O. Guédon and Milman [34]. The conjecture has been con-
firmed (uniformly in n) for unit-balls of �n

p (by S. Sodin [67] when p ∈ [1,2] and
R. Latała and J. Wojtaszczyk [49] when p ∈ [2,∞]), the simplex by F. Barthe and
P. Wolff [7], convex bodies of revolution by N. Huet [36], convex sets of bounded
volume-ratio constructed in a certain manner from log-concave measures which
satisfy the conjecture [46], linear images and Cartesian products of these sub-
classes (see Bobkov–Houdré [15] for the latter) and various perturbations thereof
[56, 59]. For the interesting class of unconditional convex bodies (invariant under
reflections with respect to the coordinate hyperplanes), the best known estimate
Cn = C log(1 + n) was established by B. Klartag [43]. In addition, the conjecture
has been established in a certain weak sense for random Gaussian polytopes (with
high-probability) by B. Fleury [27].

Besides these subclasses of convex bodies and their natural extensions to the
log-concave setting, the extended KLS conjecture has also been confirmed for ro-
tation invariant log-concave measures by S. Bobkov [14] (see also [36] for gener-
alizations), for log-concave measures with strictly convex potentials V by Bakry–
Émery [3], for certain Gibbs measures corresponding to conservative spin systems
by Barthe–Wolff [7] and Barthe–Milman [6], for certain log-concave measures
supported in a cube by Klartag [44], and for unconditional measures with strictly
positive derivatives in the principal directions by the authors in [47]. In addition,
Klartag’s Cn = C log(1 + n) estimate for unconditional log-concave measures has
been generalized to log-concave measures enjoying more general symmetries by
Barthe and D. Cordero–Erausquin [5]. To the best of our knowledge, this is essen-
tially a complete list.

1.3. Generalized Orlicz balls. The above results typically make heavy use of
the symmetries possessed by K or μ. In this work, we address the KLS conjecture
for a certain family of convex bodies which may be called generalized Orlicz balls.
Contrary to the standard definition of these bodies in the literature (see, e.g., [1]),
we emphasize that our definition does not impose any symmetry conditions on
these bodies.

DEFINITION. A convex body K ⊂ R
n is called a generalized Orlicz ball if

there exist n one-dimensional convex functions Vi :R →R and E ∈ R so that

K =
{
x ∈R

n;
n∑

i=1

Vi(xi) ≤ E

}
.
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The traditional definition also requires that Vi be even functions which vanish
at the origin, so that the resulting class is always unconditional—we will call such
bodies unconditional generalized Orlicz balls. In that case, K is the unit-ball of
the generalized Orlicz norm

(1.5) ‖x‖K := inf

{
t > 0;

n∑
i=1

Vi(xi/t) ≤ E

}
;

indeed, the convexity of Vi ensures the validity of the triangle inequality, and the
symmetry of Vi ensures that ‖−x‖K = ‖x‖K , so that this defines a norm (with an
unconditional basis). By abuse of notation, we will still refer to (1.5) as a norm as
soon as K contains the origin in its interior, even without any symmetry assump-
tions on Vi . As shown by Wojtaszczyk [70], contrary to general unconditional
convex bodies, unconditional generalized Orlicz balls enjoy the following nega-
tive correlation property (first noted by Anttila–Ball–Perissinaki [2] for unit-balls
of �n

p):

(1.6) EX2
i X

2
j ≤ EX2

i EX2
j ∀i �= j,

where X is a random-vector uniformly distributed in K . Naturally, this property
heavily relies on the underlying symmetry, and is very helpful in establishing vari-
ous concentration properties for this class; for instance, using an extension of (1.6)
due to Pilipczuk–Wojtaszczyk [64], Fleury [25] showed that for unconditional gen-
eralized Orlicz balls, |X| is optimally concentrated around its mean. However, to
the best of our knowledge, even for this subclass of unconditional bodies, the best
estimate on C = Cn in the KLS conjecture (1.4) is the general one for uncondi-
tional bodies Cn = C log(1 + n) due to Klartag [43].

1.4. Simplified main results. In this work, we do not impose any symmetry
assumptions on Vi , and in particular do not (and cannot) employ (1.6) at all. We
formulate our main results in full generality in the next section, but for now we
only state the following simplified version.

THEOREM 1.1 (Simplified main theorem). For each i = 1, . . . , n, let Vi : R→
R, i = 1, . . . , n, denote a convex function normalized so that minVi = 0 and so that
μi := exp(−Vi(y)) dy is a probability measure on R with barycenter at the origin.
Given E > 0, set

(1.7) KE :=
{
x ∈ R

n;
n∑

i=1

Vi(xi) ≤ E

}
.

Let Xi denote random-variables distributed according to μi , and set

(1.8) EV := 1 +
n∑

i=1

EVi(Xi).
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Then EV ≤ n + 1, and for E = EV we have

(1.9)
1

C
≤ Vol(KE)

1
n ≤ C,

and

(1.10) DPoin(λKE
) ≤ C log

(
e + A(2) ∧ n

)
DLin

Poin(λKE
).

Here, C > 1 is a universal constant, and

(1.11) A(2) := 1√
n

∥∥(
α

(2)
i

)n
i=1

∥∥
2, α

(2)
i := ∥∥V ′

i (y)y
∥∥
L2(μi)

.

In particular, we confirm the KLS conjecture for the generalized Orlicz ball KE

as soon as A(2) is bounded above by a constant, reflecting a certain upper bound
on the rate of growth of {Vi} at infinity. The volume estimate (1.9) is a natural
expected normalization which serves as a sanity check, preventing various trivial
statements (such as when E → 0). The precise result we formulate in Section 2
provides a more flexible explicit description of the levels E to which the above
result applies; see Remark 1.3 below. This provides an explicitly computable cri-
terion for the validity of the KLS conjecture, and significantly extends the class of
convex bodies for which the conjecture is confirmed.

Note that the dependence on A(2) in (1.10) is logarithmic, and that in the worst
case, regardless of the value of A(2) (which may be infinite, see, e.g., [48], Ex-
ample 1), the estimate (1.10) confirms the KLS conjecture for KE up to a factor
of log(1 + n), matching Klartag’s estimate for unconditional convex bodies, but
without assuming any symmetry. In fact, the above log(1 + n) factor is a conse-
quence of a more general result, stating that one may always find a level set of a
general log-concave measure μ (no product structure assumed) having essentially
the same spectral-gap, up to this factor.

THEOREM 1.2 (From log-concave measure to good level-set). Let μ =
exp(−V (x)) dx denote a log-concave probability measure on R

n with minV = 0.
Let X denote a random-vector distributed according to μ, and set

EV := 1 +EV (X).

Then EV ≤ n + 1, and for E = EV , KE = {x ∈ R
n;V (x) ≤ E} satisfies (1.9) and

DPoin(λKE
) ≤ CDPoin(μ) log

(
e + √

nDPoin(μ)
)
.

REMARK 1.3. The results of Theorems 1.1 and 1.2 apply to all levels E in the
following explicit set:

(1.12) Level(V ) :=
{
E ≥ 0; e−E Vol(KE) ≥ 1

e

nne−n

n!
}
.
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Proposition 2.3 ensures that this set is a nonempty interval [Emin,Emax] with
Emin ≤ n and 1 ≤ Emax − Emin ≤ e

√
2πn(1 + o(1)) as n → ∞, and that EV ∈

Level(V ). The constant 1
e

in front of the term nne−n

n! above may be replaced by 1
eq

for any fixed q ≥ 1 (and for some statements in this work, q ≥ 0), resulting only
in different numeric constants in our results; this variant of (1.12) is denoted by
Level(q)(V ). If one employs q = n/(EV − 1), it is not hard to show that the (per-
haps more natural) level EV − 1 lies in Level(q)(V ), and thus our results apply to
it as well—but we do not pursue this nuance here.

More general versions of these results (dispensing with the restrictions that
minVi = 0, that μi are probability measures, and that their barycenter is at the
origin) will be presented in Section 2 and Section 6.4. In this introductory sec-
tion, we provide a couple of simple examples to illustrate how these (extended)
results may be applied; their analysis is deferred to Section 6.5. We denote by
a+ := (|a| + a)/2 and a− := (|a| − a)/2 the positive and negative parts of a ∈ R.

EXAMPLE 1.4. Let p±
i ∈ [1,P ], i = 1, . . . , n, for some P ≥ 1, and set

Vi(xi) := (xi)
p+

i+ + (xi)
p−

i− .

Let EV be defined by (1.8), where Xi are distributed according to μi having den-
sity proportional to exp(−Vi). Then for E = EV , the generalized Orlicz ball (1.7)
satisfies (1.9) and

(1.13) DPoin(λKE
) ≤ C log(e + P)DLin

Poin(λKE
),

for some universal C > 0. Moreover, if p±
i ∈ [2,P ], then

DPoin(λKE
) ≤ C ′√log(e + P)DLin

Poin(λKE
).

In particular, for fixed P ≥ 1, this confirms the KLS conjecture for the bodies KE

uniformly in n ≥ 1. Of course, one may replace the function yp in this example
with other non-homogeneous variations like yp log(1 + y), etc. More generally, as
suggested to us by the referee, it is worth pointing out that (1.13) remains valid
(with C depending solely on c1, c2 below) when the convex functions Vi satisfy
minVi = Vi(0) = 0,

∀i = 1, . . . , n 0 < c1 ≤
∫ ∞

0
exp

(−Vi(±xi)
)
dxi ≤ c2 < ∞,

and the following “generalized doubling condition” holds:

∀i = 1, . . . , n ∃εi > 0 ∀xi ∈ R Vi

(
(1 + εi)xi

) ≤ (1 + εiP )Vi(xi).

EXAMPLE 1.5. Let μ = exp(−V (x)) dx denote a log-concave probability
measure on R

n with minV = 0 and HessV ≥ ρ2Id with ρ > 0. Then for E =
EV ≤ n + 1, KE = {x ∈R

n;V (x) ≤ E} satisfies (1.9) and

DPoin(λKE
) ≤ C

ρ
log(e + √

n/ρ).
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1.5. Method of proof. Our approach is based on transferring concentration in-
formation from the log-concave measure μ := exp(−V (x)) dx onto the uniform
measure λKE

on its level set KE . We achieve this in three separate steps. The
most important step is to transfer concentration from μ to an auxiliary measure
μKE,w , which is a linearized version of μ supported on an annulus around KE

of relative width w = w0√
n

. We then pass from μKE,w to the cone measure σ∂KE

supported on ∂KE , from which we finally pass to λKE
and optimize on w0 > 0.

Finally, an isoperimetric (or Poincaré) inequality is deduced using the convexity
of KE and the known equivalence between concentration and isoperimetry under
convexity assumptions. Surprisingly, these three different steps require three dif-
ferent methods for transferring concentration: an Lp(μ) estimate on dμKE,w/dμ,
a Wasserstein-distance estimate on W1(μKE,w, σ∂KE

) and a Hardy-type inequal-
ity with boundary for λKE

. The only place where we need to assume that μ is a
product measure [i.e., that V (x) = ∑n

i=1 Vi(xi), and hence KE is a generalized
Orlicz ball] is in the first step, resulting in an estimate depending only on A(2)

and not the dimension; this allows for future possible generalizations. To get the
dimension-dependent log(1 + n) estimate, no assumption on μ is needed beyond
log-concavity, and we can simply use an L∞ estimate in the first step.

The rest of this work is organized as follows. In Section 2, we formulate our
various general main results in this work, of which Theorem 1.1 is a particular case.
In Section 3, we obtain the Lp(μ) estimate on dμKE,w/dμ, modulo an estimate on
Vol(KE) which is obtained in Section 4. In Section 5, we obtain the Wasserstein
distance estimate and the Hardy-type inequality. In Section 6, we put everything
together and prove our main results.

Further results pertaining to the distribution of Vol(KE) where E =∑n
i=1 Vi(Xi) and Xi are independent random-variables distributed according to

μi = exp(−Vi) dx, will be studied in a follow-up work by Barthe and Wolff [8].

2. Statement of results.

THEOREM 2.1 (Main technical theorem). Let Vi : R → R, i = 1, . . . , n, de-
note a sequence of convex functions normalized so that μi := exp(−Vi(y)) dy is
a probability measure on R. Denote V (x) = ∑n

i=1 Vi(xi) and mi := minVi , and
assume that

∑n
i=1 mi = 0 so that minV = 0. Assume in addition that the following

scale-invariant quantities are finite:

(2.1)
∀i = 1, . . . , n

α
(∞,2)
i := (

1 + ∥∥(
V ′

i (y)y
)
−

∥∥
L∞(μi)

) ∨ ∥∥V ′
i (y)y

∥∥
L2(μi)

< ∞.

Set A(∞,2) := 1√
n
‖(α(∞,2)

i )ni=1‖2 and M = maxi=1,...,n emi . Given E > E0 :=
V (0), define the following convex body on R

n (containing the origin in its inte-
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rior):

KE := {V ≤ E} =
{
x ∈ R

n;
n∑

i=1

Vi(xi) ≤ E

}
,

the unit-ball of the generalized Orlicz norm ‖x‖KE
:= inf{t > 0;∑n

i=1 Vi(xi/t) ≤
E}. Denote by bE := ∫

x dλKE
(x) the barycenter of KE . Consider the set

(2.2) Level(V ) :=
{
E ≥ 0; e−E Vol(KE) ≥ 1

e

nne−n

n!
}
.

Then for all E ∈ Level(V)∩(E0,∞):

DPoin(λKE
) ≤ C

(
M log

(
e + A(∞,2)M

) + 1√
n

∫
|x|dλKE

(x)

)

≤ C

(
M log

(
e + A(∞,2)M

) + |bE|√
n

+ DLin
Poin(λKE

)

)
,

for an appropriate universal numeric constant C > 1.

Since DPoin(λKE
) and DLin

Poin(λKE
) remain invariant under translation of KE ,

by translating V �→ V (· + b) [i.e., Vi �→ Vi(· + bi) for b ∈ R
n], we immediately

obtain the following.

COROLLARY 2.2. With the same notation and assumptions as in Theorem 2.1,
given b ∈R

n denote A(∞,2)(b) := 1√
n
‖(α(∞,2)

i (b))ni=1‖2, where

(2.3) α
(∞,2)
i (b) := (

1 + ∥∥(
V ′

i (y)(y − bi)
)
−

∥∥
L∞(μi)

) ∨ ∥∥V ′
i (y)(y − bi)

∥∥
L2(μi)

.

Then for all E ∈ Level(V ) and b ∈ int(KE),

DPoin(λKE
) ≤ C

(
M log

(
e + A(∞,2)(b)M

) + |bE − b|√
n

+ DLin
Poin(λKE

)

)
.

There is a particular value of b ∈ R
n which is the most natural to use above—the

barycenter of μ := exp(−V (x)) dx, denoted

bμ :=
∫

x dμ(x) =
(∫

xi dμi(xi)

)n

i=1
.

With this choice, it is immediate to verify that {αi(bμ)} are both scale and transla-
tion invariant in μ. Another advantage we will verify in Lemma 4.8 is that when
b = bμ, the L∞ term in (2.3) is always majorized by the L2 one; this is a gener-
alization of the simple fact that V ′

i (y)(y − bi) ≥ 0 whenever the minimum of the
convex Vi is attained at bi . We consequently denote

A(2)(b) := 1√
n

∥∥(
α

(2)
i (b)

)n
i=1

∥∥
2, α

(2)
i (b) := ∥∥V ′

i (y)(y − bi)
∥∥
L2(μi)

.
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Let

Covμ := E
(
(Xμ − bμ) ⊗ (Xμ − bμ)

)
, CovE := E

(
(XE − bE) ⊗ (XE − bE)

)
,

denote the corresponding covariance matrices, where Xμ and XE are distributed
according to μ and λKE

, respectively. To provide some more relevant information
regarding the subset Level(V ) of good levels E and the associated level sets KE ,
to which the above results apply, we have the following.

PROPOSITION 2.3. Let μ = exp(−V (x)) dx denote a log-concave probabil-
ity measure on R

n so that minV = 0. For E ≥ 0, let KE := {V ≤ E}, and let
Level(V ) be defined by (2.2). Let bμ, bE,Covμ,CovE be defined as above. There
exist numeric constants c,C,C ′ > 0 so that:

(1) Level(V ) is a nonempty closed interval [Emin,Emax] with Emin ≤ n.
(2) 1 ≤ Emax − Emin ≤ e n!en

nn = e
√

2πn(1 + o(1)) as n → ∞.

(3) 1 + o(1) ≤ Vol(KEmin)
1
n ≤ Vol(KEmax)

1
n ≤ e(1 + o(1)) as n → ∞.

(4) EV := 1 + ∫
V (x)e−V (x) dx satisfies EV ∈ Level(V ) and EV ≤ Emax ∧

(n + 1).
(5) V (bμ) ≤ EV − 1 ≤ (Emax − 1) ∧ n, that is, bμ ∈ KEV −1 ⊂ K(Emax−1)∧n.
(6) |bE − bμ| ≤ C log(1 + n)DLin

Poin(μ), for all E ∈ [Emin,Emax].
(7) CovE ≤ C′ log2(1 + n)Covμ as positive-definite matrices, for all E ∈

[Emin,Emax].
(8) DLin

Poin(λKE
) ≥ c > 0 for all E ≥ Emin.

We remark that assertion (5) above is a refinement of a result of M. Fradelizi
[28], who showed that under the above assumptions V (bμ) ≤ n; see Remark 4.7 for
further discussion. Combining Corollary 2.2 with Proposition 2.3, we can easily
obtain the following.

THEOREM 2.4 (Main theorem). With the same notation and assumptions as
in Corollary 2.2 and Proposition 2.3, for all E ∈ [Emin,Emax] such that b = bμ ∈
int(KE):

DPoin(λKE
) ≤ C2M log

(
e + A(2)(bμ)M

)
DLin

Poin(λKE
).

In particular, this applies to all E ∈ [(EV − 1) ∨ Emin,Emax], and notably, to
E = EV .

Theorem 2.4 confirms the KLS conjecture for KE as above whenever A(2)(bμ),
M ≤ C. By simultaneously rescaling all functions Vi , we can also easily remove
the assumption that

∫
exp(−Vi(y)) dy = 1; see Corollary 6.3.

Finally, we state our log(1 + n) estimate on the relation between the Poincaré
constants of a general log-concave measure μ and its level-sets.
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THEOREM 2.5 (From log-concave measure to good level-sets). Let μ =
exp(−V (x)) dx denote a log-concave probability measure on R

n with minV = 0.
Denote its level sets by KE := {x ∈ R

n;V (x) ≤ E}, and define as usual Level(V )

by (2.2). Then for all E ∈ Level(V ), and in particular, for E = EV , we have

DPoin(λKE
) ≤ CDPoin(μ) log

(
e + √

nDPoin(μ)
)
.

REMARK 2.6. An inspection of the proof of Theorem 2.5 (and the relevant
parts of Proposition 2.3) reveals that we could actually omit the

√
n above, obtain-

ing a dimension-independent estimate, for any E ≥ 0 so that

(2.4) e−E Vol(KE) ≥ c > 0,

for some universal constant c > 0. Unfortunately, such exceptionally good levels
E do not necessarily exist, and the best one can ensure in general is

∃E ≥ 0 e−E Vol(KE) ≥ nne−n

n! = 1√
2πn

(
1 + o(1)

)
,

corresponding to the case V (x) = ‖x − x0‖ for some norm ‖ · ‖ (whose unit-ball
has appropriate volume) and x0 ∈ R

n, which results in the above
√

n factor. As we
did not find a reasonable condition for ensuring (2.4), we only mention this variant
in passing.

3. Transferring concentration: From product measure to linearized one
on annulus. Given a metric space (X,d) and a Borel probability measure ν, the
associated concentration profile K = K(X,d, ν) : R+ → [0,1/2] is defined by

K(r) := sup
{
ν
(
X \ Ad

r

);μ(A) ≥ 1/2
}
, Ad

r := {
x ∈ X;d(x,A) < r

}
.

Equivalently, it is well known and immediate to verify that

K(r) = sup
{
ν{f ≥ medμ f + r};f : (X,d) →R is 1-Lipschitz

};
here, medν f denotes any median of f with respect to ν, that is, a median of the
push-forward of ν by f .

Given two Borel probability measures ν1, ν2 defined on (X,d), we will require
the following particular case of [6], Proposition 2.2, for transferring concentration
information from K1 = K(X,d, ν1) to K2 =K(X,d, ν2).

PROPOSITION 3.1 (Barthe–Milman). Assume that ‖dν2
dν1

‖Lp(ν1) ≤ L for some

p ∈ (1,∞]. Then setting q = p∗ = p
p−1 , we have

K2(r) ≤ 2LK1/q
1 (r/2) ∀r > 0.

We will use Proposition 3.1 with both p < ∞ and p = ∞. The latter simpler
case, on which the proof of Proposition 3.1 is in fact based, was originally proved
in [59], Lemma 3.1 (with more precise numerical constants).
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3.1. Linearized measure on annulus. Given a compact set � ⊂ R
n contain-

ing the origin in its interior, let ‖x‖� := inf{λ > 0;x ∈ λ�} denote its associ-
ated gauge function on R

n. Let μ = exp(−V (x)) dx denote a general log-concave
probability measure on R

n. Given E > E0 := V (0), denote by KE := {V ≤ E} the
convex level-set of V at level E, which necessarily contains the origin in its inte-
rior. Let μKE

denote the probability measure on R
n having density proportional to

exp(−n‖x‖KE
); it will be more convenient to write it as

μKE
= 1

ZE

e−(E+n(‖x‖KE
−1)) dx,

where ZE > 0 is a normalization constant ensuring that μKE
is a probability mea-

sure. Integration in polar coordinates easily yields

ZE = n!en

nn
e−E Vol(KE).

Given an additional parameter w ∈ (0,1], we define the probability measure
μKE,w by conditioning μKE

on the annulus 1 − w ≤ ‖x‖KE
≤ 1, namely

μKE,w := 1

ZE,w

e−(E+n(‖x‖KE
−1))1‖x‖KE

∈[1−w,1] dx,

where again ZE,w > 0 is an appropriate normalization constant. Note that the den-
sity of μKE,w on the unit-sphere {‖x‖KE

= 1} is constant, and thus proportional to
that of μ. Furthermore, we will later see that our choice of the potential’s slope
(namely the coefficient n above) coincides on-average with that of μ. Conse-
quently, the measure μKE

should be thought of as a version of μ whose poten-
tial has been linearized about the unit-sphere {‖x‖KE

= 1}, with μKE,w being in
addition restricted to the annulus ‖x‖KE

∈ [1 − w,1].

REMARK 3.2. Our preference to work with the annulus ‖x‖KE
∈ [1 − w,1]

instead of with (the perhaps more natural) ‖x‖KE
∈ [1 −w,1 +w], is because this

permits us to employ a one-sided concentration estimate (Theorem 3.6 below) in-
stead of a two-sided one. Consequently, we only need to demand an L2 integrabil-
ity assumption from our random-variables, instead of an exponential integrability
assumption which a standard two-sided estimate would require.

We will typically set w = w0√
n

due to the following.

LEMMA 3.3. For all w0 ∈ [0,1], if w = w0√
n

then

ZE,w ≥ cw0ZE,

for some universal numeric constant c > 0.



KLS CONJECTURE FOR GENERALIZED ORLICZ BALLS 13

PROOF. Let X denote a random vector distributed according to μKE
. Recall-

ing that its density is proportional to exp(−n‖x‖KE
), observe that ‖X‖KE

is dis-
tributed according to the Gamma distribution nn

(n−1)!e
−nrrn−1 dr , and that

ZE,w

ZE

= P
(‖x‖KE

∈ [1 − w,1]) = nn

(n − 1)!
∫ 1

1−w
e−nrrn−1 dr.

The claim for w0 of the order of 1 is already clear, since the latter Gamma dis-
tribution may be realized as the law of 1

n

∑n
i=1 Yi , where Yi is a sequence of i.i.d.

exponential random variables with parameter 1, so that E(Yi) = Var(Yi) = 1, and
hence E(‖X‖KE

) = 1 and Var(‖X‖KE
) = 1

n
; similarly, it is possible to extend this

reasoning to all w0 ∈ [ C√
n
,1] using the Berry–Esseen theorem (e.g., [63]). To see

the claim for all w0 ∈ [0,1], we use the fact that the density of the Gamma distri-
bution is unimodal, and so we may lower bound the above integral as follows:

≥ nn

(n − 1)!w min
(
e−n(1−w)(1 − w)n−1, e−n)

.

Using Stirling’s formula, we see that w nn

(n−1)!e
−n = w

√
n 1√

2π
(1 + o(1)) as n →

∞, and in particular ≥ c′w0 for some constant c′ > 0 and all n ≥ 1. It remains to
note that

enw(1 − w)n−1 ≥ (1 + w)n(1 − w)n−1 ≥ (
1 − w2)n−1 =

(
1 − w2

0

n

)n−1
≥ c′′ > 0,

for all w0 ∈ [0,1] and n ≥ 1 (with 00 interpreted as 1). This concludes the proof.
�

3.2. Dimension-dependent estimate. Our proof of Theorem 2.5 employs the
following simple dimension-dependent estimate.

LEMMA 3.4. For any log-concave probability measure μ = exp(−V (x)) dx,
E > V (0) and w = w0√

n
with w0 ∈ (0,1], we have∥∥∥∥dμKE,w

dμ

∥∥∥∥
L∞

≤ 1

cw0ZE

exp(w0
√

n),

where c > 0 is the constant from Lemma 3.3.

PROOF. Note that V ≤ E for all ‖x‖KE
≤ 1, and in particular on the annulus

‖x‖KE
∈ [1 − w,1]. It follows that on this annulus

dμKE,w

dμ
(x) = 1

ZE,w

exp
(
V − E − n

(‖x‖KE
− 1

)) ≤ 1

ZE,w

enw,

and the assertion follows by Lemma 3.3. �

We will see in Section 6 that this is already enough to deduce the worst-case
log(1 + n) estimate of Theorem 1.1.
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3.3. Dimension-independent estimate. To obtain a dimension-independent es-
timate, we restrict ourselves in this subsection to product measures μ. Let Vi :
R → R, i = 1, . . . , n, denote a sequence of convex functions so that μi :=
exp(−Vi(y)) dy is a probability measure on R. Denote V (x) := ∑n

i=1 Vi(xi),
x ∈ R

n, and let μ denote the corresponding product measure on R
n:

μ := μ1 ⊗ · · · ⊗ μn = exp
(−V (x)

)
dx.

Our proof of Theorem 2.1 relies on the following crucial estimate. The proof
strategy is in some sense similar to the one employed in [6], where a zeroth order
approximation was used about a hyperplane (instead of a first-order approximation
about a convex hypersurface as in the present case).

PROPOSITION 3.5. Let (α
(∞,2)
i )ni=1 be defined as in (2.1), and recall that

A∞,2 := 1√
n
‖(α(∞,2)

i )ni=1‖2. Let w0 ∈ (0,1/2], w = w0√
n

and p ≥ 1. Then for all

E > E0 := V (0):∫ (
dμKE,w

dμ

)p

dμ ≤ 1 + √
2π

Z
p
E

1

(cw0)p
exp

(
8p2w2

0
(
A(∞,2))2)

,

where c > 0 is the constant from Lemma 3.3.

For the proof, we will require the following concentration-inequality for sums
of independent random-variables. When the random-variables are bounded, this
inequality is classical and due to Hoeffding [35]; we will need the following ver-
sion, when the random-variables are only assumed to be bounded from one side
(see Maurer [53], Theorem 2.1, Corollary 2.2, for a simple derivation, Bentkus
[9], Theorem 1.3, for improved optimal constants in the exponent; compare also
with an earlier result by McDiarmid [55], Theorem 2.7, in the spirit of Bernstein’s
inequality [18], Corollary 2.11).

THEOREM 3.6 (One-sided Hoeffding inequality). Let Y1, . . . , Yn denote a se-
quence of independent random variables so that E(Yi) = 0 and∥∥(Yi)−

∥∥
L∞ ∨ ‖Yi‖L2 < ∞ ∀i = 1, . . . , n.

Then

P

(
n∑

i=1

Yi ≤ −r

)
≤ exp

(
−1

2

r2∑n
i=1(‖(Yi)−‖2

L∞ + ‖Yi‖2
L2)

)
∀r > 0.

Here, ‖Z‖L2 := (EZ2)1/2 and ‖Z‖L∞ := ess sup |Z|.

PROOF OF PROPOSITION 3.5. Recall that KE was defined as the convex level
set {V ≤ E}, and so for all x �= 0, V ( x

1+t
) = E with t := ‖x‖KE

−1. Consequently,
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for all r ≥ 0,

g(r) := μ
{‖x‖KE

∈ [1 − w,1];V (x) − (
E + n

(‖x‖KE
− 1

)) ≥ r
}

≤ μ

{
x ∈ R

n; ∃t ∈ [−w,0],V (x) −
(
V

(
x

1 + t

)
+ nt

)
≥ r

}
.

By convexity of V , we know that on the subset of full measure in R
n where V is

differentiable we have

V

(
x

1 + t

)
= V

(
x − t

1 + t
x

)
≥ V (x) − t

1 + t

〈∇V (x), x
〉
,

and so we may continue the chain of inequalities above as follows (as 1 + t ≥ 0):

(3.1)

≤ μ

{
x ∈ R

n; ∃t ∈ [−w,0], t

1 + t

〈∇V (x), x
〉 − nt ≥ r

}

≤ μ
{
x ∈R

n; ∃t ∈ [−w,0], t 〈∇V (x), x
〉 − nt ≥ r(1 + t) + nt2}

≤ μ

{
x ∈ R

n; 〈∇V (x), x
〉 − n ≤ −r

1 − w

w

}
.

Note that if X is a random-vector distributed according to μ, then 〈∇V (X),

X〉 − n = ∑n
i=1 Yi , where Yi := V ′

i (Xi)Xi − 1 are independent random-variables
with each Xi distributed according to μi . Integrating by parts, we clearly have

EYi =
∫

xiV
′
i (xi) exp

(−Vi(xi)
)
dxi − 1 = 0,

and our assumption (2.1) translates into∥∥(Yi)−
∥∥
L∞ ∨‖Yi‖L2 ≤ (

1+∥∥(
V ′

i (y)y
)
−

∥∥
L∞(μi)

)∨∥∥V ′
i (y)y

∥∥
L2(μi)

= α
(∞,2)
i < ∞.

Applying Theorem 3.6, we deduce

(3.2) P

(
n∑

i=1

Yi ≤ −√
ns

)
≤ exp

(
−1

4

s2

(A(∞,2))2

)
∀s > 0.

Since we assume that w = w0√
n

≤ 1
2 , we have 1−w

w
≥ 1

2w
, so we apply the above

inequality with s = r
2w0

to estimate (3.1), and deduce that

g(r) ≤ exp
(
− r2

16w2
0(A

(∞,2))2

)
∀r > 0.

Integrating by parts and using the elementary inequality x ≤ exp(x2/2), we can
now deduce∫ (

dμKE,w

dμ

)p

dμ

= 1

Z
p
E,w

∫
exp

(
p

(
V (x) − (

E + n
(‖x‖KE

− 1
))))

1‖x‖KE
∈[1−w,1] dμ(x)
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≤ 1

Z
p
E,w

(
1 +

∫ ∞
0

p exp(pr)g(r) dr

)

≤ 1

Z
p
E,w

(
1 + √

2π

√
8p2w2

0

(
A(∞,2)

)2 exp
(
4p2w2

0
(
A(∞,2))2))

≤ 1

Z
p
E,w

(
1 + √

2π exp
(
8p2w2

0
(
A(∞,2))2))

≤ 1 + √
2π

Z
p
E,w

exp
(
8p2w2

0
(
A(∞,2))2)

.

The asserted estimate then follows by recalling Lemma 3.3. �

REMARK 3.7. The proof presented above is essentially the only place in this
work where the product structure of μ = exp(−V (x)) dx [or equivalently, the sep-
arable structure of V (x) = ∑n

i=1 Vi(xi)] is used. The sole purpose of this prod-
uct structure is to obtain (3.2), asserting a strong concentration of 〈∇V (X),X〉
around its mean n. Any other condition which ensures a similar strong concen-
tration would equally result in confirmation of the KLS conjecture for additional
classes of convex bodies, simply by following the arguments in this work.

4. Properties of the level-set KE .

4.1. Bounding Vol(KE). To apply the bound of Proposition 3.5, we will need
to bound ZE from below, where recall

ZE = n!en

nn
e−E Vol(KE), KE = {V ≤ E}.

DEFINITION. Given q ≥ 0, denote

(4.1)
Level(q)(V ) :=

{
E ≥ 0; e−E Vol(KE) ≥ e−q nne−n

n!
}

= {
E ≥ 0;ZE ≥ e−q}

,

the subset of good level-sets of V .

Consequently, our goal will be to study Level(q)(V ); obviously, this family is
monotone increasing in q . Note that Level(V ) defined in Section 2 is precisely
Level(1)(V ). All of our results in this work remain valid with Level(1)(V ) replaced
by Level(q)(V ) for any q ≥ 1, with an additional appropriate dependence on q , but
with the exception of this section, we refrain from this extraneous generality.

Now observe that the convexity of V ensures that the map

(4.2) R+ � E �→ g(E) := Vol(KE)
1
n
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is a concave function on its support by the Brunn–Minkowski inequality (e.g., [31,
66]). By separability minV = ∑n

i=1 minVi = 0, and so g is supported on R+. Note
that we do not assume that g(0) = 0. Lastly, integration by parts yields

(4.3)

∫ ∞
0

e−Eg(E)n dE =
∫ ∞

0
e−E Vol{V ≤ E}dE

=
∫
Rn

e−V (x) dx =
∫
Rn

dμ = 1.

On the basis of these three properties, we will prove a slightly more detailed ver-
sion of assertions (1)–(3) of Proposition 2.3 from the Introduction:

PROPOSITION 4.1. Let μ = exp(−V (x)) dx denote a log-concave probabil-
ity measure on R

n with minV = 0. For E ≥ 0, let KE := {V ≤ E}, and let
Level(q)(V ) be defined by (4.1) for q ≥ 0. Then:

(1) Level(q)(V ) is a nonempty closed interval [E(q)
min,E

(q)
max] with E

(q)
min ≤ n.

(2) q ≤ E
(q)
max − E

(q)
min ≤ eq n!en

nn = eq
√

2πn(1 + o(1)) as n → ∞.

(3) Denoting c
(q)
n := e− q

n
n/e

(n!)1/n → 1 as n → ∞, we have

c(q)
n ≤ Vol(K

E
(q)
min

)
1
n ≤ 1 ∨ ec(q)

n , c(q)
n ≤ Vol(K

E
(q)
max

)
1
n ≤ ec(q)

n

(
1 + o(1)

)
.

The proof is a based on the following.

LEMMA 4.2. Let g : R+ → R+ denote a (nondecreasing) nonnegative con-
cave function, so that ∫ ∞

0
e−t g(t)n dt = 1.

Let Mg denote the maximum of e−t g(t)n on R+, and let tg > 0 denote the (neces-
sarily unique) point on which it is attained. Then tg ≤ n and Mg ≥ e−n nn

n! .

REMARK 4.3. Observe that both asserted estimates are sharp for the model
function g0(t) := t

(n!)1/n , which indeed satisfies
∫ ∞

0 e−t g0(t)
n dt = 1.

REMARK 4.4. There are numerous instances in the literature of similar look-
ing lemmas regarding measures on R+ of the form eg(t)tn−1 dt with g concave
(and typically decreasing), arising when integrating a log-concave measure in R

n

in polar coordinates (see, e.g., [45], Lemmas 2.1 and 2.2). However, we emphasize
that it is not possible to obtain the delicate lower bound we need on e−E Vol(KE)

by integrating μ = exp(−V (x)) dx in polar coordinates—it is not hard to check
that there is no fixed value of E (including the typical guess E = n) that will in
general work for every ray simultaneously.
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PROOF OF LEMMA 4.2. First, note that tg is indeed unique since et/n is not
concave on any nonempty open interval. For simplicity, we may assume (by ap-
proximation) that g is differentiable. The maximum of t �→ h(t) := −t +n logg(t)

on R+ is attained at tg , and hence either tg = 0 or g′(tg) = g(tg)

n
. In the latter case,

concavity implies that g′(tg) ≤ g(tg)−g(0)

tg
≤ g(tg)

tg
and, therefore, tg ≤ n. In the for-

mer case, necessarily h′(0) ≤ 0, that is, g′(0) ≤ g(0)
n

. In either case, concavity
implies

g(tg + s) ≤ g(tg) + g′(tg)s ≤ g(tg)

(
1 + s

n

)
∀s ∈ [−tg,∞).

Consequently,

1 =
∫ ∞

0
e−t g(t)n dt ≤ Mg

∫ ∞
−tg

e−s

(
1 + s

n

)n

ds ≤ Mg

∫ ∞
−n

e−s

(
1 + s

n

)n

ds

= Mge
n
∫ ∞

0
e−t

(
t

n

)n

dt = Mge
n n!
nn

,

concluding the proof. �

In fact, although this will not be used anywhere else in this work, we can claim
the following.

PROPOSITION 4.5. With the same assumptions and notation as in Lemma 4.2
and Remark 4.3, there exists an increasing and contracting map T : R+ → R+ so
that T pushes forward the probability measure e−t g0(t)

n dt onto e−t g(t)n dt on
R+. In particular, we have t ′g := T (n) ≤ n and e−t ′gg(t ′g)n ≥ e−ng0(n)n = e−n nn

n! .

This should be compared with a well-known contraction result established by
L. Caffarelli in [21] (see also [38] for generalizations), asserting that the Brenier
optimal-transport map T pushing forward a Gaussian probability measure γn on
R

n onto a probability measure μ = exp(−V )γn with V : Rn → R convex, is in
fact contracting Euclidean distance. While we do not know how to extend Propo-
sition 4.5 to higher dimension, we can obtain contraction results between mem-
bers of an entire family of one-dimensional model spaces and appropriate con-
cave perturbations thereof, including both the Gaussian measure and the measure
e−t g0(t)

n dt as particular cases. As this is too off-topic for this work, these con-
traction results, as well as the proof of Proposition 4.5, will appear elsewhere.

Let us now complete the proof of Proposition 4.1.

PROOF OF PROPOSITION 4.1. Recall the definition (4.2) of the function g.
Lemma 4.2 implies that tg ∈ Level(q)(V ) for all q ≥ 0. As the function E �→
e−Eg(E)n is integrable, continuous and unimodal (as its logarithm is concave),
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Level(q)(V ) must be a closed interval [E(q)
min,E

(q)
max] ⊂ [0,∞). Lemma 4.2 implies

that E
(q)
min ≤ tg ≤ n. We also have

1 =
∫ ∞

0
e−Eg(E)n dE ≥

∫ E
(q)
max

E
(q)
min

e−Eg(E)n dE ≥ (
E(q)

max − E
(q)
min

)
e−q nne−n

n! ,

implying that E
(q)
max −E

(q)
min ≤ eq n!en

nn = eq
√

2πn(1+o(1)) by Stirling’s formula. To
see the reverse inequality, observe that W(t) := t − n logg(t) satisfies W ′(t) ≤ 1
and, therefore,

e−W(tg+q) ≥ e−qe−W(tg) ≥ e−q nne−n

n! .

Consequently, tg + q ∈ Level(q)(V ), implying E
(q)
max − E

(q)
min ≥ q . Clearly,

Vol(K
E

(q)
min

)
1
n ≥ e

E
(q)
min
n e− q

n cn,

with cn = n/e

(n!)1/n → 1 by Stirling’s formula, where the only possible strict inequal-

ity above is when E
(q)
min = 0, in which case Vol(K0) ≤ 1 [as

∫
exp(−V )dx = 1].

Since E
(q)
min ∈ [0, n], the upper and lower estimates on Vol(K

E
(q)
min

)
1
n follow. Finally,

note that

Vol(K
E

(q)
max

)
1
n = e

E
(q)
max
n e− q

n cn = e
E

(q)
min
n e− q

n cne
E

(q)
max−E

(q)
min

n ,

and so the upper estimate on Vol(K
E

(q)
max

)
1
n follows since (E

(q)
max − E

(q)
min)/n ≤

eq
√

2π/n(1 + o(1)) = o(1) as n → ∞. This completes the proof. �

4.2. Barycenter of μ. We now turn to prove assertions (4) and (5) of Proposi-
tion 2.3, which we equivalently reformulate as follows.

PROPOSITION 4.6 (Refinement of Fradelizi’s bound). Let μ = exp(−V (x)) dx

denote a log-concave probability measure on R
n with minV = 0. Let bμ :=∫

x dμ(x) denote the barycenter of μ, and set

EV := 1 +
∫

V (x)e−V (x) dx.

Then:

(1) EV ∈ Level(1)(V ) and EV ≤ E
(1)
max ∧ (n + 1).

(2) V (bμ) ≤ EV − 1 ≤ (E
(1)
max − 1) ∧ n, that is, bμ ∈ KEV −1 ⊂ K

(E
(1)
max−1)∧n

.
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REMARK 4.7. In [28], M. Fradelizi showed that for any log-concave proba-
bility measure μ = exp(−V (x)) dx on R

n, V (bμ) ≤ minV + n; we will present
a simplified proof of this bound below. While this is sharp whenever μ is log-
affine on an appropriate convex cone, it is easy to construct (nontrivial) examples
when this estimate can be significantly improved. For instance, let V (x) = ‖x‖p

K

for any convex body K having the origin in its interior and p ≥ 1 (and K

is scaled so that μ is a probability measure). In that case, it is immediate to
check that g(E) := Vol(KE)1/n = cn,pE1/p [with cn,p = �(n/p + 1)−1/n], and
we have tg := arg maxE e−E Vol(KE) = n/p with the notation of Lemma 4.2.

As tg ∈ [E(1)
min,E

(1)
max] and E

(1)
max − E

(1)
min ≤ e

√
2πn(1 + o(1)), we conclude that

V (bμ) ≤ E
(1)
max − 1 = n

p
(1 + o(1)) as n → ∞, yielding a strict improvement over

Fradelizi’s estimate for any fixed p > 1 and large enough n.

PROOF OF PROPOSITION 4.6. We may assume by translating μ if necessary
that the minimum of V as attained at the origin. It follows by Jensen’s inequality,
convexity of V and integration by parts, that

V (bμ) ≤
∫

V (x)e−V (x) dx = V (0) +
∫ (

V (x) − V (0)
)
e−V (x) dx

≤ V (0) +
∫ 〈∇V (x), x

〉
e−V (x) dx

= V (0) +
∫

div(x)e−V (x) dx = V (0) + n,

immediately recovering Fradelizi’s bound. Recalling our assumption that minV =
0, we have verified that

V (bμ) ≤ EV − 1 ≤ n.

It remains to show that EV ∈ Level(1)(V ). Recall our notation g(E) :=
Vol(KE)1/n, and introduce the following measure on R+:

ν := e−W(E) dE = e−Eg(E)n dE.

Also recall that by (4.3) ν is a probability measure, and as g is concave W is in par-
ticular convex, and hence ν is log-concave. Integrating by parts on the distribution
of Vol{V ≤ E}, we obtain

EV − 1 =
∫

V (x)e−V (x) dx = −
∫ ∞

0

d

dE

(
Ee−E)

Vol{V ≤ E}dE

=
∫ ∞

0
e−E(E − 1)Vol(KE)dE =

∫ ∞
0

Ee−Eg(E)n dE − 1,

thereby concluding that EV coincides with the barycenter of ν:

EV = bν :=
∫ ∞

0
E dν(E).
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Applying Fradelizi’s bound in the one-dimensional case, we know that W(bν) ≤
W(tg)+ 1, where recalling the notation of Lemma 4.2, tg is the maximum point of
e−W . Invoking Lemma 4.2, we obtain

e−bν Vol(Kbν ) = e−W(bν) ≥ 1

e
e−W(tg) ≥ 1

e

nne−n

n! .

It follows by definition that EV = bν ∈ Level(1)(V ) (and in particular EV ≤ E
(1)
max),

thereby concluding the proof. �

In addition, we will require the following.

LEMMA 4.8. Let ν = exp(−W(y)) dy denote a log-concave probability mea-
sure on R. Then:

(1) ‖W ′(y)(y − b)‖L2(ν) ≥ √
2, for all b ∈ R.

(2) ‖(W ′(y)(y − bν))−‖L∞(ν) ≤ 1, where bν denotes the barycenter of ν.

PROOF. For the first assertion, we may assume by a standard approximation
argument that W is C2 smooth. Using W ′′ ≥ 0 and integrating by parts, we verify
that ∫

(y − b)2W ′(y)2 exp
(−W(y)

)
dy

≥
∫

(y − b)2(
W ′(y)2 − W ′′(y)

)
exp

(−W(y)
)
dy

=
∫

(y − b)2(
exp

(−W(y)
))′′

dy =
∫

2 exp
(−W(y)

)
dy = 2.

For the second assertion, note that by convexity, for any b ∈ R,

W ′(y)(y − b) ≥ W(y) − W(b) ≥ minW − W(b).

On the other hand, Fradelizi’s estimate (Remark 4.7) in the one-dimensional case
asserts that W(bν) ≤ minW + 1, thereby concluding the proof. �

4.3. Barycenter and covariance matrix of KE . We conclude this section by
providing a proof of assertions (6) and (7) of Proposition 2.3; assertion (8) will be
proved in Section 6. Recall that Xμ and XE are assumed to be distributed accord-
ing to μ and λKE

, respectively, and that we denote the corresponding barycenters:

bμ := E(Xμ), bE := E(XE),

and covariance matrices:

Covμ := E
(
(Xμ − bμ) ⊗ (Xμ − bμ)

)
, CovE := E

(
(XE − bE) ⊗ (XE − bE)

)
.
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Note that by definition

DLin
Poin(μ) = max

θ∈Sn−1

√
〈Covμ θ, θ〉,

where Sn−1 denotes the Euclidean unit-sphere in (Rn, | · |).

PROPOSITION 4.9. For all q ≥ 0 and E ∈ [E(q)
min,E

(q)
max]:

(1) |bE − bμ| ≤ C(1 + q) log(1 + n)DLin
Poin(μ).

(2) CovE ≤ C′(1 + q)2 log2(1 + n)Covμ as positive-definite matrices.

Here, C,C′ > 0 are two universal numeric constants.

PROOF. Assume by translating μ if necessary that bμ = 0. For any θ ∈ Sn−1,
a well-known consequence of Borell’s lemma [17] (cf. [1], Appendix A) is that

μ
(〈x, θ〉 ≥ t

) ≤ C exp
(−t/(CLθ)

) ∀t ∈ R,

where Lθ := √〈Covμ θ, θ〉 and C > 0 is a numeric constant. On the other hand,

μ
(〈x, θ〉 ≥ t

) ≥ e−E Vol(KE)λKE

(〈x, θ〉 ≥ t
) ≥ 1

eq

nne−n

n! λKE

(〈x, θ〉 ≥ t
)
,

for any E ∈ [E(q)
min,E

(q)
max]. Applying this to t = tθ := 〈bE, θ〉, note that

λKE

(〈x, θ〉 ≥ tθ
) = λKE

(〈x − bE, θ〉 ≥ 0
) ≥

(
n

n + 1

)n

≥ 1

e
,

by Grünbaum’s theorem [33] (cf. [30]) on the volume of half-spaces passing
through the barycenter of a convex body. Combining everything, we obtain by
Stirling’s formula:

C exp
(−〈bE, θ〉/(CLθ)

) ≥ μ
(〈x, θ〉 ≥ tθ

) ≥ 1

eq+1
√

2πn

(
1 + o(1)

)
,

as n → ∞. In particular, it follows (as Lθ = L−θ ) that

(4.4)
∣∣〈bE, θ〉∣∣ ≤ CLθ

(
C1 + q + 1

2
logn

)
≤ C2(1 + q) log(1 + n)DLin

Poin(μ),

establishing (in fact, a strengthening of) the first assertion.
The second assertion is proved similarly. Indeed, for all θ ∈ Sn−1, t ∈ R and

E ∈ [E(q)
min,E

(q)
max]:

1

eq

nne−n

n! λKE

(〈x − bE, θ〉 ≥ t
)

≤ e−E Vol(KE)λKE

(〈x − bE, θ〉 ≥ t
)

≤ μ
(〈x, θ〉 ≥ t + 〈bE, θ〉) ≤ C exp

(−(
t + 〈bE, θ〉)/(CLθ)

)
.
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Invoking (4.4) and applying Stirling’s formula again, we deduce that for all θ ∈
Sn−1 and t > 0:

λKE

(∣∣〈x − bE, θ〉∣∣ ≥ t
) ≤ 2(1 + n)C2(1+q) exp

(−t/(CLθ)
)
.

Integrating by parts, it follows that

〈CovE θ, θ〉 =
∫

〈x − bE, θ〉2 dλKE
(x)

≤
∫ ∞

0
2t min

(
1,2(1 + n)C2(1+q) exp

(−t/(CLθ)
))

dt,

and the latter integral is easily seen to be bounded above by C3(1 + q)2 log2(1 +
n)L2

θ , thereby concluding the proof. �

5. Transferring concentration: From annulus to cone and uniform mea-
sures. Given two Borel probability measures μ1,μ2 on a common metric space
(X,d), recall that their 1-Wasserstein distance Wd,1(μ1,μ2) is defined as

Wd,1(μ1,μ2) := inf
π

∫
d(x, y) dπ(x, y),

where the infimum is over all Borel probability measures π on X × X having
first and second marginals μ1 and μ2, respectively. By the Monge–Kantorovich–
Rubinstein dual characterization of Wd,1 (e.g., [69], Case 5.16), we have

Wd,1(μ1,μ2) = sup
{∫

f (dμ1 − dμ2);f : (X,d) →R is 1-Lipschitz
}
.

The following immediate consequence of this dual characterization was first noted
in [59], Lemma 5.4, allowing transferring first-moment concentration of Lipschitz
functions between two measures which are close in Wd,1-distance.

LEMMA 5.1 ([59]). For any 1-Lipschitz function f on (X,d), we have∫
|f − medμ2 f |dμ2 ≤

∫
|f − medμ1 f |dμ1 + Wd,1(μ1,μ2).

Here, medν f ∈ R denotes a median of f under the law of (the probability
measure) ν, that is, a median of the probability measure f∗ν on R.

5.1. From annulus to cone measure. Let � ⊂ R
n denote a compact set con-

taining the origin in its interior and having Lipschitz boundary. We will say that �

is a star-shaped body if in addition it contains all intervals adjoining its elements
to the origin. Recall that ‖x‖� denotes the gauge function of �. We denote by σ∂�

the induced cone probability measure on ∂�, that is, the push-forward of λ� via
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the map x �→ x
‖x‖�

. It is well known and immediate to check that

σ∂� = 1

Vol(�)

〈x, ν〉
n

·Hn−1|∂�,

where Hn−1 denotes the n−1-dimensional Hausdorff measure in Euclidean space
(Rn, | · |), and ν denotes the (Hn−1-a.e. defined) outer unit-normal to ∂�.

LEMMA 5.2. Let � ⊂ R
n denote a star-shaped body, and let μ�,w denote any

probability measure on R
n of the form

μ�,w := �
(‖x‖�

)
1|‖x‖�−1|≤w dx,

for some Borel function � : R+ →R+ and w > 0. Then for any norm ‖ · ‖0 on R
n:

(5.1) W‖·‖0,1(μ�,w,σ∂�) ≤ n + 1

n
w

∫
‖x‖0 dλ�(x).

PROOF. Let T : Rn \ {0} → ∂� be defined as T (x) := x
‖x‖�

. Since the density
of μ�,w depends only on ‖x‖�, it is clear that T pushes forward μ�,w onto the
cone measure σ∂�. Now consider the probability measure π on R

n × R
n defined

by pushing forward μ�,w via Id × T , having first and second marginals precisely
μ�,w and σ∂�, respectively. It follows by definition that

W‖·‖0,1(μ�,w,σ∂�) ≤
∫

‖y − x‖0 dπ(x, y) =
∫ ∥∥T (x) − x

∥∥
0 dμ�,w(x)

=
∫ ∣∣‖x‖� − 1

∣∣∥∥T (x)
∥∥

0 dμ�,w(x)

≤ w

∫ ∥∥T (x)
∥∥

0 dμ�,w(x) = w

∫
‖y‖0 dσ∂�(y)

= w

∫ ‖z‖0

‖z‖�

dλ�(z) = w
n + 1

n

∫
‖z‖0 dλ�(z),

where the last equality may be easily verified, for example, by integration in polar
coordinates. �

REMARK 5.3. In fact, when � :R+ →R+ is a log-concave function so that∫ 1+w

0∨(1−w)
�(t)tn dt =

∫ 1+w

0∨(1−w)
�(t)tn−1 dt,

[and in particular for the function �(t) = 1
Z

exp(−nt) when w = ∞], one can do
better than just using the very crude estimate |‖x‖� − 1| ≤ w as we did above.
In that case, it is not very hard to show that one may replace w by min(w, C√

n
)

in (5.1), for an appropriate universal constant C > 0. Since in this work we will
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only be interested in the range w ≤ 1√
n

, we have chosen to only provide the most
elementary estimate (5.1).

5.2. From cone to uniform measure. The L2 version of the following Hardy-
type inequality was proved by the authors in [46], Theorem 1, reducing various
spectral-gap questions from � to its boundary. We will require the following L1

version, which in fact is more elementary. For completeness, we formulate it with
respect to an arbitrary norm.

LEMMA 5.4. Let � ⊂ R
n denote a star-shaped body. Then for any Lipschitz

function f : � →R and any norm ‖ · ‖0 on R
n we have

(5.2)

∫
|f − medλ� f |dλ�

≤ 1

n

∫
‖x‖0‖∇f ‖∗

0 dλ� +
∫
∂�

|f − medσ∂�
f |dσ∂�.

In particular, for any 1-Lipschitz function f : (Rn,‖ · ‖0) →R:

(5.3)
∫

|f − medλ� f |dλ� ≤ 1

n

∫
‖x‖0 dλ� +

∫
∂�

|f − medσ∂�
f |dσ∂�.

PROOF. Integrating by parts (see, e.g., [62], 12.2), we have for any smooth
(and in fact, Lipschitz) vector field ξ and function g on �:∫

�
div(ξ)g dx = −

∫
�
〈ξ,∇g〉dx +

∫
∂�

〈ξ, ν〉g dHn−1.

Applying this to ξ(x) = x, we obtain

n

∫
�

g dx ≤
∫
�

‖x‖0‖∇g‖∗
0 dx +

∫
∂�

〈x, ν〉g dHn−1.

Setting g = |f − medσ∂�
f | and using that ‖∇g‖∗

0 ≤ ‖∇f ‖∗
0, it follows that

∫
�

|f − medσ∂�
f |dλ� ≤ 1

n

∫
�

‖x‖0‖∇f ‖∗
0 dλ� +

∫
∂�

|f − medσ∂�
f |dσ∂�.

Finally, the left-hand side cannot increase if we replace medσ∂�
f by medλ� f

there, yielding the assertion. �

REMARK 5.5. It is also possible to obtain the particular case (5.3) by esti-
mating W1(ν∂�,λ�) as in the previous subsection, but our proof above has the
advantage that it yields the more general (5.2).
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6. Putting everything together.

6.1. Proof of main technical theorem. We are now ready to present the proof
of our main technical Theorem 2.1 by putting all of the ingredients from the pre-
vious sections together.

We first recall the following well-known facts about one-dimensional log-
concave measures. Note that for any probability measure ν on (Rn, | · |):
(6.1) DLin

Poin(ν)2 = ‖Covν ‖op,

where ‖Covν ‖op denotes the operator norm of Covν regarded as a linear operator.
Consequently, in the one-dimensional case we have DLin

Poin(ν)2 = Var(X) where X

is distributed according to ν.

LEMMA 6.1. Let ν = f (x) dx denote a log-concave probability measure
on R. Then:

(1) The KLS conjecture is valid: 1 ≤ DPoin(ν)2/DLin
Poin(ν)2 ≤ 12.

(2) We have C1 ≤ ‖f ‖2
L∞DLin

Poin(ν)2 ≤ C2 for two universal constants C1,

C2 > 0.

PROOF. The first assertion is due to Bobkov [13], Corollary 4.3. The second
one may be found in [61] when f is even and in [29], Theorem 4, or [39], Lem-
mas 2.5 and 2.6, in the general case. �

Recalling the assumptions of Theorem 2.1, we are given that for each i =
1, . . . , n, μi := exp(−Vi(y)) dy is a log-concave probability measure on R with
minVi = mi . It follows by Lemma 6.1 that DPoin(μi) ≤ √

12C2e
mi for every i.

Since μ := μ1 ⊗ · · · ⊗ μn is a product measure, by the well-known tensoriza-
tion property of the Poincaré inequality (e.g., [50]), we conclude that DPoin(μ) ≤√

12C2M , where recall M = maxi=1,...,n emi ≥ 1.
Next, given a probability measure ν on (say) Rn, denote Kν = K(Rn, | · |, ν).

By a well-known result of M. Gromov and V. Milman [32] (see also [56], Corol-
lary 2.7), a Poincaré inequality always implies the following exponential concen-
tration:

(6.2) Kν(r) ≤ exp
(−c0r/DPoin(ν)

) ∀r > 0,

for some universal numeric constant c0 > 0. In fact, it is possible to use any c0 ∈
(0,2) at the expense of using an additional multiplicative constant in front of the
right-hand side above (see [12, 65]), but we will not require this here. It follows
that for our measure μ, we have for some numeric constant c > 0:

(6.3) Kμ(r) ≤ exp(−cr/M) ∀r > 0.
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Applying Proposition 3.5 with, say p = 2, we obtain the following estimate,
valid for all w0 ∈ (0,1/2]:

(6.4)

∥∥∥∥∥∥∥
dμK

E,
w0√

n

dμ

∥∥∥∥∥∥∥
L2(μ)

≤ C′

ZE

1

w0
exp

(
16w2

0
(
A(∞,2))2) ∀E > E0.

By Proposition 4.1, we know that ZE ≥ 1
e

on the entire nonempty closed inter-
val E ∈ [Emin,Emax]. Invoking Proposition 3.1, the resulting estimate (6.4) al-
lows us to transfer the concentration estimate (6.3) from μ onto its linearized ver-
sion μKE,

w0√
n

on the corresponding annulus, yielding for all E ∈ [Emin,Emax] ∩
(E0,∞):

Kμ
KE,

w0√
n

(r) ≤ 2eC′

w0
exp

(
16w2

0
(
A(∞,2))2)

exp
(
− cr

4M

)
∀r > 0.

In particular, for any 1-Lipschitz function f on (Rn, | · |) and any r0 ≥ 0, we have∫
|f − medμ

KE,
w0√

n

f |dμKE,
w0√

n

≤ r0 + 2
∫ ∞
r0

Kμ
KE,

w0√
n

(r) dr

≤ r0 + 16eC′M
cw0

exp
(

16w2
0
(
A(∞,2))2 − cr0

4M

)
.

Optimizing on r0 (after recalling that M ≥ 1 and w0 ≤ 1/2), we deduce for an
appropriate numeric constant C′′ > 0:

(6.5)
∫

|f − medμ
KE,

w0√
n

f |dμKE,
w0√

n

≤ C′′M
(
w2

0
(
A(∞,2))2 + log

M

w0

)
.

Next, by Lemma 5.2 applied to KE and μKE,w [with �(t) = 1t∈[1−w,1]], we
know that for all w > 0:

W|·|,1(μKE,w, σ∂KE
) ≤ n + 1

n
w

∫
|x|dλKE

.

Invoking Lemma 5.1, the latter estimate allows us to transfer the first-moment
concentration (6.5) from μKE,

w0√
n

onto the cone measure σ∂KE
, yielding for any

1-Lipschitz function f on (Rn, | · |):∫
|f − medσ∂KE

f |dσ∂KE

≤ C′′M
(
w2

0
(
A(∞,2))2 + log

M

w0

)
+ n + 1

n

w0√
n

∫
|x|dλKE

.
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Finally, we invoke Lemma 5.4 to transfer the latter first-moment concentration
from σ∂KE

to λKE
, yielding for all w0 ∈ (0,1/2]:

∫
|f − medλKE

f |dλKE

≤ C′′M
(
w2

0
(
A(∞,2))2 + log

M

w0

)
+

(
n + 1

n

w0√
n

+ 1

n

)∫
|x|dλKE

.

Optimizing on w0, we set w0 := 1
2A(∞,2) ∈ (0,1/2] (recall that by definition

A(∞,2) ≥ 1), obtaining

∫
|f − medλKE

f |dλKE
≤ C′′′M log

(
e + A(∞,2)M

) + 2√
n

∫
|x|dλKE

.

It remains to invoke the following result, established in [56] in a more gen-
eral weighted Riemannian setting (see also [57, 58, 60] for refinements), asserting
the equivalence between concentration, spectral-gap and linear-isoperimetry under
appropriate convexity assumptions.

THEOREM 6.2 ([56]). For any log-concave probability measure ν on R
n,

DPoin(ν) ≤ C sup
{∫

|f − medν f |dν;f : (
R

n, | · |) →R is 1-Lipschitz
}
,

with some universal numeric constant C > 1.

As KE is convex, and hence λKE
is a log-concave measure, this verifies the first

assertion of Theorem 2.1:

DPoin(λKE
) ≤ C

(
M log

(
e + A(∞,2)M

) + 1√
n

∫
|x|dλKE

)
.

The second assertion follows since by the triangle and Jensen inequalities

1√
n

∫
|x|dλKE

≤ |bE|√
n

+ 1√
n

∫
|x − bE|dλKE

≤ |bE|√
n

+
(

1

n

∫
|x − bE|2 dλKE

)1/2
,

and

(6.6)
1

n

∫
|x − bE|2 dλKE

= 1

n
tr CovλKE

≤ ‖CovλKE
‖op = DLin

Poin(λKE
)2.
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6.2. Proof of Theorem 2.5. The proof of Theorem 2.5 is identical to the one of
Theorem 2.1 described in the previous subsection, with the only difference being
in the first step—instead of invoking the Lp estimate given by Proposition 3.5
for transferring concentration from μ to μKE,w , we invoke the L∞ estimate of
Lemma 3.4. Let us sketch the argument.

By translating μ, we may assume that V (0) = minV , where recall the latter
value is assumed to be 0. By Lemma 3.4, we have for all w0 ∈ (0,1]:

(6.7)

∥∥∥∥∥∥∥
dμK

E,
w0√

n

dμ

∥∥∥∥∥∥∥
L∞(μ)

≤ 1

cw0ZE

exp(w0
√

n) ∀E > 0.

By Proposition 4.1, we know that ZE ≥ 1
e

on the interval E ∈ [Emin,Emax]. Invok-
ing Proposition 3.1 with p = ∞, we transfer the Gromov–Milman concentration
(6.2) from μ onto μKE,

w0√
n

, yielding for all E ∈ [Emin,Emax]:

Kμ
KE,

w0√
n

(r) ≤ 2e

cw0
exp(w0

√
n) exp

(
− c0r

2DPoin(μ)

)
∀r > 0.

The rest of the proof is identical to the one in the previous subsection, with M

replaced by DPoin(μ) and w2
0(A

(∞,2))2 replaced by w0
√

n. Note that just as with
lower bound M ≥ 1 in the previous subsection, our normalization ensures that
DPoin(μ) ≥ c > 0. Indeed

DPoin(μ) ≥ DLin
Poin(μ) = ‖Covμ ‖1/2

op ≥ (det Covμ)1/2n = Lμ ≥ c > 0,

where Lμ denotes the isotropic constant of μ, the last equality holds since we
assume that μ = exp(−V )dx with minV = 0, and the inequality Lμ ≥ c > 0 for
all log-concave measures μ is well known (see [19, 42, 61] for more background
on the isotropic constant).

Repeating the argument in the previous subsection, we obtain for any 1-
Lipschitz function f on (Rn, | · |):∫

|f − medμ
KE,

w0√
n

f |dμKE,
w0√

n

≤ C′′DPoin(μ)

(
w0

√
n + log

(
e + DPoin(μ)

w0

))
.

Transferring concentration to σ∂KE
and then to λKE

as before, we obtain for all
w0 ∈ (0,1]:∫

|f − medλKE
f |dλKE

≤ C′′DPoin(μ)

(
w0

√
n + log

(
e + DPoin(μ)

w0

))

+
(

n + 1

n

w0√
n

+ 1

n

)∫
|x|dλKE

.

Setting w0 = 1√
n

, we deduce∫
|f − medλKE

f |dλKE
≤ C′′′DPoin(μ) log

(
e + √

nDPoin(μ)
) + 3

n

∫
|x|dλKE

.
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Invoking Theorem 6.2, the assertion of Theorem 2.5 will follow as soon as we
show that

(6.8)
1

n

∫
|x|dλKE

≤ C log(1 + n)DPoin(μ)

[since DPoin(μ) ≥ c > 0]. Note that the barycenter of λKE
may not be at the origin.

To establish (6.8), note that by [37], Theorem 4.1, any convex body K in
(Rn, | · |) satisfies

K −
∫

x dλK ⊂ (n + 1)Cov1/2
λK

(
Bn

2
)
,

where Cov1/2
λK

is considered as a linear map acting on the Euclidean unit-ball Bn
2 .

Since 0 ∈ KE , it follows by (6.1) that

1

n

∫
|x|dλKE

≤ 1

n
diam(KE) ≤ n + 1

n
‖CovλKE

‖1/2
op diam

(
Bn

2
)

= 2
n + 1

n
‖CovλKE

‖1/2
op .

But by Proposition 2.3(7)

‖CovλKE
‖1/2

op ≤ C log(1 + n)‖Covμ ‖1/2
op = C log(1 + n)DLin

Poin(μ)

≤ C log(1 + n)DPoin(μ),

thereby confirming (6.8), and hence concluding the proof of Theorem 2.5.

6.3. Proofs of remaining statements. Let us now conclude the proofs of asser-
tion (8) of Proposition 2.3, Theorem 2.4 and Theorems 1.1 and 1.2.

PROOF OF ASSERTION (8) OF PROPOSITION 2.3. Recalling (6.6) and invok-
ing the well-known bath-tub principle (see, e.g., [61]):

DLin
Poin(λKE

)2 ≥ 1

n

∫
|x − bE|2 dλKE

(x) ≥ 1

n

∫
|x|2 dλBE

,

where BE is a Euclidean ball centered at the origin and having the same volume
as KE . Since Vol(BE)1/n = Vol(KE)1/n ≥ c > 0 for all E ≥ Emin by Proposi-
tion 2.3(3), an elementary and well-known computation (see again [61]) ensures
that DLin

Poin(λKE
) ≥ c > 0 for all E in that range, establishing assertion (8) of that

proposition. �

PROOF OF THEOREM 2.4. By Corollary 2.2, we know that for any E ∈
Level(V ) = [Emin,Emax] and b ∈ int(KE):

DPoin(λKE
) ≤ C1

(
M log

(
e + A(∞,2)(b)M

) + |b − bE|√
n

+ DLin
Poin(λKE

)

)
.
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The additive dependence in DLin
Poin(λKE

) above turns into a multiplicative one by
changing the numerical constant C1 and using that DLin

Poin(λKE
) ≥ c > 0 for all

E ≥ Emin and that M ≥ 1. Whenever b = bμ lies in int(KE) for E ∈ Level(V ), we

have by Proposition 2.3(6) that |bμ−bE |√
n

= o(1) as n → ∞, and so this term may
be discarded at the expense of changing again numerical constants. This is indeed
the case whenever (EV − 1) ∨ Emin < E ≤ Emax by Proposition 2.3(5), and we
may also take E = (EV − 1) ∨ Emin by a limiting argument. Note that necessarily
EV ∈ [(EV − 1) ∨ Emin,Emax] by Proposition 2.3(4). Finally, Lemma 4.8 implies
that A(∞,2)(bμ) ≤ √

2A(2)(bμ), and so the assertion follows by a final adjustment
of constants. �

PROOF OF THEOREMS 1.1 AND 1.2. The dimension-independent part of
the estimate of Theorem 1.1 immediately follows from an application of Theo-
rem 2.4 for any E ∈ [Emin,Emax] [since by assumption bμ = 0 ∈ int(KE)]. The
dimension-dependent part follows by Theorem 2.5 applied to μ = μ1 ⊗ · · · ⊗ μn

since DPoin(μ) ≤ C as explained in Section 6.1 and since DLin
Poin(λKE

) ≥ c for all
E ≥ Emin by Proposition 2.3(8). The volume estimate (1.9) follows by Proposi-
tion 2.3(3). Similarly, Theorem 1.2 holds for all E ∈ [Emin,Emax] by Theorem 2.5.

�

6.4. General formulation after rescaling.

COROLLARY 6.3 (Main theorem—generalized version). Let W̃i : R → R,
i = 1, . . . , n, denote a sequence of convex functions normalized so that min W̃i = 0.
Assume that zi := ∫

exp(−W̃i(y)) dy < ∞ and set Ṽi = W̃i + log zi , μ̃i =
exp(−Ṽi(y)) dy, Ṽ (x) = ∑n

i=1 Ṽi(xi) and μ̃ = exp(−Ṽ (x)) dx.

Given b̃ ∈ R
n, let α

(2)
i = α

(2)
i (Ṽ , b̃) and α

(∞,2)
i = α

(∞,2)
i (Ṽ , b̃) be given by

α
(2)
i := ∥∥Ṽ ′

i (y)(y − b̃i )
∥∥
L2(μ̃i )

,

α
(∞,2)
i := (

1 + ∥∥(
Ṽ ′

i (y)(y − b̃i)
)
−

∥∥
L∞(μ̃i )

) ∨ α
(2)
i ,

and set

A(2)(b̃) := 1√
n

∥∥(
α

(2)
i (Ṽ , b̃)

)n
i=1

∥∥
2, A(∞,2)(b̃) := 1√

n

∥∥(
α

(∞,2)
i (Ṽ , b̃)

)n
i=1

∥∥
2.

Denote z := (�n
i=1zi)

1/n, M = maxi=1,...,n
zi

z
. Set W̃ (x) := ∑n

i=1 W̃i(xi) and

V (x) = W̃ (zx). Given E > 0, consider the convex sets:

K̃E := {W ≤ E} =
{
x ∈ R

n;
n∑

i=1

W̃i(xi) ≤ E

}
, KE := {V ≤ E} = 1

z
K̃E.
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Denote as usual

Level(V ) :=
{
E ≥ 0; e−E Vol(KE) ≥ 1

e

nne−n

n!
}
.

Then all of the assertions of Proposition 2.3 apply to Level(V ), and we have for
all E ∈ Level(V ) and b̃ ∈ int(K̃E):

DPoin(λK̃E
) ≤ C

(
zM log

(
e + A(∞,2)(b̃)M

) + |b̃ − b̃E|√
n

+ DLin
Poin(λK̃E

)

)
,

where b̃E := ∫
x dλ

K̃E
. In addition, setting b̃ = b̃μ̃ := ∫

x dμ̃, we have

DPoin(λK̃E
) ≤ C ′M log

(
e + A(2)(b̃μ̃)M

)
DLin

Poin(λK̃E
)

∀E ∈ [
(EV − 1) ∨ Emin,Emax

]
.

PROOF. Denote Vi(y) := Ṽi(zy) − log z, and note that both exp(−Ṽi) dy and
exp(−Vi) dy are probability measures on R. Also note that

V (x) = W̃ (zx) =
n∑

i=1

W̃i(zxi) =
n∑

i=1

Vi(xi),

and since Ṽ (x) = ∑n
i=1 Ṽi(xi), we see that the probability measure μ̃ =

exp(−Ṽ ) dx on R
n is obtained by scaling μ := exp(−V )dx by a factor of z.

Lastly, note that

M = max
i=1,...,n

zi

z
= max

i=1,...,n
eminVi ,

and that

minV =
n∑

i=1

minVi =
n∑

i=1

(log zi − log z) = 0.

Consequently, we may apply Corollary 2.2 and Theorem 2.4 to the measure μ,
the functions {Vi} and the associated levels sets KE . By scale invariance, we have
that αi(V , b) = αi(Ṽ , b̃) for all b ∈R

n and b̃ = zb. Clearly, b̃μ̃ = zbμ where b̃μ̃ =∫
x dμ̃ and bμ = ∫

x dμ. The assertions for K̃E now immediately follow after
taking into account that K̃E = zKE , implying that DPoin(λK̃E

) = zDPoin(λKE
) and

DLin
Poin(λK̃E

) = zDLin
Poin(λKE

). �

6.5. Confirmation of Examples 1.4 and 1.5. The assertion of Example 1.4 for

W̃i(xi) = (xi)
p+

i+ + (xi)
p−

i− with p±
i ∈ [1,P ] follows from Corollary 6.3. Let us

prove this in the generality suggested to us by the referee: we assume that the
convex functions W̃i satisfy min W̃i(y) = W̃i(0) = 0, that

∀i = 1, . . . , n 0 < c1 ≤
∫ ∞

0
exp

(−W̃i(±xi)
)
dxi ≤ c2 < ∞,
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and that the following “generalized doubling condition” holds:

∀i = 1, . . . , n ∃εi > 0 ∀xi ∈ R W̃i

(
(1 + εi)xi

) ≤ (1 + εiP )W̃i(xi).

The latter condition’s sole purpose is to ensure (by convexity) that

(6.9) ∀xi ∈ R 0 ≤ W̃ ′
i (xi)xi ≤ W̃i((1 + εi)xi) − W̃i(xi)

εi

≤ PW̃i(xi),

from whence the extremality of the function W̃i(xi) = |xi |P is clearly apparent.
Denote zi := ∫

exp(−W̃i(y)) dy so that 2c1 ≤ zi ≤ 2c2 for all i = 1, . . . , n.
Consequently, 2c1 ≤ z := (

∏n
i=1 zi)

1/n ≤ 2c2, M = maxi=1,...,n
zi

z
≤ c2

c1
, and

Lemma 6.1 ensures that the probability measures μ̃i := 1
zi

exp(−W̃i(y)) dy sat-
isfy DPoin(μ̃i) ≤ C (independently of P ).

Note that y �→ W̃i(±y) and y �→ |W̃ ′
i (±y)| are nondecreasing functions on

[0,∞) by unimodality and convexity, respectively. Denoting the barycenter b̃i :=∫
y dμ̃i(y), recall that by Fradelizi’s estimate (Remark 4.7) W̃i(b̃i) ≤ min W̃i +

1 = 1, and so by unimodality |b̃i | ≤ c2e. In addition, convexity implies that
|W̃ ′

i (± c1
2 )| ≤ 2

c1
, since otherwise we would have

∫ ∞
0 exp(−W̃i(±xi)) dxi < c1.

We now arrive to the main calculation. Invoking (6.9),∥∥W̃ ′
i (xi)(xi − b̃i )

∥∥
L2(μ̃i )

≤ |b̃i |‖W̃ ′
i‖L2(μ̃i )

+ P‖W̃i‖L2(μ̃i )
.

Now ∫ ∣∣W̃ ′
i (xi)

∣∣2 dμ̃i(xi) ≤
∫ 4

c2
1

(
1 + ∣∣W̃ ′

i (xi)
∣∣2x2

i

)
dμ̃i(xi),

and so by (6.9) again, we conclude

∥∥W̃ ′
i (xi)(xi − b̃i)

∥∥
L2(μ̃i )

≤ 2c2e

c1

√
1 + P 2‖W̃i‖2

L2(μ̃i )
+ P‖W̃i‖L2(μ̃i )

.

Finally, using the inequality t2

2 ≤ et for t ≥ 0, and W̃i(xi)/2 ≥ W̃i(xi/2), we obtain

‖W̃i‖2
L2(μ̃i )

= 1

zi

∫
W̃ 2

i exp(−W̃i) dxi ≤ 8

zi

∫
exp(−W̃i/2) dxi

≤ 8

zi

∫
exp

(−W̃i(xi/2)
)
dxi = 16

zi

∫
exp

(−W̃i(y)
)
dy ≤ 16c2

c1
.

It follows that A(2)(b̃μ̃) ≤ CP , where b̃μ̃ = (b̃1, . . . , b̃n) is the barycenter of μ̃ =
μ̃1 ⊗ · · · ⊗ μ̃n, and C depends solely on c1, c2. Invoking Corollary 6.3, we deduce
that for all E ∈ [(EV − 1) ∨ Emin,Emax] we have

DPoin(λK̃E
) ≤ C ′′ log(e + P)DLin

Poin(λK̃E
),
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for

K̃E :=
{
x ∈ R

n;
n∑

i=1

W̃i(xi) ≤ E

}
.

Here, EV ,Emin,Emax refer to V (x) = W̃ (zx) where W̃ (x) = ∑n
i=1 W̃i(xi). Note

that

EV − 1 =
∫
Rn

V (x)e−V (x) dx = 1

zn

∫
Rn

W̃ (x)e−W̃ (x) dx

=
∫
Rn

n∑
i=1

W̃i(x)e−∑n
i=1 Ṽi (x) dx

=
n∑

i=1

∫
R

W̃i(y)e−Ṽi (y) dy =
n∑

i=1

EW̃i(Xi),

where Xi are distributed according to μ̃i = exp(−Ṽi(y)) dy = 1
zi

exp(−W̃i(y)) dy.

Finally, since K̃E = zKE and 2c1 ≤ z ≤ 2c2, the volume estimate (1.9) for K̃E

follows from the one ensured for KE by Proposition 2.3(3).
When p±

i ∈ [2,P ], the above estimates may in fact be improved—we briefly
sketch the argument. In this range, the measures μ̃i in fact satisfy a log-Sobolev
inequality independently of P (for instance, since they are Lipschitz images of the
Gaussian measure, see, e.g., [49]). By the tensorization property of the log-Sobolev
inequality, it follows that the measures μ̃ and μ also satisfy the log-Sobolev in-
equality with a universal constant independent of P or n, and so by the Herbst
argument satisfy a Gaussian-type concentration, instead of just an exponential one,

Kμ(r) ≤ exp
(−cr2) ∀r > 0;

we refer to [50] for more on the log-Sobolev inequality and the Herbst argument.
Repeating the analysis in Sections 6.1 and 6.2, one may check that results in a
square-root improvement of the previous logarithmic estimates.

Lastly, Example 1.5 is an immediate consequence of Theorem 1.2, since when
HessV ≥ ρ2Id for ρ > 0, the Bakry–Émery criterion [3] ensures in particular that
DPoin(μ) ≤ 1

ρ
.
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