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Abstract Due to their flexible chemical functionality and simple formulation,
self-assembled monolayer (SAM) surfaces have become an ideal choice for a
multitude of wide-ranging applications. However, a major issue in the preparation
of SAM surfaces is naturally occurring defects that manifest in a number of dif-
ferent ways, including depressions in the underlying gold substrate that cause
surface roughness or through incorrect self-assembly of the chains that causes
domain boundary effects. Molecular simulations can provide valuable insight into
the origins of these defects and the effect they have on biological and other pro-
cesses. Molecular dynamics (MD) simulations have been performed on a SAM
surface with a carboxylic acid/carboxylate terminal functionality and induced with
two types of experimentally observed defects. The enhanced sampling method
PTMetaD-WTE has been used to model the adsorption of LKa14 onto the two
types of defective SAM surfaces and onto a control SAM surface with no defective
chains. An advanced clustering algorithm has been used to elucidate the effect of
the surface defects on the conformations of the adsorbed peptide. Results show
significant structural differences arise as a result of the defects. Specifically, both
types of defects lead to a near-complete loss of secondary structure of the adsorbed
peptide as compared to the control simulation, in which LKa14 adopts a perfect
helical structure at the SAM/water interface. On the surface with domain boundary
effects, extended conformations of the peptide are stabilized, whereas on the SAM
with surface roughness (i.e., chains of various lengths), random coil conformations
dominate the ensemble of surface-bound structures.
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1 Introduction

The formation and characterization of self-assembled monolayers (SAMs) on solid
surfaces has been extensively studied for several decades. The easy preparation of
SAMs with different terminal chemical functionalities has made them convenient
for far-reaching and numerous applications, including bio-related technologies such
as biosensors and medical implants, nano- and microfabrication, nanodevices, and
corrosion protection. Experimental microscopy studies have long shown that SAMs
have high concentrations of defects [1–3]; in some cases, as with the nanofabri-
cation method of microcontact printing, naturally occurring imperfections in the
SAMs were shown to play a beneficial role in the process [4]. In most cases,
however, defects in the monolayers can have unexpected and perhaps undesirable
consequences. Two commonly occurring defects arise from imperfections in the
substrate (leading to increased surface roughness after self-assembly) and imper-
fections in the self-assembly process (i.e., the so-called film defects).

Though molecular simulation can offer unique insights into the consequences of
SAM structural imperfections, it has only rarely been done [5–9]; limitations of
small simulation cell sizes and/or insufficient sampling times have prevented the
explicit exploration of defects in typical SAM modeling studies [4]. We have
employed the enhanced sampling method parallel tempering metadynamics using
the well-tempered ensemble (PTMetaD-WTE), which we have used successfully in
several prior studies to study peptide/protein adsorption at interfaces [10–12].
A description of other simulation approaches to studying these types of problems
can be found elsewhere [11].

In this work, we build on our prior simulations [11] of the model peptide LKa14
[13] adsorbing onto an ideal SAM. Past work focused on obtaining structural and
thermodynamic information of adsorbed peptides, with a specific emphasis on
quantitative comparison to experimental measurements of side chain orientation.
However, the systems studied were very idealized due to their lack of SAM
structural imperfections. In this work, we take the logical next step by studying the
impact of incorporating surface defects and provide new insights into the conse-
quences of SAM imperfections on the structure and binding thermodynamics of
adsorbed biomolecules. Herein, we have performed a series of molecular dynamics
(MD) simulations with PTMetaD-WTE of LKa14 adsorbing onto a
carboxyl-terminated alkanethiol SAM with both substrate and film naturally
occurring defects incorporated to mimic experimental observations. In addition to
the simplicity of the peptide (the alpha helix organizes the side chains into a
hydrophobic and charged, hydrophilic face with sequence LKKLLKLLKKLLKL),
this combination of surface and peptide was chosen owing to the ease with which
future experiments could be performed related to further understanding defects in
SAMs. With an idealized SAM as a control, two types of defects are introduced,
namely a gold depression that creates shortened alkyl chain lengths to mimic a
characteristic defect in the underlying gold substrate and a characteristic film defect
arising from faulty packing of the SAM (i.e., chains pointed toward and away from
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each other), creating domain boundary effects. We also used an advanced clustering
analysis and reweighting technique to reveal large differences in surface-bound
peptide conformations caused by the presence and type of incorporated SAM
defect. As we discuss, this analysis is quite general and can be applied to any type
of biased protein/surface simulation.

2 Methods

2.1 System Setup

System specifications are reported in Table 1, including information from a control
simulation without defects from our past work [11]. Systems consisted of one
LKa14 peptide, a SAM surface functionalized with a carboxylic acid/carboxylate
head group, explicit TIP3P waters, and sodium ions to achieve system charge
neutrality. The LKa14 peptide structure was generated with the VMD psfgen
plug-in [14], and the defect-free SAM surface was based on our prior studies.
LKa14 was capped with a deprotonated carboxylate group to match experimental
conditions [15–23], imparting it an overall peptide charge of +5. Two types of
defects were introduced into the SAM surfaces. The first type of defect mimics an
experimentally observed defect in the underlying gold substrate where depressions
in the gold layer lead to shortened alkyl chain lengths (hereafter referred to as a
“Type I” defect, see Fig. 1).

The original surface consisted of 100 randomly alternating protonated and
deprotonated chains in a 1:1 ratio to mimic a bulk pH of 7.4 [24]. Fifty chains were
randomlymutated to have reduced alkyl chain lengths from 12 to 8 carbons. The same
force field parameters were used for the head groups of both the healthy and mutated
chains, leaving the overall surface charge of −50 unaffected. Force field parameters
were taken from the AMBER99SB-ILDN force field [25] (i.e., COOH/COO from
glutamic acid/glutamate). Triplicate systems were set up in this manner; distributions
of the healthy/mutated chains for the 3 systems are shown in Fig. 2.

Table 1 Setup of PTMetaD-WTE simulations

Defect
type

Trial Total
number
of SAM
chains

COO/COOH
chain ratio

Mutated
COO
chains

Mutated
COOH
chains

Na+ Waters Box lengths
(nm3)

I I 100 1:1 24 26 45 4334 4 � 5 � 8

I II 100 1:1 27 23 45 4339 4 � 5 � 8

I III 100 1:1 23 27 45 4334 4 � 5 � 8

II N/A 70 3:4 16 24 25 4490 4 � 5 � 8

None
[11]

N/A 100 1:1 0 0 45 3957 4 � 5 � 8
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The second type of defect mimics a characteristic film defect that occurs during
SAM self-assembly, where alkyl chains pointing in opposite directions lead to
domain boundary effects (hereafter, “Type II” defect, see Fig. 3). To introduce this
defect while still maintaining the original R3 geometry and 30° normal tilt angle of
the SAM chains [26], it was necessary to remove 30 of the original 100 chains.
A portion of the remaining chains was then rotated about the chains’ centers of

Fig. 1 Side view of LKa14 (side chains shown in space-filling representation and hydrogen not
included) on a SAM surface with a Type I substrate defect causing areas of shortened alkyl chain
lengths. The +z direction is orthogonal to the SAM surface and the +x direction is out of the plane
of the page. Chains are colored to highlight frozen atoms (silver frozen CH2 atoms) and head
group atoms allowed to remain free during MD simulation (teal carbon, yellow hydrogen, and red
oxygen)

Fig. 2 Distribution of healthy to defective (i.e., short) chains for the three Type I defect
simulation trials. The +z direction is out of the plane of the page. Cyan and magenta represent
healthy and defective chains, respectively
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mass (minus the head groups), creating both the outward and the inward defects
shown from left to right in Fig. 3. To prevent spurious interactions with the thiol
group exposed at the base of the inward boundary defect, thiol groups were
removed from the original surface. As all simulations used periodic boundary
conditions in the x, y, and z dimensions to allow for electrostatic calculations with
the particle mesh Ewald (PME) method [27], the peptide could interact with water
in the triangular regions marked in blue in Fig. 3.

Simulations used the GROMACS 4.6.5 MD engine [28] with the AMBER99SB-
ILDN force field [25] and the PLUMED 2.0 plug-in [29]. Box heights were chosen
to permit diffusion of the peptide beyond the short-range van der Waals and
Coulombic cutoff distances of 1.0 nm to experience a bulk-like state. The peptide
was prevented from interacting with the image of the surface by placing a harmonic
restraint on its center of mass that began acting on the peptide at a z-distance of
4.5 nm from the top of the surface. Energy minimization was performed on all
surfaces with a steepest descent algorithm for 40,000 steps, followed by the mini-
mization of the solvated peptide/surface systems where the first 6 and 10 CH2 groups
were frozen for the mutated and healthy SAM chains, respectively. Chains were
frozen to prevent diffusion or melting at high temperatures and remained frozen in all
ensuing simulations while movement of the head groups was unrestricted.

2.2 System Setup

Due to the strong binding forces that exist between the peptide and surfaces, the use
of a multiscale modeling algorithm to overcome sampling challenges is essential.
This type of algorithm, as applied to protein adsorption, should (1) have strong
atomistic detail (e.g., be based on MD or other molecular techniques), (2) be

Fig. 3 Side view of LKa14 (side chains shown in space-filling representation and hydrogen not
included) on a SAM surface with a Type II film self-assembly defect causing inward and outward
boundary effects. The +z direction is orthogonal to the SAM surface and the +y direction is out of
the plane of the page. Chains are colored to highlight frozen atoms (silver frozen CH2 atoms) and
head group atoms allowed to remain free during MD simulation (teal carbon, yellow hydrogen, and
red oxygen)
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scalable to systems of practical size, and (3) allow for quantitative comparison with
experiments (e.g., in resolving the conformation and orientation of adsorbed pro-
teins for comparison with, for example, SFG results). A method that can address all
of these challenges is metadynamics (MetaD) [30, 31], which works by applying a
history-dependent bias to one or more collective variables (CVs) that describe the
underlying changes in a system (e.g., interfacial versus solution state structure of
biomolecules in an adsorption process) in reduced dimension:

V sðrÞ; tð Þ ¼ W
Xt0\t

t0¼sG;2sG

YNCV

i¼1

exp
� siðrÞ � siðrðt0ÞÞð Þ

2r2i

� �
ð1Þ

The added bias potential, V(s, t), is added to the overall potential energy and is
repulsive, Gaussian-shaped, and centered on the CV at the time of addition. This
results in a net force that prevents the system from exploring previously visited
states and instead encourages it to explore new regions of the CVs. To achieve
smooth convergence of the bias potential, we use the well-tempered variant of
metadynamics (WTM) [32]:

W 0 ¼ x� exp �Vðs; tÞ
kBDT

� �
ð2Þ

In Eq. (1), the number of CVs is given by NCV, the values of which are defined
by a functional mapping that relates the CV to the system’s geometry, or s(r).
Gaussian “hills” are added every sG time steps with characteristic height W and
width r. WTM leads to an exponential decrease in the amount of bias added to
previously explored regions of phase space (Eq. 2). The instantaneous hill height,
W′, is also controlled by an adjustable parameter DT that is related to the charac-
teristic barrier heights in the system. In a post-processing manner, the cumulative
bias from the simulation can be inverted to obtain the underlying free energy
surface (FES) as projected onto the CVs [33].

Despite its capacity to greatly enhance conformational sampling, MetaD suffers
from the ability of the chosen CVs to overcome hidden degrees of freedom in the
system. This can be addressed with the use of parallel tempering (PT) [34, 35],
which manipulates some or all degrees of freedom in a more general way (e.g., by
increasing the temperature of the system). PT works by requiring many parallel
simulations or “replicas” of the system that span a wide temperature range and
exchange configurations periodically according to the Metropolis criterion. In this
way, PT can be combined with metadynamics (PTMetaD [36]) to both increase the
exploration of CV space and overcome hidden energy barriers.

The addition of sampling in the well-tempered ensemble (WTE) [37] provides an
efficiency boost to the method, which has been discussed elsewhere [10]. The WTE
algorithm works by using the potential energy itself as a CV and amplifying energy
fluctuations (while leaving average energies of the original ensemble untouched) to
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increase overlap in the energy distributions of adjacent temperatures. This in turn
increases the frequency of exchange between replicas and thus increases the overall
efficiency of the method. The degree of amplification of the energy fluctuations is
controlled via the same adjustable parameter DT. However, the WTE bias of the
simulation is generally constructed with a different value of this parameter.
Commonly, DT is rewritten as c, called the bias factor, where c = (DT + T)/T [31].

PTMetaD-WTE was used with the same procedure described in past work [11],
including the use of a new functionality in PLUMED 2.0 [29] to provide a slight
improvement to the method. Spanning a range of 300–450 K, 12 configurationally
identical replicas were simulated in a short, 1 ns NVT PT simulation to equilibrate
each replica at its respective temperature. A 10 ns WTM simulation biasing the
potential energy was then performed to establish the WTE to increase sampling
efficiency through increasing the spread in the system’s potential energy. A bias
factor of 20 was used in all WTM simulations with Gaussian hills added every ps
with a width of 200 kJ/mol at an initial height of 2.0 kJ/mol.

Production runs biased two CVs for LKa14 with an additional two-dimensional
MetaD bias potential. As with past work [11], the first CV biased the distance
between LKa14’s center of mass (COM) and the surface, whereas a second con-
formational CV biased the number of backbone a-helical hydrogen bond contacts.
A switching function with a reference bond length of 0.25 nm was used to define
the degree of the contact, which was defined between a-helical hydrogen bond
donor/acceptor pairs along the peptide backbone (i.e., i, i + 4 pairs). The distance
and conformational CVs were biased with Gaussian hill widths of 0.05 and 0.1 nm,
respectively. A bias factor of 10 was used in all PTMetaD-WTE simulations with
Gaussian hills added every ps at an initial bias deposition rate of 3.0 kJ/mol/ps.

3 Results and Discussion

3.1 Convergence of MetaD Simulations

To assess convergence of the PTMetaD-WTE simulations, the free energy differ-
ence between the adsorbed and solvated states was calculated as a function of time.
Convergence was established when the change in the free energy difference became
negligible with time. Figure 4 shows the change in the Helmholtz binding energy as
a function of simulation time for each of the systems listed in Table 1. All simu-
lations were initially run for 200 ns per replica, and all Type I defect simulations
were deemed converged by the end of that time period. The Type II defect simu-
lation was extended by 50 ns per replica to achieve convergence. Figure 4 shows
that both the type of defect (i.e., Type I vs. Type II) and the distribution of the
defects (i.e., Type I, trials I–III) impact the final value of the free energy change
upon binding as compared to the control simulation.
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3.2 Clustering of Surface-Bound Structures

Figure 5 shows the Helmholtz energy as a function of distance between LKa14 (Ca
center of mass (COM)) and the surface (frozen C10 atom) for each simulation listed
in Table 1. Figure 5c shows the minimum peptide/surface distance for the control
simulation is approximately 1 nm; therefore, any minima in Fig. 5a, b below 1 nm
represent binding to defective areas of the SAM surfaces.

To determine the effect of the defects on peptide adsorption, an RMSD-based
clustering algorithm [38] was used to extract the most dominant structures in each
of the wells in Fig. 5. The algorithm works by first removing external translational
and rotational motions so that only the internal structural fluctuations can be
characterized. A least-squares alignment between all unique pairs of structures is
then performed and an RMSD value is calculated for each pair. For each structure,
other structures that fall below a given cutoff value in RMSD are assigned as
“neighbors”. The structure with the largest number of neighbors and all of its
assigned neighbors is assigned a cluster number and removed from the pool of
clusters. The process is then repeated for all remaining structures until each is
assigned a cluster value.

An important point should not be overlooked. The clusters obtained in the
manner described above are obtained from biased MD trajectories. Therefore, it is
impossible to directly compute relative cluster weights or probabilities only using
the output of a clustering analysis. Instead, we employed a previously demonstrated
reweighting technique [39] that makes use of the classic Torrie-Valleau umbrella
sampling reweighting approach [40] with statistical weights calculated according to
Eq. (3):

w ¼ exp Vbiasbð Þ ð3Þ

where the bias potential in this case is obtained by using the final MetaD bias
potential treated as a static biasing potential. We note for interested readers that this
analysis is trivially performed within PLUMED/GROMACS by using the “-rerun”
functionality of the MD engine along with the final MetaD bias (e.g., the “HILLS”

Fig. 4 Convergence of free
energy differences between
solvated and adsorbed states
for PTMetaD-WTE
simulations at 300 K. The
negative value implies a
decrease in free energy upon
adsorption
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file) and the MD trajectory (i.e., in this case, the 300 K replica trajectory from the
sampling scheme). Care should be taken to avoid using the portion of the trajectory
that corresponds to the MetaD transient. However, in this case this is not an issue as
we only clustered the 2nd half of the trajectories—far beyond the end of the
transient period. With the proper statistical weights in hand for the trajectory of
surface-bound structures, the final probability of each cluster is trivially calculated
by normalizing and summing the individual weights (calculated via Eq. 3) for each
member in each cluster.

The analysis was first performed on the trial III Type I defect simulation; since
Fig. 5a shows similar free energy profiles for the three trials, we deemed analysis of
a single trial to be sufficient. Skipping every second frame to reduce computation
time, surface-bound structures (defined as peptide/surface distances below 1.2 nm)
were clustered with an RMSD cutoff value of 0.2 nm. As noted above, we used
only the second half of the trajectory for the clustering analysis to eliminate the
transient part of the MetaD bias potential. Among 39,696 structures, 78 clusters

(a)

(b)

(c)

Fig. 5 Helmholtz free energy
as a function of LKa14/SAM
distance for PTMetaD-WTE
simulations at 300 K: a Type
I defect simulations, trials
I–III; b Type II defect
simulation, energy minima
highlighted in inset; and
c control simulation. Note that
the relative energy scale is
arbitrary owing to the trivial
constant introduced in the
estimation of the free energy
from the MetaD bias potential
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were determined. The control simulation was analyzed in a similar manner,
resulting in 29 clusters from 29,848 surface-bound structures. The central confor-
mation of each cluster, the so-called cluster centers, for the top three weighted
clusters for each of these simulations, along with their respective weights, is shown
in Fig. 6. Both top and side views are included for the Type I defect simulation to
highlight binding to either normal or shortened alkyl chain lengths.

The first thing to note is the difference in cluster distribution between the defect
and the control simulations: Conformations in the top three clusters of the defect
simulation make up about 81 % of the total probability of surface-bound states,
whereas conformations in the first cluster alone in the control simulation have a
similar probability of existing on the surface of just over 78 %. As Fig. 6 shows,
this is because areas of shortened alkyl chain lengths caused by depressions in the
gold substrate below the SAM surface dramatically disrupt the helical structure that
LKa14 normally adopts at interfaces, leading to a wide array of unfolded structures.
Nearly, all secondary structure, indicated by the color of the peptide’s backbone
(i.e., magenta, cyan, and purple indicate turns, coils, and alpha helical residues,
respectively), is lost with the addition of the surface defects. Unlike the central

Fig. 6 Top three surface-bound cluster center conformations from a clustering analysis of the
Type I, trial III defect simulation compared to the control simulation with no chain defects.
Secondary structure is indicated by peptide backbone color: Purple designates an a-helix, magenta
a turn, and cyan a random coil. Silver and pink represent healthy and defective chains, respectively
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cluster conformations from the control simulation, those from the defect simulation
appear to have little in common apart from a tendency toward unstructured coils,
which makes sense as defective chains are randomly distributed across the surface.

The same analysis was performed on the Type II defect simulation for each of
the three energy minima highlighted in Fig. 5b (i.e., A, B, and C). These minima
are related to the presence of the outward boundary defect (see Fig. 3); the inward
boundary defect appears to have little influence on binding. Within ± sigma of each
minimum, all structures below an RMSD cutoff of 0.2 nm were clustered. This
resulted in 9,885 structures in 11 clusters for minimum A, 41,203 structures in 23
clusters for minimum B, and 14,710 structures in 9 clusters for minimum C. The
central cluster conformations of the clusters with the top three weights calculated
for each of the minima are shown in Fig. 7.

Similar to the Type I defect results, conformations in the first cluster of energy
minimum A make up about 60 % of all surface-bound states. As the distance
between the peptide and the surface increases to correspond to energy minima B

Fig. 7 Top three surface-bound cluster center conformations from a clustering analysis of the
Type II defect simulation for each energy minima highlighted in Fig. 5b. Secondary structure is
indicated by peptide backbone color: Purple designates an a-helix, blue a 310-helix, magenta a
turn, and cyan a random coil
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and C, however, the cluster distributions become tighter (i.e., over 95 % of all
surface-bound structures reside in the top weighted cluster), similar to what was
observed with the control simulation. The trends make sense given that the results
for energy minimum C should most closely represent those of the control simu-
lation due to the particular peptide/surface distance.

Deep in the hydrophobic cleft (i.e., minimum A) highly extended conformations
of LKa14 are stabilized compared to structures in the control simulation, which we
believe is due to the shape of the defect. Figure 5b shows binding in the pocket of
minimum A is stronger than that for minimum B and much stronger than that for
minimum C on top of the surface, which, as mentioned earlier, should most closely
resemble the control simulation. Some a-helicity is retained on top of the surface
(i.e., minimum C), as indicated by the purple color of the peptide’s backbone in the
cluster center conformations. However, even the mere presence of the defect causes
the peptide to extend over the edge of the surface into the cavity, thereby affecting
the normally helical structure of LKa14.

4 Summary/Conclusion

The enhanced sampling method PTMetaD-WTE was employed to simulate the
adsorption of LKa14 to a model hydrophilic SAM with a carboxylate/carboxylic
acid-terminated head group and two types of induced surface defects. Naturally
occurring defects were chosen to best mimic what has been observed experimen-
tally and included both a substrate defect and a characteristic SAM film defect.
Results of free energy versus peptide/surface distance showed a difference in the
location of the free energy minima for the surfaces with defects compared to a
control surface with no defects. The results also indicated binding to the surface
with the characteristic film defect (“Type II” defect) is much stronger than binding
to the control surface, which we hypothesized is due to the specific shape of the
hydrophobic cleft defect.

A clustering analysis was performed to elucidate structural differences in the
bound peptide caused by the surface defects. Results showed the presence of either
type of defect heavily disrupts the helical structure that LKa14 normally adopts at
interfaces. In performing this analysis, peptide structures were extracted from basins,
aligned, and clustered, and thus, orientation of the peptides with respect to the surface
was not taken into account, only the conformation. In this case, it was not important
to distinguish between orientations because charged or hydrophobic side chains
dominate the surface-bound orientations. However, prior to reweighting it would be
trivial to extend the clustering analysis to distinguish between orientations by sub-
dividing further to, for example, distinguish between hydrophobic/hydrophilic pat-
ches on a peptide or protein or using other directional descriptors to account for
protein orientation in conjunction with the conformational clusters.

This work will also have implications for future experimental work. Surface-
guided self-assembly of proteins is growing in interest; the observed effects on

32 K.G. Sprenger et al.



peptide structure from relatively small changes in surface roughness suggest careful
design of the electrostatic and van der Waals interactions at the protein/surface
interface may be required. Additionally, this method could be used as a means to
reverse engineer protein structure by designing and incorporating specific surface
defects to control the structure of biomolecules upon adsorption.

Finally, we note that the predictions from these simulations could be directly
probed with surface spectroscopies such as sum frequency generation (SFG)
spectroscopy [16]. Provided self-assembly of SAMs of different chain lengths was
possible, adsorption of LKa14, we predict, would reveal no appreciable SFG signal
compared to neat SAMs, which reveal the expected helical structures. Likewise,
using a combination of techniques such as surface plasmon resonance (SPR) and
atomic force microscopy (AFM) [41], we propose it would be possible to study the
expected increases in binding energy due to the film formation defects. Of course,
this would depend on being able to synthesize in a controlled way the film-type
defects.
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