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Finite plateau in spectral gap of polychromatic constrained random networks
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We consider critical behavior in the ensemble of polychromatic Erdős-Rényi networks and regular random
graphs, where network vertices are painted in different colors. The links can be randomly removed and added to
the network subject to the condition of the vertex degree conservation. In these constrained graphs we run the
Metropolis procedure, which favors the connected unicolor triads of nodes. Changing the chemical potential, μ,
of such triads, for some wide region of μ, we find the formation of a finite plateau in the number of intercolor links,
which exactly matches the finite plateau in the network algebraic connectivity (the value of the first nonvanishing
eigenvalue of the Laplacian matrix, λ2). We claim that at the plateau the spontaneously broken Z2 symmetry is
restored by the mechanism of modes collectivization in clusters of different colors. The phenomena of a finite
plateau formation holds also for polychromatic networks with M � 2 colors. The behavior of polychromatic
networks is analyzed via the spectral properties of their adjacency and Laplacian matrices.
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I. INTRODUCTION

Critical behavior in topological random networks has been
under scrutiny since the mid-2000s. One of the most intriguing
phenomena is the clusterization that occurs in dynamical (evo-
lutionary) networks when some control parameters are chang-
ing. Typically, the network evolution consists of randomly
adding and removing links via Metropolis dynamics with a
demand of a global “optimization” of a network structure.
Under “optimization,” we can understand a network design
of a special topology. The rearrangement of network links
could be restricted by additional conservation laws, for
example, by the condition of the vertex degree conservation
in all nodes. In what follows, we consider in detail only such
constrained networks. If the vertex degree is the same in all
nodes, then such a network is known as the “random regular
graph.”

In unconstrained Erdős-Rényi (ER) graphs, links can be
randomly added and removed to the system subject to the
condition of their global conservation (but without the conser-
vation of the vertex degree). The evolution of such networks,
maximizing the number of connected closed triads of bonds,
n� (triangles), leads to the formation of one maximally dense
cluster (“clique”). This clusterization occurs critically and is
known as the Strauss transition. Often, it is convenient to work
with the canonical ensemble of networks, in which the value
n� is coupled to the chemical potential, μ, playing the role of
the “energy” assigned to every closed triad of connected bonds.
At some critical value, μcr, the network falls into the “Strauss
phase”—a single full subgraph with a maximally possible
number of triangles (the “clique”) [1]. This phenomenon has
been studied and satisfactorily described in the frameworks of
the random matrix model [2], as well as by using the mean-field
arguments [3].

The analysis of the phase transition in constrained Erdős-
Rényi networks (CERN) and in random regular graphs (RRG)

of N vertices, carried out in Ref. [4], amounts to a picture
which is essentially different from the Strauss transition. It has
been found in Ref. [4] that the condition of maximization
of a number of closed triangles, n�, forces the random
network with a conserved vertex degree to form a multiclique
ground state (contrary to a single-clique ground state in the
Strauss model). The number of cliques for CERNs equals
asymptotically [1/p] (for N � 1), where p is the probability
of a link formation and Np is the average vertex degree
at the network preparation (at the first step of the network
evolution). In RRGs (for N � 1), the maximal number of
emerging cliques is [N/k], where k is the vertex degree.

It is convenient to study the network evolution using
its adjacency matrix, A, whose elements, aij , are defined
as follows: aij = 1 if the vertices i and j are connected
and aij = 0 otherwise. At the preparation condition, the
spectral density of the matrix A is the Wigner semicircle
for nonconstrained Erdős-Rényi networks and two-humped
Kesten-McKay distribution for random regular graphs [5]
(the case of CERNs, depending on p, interpolates between
these two distributions). The decay of the network in clusters
appears, in terms of the spectral density of the matrix A,
as the splitting of [1/p] eigenvalues from the main zone
of the eigenvalues distribution, and formation of the second
(non-perturbative) zone, separated from the main one by a
finite gap [4]. Each eigenvalue, which tunnels from the main
zone to this new one, corresponds to some dense cluster
(“clique”) in the network. The interaction between separated
clusters is reflected in the transformation of the enveloping
shape of the main zone, which acquires triangular form both
for CERNs and RRGs. The decay of the network happens
critically above some value, μcr.

In terms of the matrix model language, the formation of the
second zone filled by discrete eigenvalues means breaking
of the initial U (N ) symmetry of the reference state into
the product of smaller symmetry groups corresponding to
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cliques-blocks of the ground-state adjacency matrix. More
information about the network structure can be obtained by
studying the Laplacian matrix, L, instead of the adjacency
one, A. Recall that the Laplacian matrix of the graph is related
to the adjacency matrix as follows:

L = D − A, (1)

where D is the degree matrix. We have checked that the second
(nonperturbative) zone of L is formed by “soft” discrete eigen-
values (modes), which tunnel from the main zone, associated
with the “hard” part of the spectrum. For RRGs, the spectra
of L and A are identical up to the shift to some constant and
mirror reflection—such that hard Laplacian modes get mapped
onto soft adjacency modes and vice versa. The Laplacian
matrix is positively defined and has the minimal eigenvalue
λ1 = 0 corresponding to the homogeneous eigenvector v1 =
(1, . . . ,1). The degeneration of the Laplacian mode, λ1 (i.e.,
the number of zero’s eigenvalues in L) defines the number
of disconnected components of the graph. The behavior of
the second eigenvalue of the Laplacian, λ2, in RRGs is the
subject of the several mathematical studies [6–9] and has an
important meaning, known as “the algebraic connectivity.” In
particular, if λ2 > 0, then the graph is connected. The value
of λ2 plays an important role in the relaxation and transport
properties of the network, since it defines the inverse diffusion
time [10] and is crucial for determining the synchronization
of multiplex networks [11]. The corresponding eigenvector
(Fiedler vector or “algebraic connectivity”) [12] establishes
the bijection between the layers of the multilayer network.

Two important properties of spectral densities of CERN
and RRG adjacency matrices beyond the critical point, μcr,
have to be mentioned. First, it was found in Ref. [4] that
the Laplacian spectra of each clique and of the whole
network are very different. The spectrum of the clique is
discrete, being typical for the sparselike graphs [13], while
the spectrum of the whole network has two-zonal structure
with the continuous triangle-like form of the first (main) zone.
In Ref. [16] we have interpreted the presence of the second
zone as the collectivization (or synchronization) between the
eigenvalues in different clusters. The second property concerns
the nonergodic behavior of modes in the main zone of the
spectrum. It has been found in Ref. [17] that there is a memory
on the initial (preparation) conditions in the continuum part
of spectrum, which is a signature of the nonergodic behavior
and existence of some hidden conservation laws. In the second
(nonperturbative) zone, all modes are localized [17] both for
CERNs and RRGs, while the modes in the continuous (central)
zone remain delocalized. As the criterium of localization,
we used the standard notion, widely exploited in random
matrix theory, namely the “level spacing distribution” or the
distribution between the nearest eigenvalues in the spectrum.
The system is in the delocalized state if the level spacing
shares the Wigner surmise, and is in the localized state if the
distribution is Poissonian.

Many new phenomena were announced in Ref. [16] for
“polychromatic” CERNs and RRGs, where it was implied
that vertices are painted (once and for all) in M colors
at the preparation conditions. Instead of maximizing the
number of connected closed triads of bonds (as in unicolor
networks), we maximize the number of connected unicolor

triads (irrespective of whether they form triangles). In the
canonical description, we associate the chemical potential, μ,
to every unicolor connected triad [14]. It turns out that the
initially Z2-symmetric polychromatic network is absolutely
unstable and at any value μ > 0 of the unicolor trimer
chemical potential, the network spontaneously breaks into
weakly connected unicolor cliques. We have found in Ref. [16]
that at some critical value, μcr, the number of cross-color links
undergoes a phase transition and develops a wide, though finite,
plateau in μ. Some possible interpretations of the plateau
formation have been suggested in Ref. [16]; however, more
involved analysis clarifying this issue is presented below.

In this paper we discuss the spectral properties of the
adjacency and Laplacian matrices of polychromatic networks.
Our aim is to determine the spectral density of the ground state
of CERNs and RRGs, focusing on the statistics of the highest
eigenvalues of the adjacency matrix and, correspondingly, the
lowest eigenvalues of the Laplacian matrix. We separately
discuss the models with chemical potentials associated with
closed triangles of bonds (for colorless networks) and with
unicolor trimers of nodes (for polychromatic networks). The
case of chemical potential for unicolor triangles in polychro-
matic network can be considered as the generalization of
the colorless triangles pattern. The behavior of polychromatic
network in this case is similar to the monocromatic one—the
network gets defragmented into unicolor cliques above some
critical value of the chemical potential μ.

Specifically, our findings for polychromatic network are as
follows:

(i) The dichromatic (polychromatic) network is absolutely
unstable when the chemical potential, μ, of connected unicolor
triads of nodes is introduced and immediately splits at any
μ > 0 into the collection of unicolor subgraphs-cliques, which
can be interpreted as the spontaneously Z2-symmetry breaking
(correspondingly, ZM -symmetry breaking for M-color net-
works).

(ii) In a wide interval, μ ∈ [μin,μout] the number of
intercluster connections (i.e., cross-color bonds) remains un-
changed. For dichromatic networks, this behavior is identical
to the plateau formation in the second eigenvalue, λ2(μ),
of the corresponding Laplacian matrix: λ2(μ) = const for
μ ∈ [μin,μout].

(iii) The plateau is finite and is the synchronization region
of unicolor subgraphs-cliques. Between the values,μin (at
which the plateau begins) and μout (at which it ends), the
cliques are synchronized and we can speak about the effective
restoration of Z2 symmetry for dichromatic networks (and ZM

symmetry for M-color networks).
The interesting question in statistics of networks consisting

of many species deals with the influence of the interactions
within a given class of species on the properties of the whole
network. In our polychromatic networks, the dynamics (adding
and removal of bonds) occurs in the whole network and is
color insensitive; moreover, the condition of the vertex degree
conservation also does not distinguish the node colors, and
only the interaction between unicolor connected trimers is
“in color.” In contrast, in typical multilayer networks, the
“in-layer” bonds rearrangement occurs independently in each
layer, while the layers interact by imposing some collective
“interlayer” contact interactions. The first striking example
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of the dramatic effects enforced by interlayer interactions
was found in the percolation context in Ref. [18]. Later it
was recognized that local interactions in the network affect
the diffusion properties of the whole system dramatically
[19–21]. In Refs. [10,19], the authors found the formation
of the semi-infinite plateau for the second eigenvalue λ2 of
the Laplacian matrix in a two-layer network with specific
interlayer interaction. It was argued that, depending on the
interaction strength, the network layers can behave coherently
or individually. The corresponding property can be read off
from the eigenvectors of lowest Laplacian eigenvalues.

To summarize, the key differences between the setups
discussed in Refs. [10,20,21] and the model considered in
our work are as follows:

(i) In our study the two-color (multicolor) network emerges
dynamically from an initially homogeneous polychromatic
network, due to the simplest color-sensitive trimer interaction,
while in Ref. [10] the layers are handmade.

(ii) In our work the effect of the plateau formation is caused
by two things: the conserved vertex degree of the network and
the in-layer (i.e., the unicolor) trimer interactions, while in
Ref. [10] the authors control the interlayer interactions.

(iii) In our work the plateau is finite with the well-specified
entrance and exit points, while in Ref. [10] the plateau for λ2

is semi-infinite and apparently cannot be made finite in the
frameworks of the considered model.

However, despite the difference between polychromatic
networks in the spontaneously Z2-broken phase and the mul-
tilayer networks, these systems seem to have more common
properties than distinctions.

The paper is organized as follows. In Sec. II we briefly
note the setup for the models under consideration and describe
the corresponding network ground states with the chemical
potential μ of connected unicolor trimers. In Sec. III we
consider the networks with positive μ and investigate the
evolution of the spectrum yielding the plateau formation and
termination for the number of cross-color bonds. It is argued
that the key phenomena for the plateau formation is the
rearrangement of a few lowest eigenvalues of the Laplacian
matrix of the graph. In Sec. IV we discuss the localization
properties of the spectrum of polychromatic networks with
some preference for the formation of monochromatic triads of
bonds. In Sec. V we compare the phenomena of the plateau
formation in our study with previous considerations. The
comments on the related issues and the open questions are
summarized in the Discussion. Some mean-field arguments
related to the plateau formation are presented in the Appendix.

II. DESCRIPTION OF THE MODEL

The conventional colorless Erdős-Rényi network is pre-
pared by randomly joining any pair of N vertices with
probability p. This produces the Poissonian distribution, P (k),
of the vertex degree, k, with the mean value 〈k〉 = pN . For
the ensemble of ER networks the density of eigenvalues of the
adjacency matrix A of a network is defined in a standard way,

ρ(λ) = lim
N→∞

1

N

〈
N∑

i=1

δ(λ − λi)

〉
, (2)

where λi is the eigenvalue of the matrix A and 〈...〉 means
averaging over the ensemble of 2N2/2 different realizations of
such matrices. For N → ∞ and finite p, the density ρW (λ)
tends to the Wigner semicircle:

ρW (λ) → 1

2πN

√
4N − λ2, − 2

√
N � λ � 2

√
N. (3)

The isolated largest eigenvalue λ = pN − 1 corresponds to
the homogeneous eigenvector v = (1, . . . ,1).

The random regular graph is the network with the vertex
degrees, k, identical in all network nodes. Locally, the RRG
behaves as a Bethe tree; however, it differs from the infinite
Bethe tree by the presence of cycles of finite lengths. The
spectral density ρ(λ) of the RRG adjacency matrix is given by
the Kesten-McKay distribution [5,22] (see also Ref. [23] for
the transparent derivation of ρKM(λ) from the return probability
on the Bethe lattice)

ρKM(λ) = k
√

4(k − 1) − λ2

2π (k2 − λ2)
,

−2
√

k − 1 � λ � 2
√

k − 1. (4)

The full RRG spectral density has in addition one isolated
eigenvalue located at λ = k beyond the main zone of the
spectral density. The density ρKM(λ) differs from the Wigner
semicircle; however, it is similar to asymptotically at large k

on proper scaling. The finite-size correction for the Kesten-
McKay law has been found in Ref. [24].

The ER networks created with the probability p and the
RRGs with the vertex degree k = pN have many similar
static properties—see, for example, Refs. [25–27] for a review.
It particular, it was proved rigorously that the RRG can be
“sandwiched” between two very close ER networks and shares
their statistical characteristics, like cycle distributions and the
chromatic numbers [28]. However, the stochastic dynamics
on ER and on RRG (as, for instance, the redistribution of
links) leads to essentially distinct final states in ER and RRG,
because the stochastic dynamics is very sensitive to the absence
or presence of the vertex degree conservation. Imposing the
degree conservation condition in the ER network, one can
make the dynamic behavior of the CERN very similar to that
of the RRG.

Here we describe the model of evolving polychromatic
(dichromatic) dynamic networks (both CERN and RRG),
generalizing the setup of the colorless model considered in
Ref. [4]. In general, our construction reproduces the one
described in Ref. [16]; however, some details of the model
are more specified, so it seems instructive to provide here the
full definition of the system under consideration.

We have already mentioned in the Introduction that each
monochromatic triad of nodes (the triadic “motif”), regardless
of whether it is closed or open, is weighted with the chemical
potential, μ. Thus, the grand-canonical partition function of
the system can be written as follows:

Z(μ) =
∑

{states}

′
e−μn� , (5)

where the prime in Eq. (5) means that the summation runs over
all possible configurations of links under the condition of fixed
degree in each graph vertex, i (i = 1, . . . ,N).
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FIG. 1. Evolution of the spectral gap in the two-color CERN (a) and RRG (b) versus evolution of number of black-white links. Inserts: The
linear dependence of the spectral gap on the number of black-white links. The numerical data are obtained by averaging over 500 randomly
generated graphs of 256 vertices and with the probability p = 0.15 for CERN ensemble and k = 38 for RRG.

To reach the ground state of the system, we run the
stochastic evolution of the CERN or RRG (the discrete
Langevin dynamics), starting from some initial configuration.
The initial state of the network is prepared by connecting
any randomly taken pair of vertices with the probability p

(regardless the node color). Then, one randomly chooses two
arbitrary links, say, between vertices i and j (i−j ) and between
k and m (k−m), and reconnects them, getting new links, (i−k)
and (j−m). Such reconnection conserves the vertex degree
[29]. Now one applies the standard Metropolis algorithm with
the following rules: (i) If, after the reconnection the number
of connected unicolor triads of nodes (both black and white)
in the network is increased, a move is accepted, and (ii) if the
number of connected unicolor triad of nodes is decreased by
�n�, or remains unchanged, then a move is accepted with
the probability e−μ�n� . Then the Metropolis algorithm runs
repetitively for large set of randomly chosen pairs of links
until it converges. In Refs. [30] it has been shown that the
algorithm actually converges to the true ground state in the
equilibrium ensemble of random undirected colorless Erdős-
Renyi networks with fixed vertex degree. For polychromatic
networks such a convergence has not yet been considered
rigorously in the literature.

III. RESULTS

A. Finite spectral plateau in a network with
advantage of connected unicolor trimers

Here we present the analysis of the ground state of M =
2-color constrained Erdős-Rényi networks and of random reg-
ular graphs reached in the Metropolis dynamics under the con-
dition of maximization of connected unicolor triads of nodes.
In the canonical description, the chemical potential, μ, is
attributed to every unicolor connected triad of nodes in a large
N -vertex network with the conserved vertex degree. At any
value μ > 0, the M-color network undergoes the color separa-
tion into monochrome clusters (the case M = 2 was described
for the first time in Ref. [16]). So one can say that after the color

separation, the network spontaneously splits into an M-cluster
graph with different weights for cross-color and in-color
bonds. This splitting does not depend on the initial condition
and the M-cluster state is the true ground state of the network.

The important feature of this model is the specific plateau
formation in the number of cross-color links above some
critical value μcr of the chemical potential of connected
monochrome trimers. The origin of this phenomena remains
still hidden, though some plausible conjectures concerning the
plateau formation have been made in Ref. [16]. Below we at-
tack this question via spectral analysis, similarly to the unicolor
case [4], focusing at the gap formation in the spectral density
of the adjacency and Laplacian matrices of the networks.

For simplicity, we begin with the M = 2-color networks.
The spectral density of the adjacency and Laplacian matrices
for the CERN and RRG ensembles is insensitive to the
network color structure, though is very sensitive to the cluster
formation. We assume that the chemical potentials of black,
μb, and white, μw, connected unicolor trimers are equal, i.e.,
μb = μw, and hence the Hamiltonian is Z2 symmetric subject
to the constraint provided by the fixed vertex degree. For a
completely symmetric M-color system, the Hamiltonian is
ZM symmetric. At μ = 0 the spectral density consists of the
main zone (Wigner semicircle or Kesten-McKay form) and
one single isolated eigenvalue, counting the number of isolated
clusters. As soon as μ becomes infinitesimally positive, color
splitting occurs, and one extra separated eigenvalue tunnels
out of the main zone, thus breaking the Z2 symmetry.

At some critical value, μcr, two effects happen simulta-
neously (see Fig. 1): (ii) The plateau begins in the number
of black-white links, Nbw, and (ii) the plateau begins in the
spectral gap of the Laplacian matrix, measured by the algebraic
connectivity, λ2. The similarity in the behaviors of λ2 and of
Nbw is not occasional: The algebraic connectivity is linearly
proportional to the number of links to be cut to get two
disconnected components of the graph. Hence, for our network
we have

λ2(μ) = cNbw(μ), (6)
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(a)                                                                                                                    (b)
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FIG. 2. Rearrangement of the cluster connection pattern along the plateau for two-color CERNs (a) and RRGs (b), Dependencies of the
number of links between unicolor clusters, Nbw, and the evolution of the maximal betweenness centrality of a node cmax

B on μ.

where c is come constant. The plateau in the algebraic connec-
tivity is the spectral counterpart of the phenomena described
in Ref. [16]. The constraint of the degree conservation, i.e., the
consideration of CERNs and RRGs, is crucial for the plateau
formation phenomena: No plateau is formed if one considers
the conventional evolution of Erdős-Rényi networks without
the vertex degree conservation.

The phenomena of the exit from the plateau at the critical
chemical potential, μ−

cr, deserves some attention. We have
investigated this question via visualization of the adjacency
matrix evolution for ensembles of CERNs and RRGs. The
key phenomena at the plateau exit are as follows. The number
of polychromatic links at the plateau is stable; they connect
vertices in clusters of distinct colors; and the “string” between
clusters, measured in number of polychromatic links, has
the finite width. When the value μ−

cr is approached, the
spectral density and the geometry of connections change
drastically; see Fig. 2. These changes can be easily detected
by measuring the “betweenness centrality” [31] of network
nodes. The betweenness centrality of a node v is given by
the expression

cB =
∑

s �=v �=t

σsp(v)

σsp
, (7)

where σsp is the total number of shortest paths from node
s to node t and σsp(v) is the number of those paths that
go through v. Above μ−

cr, the special “gates” (or “hubs”)
with a very high betweenness centrality get formed outside
the clusters. It should be noted that almost all intercluster
connections pass through these hubs. The formation of such
hubs is accompanied by thinning of the string connecting

different clusters at μ < μ−
cr. The dependencies of the number

of links between unicolor clusters, Nbw, and the evolution of
the maximal betweenness centrality of a node cmax

B on μ are
clearly seen in Fig. 2.

The behavior of M-color CERNs and RRGs with equal
chemical potentials for all colors is similar to that of the
two-color case. Again, we introduce the chemical potential, μ,
for connected unicolor trimers of vertices. At an infinitesimally
positive value of chemical potential, the network gets imme-
diately defragmented into M unicolor clusters, which implies
the spontaneous breaking of the ZM discrete symmetry. The
unicolor clusters, 1, . . . ,M , are connected by some number of
“polychromatic links” which can be considered as the order
parameters of the model. We denote by Nik the number of
polychromatic links between the clusters i and k. At some
value, μcr, the plateaus in the dependencies Nik(μ) get formed
simultaneously for any pair (i,k). From the viewpoint of
the spectrum of the Laplacian matrices of CERN and RRG,
M-smallest eigenvalues develop plateaus for each pair (λi,λk),
where (i,k) = 1, . . . ,M (i �= k).

In principle, two scenarios could be realized: (i) The
isolated eigenvalues corresponding to each color arrange their
“own” nonperturbative zone or (ii) the common second zone
involving the eigenvalues of all colors gets formed. The
result of the numerical simulations for the case of equal
chemical potentials for all colors in the M = 4-color network
is presented in Fig. 3. For small μ there are the central zone
plus one isolated eigenvalue λ1 = 0. With μ increasing, the
eigenvalues corresponding to four monochrome clusters split
off from the central zone, forming the second nonperturbative
zone in the spectral density of the ensemble of Laplacian
matrices. Figure 3 demonstrates that the common two-zonal
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FIG. 3. Formation of the two-zonal structure in the spectral densities of Laplacian matrices in ensembles of M = 4-color CERN (a) and
RRG (b) on the color separation. The numerical data are obtained for ensembles of 250 randomly generated graphs of 256 vertices and with
the probability p = 0.15 for CERN and k = 38 for RRG. The color bar indicates the spectral density.

spectral structure plus one isolated eigenvalue, λ1 = 0, get
formed.

B. Semianalytic discussion of the plateau formation

We can provide simple estimates for the value of μ+
cr at

which the plateau begins. Consider one black-white bond. This
bond does not contribute to the energy, determined through
the number of connected unicolor triads, but has an entropy
contribution, which can be estimated as ∼ ln N , where N is
the number of graph vertices. If we switch this link to a single-
color (for example, black) cluster, then the energy contribution
associated with such a switch becomes 2Np μcr, because one
link (ij ) increases the number of triples by ki + kj − 2 (ki is the
degree of the vertex i). At the plateau, the entropy contribution
to free energy from this bond becomes comparable with the
energy contribution in the cluster, and hence we obtain the
estimate for μcr for the plateau beginning, as

μcr ∼ ln N

2Np
. (8)

Equation (8) confirms the observation that μcr depends on p

as p−1 and indicates that in the thermodynamic limit N → ∞
the plateau begins at μcr = 0, which is consistent with the
mean-field arguments presented in the Appendix.

Now we turn to the qualitative explanation of the plateau
formation phenomena. Consider the Laplacian matrix, L, for
the dichromatic case, for which the matrix L has the block
structure:

L =
(

L1 C

C L2

)
, (9)

where L1 and L2 designate unicolor clusters and the matrix
C includes links between nodes of different colors. Using the
standard expression for the determinant of the block matrix,
we can write:

det

(
A B

C D

)
= det(A) det(D − CA−1B). (10)

We are interested in the μ dependence of the first nonzero
eigenvalue, λ2, of the Laplacian matrix, L:

det

(
L1 − λ C

C L2 − λ

)
= det(L1 − λ)

× det(L2 − C(L1 − λ)−1C) = 0. (11)

The explicit form of matrices L1,L2,C and their μ dependence
are unknown, although some claims concerning the plateau
formation can be done. There are two sets of eigenvalues com-
ing from the first and the second determinants, respectively.
There is the competition between the second eigenvalue, λ(L1)

2 ,
of block L1 [note that λ

(L1)
1 = 0] and the lowest eigenvalue

of the second determinant. There are two possible options:
(i) The eigenvalue λ

(L1)
2 is the lowest nonvanishing eigenvalue

of the whole network and (ii) the eigenvalue, λ(L)
3 , of the second

determinant plays the role of the algebraic connectivity. In
our case, the color block matrix, L1(μ), has the nontrivial μ

dependence, while the off-diagonal block, C, has no explicit μ
dependence in the matrix elements since there is no chemical
potential for polychromatic links. However, the number of
nonvanishing elements in C is μ dependent.

We claim that the extremities of the plateau correspond to
points of the intersection of the cluster eigenvalue, λ

L1
2 (μ),

and the whole network eigenvalue, λ
(L)
3 . The number of

snapshots of eigenvalue “trajectories” are depicted in Fig. 4,
from which it becomes clear that λ

(L)
3 is almost μ inde-

pendent. Since λ
(L)
3 is the lowest nonvanishing eigenvalue

of the whole network Laplacian matrix, we conclude that
there is no μ dependence in the corresponding eigenvalue.
We identify this regime with the plateau. The positions for
the plateau entrance, μ+

cr, and exit, μ−
cr, are the solutions of

the equation

λ
(L1)
2 (μ) = λ

(L)
3 . (12)

Note that λ2 at the plateau coincides with λ
(L)
3 , whose value is

close to the boundary of the main spectral zone.
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FIG. 4. Dependencies of λ
(L1)
2 (μ) and λ

(L)
3 (μ) in a wide range of μ.

The discussion of the plateau termination is more subtle. At
the plateau exit, the intercluster interactions proceed through
hubs, which means that the matrix C has a nondiagonal
structure. After the exit from the plateau, one sees again
the nontrivial μ dependence, which signals that the eigen-
value λ

(L1)
2 (μ) dominates again. The key question concerns

the coherence between the unicolor clusters at the plateau.
The condition for the entrance at the plateau means that main
parts of the spectral zone of each cluster and of the whole
network have same supports. Thus, at the plateau we have
complete synchronization of clusters, similar to the one in
Ref. [32] in multilayer networks, which can be seen from the
behavior of corresponding eigenvectors.

Similarly to Ref. [32], we can perform the search for the
algebraic connectivity by looking at the ground state of the
following Hamiltonian:

H = 〈v|L|v〉 + gvv + f 〈v|1〉, (13)

where v is the eigenfunction of the network Laplacian, while
g and f are Lagrangian multipliers for the conditions of
eigenvectors normalization and their orthogonality to the ho-
mogeneous λ = 0 state. The Hamiltonian involves the matrix
Laplacian matrix of the CERN (or RRG), hence the av-
eraging over ensembles of networks is implied. Note that
this Hamiltonian in the continuum has a lot in common
with the O(N )-sigma model interacting with two-dimensional
gravity. Indeed, the first term yields the kinetic contribution
in the random geometry, while rest of the terms are familiar
constraints in the sigma model. The phase transition in the
continuum denotes the change of the space dependence of the
ground-state wave function.

IV. LOCALIZATION IN POLYCHROMATIC NETWORKS

It was found in Ref. [17] that the transport properties
of topologically perturbed CERN and RRG are nontrivial.
The analysis of the level spacing distribution (the distribution
between nearest-neighboring eigenvalues), P (s), performed in
Ref. [17], shows that the states in the central continuum zone

are delocalized, while the level spacings in the second nonper-
turbative zone share the Poissonian distribution, meaning that
these states are localized. Define

Pdel(s) = As e−Bs2
below mobility edge, λm, for GOE

Pl(s) = e−s above mobility edge, λm, for GOE, (14)

where GOE denotes the Gaussian orthogonal ensemble and
A,B are some model-dependent coefficients. Since delocal-
ized modes in the main zone correspond to spectra inside
the clusters, we figuratively associate such clusters with the
metallic phase, while the entire network is a kind of insulator.
Moreover, it was found in Ref. [17] that the spectral density in
the main zone strongly depends on the network preparation
conditions. This observation has led us to the conclusion
that corresponding delocalized states can be thought as
nonergodic.

It is worthwhile to compare the above findings with other re-
lated studies. The transport properties of the unperturbed RRG
have been analyzed in Ref. [26], where the delocalization of
all modes was reported. The transport properties of perturbed
RRGs with the on-site Anderson-like disorder become much
more interesting. At some critical strength of the disorder, there
is the Anderson localization transition [33–35] for which the
ergodic and non-ergodic behavior of delocalized states is under
intensive discussion. The renewed interest in the one-particle
localization in RRGs deals with the attempt to treat RRG as
a model of the Fock space for some interacting many-body
system [36]. The one-particle localization in RRGs presum-
ably is related to the phenomena of many-body localization in
the real space, where initial degrees of freedom are identified
with the localized states in the one-particle model on the
graph [37,38].

In this section we provide results of similar study for
polychromatic RRGs. We are focused at the level spacing
distribution as a criterion of the localization. The number of
colors, M , is large enough to make the second zone sufficiently
wide. The results are shown in Fig. 5 for M = 8. It is seen
from (14) and Fig. 5 that the states in the main zone are
delocalized, while the ones in the second zone (which is the
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λ
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FIG. 5. Level-spacing distribution for eight-color RRG. The regions λ < λm (Wigner-like theory for level spacing) and λ > λm (Poissonian-
like distribution for level spacing) correspond to delocalized and localized parts of the graph. Numerical results are obtained for an ensemble
of 250 randomly generated graphs of 256 vertices with the degree k = 20.

collection of eigenvalues splitted from the main zone), are
localized. We can speculate that the polychromatic RRG serves
as the Fock space for some interacting many-body system.
Then the one-particle localization in the polychromatic RRG
is mapped onto the many-body localization in the real space
and the degrees of freedom in the real space are the localized
states in the Fock space. Accepting this, we conclude that
degrees of freedom in the real space are clusters of different
colors.

Let us highlight the features specific for polychromatic
networks, which are absent in monochromatic ones.

(i) In colorless networks, the effects of graph topology are
crucial (for example, the network clusterisation is forced by
increasing the number of closed triangles in the network). In
contrast, in polychromatic networks just the unicolor triples of
connected nodes play the key role.

(ii) Since the Fock space of a multicolor network is
also polychromatic, one should identify the color with
the specific quantum number in some many-body sys-
tem embedded into the real space (for instance, the
color could mark the representation of some global
group).

It is worthwhile to attribute the physical meaning to the
chemical potential of unicolor triads of nodes in terms of the
system in the real space. We can conjecture that since the cycles
are not involved in the Fock space, the connected unicolor
triad of vertices could be attributed with the perturbation

mixing three energy levels. Certainly this issue deserves deeper
consideration.

V. PLATEAU FORMATION AND EXIT: COMPARISON
WITH OTHER MODELS

In Ref. [16] we have conjectured that the plateau formation
reflects the phase coexistence in the perturbed network for the
chemical potential, μ, lying in the inteval [μ+

cr,μ
−
cr]. Below we

provide the qualitative arguments supporting this conjecture
and compare it with other models. The dynamical behavior
of networks, which resembles the one discussed in this work,
has been considered in Refs. [10,21,32] in a different setting.
The authors considered the two-layer network constructed “by
hand” from the very beginning. They have introduced the
parameter p, controlling the interlayer interactions, and have
analyzed the dependence λ2(p). At p = 0 the interaction is
absent and two layers are completely disconnected, while at
nonvanishing p there are two regimes in the λ2(p) dependence.
At small p it has been found that λ2(p) ∝ p, while at p > p∗
the eigenvalue λ2 was independent on p. The found plateau was
semi-infinite since no other critical behavior in p is observed.
It was also noted in Ref. [39] that the number of hubs used to
connect two layers decreases sharply at the plateau.

The linear connection between layers is simple enough to
admit an exact solution based on the properties of block diag-
onal matrices with uniformly weighted off-diagonal elements.
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It was argued in Ref. [32] that the spectrum of the Laplacian
matrix yielding λ2(p) has two regimes corresponding to
two solutions of the simple equation for the wave function
overlap if one considers the Laplacian as the Hamiltonian
of the system. Denote by 〈va|vb〉 and by 〈va|1〉 the overlaps
of parts of the wave function v = (va,vb) (corresponding
to λ2) with the other part and with the ground-state wave
function, respectively. It was shown that these variables
undergo the sharp transition at some p = p∗. In the analysis
of Refs. [20,21,32], the off-diagonal block of the Laplacian
matrix is chosen in the simplified form as C = pI , while the
block A is p independent and I is the identity matrix. To obtain
the eigenvalues, consider the determinant identity for the block
matrix:

det(A − λ + pI ) det

(
A − λ + pI − pI

1

A − λ + pI
pI

)
= 0. (15)

Looking at the second determinant and selecting the eigen-
vector of A with zero eigenvalue, we immediately obtain
the equation (λ − p)2 = p2, which implies the competition
between the value 2p and the second eigenvalue, λ

(A)
2 , of the

matrix A. The plateau starts when

λ
(A)
2 = 2p. (16)

It was shown in Ref. [32] that exactly at this point the third
eigenvalue, λ(L)

3 , hits the second one. Therefore, at small values
of p, one has λ

(L)
2 = p, while at plateau, λ

(L)
3 = λ

(A)
2 .

Before the plateau gets formed, the system can be consid-
ered an interacting bilayer system, whose matrix A has zero’s
eigenvalue with the homogenous eigenvector. This allows us
to identify the eigenvector of the Laplacian corresponding to
the eigenvalue 2p, which is

V =
(

1
−1

)
. (17)

At the plateau the layers are coherent and practically indis-
tinguishable. A more general phase structure with different
synchronization patterns between two layers has been analyzed
in Ref. [21]. The behavior of the system depends on the ratio
of the mean values of in-layer and interlayer links.

The model developed in Ref. [32] has some similarities
and differences with the one considered in our work. In our
dichromatic network the separation in unicolor clusters at any
positive μ can be regarded as a two-layer system. These two
layers emerge dynamically from the spontaneous symmetry
breaking and are not created artificially (“by hand”) from the
very beginning. We have introduced the chemical potential not
for interlayer links but for the connected unicolor (in-layer)
trimers of nodes. Still, our weight, e−μ, plays the same role
as p of Ref. [32] since both quantities measure the relative
strengths of the in-layer and interlayer links. The networks
in Refs. [10,21,32] evolve by independent dynamics in each
layer, whereas in our network the dynamics is “cross-layered”
(i.e., common for all clusters-layers).

To compare the dependencies λ2(p) of Ref. [32] and
λ2(μ) of our work, note that the small-p linear regime in
Ref. [32] corresponds to the Arrenius regime after the exit
from the plateau in our case. Thus, the plateau entrance in

Ref. [32] gets mapped to the plateau exit in our case. The most
striking difference between λ2(p) and λ2(μ) is the seemingly
infiniteness of the plateau in Ref. [32] and its finiteness in
our work. Another remark concerns the role of hubs for the
interlayer links. The exit from the plateau in our case indicates
a sharp increase of the number of hubs which looks similar
to the decrease of the number of hubs at the plateau entrance
discussed in Ref. [39].

Let us emphasize that we observe the collectivization of the
network clusters due to effective asymmetry of the relative in-
layer and interlayer interactions caused by advantage of con-
nected triads of unicolor links. We claim that the spontaneous
segregation of clusters can be regarded as dynamical exudation
of hidden layers in the initially homogenous system. However,
the rigorous microscopic description of this phenomena is still
absent. The attempt to construct the mean-field theory of the
dichromatic model is proposed in the Appendix.

We would like to pay attention to some similarity of the
plateau emergence with the so-called Griffiths phase known in
the theory of the phase transitions in disordered systems (see
Ref. [40] for review). The Griffiths phase emerges when, due
to fluctuations, the spontaneous droplets are formed, in which
the phase transition occurs earlier than in the whole system. To
complete the phase transition in the whole system it takes some
“time” to collectivize the degrees of freedom in formed clusters
due to the long-range interactions. In our polychromatic
networks we have an ideologically similar situation. At some
critical value, μ, we have a kind of phase transition in the
system which yields the restoration of the Z2 symmetry
due to the collectivization of modes at the plateau above
μ+

cr. However, due to the interclusters connections, the phase
transition in the whole system is incomplete and the value of
the control parameter should be increased up to μ−

cr to get the
new phase in the whole system. This happens on the plateau
exit where the clusters become completely disconnected.

It is worth asking what the continuum counterpart of
the phenomena we have found in the network is. Since in
the continuum the network becomes the membrane and the
Laplacian of the network becomes the membrane Laplacian,
the natural counterpart of our network study is the interplay
between the wave functions of two membrane “bubbles”
associated with clusters. Indeed, the effects of collectivization
of the modes in two bubbles (finite reservoirs or clusters) takes
place depending on the length and the diameter of the tube
linking these bubbles [41].

Another analogy in the continuum is as follows. Consider
the quantum spectrum of the particle in the double-well poten-
tial from the phase-space viewpoint. If the potential is a slightly
skewed, then we have two minima at the classical level and
two disconnected closed phase-space trajectories in the (p,x)
plane. Quantum tunneling provides the effective connection
(via instantons) between two classically disconnected regions
of the phase space. From the textbooks we know what happens
when the potential is Z2 symmetric. Naively, we expect
doubly degenerated ground state and breaking Z2 symmetry;
however, due to the nonperturbative effects, the sum over
instanton–anti-instanton pairs amounts to the level splitting,
and the difference between the two lowest energy levels is
nonanalytic in the coupling constant. From the phase-space
viewpoint, we could consider the two regions in the phase

062309-9



V. AVETISOV, A. GORSKY, S. NECHAEV, AND O. VALBA PHYSICAL REVIEW E 96, 062309 (2017)

space connected by the “nonperturbative tube.” It would be
interesting to pursue this analog further.

VI. DISCUSSION

In this work we have described the generic
critical phenomena of spontaneous structure formation
(clusterization) with subsequent synchronization between
emerged clusters, which can occur in disordered distributed
systems assembled from elementary species (“graph nodes”)
of various types. To demonstrate such a behavior, the
evolution of the complex system should satisfy two basic
requirements: (i) the stochastic dynamics affects all nodes
and has some global conservation law in every node (like
the vertex degree conservation), (ii) the stochastic dynamics
happens in presence of a “driving force” which is controlled
by the energy μ of small collectives of nodes of a given type
(like connected triads of unicolor vertices).

At the critical value of the control parameter, μ, the
network splits via the eigenvalue tunneling mechanism into
the collection of weakly connected extended objects (clusters,
bubbles, vesicles, etc.). The clusterization is accompanied
by the emergence of a nonperturbative zone of soft modes
around zero’s eigenvalue of the Laplacian matrix of the whole
system. The formation of these soft modes is the result of
collectivization of cross-cluster interactions. The hard modes
live inside the clusters only and are collectivized as well.

The networks are absolutely unstable with respect to the
color separation. From this point of view, the clusterization
that occurs at any positive μ can be regarded as a mechanism of
revealing of hidden layers. Our study, supported by Ref. [32],
clearly demonstrates the existence of a generic phenomena of
the “layer confinement” accompanied by the collectivization
of their degrees of freedom and formation of a “confined”
ground state of the system. The mechanism of the ground-
state confinement formation is entropic and is based on
an asymmetry of the interlayer and in-layer interactions. In
Ref. [32] the interlayer links play the key role, while in our
study the interaction of connected in-layer trimers results in
the plateau formation. Moreover, introducing the chemical
potential μ for one color only (say, only to “black” connected
trimers in dichromatic network), we still see the formation
of two layers and their synchronization at the plateau. This
clearly demonstrates that interactions in one layer only induce
the effective interactions in the second one. It is yet unclear
which types of network motifs could induce the confinement of
layers and which could not. In particular, we see that presence
of the chemical potential of unicolor dimers or closed unicolor
triads is not sufficient to produce the clusterization.

Recently, another model involving triangles and links
has been discussed in Ref. [42]. Instead of introducing the
chemical potential for the number of triangles, the authors fixed
the numbers of triangles and links. The authors in Ref. [42]
have demonstrated the existence of several infinite series of
phase transitions with different symmetry breaking patterns. It
would be interesting to identify these transitions with the phase
transition corresponding to a particular symmetry breaking
found in Ref. [4]. Note that in our study there are quite
complicated symmetry-breaking states at the intermediate
stages of the stochastic evolution. However, the symmetry

breaking in the ground state in perturbed CERN and RRG
is unique. This suggests that possibly many phases found in
the microcanonical ensemble in Ref. [42] correspond to the
intermediate metastable states in our mixed ensemble.

Understanding the striking similarity of the color separation
in polychromatic networks and the QCD chiral symmetry
breaking seems to be very challenging. In the QCD case,
the instanton–anti-instanton ensemble is considered and the
vertex degree which counts the number of the instanton’s
zero modes remains unchanged, being topologically fixed.
The overlap matrix for zero modes plays the role of the
Laplacian matrix for the network. Playing with some control
parameter, we can get the formation of extended objects built
from collection of instantons. Since the Dirac operator on
the graph can be considered, roughly speaking, as the square
root of the graph Laplacian, L, the behavior of the spectrum
of the Laplacian matrix near vanishing eigenvalue can tell
us about the corresponding behavior of the spectrum of the
Dirac operator. The latter is relevant for the chiral condensate
formation. The existence of the nonperturbative soft zone
around λ = 0, which we have found for the Laplacian, yields
the condensate emergence via the Casher-Banks relation for
the Dirac operator spectrum 〈�̄�〉 = −πρ(0). We have found
in this paper that states in the soft part of the spectrum are
localized and the appearance of the nonperturbative zone
corresponds to the Anderson transition. This correlates with
the interpretation of the chiral phase transition in QCD as
the Anderson transition [43]. It would be very interesting to
develop this line of reasoning further.

The spectral gap can been considered as an order parameter
in the statistical systems. Recently, it was argued that the
collision of two largest eigenvalues of the entanglement
Hamiltonian for two parts of the whole system in the Schmidt
decomposition corresponds exactly to the point of the phase
transition in the whole system. Moreover, the spectrum of the
entanglement Hamiltonian defines the entanglement entropy
[44]. In the context of the tensor networks the entanglement
entropy of two subnetworks is closely related to the number
of links to be cut to make two subnetworks disconnected. This
certainly has parallels with our study and we hope to discuss the
spectrum of the entanglement Hamiltonian in dichromatic and
polychromatic models and entanglement entropy of clusters
emerging in polychromatic networks in a separate publication.

To summarize, the novel criticality found in polychromatic
topological networks is a quite general phenomenon and seems
to have various practical applications in the structure formation
of evolving distributed systems related to life science, such
as social networks, electrical networks, and neural networks.
For example,a polychromatic network, such as the famous
Schelling segregation pattern of social behavior [45], could
describe a society in which the number of connections of
each individual is approximately constant, although it may
vary from one individual to the other. Each “color” designates
some typical habit to which the individual belongs. Imposing
the condition that three (or more) individuals with the same
habit have some preference, μ, we discuss the existence of
the “stability plateau” on which the number of intercolor
connections is insensitive to μ in Ref. [46]. At the plateau
exit, which occurs at sufficiently large μ, we see the formation
of spontaneously induced hubs associated with the leadership.
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APPENDIX: PARTITION FUNCTION OF DICHROMATIC
NETWORK IN THE MEAN-FIELD APPROXIMATION

Let us provide the mean-field-like consideration of the
dichromatic network with fixed fugacity of unicolor trimers
(irrespective of their topology). We introduce sij = 0,1,−1,
the “spin” variable corresponding to the bond ij (the matrix
element aij in the adjacency matrix A):

sij =
⎧⎨
⎩

+1 bond between same colors
−1 bond between different colors
0 absence of a bond

. (A1)

The Hamiltonian Hijk of the interactions between unicolor
triples (ijk) of network bonds reads:

Hijk = μ

4

(
sij sjk + sij s

2
jk + s2

ij sjk + s2
ij s

2
jk

)
. (A2)

The Hamiltonian Hijk is equal to μ if and only if the
neighboring values of sij ,sjk correspond to the same color.
If they correspond to different colors, or are absent, then
Hijk = 0.

The partition function depending on the concentration of
black-white bonds, cbw, can be written as follows:

Z(cbw) =
∑

{sij =0,±1}
exp

⎛
⎝ N∑

ijk

Hijk

⎞
⎠δ

⎛
⎝ N∑

ijk

(
sij − s2

ij + 2cbw
)⎞⎠

×
N∏

j=1

δ

(
N∑

i=1

s2
ij − dj

)
, (A3)

where dj is the vertex degree of the graph (if dj = d for
all j = 1, . . . ,N , then we have a regular random graph).

The partition function (A3) is the exact expression for
requested partition function of two-color network.

Let us transform the terms in the Hamiltonian Hijk in the
following way:

μ

4
sij sjk = μ

8
(sij + sjk)2 − μ

8

(
s2
ij + s2

jk

)
μ

4
sij s

2
jk = μ

8

(
sij + s2

jk

)2 − μ

8

(
s2
ij + s4

jk

)
μ

4
s2
ij sjk = μ

8

(
s2
ij + sjk

)2 − μ

8

(
s4
ij + s2

jk

)
μ

4
s2
ij s

2
jk = μ

8

(
s2
ij + s2

jk

)2 − μ

8

(
s4
ij + s4

jk

)
. (A4)

Now we can introduce the auxiliary Gaussian fields which
allow us to decouple interacting terms in (A4):

e
μ

8 (sij +sjk )2 =
√

2

μπ

∫ ∞

−∞
dϕijk e

− 2
μ
ϕ2

ijk+(sij +sjk )ϕijk

e
μ

8 (sij +s2
jk )2 =

√
2

μπ

∫ ∞

−∞
dχijk e

− 2
μ
χ2

ijk+(sij +s2
jk )χijk

e
μ

8 (s2
ij +sjk )2 =

√
2

μπ

∫ ∞

−∞
dωijk e

− 2
μ
ω2

ijk+(s2
ij +sjk )ωijk

e
μ

8 (s2
ij +s2

jk )2 =
√

2

μπ

∫ ∞

−∞
dψijk e

− 2
μ
ψ2

ijk+(s2
ij +s2

jk )ψijk . (A5)

To each triad of vertices ijk, we identify for independent Gaus-
sian fields ϕijk,χijk,ωijk,ψijk . Having such a representation
(in fact, this is a type of Hubbard-Stratonovich transform), we
decouple adjacent spins sij and sjk interacting in the common
graph vertex j . Exponentiating all the Kronecker δ functions
in (A3),

δ(x) = 1

2πi

∮
dλ

λx+1
=

{
1 forx = 0
0 otherwise (A6)

and using (A5), we may rewrite the partition function (A3) as
follows:

Z(cbw,d1, . . . ,dN ) =
(

2

μπ

)6N 1

(2πi)N+1

∮
dλ λ−2cbw−1

N∏
j=1

∮
dξj ξ

dj −1
j

×
N∏
ijk

∫ ∞

−∞
dϕijk e

− 2
μ
ϕ2

ijk

∫ ∞

−∞
dχijk e

− 2
μ
χ2

ijk

∫ ∞

−∞
dωijk e

− 2
μ
ω2

ijk

∫ ∞

−∞
dψijk e

− 2
μ
ψ2

ijk

×
∑

{sij =0,±1}
exp

⎧⎨
⎩

N∑
ijk

[(
sij + sjk

)
ϕijk + (

sij + s2
jk

)
χijk + (

s2
ij + sjk

)
ωijk + (

s2
ij + s2

jk

)
ψijk

− μ

4

(
s2
ij + s2

jk

) − μ

4

(
s4
ij + s4

jk

) − (
sij − s2

ij

)
ln λ − s2

ij ln ξj

]⎫⎬
⎭. (A7)
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In (A7) all spins sij sitting on bonds are decoupled and hence we can first perform summation over spins {sij = 0, ± 1} to get an
effective action for Gaussian fields ϕijk and ψijk . We have used the following identities (since the summation is carried out over
the whole network and all bonds are independent):

∏
ijk

exp[(sij + sjk)ϕijk] ≡
∏
ijk

exp[2sij ϕijk] =
∏
ij

exp

[
2sij

N∑
k=1

ϕijk

]

∏
ijk

exp
[(

sij + s2
jk

)
χijk

] ≡
∏
ijk

exp
[(

sij + s2
ij

)
χijk

] =
∏
ij

exp

[(
sij + s2

ij

) N∑
k=1

χijk

]
(A8)

and similar identities for the fields ωijk and ψijk .
For summation over spins on bonds we suppose that each link could take three independent values: sij = 0, + 1, − 1.

Performing summation, we arrive at the following expression for the effective partition function:

Z(cbw,d1, . . . ,dN ) =
(

2

μπ

)2N 1

2πi

∮
dλ λ−2cbw−1

N∏
j=1

1

2πi

∮
dξj ξ

dj −1
j

×
N∏
ijk

∫ ∞

−∞
...

∫ ∞

−∞
dϕijkdχijkdωijkdψijk e

− 2
μ

(ϕ2
ijk+χ2

ijk+ω2
ijk+ψ2

ijk)

×
∏
ijk

{
1 + e−μN−ln ξj

[
exp

(
2

N∑
k=1

(ϕijk + χijk + ωijk + ψijk)

)

+ exp

(
−2

N∑
k=1

(
ϕijk − ψijk

) − 2 ln λ

)]}
. (A9)

The effective Hamiltonian, H , reads

H = − 2

μ

∑
ijk

(
ϕ2

ijk + χ2
ijk + ω2

ijk + ψ2
ijk

) +
∑
ij

ln

{
1 + e−μN−ln ξj

[
exp

(
2

N∑
k=1

(
ϕijk + χijk + ωijk + ψijk

))

+ exp

(
−2

N∑
k=1

(ϕijk − ψijk) − 2 ln λ

)]}
. (A10)

The minimization of H over all fields leads to the following system of equations:

∂H

∂ϕijk

= 0

∂H

∂χijk

= 0

∂H

∂ωijk

= 0

∂H

∂ψijk

= 0

⇒

4

μ
ϕijk − e−μN−ln ξj [e2

∑
k(ϕijk+χijk+ωijk+ψijk) − e−2

∑
k (ϕijk−ψijk)−2 ln λ]

Aij

= 0

4

μ
χijk − e−μN−ln ξj e2

∑
k(ϕijk+χijk+ωijk+ψijk )

Aij

= 0

4

μ
ωijk − e−μN−ln ξj e2

∑
k (ϕijk+χijk+ωijk+ψijk)

Aij

= 0

4

μ
ψijk − e−μN−ln ξj [e2

∑
k(ϕijk+χijk+ωijk+ψijk) + e−2

∑
k(ϕijk−ψijk)−2 ln λ]

Aij

= 0,

(A11)

where

Aij = 1 + e−μN−ln ξj

[
exp

(
2

N∑
k=1

(
ϕijk + χijk + ωijk + ψijk

)) + exp

(
−2

N∑
k=1

(
ϕijk − ψijk

) − 2 ln λ

)]
. (A12)

From (A11) we see that χijk = ωijk . Let us introduce now
two new composite fields,

uij =
∑

k

(ϕijk + χijk + ωijk + ψijk)

vij =
∑

k

(ϕijk − ψijk). (A13)

In terms of uij and vij we can rewrite (A11) and (A12) as a
system of two independent equations:

1

μN
uij − e−μN−ln ξj e2uij

1 + e−μN−ln ξj (e2uij + e−2vij −2 ln λ)
= 0

2

μN
vij + e−μN−ln ξj −2 ln λ−2vij

1 + e−μN−ln ξj (e2uij + e−2vij −2 ln λ)
= 0. (A14)
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In the mean-field approximation we suggest that uij ≡ u, vij ≡
v, and ξj ≡ ξ and obtain the closed system of two equations
on two fields u,v:

1

μ′ u − e−μ′−ln ξ e2u

1 + e−μ′−ln ξ (e2u + e−2v−2 ln λ)
= 0

2

μ′ v + e−μ′−ln ξ−2 ln λ−2v

1 + e−μ′−ln ξ (e2u + e−2v−2 ln λ)
= 0, (A15)

where we have introduced the normalized chemical potential
of trimers, μ′ = μN .

It turns out that the system (A15) can be converted to the
single transcendental equation for one unknown function, u

(respectively, v). The equation for u reads

u − λ2[2μ′ − u(ξeμ′−2u + 1)] exp(3u + uξeμ′−2u − 2μ′) = 0.

(A16)

The (A16) can be analyzed in the regime when |u| � 1.
Expanding (A16) up to quadratic terms in u and solving
corresponding algebraic equation in a form u = u(ξ,λ,μ′),
we can identify the regime when the u does no depend (or
very weakly depends) on μ′. This regime would correspond
to the emergence of the plateau. In Fig. 6 we have shown the
dependence u(μ′) for few fixed values of ξ and λ.

For rather broad interval of ξ and λ, we see that u(μ′) ≈
const, which could be regarded as strong evidence of plateau
existence, since the dependence u(μ′) can be straightforwardly

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

u(
',

,
)

'

=7.0, =10.0
=7.0, =0.8
=2.0, =2.0
=0.8, =10.0

FIG. 6. Dependence u(μ′) for few values of fixed parameters, ξ

and λ. In a broad interval of these parameters, the value u is almost
independent on g.

translated to the dependence of the concentration of black-
white bonds on μ′. The proposed analysis is very preliminary
and deserves more involved consideration; however, first
indications that the effect of the plateau formation can be
catched within the mean-field consideration make us very
optimistic.
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