
Any-Angle Pathfinding for Multiple Agents Based on SIPP Algorithm
Konstantin Yakovlev
Federal Research Center

“Computer Science and Control”
of Russian Academy of Sciences,

Moscow, Russia
National Research University Higher School of Economics

Moscow, Russia
yakovlev@isa.ru

Anton Andreychuk
RUDN University,
Moscow, Russia

Federal Research Center
“Computer Science and Control”
of Russian Academy of Sciences,

Moscow, Russia
andreychuk@mail.com

Abstract

The problem of finding conflict-free trajectories for multi-
ple agents of identical circular shape, operating in shared 2D
workspace, is addressed in the paper and decoupled, e.g., pri-
oritized, approach is used to solve this problem. Agents’
workspace is tessellated into the square grid on which any-
angle moves are allowed, e.g. each agent can move into an
arbitrary direction as long as this move follows the straight
line segment whose endpoints are tied to the distinct grid ele-
ments. A novel any-angle planner based on Safe Interval Path
Planning (SIPP) algorithm is proposed to find trajectories for
an agent moving amidst dynamic obstacles (other agents) on
a grid. This algorithm is then used as part of a prioritized
multi-agent planner AA-SIPP(m). On the theoretical side, we
show that AA-SIPP(m) is complete under well-defined con-
ditions. On the experimental side, in simulation tests with up
to 250 agents involved, we show that our planner finds much
better solutions in terms of cost (up to 20%) compared to the
planners relying on cardinal moves only.

Introduction
Robustness, efficiency and safety of autonomous multi-
robot systems used for transportation, delivery, environment
monitoring, etc., clearly depends on a) the ability of indi-
vidual mobile robot to plan its trajectory to the goal b) the
ability of robots to avoid collisions. From an AI planning
perspective these two tasks can be combined into a single
problem of cooperative or multi-agent pathfinding inside a
shared environment (workspace), which is typically mod-
eled with a graph. Graph vertices commonly correspond
to distinct locations robot(s) can occupy and edges corre-
spond to elementary trajectories, such as line segments, that
robot(s) can traverse.

Among various graph models, used for both individual
and cooperative pathfinding, grids can be named to be the
most widespread representations due to their simplicity and
seamless integration into the robots’ ”sense-plan-act” loop.

Typically in 2D grid pathfinding an agent is presumed
to move from one traversable (unblocked) cell to one of
its eight adjacent neighbors. Sometimes diagonal moves
are prohibited, restricting an agent’s moves to the four car-
dinal directions only. Various methods can be utilized to

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

find conflict-free paths for multiple agents that move on a
grid in such a way: HCA* (Silver 2005), OD+ID (Stand-
ley 2010), MAPP (Wang and Botea 2011), M* (Wagner and
Choset 2011), CBS (Sharon et al. 2015) and it’s modifica-
tions (Barer et al. 2014; Cohen et al. 2016) etc. Some of
these methods have initially been developed for grid worlds
(like MAPP), while others (like CBS) can apply to arbitrary
graphs (grids including).

At the same time, the limitations of 8 (or 4) connected
grids have led to increased popularity of any-angle pathfind-
ing. In any-angle pathfinding, an agent is allowed to move
into arbitrary directions and a valid move is represented by
a line segment, whose endpoints are tied to the distinct grid
elements (either the center or the corner of the cells) and
which does not intersect any blocked cell. Single agent any-
angle pathfinding algorithms like Theta* (Nash et al. 2007),
Anya (Harabor et al. 2016) etc. tend to find shorter and more
realistic looking paths, e.g. paths without numerous heading
changes.

Incorporating any-angle planners into the cooperative
path-finding framework is a non-trivial task for the follow-
ing reason. Even in the simplest case when circular agents
of the identical size (equivalent to the size of the grid cell)
move with identical speeds in 2D environment, following
any-angle paths, there is no one-to-one correspondence be-
tween the grid elements and possible conflict locations (see
Figure 1). One needs to resolve this ambiguity as graph-
based multi-agent planners in general rely on the fact that
conflicts are tied to the vertices or edges of the given graph
or grid.

In addition, when multiple agents follow any-angle paths
the conflicts can occur at any point of the continuous time-
line, as opposed to the case when agents are confined to four
cardinal moves on a grid only and conflicts appear at discrete
time points 1, 2, 3, etc., which allows effortless management
of the wait actions.

It is also worth noting here that the problem of collision-
free paths for multiple circular robots moving amidst polyg-
onal obstacles in general is NP-hard (Spirakis and Yap
1984).

To attack the aforementioned challenges we suggest a)
using decoupled, e.g., prioritized, approach to cooperative
pathfinding; as well as b) using any-angle adaptation of the
SIPP algorithm (Phillips and Likhachev 2011) to search for

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

586



Figure 1: Continuous conflict zone (shaded circle) for any-
angle paths on grid.

the individual paths.
In prioritized planning (Erdmann and Lozano-Pérez

1987) all agents are assigned unique priorities and paths
are planned one by one in accordance with the imposed or-
dering using some (preferably complete) algorithm. From
previous research, it is known that decoupled planners
scale well to large problems and are much more efficient
computationally-wise than the coupled ones that search for
a solution in joint state space which is a cardinal product of
individual state spaces. On the other hand, the latter plan-
ners are optimal while the former are not even complete in
general. At the same time, under certain conditions their
completeness can be guaranteed (Čáp et al. 2015) and these
conditions typically hold in practice. Thus, decoupled plan-
ning is an appealing alternative to the coupled approach, es-
pecially from a practical point of view. Motivated by this,
we have developed a new decoupled, prioritized planner,
AA-SIPP(m) (any-angle SIPP applied to multiple agents),
capable of solving cooperative pathfinding problems under
any-angle assumption. To the best of authors’ knowledge, it
is the first algorithm of this kind.

The proposed method is complete under well-defined con-
ditions, as well as highly efficient in practice. The results
of the experimental evaluation show that the success rate of
AA-SIPP(m) is extremely high (>97%) and the average so-
lution cost is significantly better (up to 20%) than the one
achieved by both coupled and decoupled planners, that rely
on cardinal-only moves.

Problem Statement
We first formulate the problem of cooperative pathfinding in
�2, following the notation from (Čáp et al. 2015), and then
convert it to a grid-based search problem.

Consider n circular agents of identical radii, r, and identi-
cal maximum moving speeds, v, operating in 2D workspace,
W ⊂ �2, populated with arbitrary obstacles. The corre-
sponding configuration space is C = Cfree ∪ Cobs, where
Cfree is the free space and Cobs = C\Cfree. The task of each
agent i is to move from it’s start location, si ∈ Cfree, to it’s
goal location, gi ∈ Cfree. This task can be accomplished by
following the trajectory, which is a mapping from the time

points to the locations in free space, πi : [0,+∞) → Cfree.
The trajectory is feasible if it starts at the agent’s start lo-
cation: π(0) = si, reaches and stays at the goal location:
∃tg : π(t) = gi∀t > tg , and the agent following π never
moves faster than its maximum speed. The trajectories πi,πj

of two agents are said to be conflict-free if the bodies of the
agents never intersect when they follow the trajectories.

Problem. Given the workspace W , as well as the con-
figuration space C, and the set of start and goal locations
{s1, . . . , sn}, {g1, . . . , gn} find a set of feasible trajectories
{π1, . . . , πn} such that each pair of them is conflict-free. To
convert this problem to the graph-search problem we assume
the following:

1. W is a bounded rectangle {(x, y):xmin≤x≤xmax,
ymin≤y≤ymax} which is tessellated into the square grid.

2. The size of the grid cell is 2r. Thus, assuming that an
agent is an open disk of radius r, the former fits into the
cell when the centers of the agent and the cell coincide.

3. Grid cell c is traversable (free) if c ∩ Cfree = c and is
un-traversable (blocked) otherwise.

4. Inertial effects are neglected, e.g. agents start, stop and
turn instantaneously and always move with their maximal
speed v. Without loss of generality, that speed is 2r (one
cell-width) per unit time.

5. Start and goal locations of the agents are confined to the
center of traversable grid cells.

6. An agent may move from the center of one traversable cell
to the center of the other following the straight line con-
necting those cells. Thus, moves into arbitrary directions
that result in any-angle spatial paths, are allowed.

7. Agents are able to wait only at the start points of the seg-
ments along their paths and at the goal locations.

According to the 5th, 6th and 7th assumptions, the trajec-
tory now is the pair 〈path, wait-list〉, composed of the spatial
and time components. Path is a sequence of the line seg-
ments (which endpoints are tied to the centers of the grid
cells), starting at s and ending with g. The feasible path
is such a path that has at least r-clearance of the blocked
cells, e.g., an agent following such a path will never col-
lide with static obstacles. Wait-list is a list of wait actions
corresponding to the start points of the segments compris-
ing the path (with the last wait action corresponding to the
goal location). As before, two trajectories are conflict-free if
the bodies of the agents never intersect when they follow the
trajectories.

Due to the fact that distance is equivalent to time and both
are measured in the same units (see assumption 4) the cost
of the trajectory is the cumulative sum of the lengths of the
path segments and the durations of correspondent wait ac-
tions. The cost of the joint solution for n agents, which is a
set of pairwise conflict-free trajectories, is the sum of costs
of individual solutions. In this work cost of the solution is
not subject to strict constraints (optimal solutions are not tar-
geted), but low cost solutions are preferable.

587



Approach overview
The proposed algorithm relies on decoupled, e.g., priori-
tized, planning. First, each agent is assigned a unique prior-
ity. Second, the trajectories for individual agents are planned
sequentially from the highest priority agent to the lowest pri-
ority one. For each agent, a trajectory is planned such that
it avoids both the static obstacles in the environment and the
higher-priority agents moving along the trajectories planned
in the previous iterations. This is done by the enhanced SIPP
algorithm, which was originally presented by (Phillips and
Likhachev 2011), and is adapted by us for any-angle path
finding.

Planning with SIPP
SIPP algorithm treats trajectories of the high-priority agents
as moving obstacles and uses special technique of group-
ing contiguous, collision-free time points into safe intervals,
which are then used to define the duration of the wait actions.
We refer the reader to the papers (Phillips and Likhachev
2011; Narayanan, Phillips, and Likhachev 2012) for the de-
tailed explanation of the algorithm as well as examples, and
now proceed with an overview.

Each state, s, of the SIPP state-space is identified by a
tuple s = [cfg, interval] with the additional data, such
as [g(s), h(s), parent(s), time(s)] also associated with it.
Here cfg is the configuration, e.g. agent’s particular loca-
tion (possibly complimented with the additional information
on spatial properties such as heading angle etc.), interval is
the safe time interval, e.g. the contiguous period of time
for a configuration, during which there is no collision and it
is in collision one time point prior and one time point after
the period. time(s) is the earliest possible moment of time
(within the safe interval) an agent can arrive to cfg. g(s)
is cost of the best path from the start configuration to cfg
found so far via the parent node – parent(s), h(s) is the
heuristic estimate of the cost of the path to goal configura-
tion. It is noteworthy that numerous states with the same
configuration, but different disjoint safe time intervals, can
simultaneously exist in the search-space.

SIPP heuristically searches the state-space using A* strat-
egy, e.g. it iterates through the states choosing the one with
the lowest g(s)+h(s) value, e.g. f -value, and expanding it.
Expanding procedure is composed of successors’ generation
and their g-values and time update. g-values are updated in
a conventional A* fashion. Successors’ generation involves
iterating through the configurations reachable from the cur-
rent one (we will refer to such configurations as neighbors),
calculating their safe intervals and estimating the earliest ar-
rival time for each interval. The latter is used for time up-
date. In case time does not fit inside the safe interval the
successor is pruned.

The algorithm stops when the search node correspond-
ing to the goal configuration is selected for the expan-
sion. Then the sought conflict-free trajectory can be recon-
structed in the following manner. Goal state, parent(goal),
parent(parent(goal)) etc. are sequentially added to the
list until the start state is reached, the list is then re-
versed. Configurations (cfg0, cfg1, . . . , cfgn) of the states

(s0, s1, . . . , sn) residing in the resulting list define a spa-
tial component of the trajectory, e.g a path. Consider now
two sequential states, si, si+1, and correspondent earliest
arrival times, time(si), time(si+1). In case time(si+1) >
time(si) + durmove(cfgi, cfgi+1), where durmove is the
duration of the move, connecting adjacent configurations,
a wait action preceding this move is added. It’s duration is
durwait(cfgi) = time(si+1)−durmove(cfgi, cfgi+1), e.g.
after arriving at cfgi agent stops and waits for the durwait

time points. Thus, both spatial and time components of the
sought trajectory are identified.
Algorithm 1: AA-SIPP

1 g(sstart) = 0; OPEN = �;
2 insert sstart into OPEN with f(sstart) = h(sstart);
3 while sgoal is not expanded do
4 remove s with the smallest f -value from OPEN ;
5 for each cfg in NEIGHBORS(s.cfg) do
6 successors = getSuccessors(cfg, s);
7 if cfg is reachable from parent(s).cfg then
8 successors = successors ∪

getSuccessors(cfg, parent(s));
9 for each s′ in successors do

10 if s′ was not visited before then
11 f(s′) = g(s′) = ∞;
12 if g(s′) > g(s) + c(s, s′) then
13 g(s′) = g(s) + c(s, s′);
14 updateTime(s′);
15 insert s′ into OPEN with

f(s′) = g(s′) + h(s′);

16 Function getSuccessors(cfg, s)
17 successors = �;
18 m time = time to reach cfg from s.cfg;
19 start t = time(s) +m time;
20 end t = endT ime(interval(s)) +m time;
21 intervals =get all safe intervals for cfg;
22 for each safe interval i in intervals do
23 if startT ime(i) > end t or

endT ime(i) < start t then
24 continue;
25 t=earliest arrival time from s to cfg during

interval i with no collisions;
26 if t does not exist then
27 continue;
28 s′=state of configuration cfg with interval i

and time t;
29 insert s′ into successors;
30 return successors;

Pseudo-code for SIPP algorithm is shown in Algorithm 1.
Lines 7-8 are related to any-angle SIPP, e.g. AA-SIPP, only
and are omitted in the original algorithm.

Any-angle SIPP
Before proceeding with the detailed explanation of the any-
angle SIPP algorithm, please note that when inertial effects

588



are neglected (assumption 4) the configuration of the search
state is simply the cell (coordinates of the center of the cell
(assumptions 5 and 6), to be more precise).

Generating successors

The core routine of the AA-SIPP algorithm, as well as of the
original SIPP, is generating successors for a state. AA-SIPP
generates successors twice, first in a conventional SIPP man-
ner and then by trying to achieve a particular configuration,
adjacent to the state under expansion, from the parent of this
state. Thus, a set of AA-SIPP successors for each state con-
tains all SIPP successors plus possibly additional ones. The
latter may have smaller g-values and arrival times due to the
fact that they are reached in a more straightforward way.

To determine whether one configuration is reachable from
the other (line 7), a modified Wu’s algorithm is used. The
latter is a well-known in computer graphics algorithm (Wu
1991) that identifies pixels (grid cells in our case) that lie
along the straight line connecting two endpoints (configura-
tions). We augmented the original algorithm with additional
checks to ensure all cells lying within r distance from the
line segment are identified.

To illustrate how both the original and the modified al-
gorithms work consider the example depicted on Figure 2.
In this case, the original Wu shifts from left to right and on
each step processes one grid column and marks exactly two
vertically adjacent cells that are the closest to the line seg-
ment connecting the endpoints1. By construction these cells
have the property that an open-disk agent of radius r will
definitely hit them while moving along the line. It is also
possible for an agent to hit other cells of the current grid
column, so additional checks (not present in the original al-
gorithm) are performed in the following manner. We calcu-
late the distance between the line segment and the bottom-
right/upper-left corner of the cell residing on top/bottom of
the cell-batch identified earlier2. If the distance is less than r,
the corresponding cell is also marked. The algorithm stops
when the grid column containing the endpoint of the line
segment is processed with all the cells lying within r dis-
tance from the line segment being identified. If all these
cells are traversable, two configurations are considered to be
reachable one from the other, e.g. open-disk agent of radius
r can straightly move between them without colliding with
static obstacles.

The complexity of the algorithm is O(n), where n is
max(Δx,Δy) and Δx(Δy) – is the absolute difference in
x(y)-coordinates of the endpoints.

We now move on to the detailed explanation of how the
safe intervals are calculated (line 22) and the earliest avail-
able times are estimated (line 25).

1In practice these cells are identified very quickly using only
integer calculations.

2Additional pruning rules can also be introduced to reduce the
number of top/bottom residing cells being checked. We omit the
description of these rules for the sake of space but, indeed, our
implementation of the algorithm utilizes them.

Figure 2: Estimating the reachability of the configuration s′
from p(s′) (best viewed in color). Cells that are identified
by Wu’s algorithm are highlighted in bold. The ones that are
additionally checked are marked with orange square signs
in the upper-left/lower-right corners. Some of them (marked
with orange border) are additionally added to the result set.

Calculation of the safe intervals for a configuration
Consider a configuration, cfg, e.g. center of the grid cell,
for which the safe intervals are to be calculated and further
used as the part of the search node identifier. We iterate
through the paths of the moving obstacles and by invoking
modified Wu’s algorithm (see above) discover the cells, lo-
cated within r distance from the paths. If cfg is not among
these cells, its interval is [0,+∞), e.g. not a single moving
obstacle hits the cell at any time. In case cfg belongs to
the formed set, exact time points defining the start point and
the endpoint of the interval are calculated as follows. First,
by applying conventional formulas of computational geome-
try, the coordinates of the intersections of the circumference
of radius 2r with the center in the interested configuration
and the segments of the paths of closely passing obstacles
are identified (see Figure 3). Then the arrival times to these
points are calculated. These times form the collision inter-
val for the configuration and safe interval is its inversion. In
case several moving obstacles pass through the cfg, all the
safe intervals are calculated and some of them are merged if
needed. The latter can happen when several obstacles follow
each other with no gap.

It’s worth pointing out that calculated safe intervals are
used only to identify nodes in the search space, not to esti-
mate earliest arrival time or resolve conflicts.

Estimating earliest arrival times
Consider a successor s′ of the state s under expansion and a
segment 〈parent(s′), s′〉. Precise estimation of the earliest
arrival time to s′ (and how it fits into the current safe inter-
val of s′) involves numerous checks and calculations asso-
ciated with particular formulas of computational geometry
and is likely to be very time consuming in practice. Instead
we suggest a procedure for the approximate time(s′) calcu-
lation that takes into account all the time-space constraints
imposed by moving obstacles.

589



Figure 3: Safe and collision intervals for a configuration.

We first trace all the segments of obstacles’ paths and
identify the cells that lie within r distance from them3 (using
modified Wu’s algorithm as described before) – CFG1(see
Figure 4). For each identified cfg ∈ CFG1 we store the co-
ordinates of point p, the closest point to the center of the
cell cfg, lying on the corresponding obstacle path’s seg-
ment 〈a, b〉; as well as time(p), which equals time(a) +
dist(a, p). We call this tuple [p, time(p)] – a constraint. In
case p is the start point of 〈a, b〉 and obstacle waits in a,
occupying the cell for a particular time twait before mov-
ing on, multiple constraints [p, time1(p)], . . . , [p, timek(p)]
are associated with that cell. Here time1(p) = time(a),
timei+1 = timei + 2r, timek = min{timek−1 +
2r, time(a) + twait}.

We then invoke modified Wu’s algorithm on the end-
points of the segment 〈parent(s′), s′〉 and plot the cells ly-
ing within r distance from it – CFG2. We are now inter-
ested only in those configurations that are present in both
sets CFG1, CFG2 (these cells can be identified extremely
quickly in practice by overlapping two sets). More precisely
– we are interested in the constraints [p, time(p)] which are
tied to these configurations. It is noteworthy here that the
distance between the consecutive constraint points p does
not exceed 2r.

We discard now the constraints [p, time(p)] having the
property dist(p,〈parent(s′), s′〉)≥2r and end up with so-
called relevant constraints. Each of them is a marker
saying that some obstacle passes nearby the segment
〈parent(s′), s′〉 at particular moment of time thus a poten-
tial conflict exists and should be resolved.

For each constraint [p, time(p)] consider the interval
[time(p) − 4r; time(p) + 4r]. This interval is the con-
sistent estimate of the collision interval at time(p), i.e.
an agent moving along any trajectory on a grid is guar-
anteed not to collide with the obstacle in the 2r prox-
imity of point p in case it’s trajectory always has 4r

3On the implementation side this is done only once for each
path as soon as it is planned.

Figure 4: Estimating constraints. Left: cells that are hit by
the obstacle moving along 〈a, b〉 segment are highlighted in
bold; p1, ..., p6 – are the points on the obstacle’s path that are
the closest to the centers of cells being hit. Right: cells that
are hit by the agent are highlighted in bold; cells that are hit
by both the obstacle and the agent (B2, B3, B4) are marked
with solid squares in the upper-left corners; p′2, p

′
4, p

′
6 – are

the points on the agent’s path that are the closest to the ob-
stacle path.

gap to [p, time(p)]. By saying “having the 4r gap to
[p, time(p)]” we mean that an agent passes the closest to
p point on its path either 4r time units before or after
time(p). The corresponding collision interval for s′ will
now be [time(p)− 4r + offset; time(p) + 4r + offset],
offset = dist(s′, p′), where p′ is closest to p point on the
segment 〈parent(s′), s′〉. If an agent starts moving from
parent(s′) towards s′ at any time point outside the colli-
sion interval, it is guaranteed not to collide with the obsta-
cle on the segment stretching from p− to p−, where p− is
the obstacle’s position 2r time units before time(p) and p−
– is the obstacle’s position 2r time units after. Given that
the distance between any consecutive points in {p} does not
exceed 2r, one can claim that using them to calculate the
abovementioned intervals result in a consistent overlapping
set of collisions for s′.

When all collision intervals (induced by all relevant con-
straints) for s′ are calculated they are used to estimate the
earliest arrival time within the interval i (line 25 of the pseu-
docode) in the following way. First, in case some colli-
sion intervals overlap, they are merged. Then we iterate
through the resulting set of the collision intervals, cols, and
check whether start t belongs to colsi. If yes, then the
sought earliest arrival time, time(s′), equals the end of colsi
and we break the cycle. After breaking, we check whether
time(s′) > endT ime(i). If yes, then interval i is unreach-
able and the successor s′ with this interval is pruned. If no,
then successor s′, defined by the configuration s′.cfg and
time interval i, with the earliest arrival time time(s′) is valid
and is inserted into the successors set (lines 28-29).

590



It also can happen that start t doesn’t belong to any colli-
sion interval from cols. It, therefore, means that time(s′) =
start t, i.e. an agent can immediately start moving towards
s′ from parent(s′) without waiting.

AA-SIPP and AA-SIPP(m) properties
AA-SIPP stands for the any-angle SIPP, and when it is ap-
plied as the individual planner inside a prioritized multi-
agent planning framework, we end up with algorithm called
AA-SIPP(m). These algorithms have the following proper-
ties:

Property 1. AA-SIPP is complete (with respect to the
grid discretization of the 2D workspace).

Sketch of proof. AA-SIPP generates exactly the same
successors SIPP does plus possibly some extra ones (short-
cuts) and has the same strategy of state space exploration as
SIPP. Taking into account SIPP’s completeness (Phillips and
Likhachev 2011) we can directly infer the completeness of
AA-SIPP.

Property 2. The cost of the AA-SIPP solution never ex-
ceeds the cost of the SIPP solution.

Sketch of Proof. The claim flows out of the fact that suc-
cessors set for AA-SIPP is the superset for SIPP successors.

Property 3. AA-SIPP(m) is complete (under assumptions
made) in well-defined infrastructures where the well-defined
infrastructure is a multi-agent trajectory planning instance
having the following property: For any start and goal loca-
tions (centers of grid cells), a path exists between them:

a) with at least r-clearance with respect to the static ob-
stacles;

b) with at least 2r-clearance to any other start or goal lo-
cation.

Informally, a well-formed infrastructure (WFI) has its
endpoints distributed in such a way that any agent standing
on an endpoint cannot completely prevent other agents from
moving between any other two endpoints.

Sketch of Proof. It has been shown before that prioritized
planner relying on the complete individual pathfinding algo-
rithm that takes into account previously found trajectories as
fixed obstacles in space-time, is complete in WFI (Čáp et al.
2015; Čáp, Vokřı́nek, and Kleiner 2015). Thus, as AA-SIPP
is complete, AA-SIPP(m) is also complete.

Experimental analysis
We compared the proposed multi-agent planner AA-
SIPP(m) with the following grid-based planners relying on
cardinal moves only: SIPP(m), ICBS and ECBS. The lat-
ter two are the coupled planners of the CBS family: ICBS is
the enhanced version of CBS that guarantees finding optimal
solutions for cooperative pathfinding problems (Boyarski et
al. 2015); ECBS is the modification of CBS which trades off
optimality for speed (Barer et al. 2014). We used the im-
plementation of ICBS from the authors’ repository4, the im-
plementation of ECBS provided by Pavel Surynek5 and our
own implementations of SIPP(m), AA-SIPP(m)6. The ex-

4https://bitbucket.org/eli.boyarski/mapf
5http://ktiml.mff.cuni.cz/~surynek/research/ecbs/
6https://github.com/PathPlanning/AA-SIPP-m

N ICBS SIPP(m) AA-SIPP(m) ECBS

50

Success 97.00% 100.00% 100.00% 100%
Time(s) 3.4176 0.0155 0.1311 0.1421

Cost 2240.56 2249.31 1758.29 2241.76
(+0.39%) (-21.52%) (+0.05%)

100

Success 62.00% 100.00% 100.00% 100%
Time(s) 26.9789 0.0553 0.4186 0.5905

Cost 4446.65 4483.66 3575.87 4452.28
(+0.83%) (-19.58%) (+0.13%)

150
Success 14.00% 100.00% 100.00% 100%
Time(s) – 0.1236 0.8931 1.6989

Cost – 6749.81 5485.56 6668.04

200
Success 0.00% 100.00% 100.00% 100%
Time(s) – 0.2147 1.6784 4.1229

Cost – 9106.2 7574.8 8947.8

250
Success 0.00% 100.00% 100.00% 100%
Time(s) – 0.3344 2.8774 9.0114

Cost – 11532.85 9812.7 10778.6

Table 1: Results of the algorithms’ evaluation on 64x64
empty grids.

periments were conducted on Windows-8.1 PC with AMD
FX-8350(4.0 GHz) CPU and 16 Gb of RAM. Time limit for
each run was set to 5 minutes, e.g. if the planner was not able
to produce a solution within this time it was interrupted and
the instance was counted as failed when calculating success
rate.

It is worth noting here that all algorithms involved in the
experimental analysis are somewhat parameter specific, e.g.
they can be parameterized in different ways and different
parametrizations might lead to different results. The key pa-
rameter for the prioritized planners, e.g. SIPP(m) and AA-
SIPP(m), is the way the priorities are assigned. We used the
simplest FIFO scheme, e.g. the agent which appeared to be
the first in the input task description was assigned the highest
priority. Applying different and more complicated prioriti-
zation rules, like random restarts (Cohen et al. 2016) etc., is
an appealing direction for future research. As for ICBS and
ECBS, we parametrized them in a way the authors of the al-
gorithms had suggested in their original papers: (Boyarski
et al. 2015) and (Barer et al. 2014) respectively.

First, we compared the algorithms on 64x64 grids without
any obstacles. Instances with the number of agents equal to
50, 100, 150, 200 and 250 were generated (100 instances
per each number of agents). For each instance start and
goal locations were chosen randomly, in such a way that
the distance between any two of them was not less than 4r.
Thus, each instance was a well-formed infrastructure (see
above) and was definitely solvable by prioritized planners,
e.g. SIPP(m) and AA-SIPP(m).

Averaged results of this test are presented in table 1.
When calculating average runtimes and solution costs for
50- and 100-agents only those instances that were success-
fully handled by all algorithms were taken into account. Un-
fortunately, in cases where the number of agents exceeds
100, the success rate of ICBS is extremely low (up to 0%).

591



brc202d den520d ost003d
N ICBS SIPP(m) AA-SIPP(m) ECBS ICBS SIPP(m) AA-SIPP(m) ECBS ICBS SIPP(m) AA-SIPP(m) ECBS

25

Success 100% 100% 100% 100% 99% 99% 99% 99% 99% 100% 100% 100%
Time(s) 0.1105 0.0881 0.4735 0.2128 0.347 0.108 0.6873 0.2895 0.6365 0.0966 0.4814 0.1809

Cost 3242.71 3244.13 2818.07 3243.12 3484.85 3487.18 2808.66 3485.8 2706.91 2711.43 2140.75 2708.12
(+0.04%) (-13.64%) (+0.01%) (+0.07%) (-19.13%) (+0.03%) (+0.17%) (-20.92%) (+0.04%)

50

Success 98% 100% 100% 100% 92% 100% 100% 100% 71% 99% 99% 100%
Time(s) 2.056 0.1929 1.1353 0.4796 4.9273 0.2304 1.7087 0.8292 10.7776 0.2218 1.3025 0.5067

Cost 6389.7 6394.75 5575.79 6390.99 6875.8 6884.33 5558.98 6877.93 5362.21 5380.37 4273.8 5367.3
(+0.08%) (-13.5%) (+0.02%) (+0.12%) (-18.91%) (+0.03%) (+0.34%) (-20.3%) (+0.09%)

75

Success 92% 100% 100% 100% 75% 99% 99% 100% 22% 99% 99% 100%
Time(s) 5.2857 0.3128 2.0074 0.9185 15.0511 0.3865 3.2271 1.5346 – 0.4215 2.7905 1.3954

Cost 9600.36 9611.16 8372.0 9603.35 10293.1 10311.4 8344.37 10298.2 – 8373.43 6663.58 8340.22(+0.11%) (-13.38%) (+0.03%) (+0.18%) (-18.66%) (+0.05%)

100

Success 66% 97% 97% 99% 45% 100% 100% 100% 4% 99% 99% 100%
Time(s) 13.1123 0.4719 3.2037 1.6128 32.6364 0.5654 4.9068 1.9032 – 0.5931 4.2395 2.5662

Cost 12806.2 12822.7 11094.1 12811.2 13665.3 13697.5 11105.4 13674.2 – 10959.5 8755.2 10906.4(+0.13%) (-13.37%) (+0.04%) (+0.24%) (-18.73%) (+0.07%)

Table 2: Results of the algorithms’ evaluation on grid-worlds from Dragon Age: Origins.

Thus, the latter was excluded from the comparison and run-
time and cost for SIPP(m), AA-SIPP(m) and ECBS were
calculated by averaging over all instances (as all of them
were solved by these planners under the 5 minutes time cap).

As one can see prioritized planners are faster than the cou-
pled ones, although the provided times should not be com-
pared directly due to the different algorithms’ implemen-
tations. Surprisingly there is not that much difference be-
tween ICBS, SIPP(m) and ECBS in terms of solution qual-
ity, e.g. cost. At the same time, costs of the AA-SIPP(m)
solutions are nearly 20% lower on average than the costs of
the cardinal-moves-optimal solutions of ICBS.

Next, we compared algorithms on three grid-worlds from
the Dragon Age: Origins collection of the well-known
Nathan Sturtevant’s benchmark set (Sturtevant 2012). These
were the maps that had previously been used in the com-
munity (see the IJCAI-2015 paper on ICBS (Boyarski et al.
2015)): brc202d, den520d, ost003d. brc202d has almost
no open spaces and many bottlenecks, den520d has many
large open spaces and no bottlenecks and ost003d has a few
open spaces and a few bottlenecks. Start locations were cho-
sen randomly and respective goal locations were chosen by
a 100000-step random walk from the starting ones. There
were generated 100 problem instances for 25, 50, 75 and
100 agents. The results of the experiment are presented in
table 2.

As before, one can notice that the cost difference be-
tween optimal solutions gained by ICBS and solutions pro-
vided by ECBS and SIPP(m) is negligible – less than a
percent on average. While the latter planners are notably
faster (except in cases where the number of agents is rela-
tively small, e.g. 25). AA-SIPP(m), as before, is faster than
ICBS, slower than SIPP(m) and the costs of its solutions are
significantly smaller than the costs of optimal-for-cardinal-
moves-only ones. For den520d and ost003d cost reduction
is 19-20% on average, while for brc202d it’s a bit lower, e.g.
13.5%. This is perfectly explainable as brc202d map mod-
els a corridor-like environment without large open spaces,
present on den520d and ost003d, where the paths can be

smoothed by any-angle moves.
It’s also notable that despite the fact ICBS is guaranteed

to find an optimal solution for any multi-agent pathfind-
ing problem, it actually fails to do so very often when the
reasonable time limit (5 minutes) is set. While proposed
prioritized, any-angle planner, AA-SIPP(m), being gener-
ally incomplete, solves almost all problems under imposed
time constraints. Thus, one can claim that, practically,
mixed planning strategies and practices should be used to
achieve best results and that any-angle multi-agent pathfind-
ing should be one of such practices.

Summary
In this work we have studied a multi-agent pathfinding prob-
lem in case square grids are used as the environment model
and each agent is allowed to move in arbitrary directions.
We adopted the prioritized approach to solve the problem,
which is known to be very effective in practice although
does not guarantee completeness in general, as opposed to
coupled approaches that search in the combined search-state
of the multi-agent system. We have proposed a novel any-
angle planner for individual pathfinding that builds on top
of the well-known SIPP algorithm. Proposed algorithm is
complete and the prioritized multi-agent planner utilizing
it, AA-SIPP(m), is also complete under well-defined con-
ditions which often hold in practice.

Conducted experiments confirmed that using AA-
SIPP(m) leads to solutions with lower costs (up to 20%)
as opposed to those obtained by the optimal coupled plan-
ner, relying on cardinal-only moves. Success rate of AA-
SIPP(m) under reasonable time constraints exceeds 97%
(at least for the scenarios we were experimenting with),
while the same indicator for state-of-the-art coupled plan-
ner, ICBS, is significantly lower.

In future, we intend to continue experimenting and modi-
fying AA-SIPP and AA-SIPP(m) to speed up the algorithms.
Another appealing direction of research is applying AA-
SIPP to 3D workspaces.

592



Acknowledgments
This work was supported by the Russian Science Foundation
(Project No. 16-11-00048).

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of The
7th Annual Symposium on Combinatorial Search (SoCS-
2014), 19–27.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Betzalel,
O.; Tolpin, D.; and Shimony, E. 2015. ICBS: Improved
conflict-based search algorithm for multi-agent pathfinding.
In Proceedings of The 24th International Joint Conference
on Artificial Intelligence (IJCAI-2015), 740–746.
Čáp, M.; Novák, P.; Kleiner, A.; and Selecký, M. 2015. Pri-
oritized planning algorithms for trajectory coordination of
multiple mobile robots. IEEE Transactions on Automation
Science and Engineering 12(3):835–849.
Čáp, M.; Vokřı́nek, J.; and Kleiner, A. 2015. Complete de-
centralized method for on-line multi-robot trajectory plan-
ning in well-formed infrastructures. In Proceedings of The
25th International Conference on Automated Planning and
Scheduling (ICAPS-2015), 324–332.
Cohen, L.; Uras, T.; Kumar, T.; Xu, H.; Ayanian, N.; and
S.Koenig. 2016. Improved solvers for bounded-suboptimal
multiagent path finding. In Proceedings of The 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
2016), 3067–3074.
Erdmann, M., and Lozano-Pérez, T. 1987. On multiple
moving objects. Algorithmica 2:1419–1424.
Harabor, D.; Grastien, A.; Oz, D.; and Aksakalli, V. 2016.
Optimal any-angle pathfinding in practice. Journal of Artifi-
cial Intelligence Research 56:89–118.
Narayanan, V.; Phillips, M.; and Likhachev, M. 2012. Any-
time safe interval path planning for dynamic environments.
In Proceedings of The 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS-2012), 4708–
4715.
Nash, A.; Daniel, K.; Koenig, S.; and Felner, A. 2007.
Theta*: Any-angle path planning on grids. In Proceed-
ings of The 22nd AAAI Conference on Artificial Intelligence
(AAAI-2007), 1177–1183.
Phillips, M., and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In Proceedings of
The 2011 IEEE International Conference on Robotics and
Automation (ICRA-2011), 5628–5635.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant., N. R.
2015. Conflict-based search for optimal multiagent path
finding. Artificial Intelligence Journal 218:40–66.
Silver, D. 2005. Cooperative pathfinding. In Proceedings of
The 1st Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-2005), 117–122.
Spirakis, P., and Yap, C.-K. 1984. Strong NP-hardness
of moving many discs. Information Processing Letters
19(1):55–59.

Standley, T. S. 2010. Finding optimal solutions to coop-
erative pathfinding problems. In Proceedings of The 24th
AAAI Conference on Artificial Intelligence (AAAI-2010),
173–178.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games 4(2):144–148.
Wagner, G., and Choset, H. 2011. M*: A complete multi-
robot path planning algorithm with performance bounds. In
Proceedings of The 2011 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS-2011), 3260–
3267.
Wang, K.-H. C., and Botea, A. 2011. MAPP: A scalable
multi-agent path planning algorithm with tractability and
completeness guarantees. Journal of Artificial Intelligence
Research 42:55–90.
Wu, X. 1991. An efficient antialiasing technique. In
Proceedings of The 18th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH-1991),
143–152.

593




