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Self-contracted curves have finite length

Eugene Stepanov and Yana Teplitskaya

Abstract

A curve θ: I → E in a metric space E equipped with the distance d, where I ⊂ R is a
(possibly unbounded) interval, is called self-contracted, if for any triple of instances of time
{ti}3

i=1 ⊂ I with t1 � t2 � t3 one has d(θ(t3), θ(t2)) � d(θ(t3), θ(t1)). We prove that if E is a
finite-dimensional normed space with an arbitrary norm, the trace of θ is bounded, then θ has
finite length, that is, is rectifiable, thus answering positively the question raised in Lemenant’s
paper [‘Rectifiability of non Euclidean planar self-contracted curves’, Confluentes Math. 8 (2016)
23–38].

1. Introduction

Let E be a metric space equipped with the distance d. A curve θ: I → E, where I ⊂ R is an
(possibly unbounded) interval, is called self-contracted, if for any triple of instances of time
{ti}3

i=1 ⊂ I with t1 � t2 � t3 one has d(θ(t3), θ(t2)) � d(θ(t3), θ(t1)). Of particular interest are
continuous self-contracted curves in a finite-dimensional space Rn equipped with some norm.
In [3, 5] it has been shown that such curves arise as steepest decent curves for convex and
level set convex (sometimes called also quasi-convex) functions in the Euclidean space. In [3]
it has been proven that every self-contracted curve in a bounded subset of R2 (equipped with
the usual Euclidean distance) necessarily has finite length, that is, is rectifiable. This result
has been further extended to Rn with arbitrary n � 1, again equipped with Euclidean norm,
in [1] (and, independently, in [5] for continuous self-contracted curves) and to an arbitrary
finite-dimensional Riemannian manifold in [2]. Note that the self-contracted property is quite
sensible to the change of the distance and even of the norm in Rn, namely, it is easy to provide
examples of curves self-contracted with respect to some norm and not self-contracted with
respect to an equivalent one: for instance, a curve moving along three consecutive sides of the
square [0, 1]2 (say, clockwise, from the origin to (0, 1), then to (1, 1) and finally to (1, 0)) is self-
contracted with respect to the maximum (that is, �∞2 ) norm in R2, but not with respect to the
Euclidean one. This raises the natural question whether it can be extended to self-contracted
curves in Rn equipped with an arbitrary norm. This question has been posed in [4], and in the
same paper a partial answer for uniformly convex smooth (C2) norms has been given for the
case n = 2. Here we give a positive answer for the case of a generic norm in Rn, n � 1, not
necessarily smooth.

As opposed to [1, 3] (and to [4] which substantially extends the technique of [1]), where the
proofs are based on finite ‘continuous’ analysis arguments fundamentally relying on [6], our
technique has some ‘discrete’ flavor. Namely, we first provide an estimate on self-contracted
polygonal lines identified by the ordered set (A1, . . . , Ar) ∈ Er of their vertices (of course, the
use of the term ‘polygonal line’ outside of a context of a linear vector space is an abuse of the
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language). Namely, a vector of (A1, . . . , Ar) ∈ Er will be called self-contracted with respect
to the distance d (or with respect to the norm ‖ · ‖, if d is coming from some norm ‖ · ‖), if
d(Ak, Aj) � d(Ak, Ai) whenever i � j � k. We show that if E is a finite-dimensional normed
space, then the total Euclidean length of the self-contracted polygonal line is estimated by the
Euclidean distance between its first and last vertex. This immediately proves the desired result
for self-contracted curves. The proof of the estimate of the length of self-contracted polygonal
lines is more or less discrete in nature and uses a specially tailored induction together with
some combinatorial type arguments on particular arrangements of sets of vertices.

2. Notation and preliminaries

For {A,B} ⊂ Rn we denote by (AB) the unique line defined by these points (of course, when
they are distinct), by [AB] the closed line segment with endpoints A and B, by |AB| its
Euclidean length. The notation | · | will always stand for the Euclidean norm in Rn, and a · b will
stand for the standard scalar product between a ∈ Rn and b ∈ Rn. For two vectors {ν1, ν2} ⊂
Rn we denote by ̂(ν1, ν2) the angle between them, so that ̂(ν1, ν2) ∈ [0, π]. If � ⊂ Rn is a line
and Π ⊂ Rn is a linear subspace of arbitrary positive dimension, we denote by (̂�,Π) the angle
between them (that is, the minimum angle between vectors belonging to � and Π, respectively),
so that (̂�,Π) ∈ [0, π/2]. The angle at vertex B of a triangle with vertices A, B, C will be
denoted by ∠ABC. For a D ⊂ Rn we denote by ∂D its topological boundary and by diam D

its Euclidean diameter (that is, the diameter with respect to the Euclidean distance). For
{a, b} ∈ R we write a ∨ b := max{a, b}.

The notation ν⊥ for a ν ∈ Rn, unless otherwise explicitly defined, will stand for the linear
subspace {v ∈ Rn : v · ν = 0}, and Π⊥ for a linear subspace Π ⊂ Rn will stand for its orthogonal
complement.

Fixed an ε > 0, we call a segment [AB] ε-horizontal with respect to the linear subspace
Π ⊂ Rn of arbitrary positive dimension, if ̂((AB),Π) � ε, and ε-vertical with respect to this
subspace otherwise (we will abbreviate both notions to just horizontal or vertical, respectively,
if both the subspace and ε are clear from the context). We use this notion in particular when
the subspace Π is one-dimensional and coincides with some axis xj of some chosen coordinate
system (the axis is seen as just a line, that is, ignoring its direction). By pΠ we denote the
orthogonal projection onto Π.

If E is an arbitrary set, and (A1, . . . , Ar) ∈ Er is an arbitrary vector of points of E,
then a vector (Aj1 , . . . , Ajk) ∈ Ek with 1 � j1 < j2 < · · · < jk � r, will be called subvector
of (A1, . . . , Ar), denoted by (Aj1 , . . . , Ajk) ⊂ (A1, . . . , Ar). If necessary, we identify the vector
(A1, . . . , Ar) ∈ Er with the set {A1, . . . , Ar} so that we write just (A1, . . . , Ar) ⊂ E. In case
E = Rn, we call the variation of (A1, . . . , Ar) ∈ Er (denoted by �(A1, . . . , Ar)) the Euclidean
length of the polygonal line A1 . . . Ar := ∪r−1

j=1[AjAj+1], that is,

�(A1, . . . , Ar) :=
r−1∑
i=1

|AiAi+1|.

Further, for a linear subspace Π ⊂ Rn of arbitrary positive dimension we define the variation
of (A1, . . . , Ar) along Π by

�Π(A1, . . . , Ar) := �(pΠ(A1), . . . , pΠ(Ar)).

For a curve θ : I → Rn, where I ⊂ R is an interval (not necessarily finite), we denote by �(θ)
its parametric length defined by the usual formula

�(θ) := sup
{
�
({θ(tj)}mj=1

)
: {tj}mj=1 ⊂ I,m ∈ N

}
.
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3. Main results

The following theorem is the first main result of this paper.

Theorem 3.1. Let Ai ∈ Rn, i = 1, . . . , r, and the vector (A1, . . . , Ar) is self-contracted with
respect to the norm ‖ · ‖, then

�(A1, . . . , Ar) � C|A1Ar|

for some C > 0 depending only on ‖ · ‖ and on the space dimension n.

An immediate consequence of the above result is the following theorem on self-contracted
curves giving the complete answer to the question posed in the Introduction.

Theorem 3.2. Let E be a finite-dimensional space equipped with the norm ‖ · ‖, and let
θ : I → E, where I ⊂ R is a (possibly unbounded) interval, be a self-contracted curve with trace
in a bounded set D ⊂ E. Then �(θ) � Cdiam D for some C > 0 depending only on ‖ · ‖ and on
the space dimension n.

Proof. Consider an arbitrary finite set {ti}ri=1 ⊂ I, ti � ti+1. We have now that for
Ai := θ(ti) the vector (A1, . . . , Ar) is self-contracted in E. Thus

�(A1, . . . , Ar) � C|A1Ar| � Cdiam D

by Theorem 3.1, concluding the proof. �

Remark 3.3. The proofs of Theorems 3.1 and 3.2 never use essentially the symmetry of
the norm ‖ · ‖. If the norm is not symmetric (that is, not necessarily satisfying the assumption
‖ − x‖ = ‖x‖ for all x ∈ E), with the distance (now not necessarily symmetric anymore) defined
still by d(x, y) := ‖y − x‖, then the geometric meaning of the self-contracted property of the
curve does not change with respect to the standard situation of a symmetric norm, that is,
for every triple of instances of time {ti}3

i=1 ⊂ I with t1 � t2 � t3 and θ(t1) on the boundary
of a ball of the norm (now a generic, not necessarily symmetric bounded convex absorbing
set) centered at θ(t3) one has that θ(t2) cannot be strictly outside of the latter ball. Then
using Lemma A.2 one has to change its claim as described in Remark A.3. This would change
the constant 3/4 in the claim of Lemma 5.10 and hence also the explicit constants in all the
subsequent lemmata have to be substituted by constants dependent only on the norm ‖ · ‖,
but all the respective results will remain true up to such modification of constants. Thus both
Theorems 3.1 and 3.2 are in fact true for possibly not symmetric norms.

Remark 3.4. It is important to note that not every self-contracted curve with bounded
trace in a finite-dimensional normed space is continuous. In fact, the easy example θ : [0, 1] →
R defined by θ(t) := 0 for t ∈ [0, 1/2) and θ(t) := 1 for t ∈ [1/2, 1] provides a discontinuous
self-contracted curve even in R.

The example below shows that no similar result can be expected in an infinite-dimensional
situation (even in an infinite-dimensional Hilbert space instead of the Euclidean one).

Example 3.5. Let �2 stand for the standard Hilbert space of square summable sequences
equipped with its usual norm ‖ · ‖2, {ek}∞k=1 standing for its usual orthonormal basis. Then
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the curve θ : [0,+∞) → �2 defined by

θ(t) :=

{
0, t ∈ [0, 1) ,∑k−1

j=1
1
j ej , t ∈ [k − 1, k) , k ∈ N, k � 2,

is self-contracted because

‖θ(k), θ(l)‖2
2 =

k−1∑
j=l

1
j2

>
k−1∑
j=m

1
j2

= ‖θ(k), θ(m)‖2
2

when l < m < k, {l,m, k} ⊂ N, and its trace belongs even to a compact subset of �2 (the Hilbert
cube), but �(θ) �

∑∞
k=1 1/k = +∞. The same curve restricted to every finite interval of time,

say, [0, n], n ∈ N, provides an example of a self-contracted curve in a bounded subset of the
Euclidean space Rn, for which the constant C in Theorem 3.2 tends to infinity as n → +∞.
The same example can be also easily interpreted in the language of self-contracted polygonal
lines rather than curves. It is also an easy exercise to transform this example in the one with
continuous self-contracted curves.

It is worth providing also another simple though instructive example.

Example 3.6. Let L2(0, 1) stand for the standard Lebesgue space of square integrable
functions over (0, 1) equipped with its usual norm still denoted ‖ · ‖2 (there is obviously no
confusion with the previous example, though the notation for the norm is the same), and
the curve θ : [0, 1] → L2(0, 1) be defined by θ(t) := 1[0,t], the characteristic function of the
interval [0, t], t ∈ [0, 1]. It is obviously self-contracted because ‖θ(t) − θ(s)‖2 = |t− s|1/2, and
the same relationship shows that it is not rectifiable, though its image is a compact set (as
a continuous image of [0, 1]). Note that this is nothing but a standard construction of the
isometric embedding into L2(0, 1) of the ‘snowflake’ space [0, 1] equipped with the distance
d(t, s) := |t− s|1/2.

The rest of the paper will be dedicated to the proof of Theorem 3.1, first in an easy particular
case and then in the general situation.

4. The heart of the proof: an easy case

Before presenting the quite lengthy and technical proof of Theorem 3.1 in its full generality, we
provide here for the readers’ convenience its extremely simple version for a particular situation
of the two-dimensional space R2 equipped with the maximum norm ‖(x1, x2)‖∞ := |x1| ∨ |x2|,
so that its closed unit ball B is the square [−1, 1]2. This proof, though quite immediate,
represents the heart of our general construction, and hence hopefully simplifies the reading
of the general proof. We will further comment on how the general proof is obtained from this
easy particular situation.

Proof of Theorem 3.1, easy case. The ball B = [−1, 1]2 can be represented as the union
of N = 4 triangles {Pi}Ni=1, the vertices of each of the triangles Pi being the origin and two
neighboring vertices of the square [−1, 1]2. We assume the triangles to be intersecting each
other only at the origin (so they are neither open nor closed). By scaling we may assume
without loss of generality that Aj ∈ B + Ar for all j = 1, . . . , r. The rest of the proof is divided
then in three steps.
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Step 1. We claim that

�(A1, . . . , Ar) � C1

N∑
i=1

�((A1, . . . , Ar) ∩ (Pi + Ar)) + C2|A1Ar| (4.1)

for some positive constants C1 and C2. In fact, consider an arbitrary j ∈ {1, . . . , r − 1} such that
Aj+1 ∈ Pi + Ar, but Aj 
∈ Pi + Ar for some i = 1, . . . , N . Then for every fixed i ∈ {1, . . . , N}
either

(i) j is the first integer in {1, . . . , r} such that Aj+1 ∈ Pi + Ar, that is, {s ∈ {1, . . . , j} : As ∈
Pi + Ar} = ∅. In this case, since {Aj , Aj+1} ∈ λB + Ar with λ := ‖A1Ar‖ (because
(A1, . . . , Ar) is self-contracted), then

|AjAj+1| �
√

2‖AjAj+1‖ � 2
√

2‖A1Ar‖ � 2
√

2|A1Ar|.
For each i = 1, . . . , N except one (for which A1 ∈ Pi + Ar) there is clearly one and only
one such j and hence the sum of Euclidean lengths of all such line segments |AjAj+1|
through all Pi, i = 1, . . . , N , is estimated from above by C2|A1Ar|, with C2 := (N −
1)2

√
2 = 6

√
2;

(ii) or there is an

s(j) := max{s ∈ {1, . . . , j} : As ∈ Pi + Ar},
and s(j) < j by the definition of s(·), hence

|AjAj+1| �
√

2‖AjAj+1‖ �
√

2‖As(j)Aj+1‖ �
√

2|As(j)Aj+1|.
Then with C2 :=

√
2 one has∑

j∈{1,...,r−1}
{Aj ,Aj+1}⊂Pi+Ar

|AjAj+1| +
∑

j∈{1,...,r−1}
as in (ii)

|AjAj+1|

� C2

⎛
⎜⎜⎝ ∑

j∈{1,...,r−1}
{Aj ,Aj+1}⊂Pi+Ar

|AjAj+1| +
∑

j∈{1,...,r−1}
as in (ii)

|As(j)Aj+1|

⎞
⎟⎟⎠

= C2�((A1, . . . , Ar) ∩ (Pi + Ar)).

Hence, from (i) and (ii), we get (4.1).

Step 2. Assume now (A1, . . . , Ar) ⊂ Pi + Ar for some i = 1, . . . , N , and show that

�(A1, . . . , Ar) � C|A1Ar| (4.2)

for some universal constant C > 0. We consider to this aim the system of cartesian coordinates
with axes passing through Ar (considered then as the origin of the system), with the axis
x2 directed perpendicular to the side of Pi coinciding with a side of the square ∂B (see
Figure 4.1(a)), and the axis x1 parallel to the latter side. Then

�(A1, . . . , Ar) �
r−1∑
j=1

(|x1
j+1 − x1

j | + |x2
j+1 − x2

j |
)

= �x1(A1, . . . , Ar) + �x2(A1, . . . , Ar), (4.3)

where xl
j := pxl(Aj), l = 1, 2, j = 1, . . . , r. But x2

j+1 � x2
j for all j (because (A1, . . . , Ar) is

self-contracted and (A1, . . . , Ar) ⊂ Pi + Ar), so that

�x2(A1, . . . , Ar) =
r−1∑
j=1

∣∣x2
j+1 − x2

j

∣∣ = −
r−1∑
j=1

(
x2
j+1 − x2

j

)
=

∣∣x2
r − x2

1

∣∣ . (4.4)
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Ar x1

x2

Pi

B + Ar

(a)

Ar x1

x2

Pi

B + Ar

(b)

Ar

x1

x2

Pi

B + Ar

(c)

Figure 4.1 (colour online). (a) Proof of the easy case of Theorem 3.1 (n = 2, maximum norm),
Step 2; (b) the case n = 2, the unit ball is a convex polygon; (c) the case n = 2, generic norm.

To estimate �x1(A1, . . . , Ar), observe that there is a subset (Aq1 , . . . , Aql) ⊂ (A1, . . . , Ar)
having the same �x1 but with (x1

qj − x1
qj+1

)(x1
qj−1

− x1
qj ) < 0, that is, the projection of

(AqjAqj+1) over x1 is directed oppositely to that of (Aqj−1Aqj ), for all j = 2, . . . , l − 1.
The respective set of indices Λ := {q1, . . . , ql} is formed by downward induction, namely,
setting ql := r, ql−1 := r − 1 and then for each j having determined qj and qj+1, finding the
maximum index s < j such that (x1

qj − x1
qj+1

)(x1
s − x1

qj ) < 0 and setting qj−1 := s. Since clearly
�x1(Aj−1, Aj , Aj+1) = �x1(Aj−1, Aj+1) when the projections of (Aj−1Aj) and of (AjAj+1) over
x1 have the same direction, then

�x1(Aq1 , . . . , Aql) = �x1(A1, . . . , Ar),

and therefore we may assume without loss of generality (up to renaming the indices) that
the original vector (A1, . . . , Ar) has the property that the projection of (AjAj+1) over x1 is
directed oppositely to that of Aj−1Aj , for all j = 2, . . . , r − 1. Now, we note that∣∣x1

j+1 − x1
j−1

∣∣ ∨ ∣∣x2
j+1 − x2

j−1

∣∣ = ‖Aj−1Aj+1‖ � ‖AjAj+1‖ �
∣∣x1

j+1 − x1
j

∣∣
implies that

(i) either |x1
j+1 − x1

j | � |x2
j+1 − x2

j−1| (that is, the segment (Aj−1Aj+1) is ‘vertical’ in the
sense that its maximum norm is given by the length of its projection onto x2),

(ii) or |x1
j+1 − x1

j | � |x1
j+1 − x1

j−1| (that is, the segment (Aj−1Aj+1) is ‘horizontal’ in the
sense that its maximum norm is given by the length of its projection onto x1).

In case (ii) x1
j+1 is closer to x1

j than to x1
j−1 but lies on the same side of x1

j as x1
j−1, so that

∣∣x1
j+1 − x1

j

∣∣ � 1
2

∣∣x1
j − x1

j−1

∣∣ ,
and therefore in either of the cases∣∣x1

j+1 − x1
j

∣∣ � 1
2

∣∣x1
j − x1

j−1

∣∣ +
∣∣x2

j+1 − x2
j−1

∣∣ .
Thus, by induction,

∣∣x1
j+1 − x1

j

∣∣ �
∣∣x1

2 − x1
1

∣∣
2j−1

+
1
2

j+1∑
k=3

∣∣x2
k − x2

k−2

∣∣
2j−k

,
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and therefore,

�x1(A1, . . . , Ar) =
r−1∑
j=1

∣∣x1
j+1 − x1

j

∣∣ � ∣∣x1
2 − x1

1

∣∣ r−1∑
j=1

1
2j−1

+
1
2

r−1∑
j=1

j+1∑
k=3

∣∣x2
k − x2

k−2

∣∣
2j−k

=
∣∣x1

2 − x1
1

∣∣ r−1∑
j=1

1
2j−1

+
r∑

k=3

∣∣x2
k − x2

k−2

∣∣ r−1∑
j=k−1

1
2j−k+1

� 2
∣∣x1

2 − x1
1

∣∣ + 2
r∑

k=3

∣∣x2
k − x2

k−2

∣∣ � 2
∣∣x1

2 − x1
1

∣∣ + 2�x2(A1, . . . , Ar)

� 2
∣∣x1

2 − x1
1

∣∣ + 2
∣∣x2

1 − x2
r

∣∣ by (4.4)

� 2|A1A2| + 2|A1Ar| � 4
√

2|A1Ar| + 2|A1Ar|
since {A1, A2} ⊂ Ar + ‖A1Ar‖B.

(4.5)

Plugging (4.5) and (4.4) into (4.3), we get (4.2) as claimed.

Step 3. Denoting now (Aj1i
, . . . , A

j
m(i)
i

) := (A1, . . . , Ar) ∩ (Pi + Ar) for each i = 1, . . . , N ,

where jli ∈ {1, . . . , r} (and, clearly, jm(i)
i = r), one has applying the result of Step 2 (with j1

i

instead of 1 and j
m(i)
i instead of r) the estimate

�((A1, . . . , Ar) ∩ (Pi + Ar)) � C|Aj1i
A

j
m(i)
i

| = C|Aj1i
Ar| � C

√
2|A1Ar|,

and hence applying (4.1), we conclude the proof. �

From an easy particular case to the general situation

The above argument captures all the essential features of the complete proof: namely, the
division of the unit ball B of the norm in a finite number of ‘cone-like’ subsets Pi, the reduction
of the estimate of the variation of (A1, . . . , Ar) to the estimates of variations of its subvectors
in each Pi (that is, Step 1 of the above proof, compare it with the Step 1 of the proof of the key
Lemma 6.13 in the sequel), and the separate estimate of the variation of a polygonal line inside
each Pi along each of the appropriately chosen axes with a separate consideration of ‘vertical’
and ‘horizontal’ line segments (that is, Step 2 of the above proof). However, there are several
substantial difficulties arising on this way, which we list below.

(i) The first difficulty comes already when trying to generalize the above argument to the
case n = 2 and the unit ball B of the norm ‖ · ‖ an arbitrary convex polygon rather than a
square. The division of B into triangles Pi and the choice of the axes for each Pi is natural and
clearly the same as in our simple model case of the maximum norm (see Figure 4.1(b)), so that
the self-contracted polygonal line with vertices inside Pi with this choice never goes upwards in
the direction of x2. However, the argument of Step 2 of the above model proof becomes much
more involved because the estimates for ‘horizontal’ and ‘vertical’ parts of the polygonal line
are not at all that simple as in the case of the maximum norm.

(ii) The next difficulty comes with the case of a generic norm ‖ · ‖ (that is, with the unit
ball not necessarily a polygon) in R2 (that is, still n = 2). In this case it is only possible to
choose the division of the unit ball B of the norm ‖ · ‖ into the sets Pi such that with some
natural choice of the direction x2 for each Pi the self-contracted polygonal line with vertices
inside Pi might go upwards in the direction of x2 but ‘not too much’ (see Figure 4.1(c)). This
naturally leads to quantitative notions of the ‘horizontality’ and ‘verticality’ for line segments.
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(iii) However, the major difficulty comes when trying to adapt these arguments to the generic
space dimension n. In fact, consider even the simplest case, say, of the maximum norm ‖ · ‖
in R3, with the unit ball B of the norm being the cube [−1, 1]3. The sets Pi then are (quite
similarly to the case of a maximum norm in R2) the six pyramids with one of the vertices in the
origin, the bases being the faces of the cube (which in a sense justifies the notation Pi for them).
With the natural choice of coordinates for each of such pyramids (x3 perpendicular to the base)
the self-contracted polygonal line with vertices inside the pyramid can only go downwards in
the direction of x3, but has a lot of freedom in the other two directions. Hence, intuitively,
one has to consider separately the ‘horizontal’ parts of this polygonal line making separate
estimates for their subparts belonging again to different pyramids (of course, related to the
pyramid Pi originally considered), with vertices shifted away from the origin. This leads to the
notion of admissible ordered sets of pyramids (see Definition 5.6), each such set producing a
natural system of not necessarily orthogonal coordinates, and to a technically involved inductive
argument for the generic space dimension. Very roughly speaking, in a generic space dimension
n, in each of the sets Pi we will calculate separately the variation of the ‘vertical’ part of the
self-contracted vector, which is easy by monotonicity (or ‘almost monotonicity’ in the case of
a generic norm, when Pi is no more a pyramid) of xn coordinates of the vertices, the axis xn

being determined by the set Pi, and then, by induction, the variation of its ‘horizontal’ part.
When calculating the latter, we will arrange this part in subparts belonging to different sets
Pj , each one determining the respective axis xn−1, and estimate again separately the variation
of its ‘vertical’ and ‘horizontal’ parts (now with respect to xn−1), proceeding by backward
induction.

Note that as explained above, in principle one can avoid using induction for n = 2; however,
the general proof we provide uses induction even in this relatively simple case. Last but not
least, it is worth mentioning that for a generic norm ‖ · ‖ the sets Pi are no more pyramids and
may have a quite complicated structure (although this would not affect the proof).

5. Preliminary constructions

5.1. Partition of a convex body

For a convex set D ⊂ Rn we say that νx ∈ Rn is a vector of external normal to D at x ∈ ∂D, if
there is a support hyperplane Π to D at x orthogonal to νx and νx is directed toward the open
half-space bounded by Π and not containing D. Clearly, an x ∈ ∂D may have many external
normal vectors, unless ∂D is smooth.

We will need the following construction.

Proposition 5.1. Let D ⊂ Rn be a convex set. Then for every δ > 0 there is a cover of ∂D

by a finite number of sets {Ti}Ni=1 (with some N = N(δ) ∈ N) with the following property: for
every i ∈ {1, . . . , N} there is a vector νi such that for every x ∈ Ti there is a vector of external

normal νx to D at x with ̂(νx, νi) < δ.

Proof. Given a δ > 0, we take a finite cover of Sn−1 as in the statement being proven, that
is, find {T̃i}Ni=1 (with some N = N(δ) ∈ N), ∪N

i=1T̃i = Sn−1 such that for every i ∈ {1, . . . , N}
there is a vector νi with the property that for every x ∈ T̃i the unique vector of external unit
normal νx to Sn−1 at x satisfies ̂(νx, νi) < δ. It suffices to define now Ti to be the set of all
x ∈ ∂D that admit a unit vector of external normal νx to D coinciding with some vector of
external unit normal νy to Sn−1 at some y ∈ T̃i. �

Remark 5.2. Although the sets Ti mentioned in the above Proposition 5.1 may be
overlapping, we may easily make them disjoint by substituting Ti with Ti \ ∪i−1

j=1Tj .
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A1 + ν⊥
A1

D

A1

ν
<δ

<δ

A1 + ν⊥ B

νA1

T

Figure 5.1 (colour online). Construction of the proof of Lemma 5.4.

Applying Proposition 5.1 with Remark 5.2 to the closed unit ball B of ‖ · ‖, given a δ > 0,
we find an N = N(δ) ∈ N and a finite family of disjoint sets {Ti}Ni=1 and vectors {νi}Ni=1 such
that ∪iTi = ∂B and for every i ∈ {1, . . . , N} and every x ∈ Ti there is a vector of external
unit normal νx to D at x with ̂(νx, νi) < δ. Define then Pi := ∪t∈[0,1]tTi, and note that now by
construction one has Pi ∩ Pj = {0} for i 
= j. We will further frequently use the following fact.

Lemma 5.3. Let (A1, . . . , Ar) ⊂ Pi + Ar for some i ∈ {1, . . . , N} be self-contracted with

respect to the norm ‖ · ‖. Then ̂((AjAj+1), (νi)⊥) > δ, j ∈ {1, . . . , r − 1} implies

(Aj −Aj+1) · νi > 0.

Proof. The result follows from Lemma 5.4 applied with D := Ar + λB, T := Ar + λTi, where
λ := ‖Aj −Ar‖, Aj in place of A1 and Aj+1 in place of A2, once we observe that Aj+1 ∈ D by
self-contracted requirement on (A1, . . . , Ar). �

The following immediate geometric fact has been used in the above proof.

Lemma 5.4. Let D ⊂ Rn be a convex set, δ > 0, T ⊂ ∂D, ν ∈ Rn be such that for every

x ∈ T there is a vector of external normal νx to D at x with (̂νx, ν) < δ. If A1 ∈ T, A2 ∈ D and
̂((A1A2), ν⊥) > δ, then (A1 −A2) · ν > 0.

Proof. If B ∈ Rn satisfying ̂((A1B), ν⊥) > δ is such that (B −A1) · ν � 0, then
̂(B −A1, ν) < π/2 − δ, so that

̂(B −A1, νA1) � ̂(B −A1, ν) + ̂(ν, νA1) <
π

2
− δ + δ =

π

2
.

Hence B belongs to the open half-space bounded by the hyperplane A1 + ν⊥A1
and not

containing D (see Figure 5.1). Thus, it is impossible that (A2 −A1) · ν � 0 because A2 ∈ D,
which concludes the proof. �

For a linear subspace Π ⊂ Rn of arbitrary dimension, and an ε � 0 we define

Vε(Π) := {z ∈ Rn : ̂((0, z),Π) � ε} ∪ {0},
We also need the following statement.
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Lemma 5.5. Let D ⊂ Rn be a bounded convex set with nonempty interior int D, and 0 ∈
int D. Then there is an ε0 > 0 and a ξ̄ ∈ (0, π/2) (depending only on D) such that for every
linear subspace Π ⊂ Rn of arbitrary dimension, and every x ∈ Vε0(Π) ∩ ∂D one has that every

external normal νx to D at x satisfies (̂νx,Π) < ξ̄.

Proof. If the claim is false, then there is a sequence of linear subspaces {Πk}, and of points
{xk} ⊂ ∂D such that limk

̂(νxk
,Πk) = π/2. Up to passing to subsequences (not relabeled), we

may assume Πk → Π in the sense of Hausdorff (for some linear subspace Π ⊂ Rn), xk → x ∈ ∂D,
νxk

→ ν (for some ν ∈ Rn) and support hyperplanes xk + (νxk
)⊥ to D at xk orthogonal to νxk

converge to x + ν⊥ which is necessarily a support hyperplane to D at x (as limit of support
hyperplanes) as k → ∞. Since then (̂ν,Π) = π/2, one has Π ⊂ ν⊥, and hence 0 ∈ ν⊥, which
means 0 ∈ ∂D, contradicting the assumption 0 ∈ int D. �

We apply Lemma 5.5 to D := B (the closed unit ball of ‖ · ‖), and find an ε0 > 0 and a ξ̄
depending only on B (hence on ‖ · ‖) such that for every linear subspace Π ⊂ Rn of arbitrary
dimension and every x ∈ Vε0(Π) ∩ ∂D one has that every external normal νx to B at x satisfies
(̂νx,Π) < ξ̄ < π/2. Hence denoting

Aε(Π) := {i ∈ {1, . . . , N} : Ti ∩ Vε(Π) 
= ∅},
we have that (̂νi,Π) < ξ̄ + δ for all i ∈ Aε0(Π). Thus there is a δ̄ > 0 depending only on ξ̄

(hence only on ‖ · ‖) such that (̂νi,Π) < ξ for all i ∈ Aε0(Π) and for some ξ ∈ (0, π/2), which
still depends only on ‖ · ‖, when δ < δ̄ (one may take, say, ξ := ξ̄/2 + π/4 and δ̄ := π/4 − ξ̄/2).
The following notion will be at the heart of our inductive construction.

Definition 5.6. We will call the (ordered) (n− i + 1)-tuple of sets (Pαi
, . . . ,Pαn

), with
αj ∈ {1, . . . , N}, j = i, . . . , n, i ∈ {1, . . . , n} admissible, if for all j = i + 1, . . . , n one has

αj−1 ∈ Aε0(Π
j−1), where Πj−1 := (span {ναk}nk=j)

⊥,

or, equivalently, Tαj−1 ∩ Vε0(Π
j−1) 
= ∅, that is,

̂(ναj−1 ,Πj−1) < ξ for all j = i + 1, . . . , n. (5.1)

In case i = n the ordered (n− i + 1)-tuple (Pαi
, . . . ,Pαn

) reduces to a singleton which is by
definition always considered admissible.

Each admissible ordered n-tuple of sets (Pα1 , . . . ,Pαn
) will determine in a natural way a

(not necessarily orthogonal) coordinate system (different for different admissible n-tuples): in
fact, the axes xj , j = 2, . . . , n, will be directed along vectors ναj determined by the sets Pαj

,
while the axis x1 will be chosen orthogonal to all xj with j = 2, . . . , n. The idea of the proof of
Theorem 3.1 is then as follows: the whole vector (A1, . . . , Ar) will be appropriately arranged in
subvectors naturally corresponding to some admissible ordered n-tuples (Pα1 , . . . ,Pαn

) so that
the total variation of each of subvectors could be evaluated in a coordinate system determined
by the respective n-tuple, and the total variation of the whole vector would then be estimated
by the sum of variations of the chosen subvectors.

Finally, we will need the following simple geometric lemma.

Lemma 5.7. Let Π ⊂ Rn be a k-dimensional linear subspace, {νi}ki=1 ⊂ Π such that

̂(
xi,

(
span{νj}kj=i+1

)⊥) � ζ, i = 1, . . . , k − 1 (5.2)
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for some ζ ∈ (0, π/2), where xi := span{νi}, i = 1, . . . , k. Then there is a constant C = Ck(ζ) >
0 such that for every A ∈ Rn one has

|pΠ(A)| � C

k∑
i=1

|pxi(A)|.

Proof. Note first that according to the condition (5.2) on {νj}, these vectors are linearly
independent and hence Π = span {νi}ki=1. One further notes that it is enough to prove the
statement for A ∈ Π, which in this case reduces to

|A| � Ck(ζ)
k∑

i=1

|pxi(A)|. (5.3)

In fact then for an arbitrary A ∈ Rn one has the estimate

|pΠ(A)| � Ck(ζ)
k∑

i=1

|pxi(pΠ(A))| � Ck(ζ)
k∑

i=1

|pxi(A)|,

the latter inequality being valid because |pxi(pΠ(A))| = |pxi(A)|.
We therefore prove (5.3) for A ∈ Π. For this purpose we use the (finite) induction on k. The

statement is trivial for k = 1 (with C1(ζ) := 1). Suppose it is true for k = m. To prove it for
k = m + 1, for an arbitrary linear subspace Π ⊂ Rn of dimension m + 1 we denote

Πm :=
(
span {νj}m+1

j=2

)⊥ ∩ Π,

Π⊥
m := span {νj}m+1

j=2 .

Note that for A ∈ Π one has

px1(A) = px1(pΠm
(A) + pΠ⊥

m
(A)) = px1(pΠm

(A)) + px1(pΠ⊥
m

(A))

= pΠm
(A) cos ̂(x1,Πm) + pΠ⊥

m
(A) sin ̂(x1,Πm),

(5.4)

and thus

|A| � |pΠm
(A)| + |pΠ⊥

m
(A)|

=
1

cos ̂(x1,Πm)

(
|px1(A)| − |pΠ⊥

m
(A)| sin ̂(x1,Πm)

)
+ |pΠ⊥

m
(A)| by (5.4)

�
(

1 + tan ̂(x1,Πm) +
1

cos ̂(x1,Πm)

)(|px1(A)| + |pΠ⊥
m

(A)|)

�
(

1 + tan ζ +
1

cos ζ

)(|px1(A)| + |pΠ⊥
m

(A)|) because ̂(x1,Πm) � ζ

�
(

1 + tan ζ +
1

cos ζ

)(
|px1(A)| + Cm(ζ)

k+1∑
i=2

|pxi(A)|
)

by inductive assumption,

which implies the claim with Cm+1(ζ) := (1 + tan ζ + 1
cos ζ )(Cm(ζ) ∨ 1). �

From now on we denote

C(ζ) := max
k∈{1,...,n}

Ck(ζ), (5.5)
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Q
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(A) (B)

Figure 5.2 (colour online). Constructions in the proof of Lemma 5.10.
(A) Definition of Δ(α). (B) Proof of Δ(α) > 0.

where Ck(ζ) > 0 is defined by Lemma 5.7 (in fact, we may clearly always take Ck(ζ)
nondecreasing with k, in which case C(ζ) = Cn(ζ)). Clearly, for a fixed ζ the constant C(ζ)
depends only on the space dimension n.

5.2. Preliminary lemmata on self-contracted polygonal lines

In the sequel we will extensively use without any further reference the following immediate
observations.

Remark 5.8. If (A1, . . . , Ar) is self-contracted, then so is any of its subvectors
(Aj1 , . . . , Ajk).

Remark 5.9. If (A1, . . . , Ar) is self-contracted, then

|AjAm| � C|A1Ar|

for all (j,m) ⊂ {1, . . . , r} and for some C > 0 depending only on ‖ · ‖. In fact, the self-contracted
property of (A1, . . . , Ar) implies {Aj , Am} ⊂ Ar + λB, where B is the closed unit ball of ‖ · ‖
and λ = |A1Ar|, so that |AjAm| � λdiam B, hence one may take C := diam B.

We will also need the following lemmata.

Lemma 5.10. There is a constant ε1 ∈ (0, π/2) depending only on the norm ‖ · ‖ such that
when the vector (A1, A2, A3) is self-contracted with respect to the norm ‖ · ‖, ∠A1A2A3 � 2ε1,
then |A2A3| � 3/4|A1A2|.

Proof. Let B as usual stand for the closed unit ball of the norm ‖ · ‖. By Lemma 5.5 the
minimum over P ∈ ∂B angle between (OP ) and any support hyperplane to B at P ∈ ∂B, is at
least π/2 − ξ̄ > 0. For an arbitrary α ∈ (0, π/2 − ξ̄) denote

Δ(α) := inf{|PQ| : {P,Q} ⊂ ∂B, P 
= Q,∠OPQ � α}

(see Figure 5.2(A)). We have that Δ(α) > 0. In fact, otherwise there is a sequence {Pν , Qν}ν ⊂
∂B, Pν 
= Qν , limν Pν = limν Qν = P ⊂ ∂B, ∠OPνQν � α. Choose an arbitrary support hyper-
plane Πν to B at Qν . Without loss of generality we may assume the existence of a limit
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Figure 5.3 (colour online). Proof of the claim of Lemma 5.10.

limν Πν = Π, and thus Π is a support hyperplane to B at P . Denoting Rν := Πν ∩ (OPν), we
get

̂((OP ),Π) = lim
ν

̂((OPν),Πν) � lim
ν

∠ORνQν

� lim
ν

∠OPνQν because Pν ∈ [ORν ],

� α

(see Figure 5.2(B)), which is impossible for α ∈ (0, π/2 − ξ̄), because ̂((OP ),Π) � π/2 − ξ̄.
Consider the set D3 := {z ∈ Rn : ‖A2 − z‖ � ‖A1 − z‖} (see Figure 5.3) and observe that

{A2, A3} ⊂ D3. By Lemma A.2 there is an ε̄ > 0 such that

|A2Cα| � 3/4|A1A2| when ∠A1A2Cα � 2ε̄, Cα ∈ M(A1, A2), (5.6)

where M(A1, A2) stands for the mediatrix of the segment [A1A2] (that is, the set of points
equidistant from the endpoints of the segment). Fix an arbitrary α ∈ (0, π/2 − ξ̄) and let ε1 :=
ε̄ ∧ α/2, so that Δ(2ε1) � Δ(α) > 0 by definition of Δ(·). We can find an r � ‖A2 −A3‖ such
that rΔ(2ε1) > |A1A2|, thus for every {P,Q} ⊂ ∂(rB + C), C ∈ Rn, P 
= Q, ∠CPQ � 2ε1 one
has |PQ| > |A1A2|. Suppose ∠A1A2A3 � 2ε1. Consider the point C ∈ [A2A3) with ‖A2 − C‖ =
r. One has A2 ∈ ∂(rB + C). Thus if Q ∈ (A1A2) ∩ ∂(rB + C), Q 
= A2 and is on the line (A1A2)
on the same side of A2 as A1, then |A2Q| > |A1A2|, which implies A1 ∈ rB + C, that is, ‖A1 −
C‖ < r = ‖A2 − C‖, or, in other words, C ∈ Dc

3. Thus there is a point C ′ ∈ [A3, C] such that
C ′ ∈ M(A1, A2) (see Figure 5.3). Therefore,

|A2A3| � |A2C
′| � 3/4|A1A2|,

the last inequality being due to (5.6). �

Corollary 5.11. Assume that the vector (A1, . . . , Ar) is self-contracted with respect to the
norm ‖ · ‖ and has alternating directions along some axis x = span{ν} for some ν ∈ Rn, that
is, the finite sequence of numbers {(Ak+1 −Ak) · ν}r−1

k=1 has alternating signs. If each segment
[AkAk+1], k = 1, . . . , r − 1, is ε1-horizontal with respect to x, where ε1 > 0 is as in Lemma 5.10,
then

�(A1, . . . , Ar) � 4|A1A2|. (5.7)
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Proof. By triangle inequality for ̂((Ak−1Ak), x) and ̂((AkAk+1), x) we get ∠Ak−1AkAk+1 �
2ε1. Hence applying Lemma 5.10 to each consecutive triple (Ak−1, Ak, Ak+1) yields

|AkAk+1| � 3/4|Ak−1Ak|, k = 2, . . . , r − 1.

Thus,

�(A1, . . . , Ar) =
r−1∑
k=1

|AkAk+1| � |A1A2|
r−1∑
k=1

(
3
4

)k−1

� 4|A1A2|

proving (5.7). �

6. Inductive construction

From now on we consider the constants ε0 > 0 defined by Lemma 5.5 and ε1 > 0 defined by
Lemma 5.10. Let also δ̄ and ξ be as defined in Section 5.1, the constant C(ξ) be defined by
(5.5) and set

δ0 := δ̄ ∧ arctan
sin ε0

8(n− 1)C(ξ)
∧ arctan

(
1

8(n− 1)(3 cot ε1 + 8/ sin ε1)C(ξ)

)
.

The proof of Theorem 3.1 will be based on the following assertion.

Proposition 6.1. Assume δ ∈ (0, δ0). Then there exists a constant C > 0 depending only
on ‖ · ‖ and on δ such that whenever the vector (A1, . . . , Ar) ⊂ Rn is self-contracted with
respect to the norm ‖ · ‖ and (A1, . . . , Ar) ⊂ Pαn

+ Ar for some αn ∈ {1, . . . , N}, then

�(A1, . . . , Ar) � C|A1Ar|, (6.1)

with C > 0 depending only on ‖ · ‖, n, δ and ξ.

Remark 6.2. Note that both the self-contracted property and (6.1) are stable under scalings
and translations.

Taking for the moment this result for granted, we may easily prove Theorem 3.1.

Proof of Theorem 3.1. Up to scaling we may assume that the closed unit ball B of the norm
‖ · ‖ in Rn satisfies minx∈∂B |x| � 1. We identify now Rn with the subset Rn × {0} of Rn+1 and
write every element x ∈ Rn+1 as a pair x̃ = (x′, xn+1), x′ ∈ Rn, xn+1 ∈ R, so that every element
of x ∈ Rn is identified with some (x, 0) ⊂ Rn+1. Equip Rn × [0, 1] with the norm defined so that
its closed unit ball be B̃ := B × [−1, 1]. Define the decomposition of this closed unit ball B̃ as
follows. If the family of sets {Tj}Nj=1 is the disjoint cover of ∂B ⊂ Rn defined by Proposition 5.1,
we define the disjoint cover of ∂B̃ by the family consisting of sets T̃j := Tj × (−1, 1), j =
1, . . . , N , and two additional sets T̃N+1 := B × {1} and T̃N+2 := B × {−1}. Clearly, this cover
satisfies the property defined by Proposition 5.1. We set then P̃i := ∪t∈[0,1]tTi. Now we consider
(A1, . . . , Ar) as a subset of Rn+1. Recalling Remark 6.2, without loss of generality we may
scale all Aj so as to have |A1Ar| = 1 and then shift them by a fixed vector so as to have
Ar = (0, 1) and all Aj belong to the hyperplane {xn+1 = 1}. Clearly, the vector (A1, . . . , Ar, 0)
is still self-contracted with respect to the introduced norm in Rn+1 and (A1, . . . , Ar, 0) ⊂ P̃N+1

by construction. Applying Proposition 6.1 with (A1, . . . , Ar, 0) instead of (A1, . . . , Ar), Rn+1
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(with the introduced norm) instead of Rn (with the original norm ‖ · ‖), n + 1 instead of n, P̃j

instead of Pj and αn+1 := N + 1, we get

�(A1, . . . , Ar) � �(A1, . . . , Ar, 0) � C|A1| � C
√

2 = C
√

2|A1Ar|
with C > 0 as claimed. �

The proof of Proposition 6.1 is the immediate application of the following inductive statement
with i := n.

Proposition 6.3. Assume δ ∈ (0, δ0). Then for every i ∈ {1, . . . , n} there exists a constant
Ci > 0 depending only on ‖ · ‖, n, δ and ξ such that whenever (n− i + 1)-tuple (Pαi

, . . . ,Pαn
)

is admissible, the vector (Aj)r+n−i
j=1 ⊂ Rn is self-contracted with respect to the norm ‖ · ‖ and

(A1, . . . , Ar) ⊂ Pαj
+ Ar+n−j for all j = i, . . . , n, then

�(A1, . . . , Ar) � Ci|A1Ar|.

The proof of Proposition 6.3 is just a (finite) induction on i ∈ {1, . . . , n} with the base of
induction given by Lemma 6.4 and the inductive step given by Lemma 6.13 provided in the
sequel.

6.1. Base of induction

We prove the following statement that will serve as a base of induction.

Lemma 6.4. Let

δ ∈
(

0, δ̄ ∧ arctan
(

1
8(n− 1)(3 cot ε1 + 8/ sin ε1)C(ξ)

))
,

where ε1 > 0 is defined by Lemma 5.10 (this is true in particular when δ ∈ (0, δ0)), and the
n-tuple (Pα1 , . . . ,Pαn

) with αj ∈ {1, . . . , N}, j = 1, . . . , n, be admissible. Assume that the
vector (A1, . . . , Ar, Ar+1, . . . Ar+n−1) ⊂ Rn is self-contracted with respect to the norm ‖ · ‖
and (A1, . . . , Ar) ⊂ Pαj

+ Ar+n−j for all j = 1, . . . , n. Then

�(A1, . . . , Ar) � C1|A1Ar| (6.2)

for some constant C1 > 0 depending only on the norm ‖ · ‖, n, δ and ξ.

The rest of this section will be dedicated to the proof of the above Lemma 6.4. To this aim
we consider the coordinate system with the origin in Ar and axes xj directed along vectors
ναj determined by the sets Pαj

with αj ∈ {1, . . . , N}, j = 2, . . . , n, and x1 := (span {ναj}nj=2)
⊥

(with arbitrarily chosen direction). For brevity we denote Aj
i := pxj (Ai).

6.1.1. Common lemmata. We will need a couple of assertions that will serve both for the
base of induction and for the inductive step.

Lemma 6.5. Assume δ ∈ (0, δ̄), and that for some i ∈ {2, . . . , n} the (n− i + 2)-tuple of sets
(Pαi−1 , . . . ,Pαn

) is admissible. Then for every vector (A1, . . . , Ar) one has

�(Πi−1)⊥(A1, . . . , Ar) � C(ξ)
n∑

j=i

�xj
(A1, . . . , Ar),

where, as usual, xj = span {ναj}, j = i, . . . , n, and Πi−1 = (span {ναj}nj=i)
⊥.
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Proof. Applying Lemma 5.7 with Π := (Πi−1)⊥, k := n− i + 1, νj := ναj , j = i, . . . , n and
ζ := ξ (the conditions of Lemma 5.7 are satisfied in view of (5.1), recalling that δ < δ̄), we get

|p(Πi−1)⊥(A)| � C(ξ)
n∑

j=i

|pxj (A)|

for every A ∈ Rn, and plugging in the latter inequality A := Am+1 −Am, m = 1, . . . , r − 1,
and summing over such m, we get the claim. �

Lemma 6.6. Let (A1, . . . , Ar) be such that for some ν ∈ Rn, denoting by xk := (Ak −Ar) · ν,

one has xk < xk−1 whenever ̂((Ak−1Ak), ν⊥) > δ. Then

�x(A1, . . . , Ar) � |A1Ar| + 2�x⊥(A1, . . . , Ar) tan δ, (6.3)

where x = span {ν}.

Proof. For j ∈ {2, . . . , n} we have

x1 − xr = −
r∑

k=2

(xk − xk−1) = −
∑

k∈{2,...,r},xk>xk−1

|xk − xk−1| +
∑

k∈{2,...,r},xk<xk−1

|xk − xk−1|

= −�x(A1, . . . , Ar) + 2
∑

k∈{2,...,r},xk>xk−1

|xk − xk−1|,

so that

�x(A1, . . . , Ar) � |xr − x1| + 2
∑

k∈{2,...,r},xk>xk−1

|xk − xk−1|

� |xr − x1| + 2
∑

k∈{2,...,r},xk>xk−1

|px⊥(Ak) − px⊥(Ak−1)| tan δ.

Thus,

�x(A1, . . . , Ar) � |xr − x1| + 2�x⊥(A1, . . . , Ar) tan δ

� |A1Ar| + 2�x⊥(A1, . . . , Ar) tan δ

proving the claim. �

We will also need the following easy calculation.

Lemma 6.7. If for some i ∈ {1, . . . , n} one has

Lj � L0 + C

n∑
k=i

Lk, j = i, . . . , n, (6.4)

with some C ∈ (0, (n− i + 1)−1/2), then
∑n

j=i Lj � 2(n− i + 1)L0 and Lj � 2L0 for all j =
i, . . . , n.

Proof. Summing (6.4) over j = i, . . . , n, we obtain
n∑

j=i

Lj � (n− i + 1)L0 + (n− i + 1)C
n∑

j=i

Lj ,
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so that in view of (n− i + 1)C � 1/2 one has
n∑

j=i

Lj � 2(n− i + 1)L0,

and hence the statement is proven by plugging the latter relationship into (6.4). �

6.1.2. Estimate of the variation of (A1, . . . , Ar) along each xj , j = 2, . . . , n.

Lemma 6.8. Assume

δ ∈
(

0, δ̄ ∧ arctan
1

4(n− 1)C(ξ)

)
(6.5)

(this is true in particular when δ is as in Lemma 6.4), the n-tuple (Pα1 , . . . ,Pαn
) with αj ∈

{1, . . . , N}, j = 1, . . . , n, and the vector (A1, . . . , Ar, Ar+1, . . . Ar+n−1) ⊂ Rn satisfy conditions
of Lemma 6.4. Then one has

�xj (A1, . . . , Ar) � 2|A1Ar| + 4�x1(A1, . . . , Ar) tan δ, j = 2, . . . , n. (6.6)

Proof. Note first that in the particular case when δ is as in Lemma 6.4, then the trivial
inequality 3 cos ε1 + 8 � (sin ε1)/2 (with ε1 > 0 defined by Lemma 5.10) implies 3 cot ε1 +
8/ sin ε1 � 1/2, and therefore δ satisfies (6.5).

For a generic δ satisfying (6.5), since (A1, . . . , Ar) ⊂ Pαj
+ Ar+n−j for j ∈ {2, . . . , n} as

requested by Lemma 6.4, then (A1, . . . , Ar) satisfies conditions of Lemma 6.6 (with ναj instead
of ν) in view of Lemma 5.3, and hence by Lemma 6.6 one has

�xj (A1, . . . , Ar) � |A1Ar| + 2�(xj)⊥(A1, . . . , Ar) tan δ � |A1Ar| + 2�(A1, . . . , Ar) tan δ

� |A1Ar| + 2�x1(A1, . . . , Ar) tan δ + 2�(x1)⊥(A1, . . . , Ar) tan δ.
(6.7)

By Lemma 6.5 with i := 2, we get

�(x1)⊥(A1, . . . , Ar) � C(ξ)
n∑

k=2

�xk
(A1, . . . , Ar).

Thus (6.7) becomes

�xj (A1, . . . , Ar) � |A1Ar| + 2�x1(A1, . . . , Ar) tan δ + 2 tan δC(ξ)
n∑

k=2

�xk
(A1, . . . , Ar). (6.8)

We may now apply Lemma 6.7 with

L0 := |A1Ar| + 2�x1(A1, . . . , Ar) tan δ,

Lj := �xj
(A1, . . . , Ar),

i := 2 and C := 2 tan δC(ξ) (recalling tan δ < 1/(4(n− 1)C(ξ))) to get the claim. �

6.1.3. Estimate of the variation of (A1, . . . , Ar) along x1. Everywhere in this subsection
we denote for brevity of notation A⊥

j := p(x1)⊥(Aj).

Lemma 6.9. Assume that the vector (A1, . . . , Ar) is self-contracted with respect to the norm
‖ · ‖. Then for an arbitrary line x1 one has

�x1(A1, . . . , Ar) � C1�(x1)⊥(A1, . . . , Ar) + C2|A1Ar|, (6.9)
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with some positive constants C1 and C2 depending only on the norm ‖ · ‖, and in particular, one
can take C1 := 3 cot ε1 + 8/ sin ε1, where ε1 > 0 is defined by Lemma 5.10, and C2 := diam B,
where B is the closed unit ball of ‖ · ‖.

Proof. Let ε1 > 0 be as in Lemma 5.10. Starting from the last line segment [Ak−1Ak]
ε1-horizontal with respect to x1 (that is, with maximum k ∈ {2, . . . , r} such that [Ak−1Ak] is
horizontal) we find the minimum q ∈ {1, k − 1} such that (Aq, Aq+1, . . . , Ak) satisfies conditions
of Lemma 6.11 (with x1 instead of x and ε := ε1). Now we repeat the same operation with
q − 1 instead of r, and continue in this way by backward induction as far as possible. In
this way we find a finite sequence of disjoint intervals {qi, qi + 1, . . . , ki}νi=1 of {1, . . . , r} such
that (Aqi , Aqi+1, . . . , Aki

) satisfies conditions of Lemma 6.11 (again with x1 instead of x and
ε := ε1), while the subvector

(Aj)j∈Λ ⊂ (A1, . . . , Ar)

obtained from (A1, . . . , Ar) by canceling all the points Aj with j ∈ ∪ν
i=1{qi + 1, . . . , ki − 1},

satisfies conditions of Lemma 6.12. Therefore, denoting for convenience (Ã1, . . . , Ãρ) :=
(Aj)j∈Λ, we get

�x1(A1, . . . , Ar) = �x1(Ã1, . . . , Ãρ) −
ν∑

i=1

|A1
qiA

1
ki
| +

ν∑
i=1

�x1

(
(Aj)

ki

j=qi

)

� �x1(Ã1, . . . , Ãρ)

+ 2 cot ε1

ν∑
i=1

�(x1)⊥

(
(Aj)

ki

j=qi

)
by Lemma 6.11 with x1 instead of x

� C�(x1)⊥(Ã1, . . . , Ãρ) + |Ã1Ã2|

+ 2 cot ε1

ν∑
i=1

�(x1)⊥

(
(Aj)

ki

j=qi

)
by Lemma 6.12

� C�(x1)⊥(A1, . . . , Ar) + |Ã1Ã2| + 2�(x1)⊥(A1, . . . , Ar) cot ε1

= (C + 2 cot ε1)�(x1)⊥(A1, . . . , Ar) + |Ã1Ã2|,
which concludes the proof (up to setting C1 := C + 2 cot ε1, C2 := diam B, where B is the
closed unit ball of ‖ · ‖, and recalling that by Lemma 6.12 one can take C := cot ε1 + 8/ sin ε1),
because |Ã1Ã2| � C2|A1Ar| by Remark 5.9 (since (Ã1, . . . , Ãρ) ⊂ (A1, . . . , Ar)). �

Corollary 6.10. Under conditions of Lemma 6.4 one has

�x1(A1, . . . , Ar) � C1

n∑
i=2

�xi(A1, . . . , Ar) + C2|A1Ar|, (6.10)

with some positive constants C1 depending only on ‖ · ‖, n and ξ, and C2 depending only on
‖ · ‖. In particular, one can take C1 := (3 cot ε1 + 8/ sin ε1)C(ξ), where ε1 > 0 is defined by
Lemma 5.10, and C2 := diam B, B standing for the closed unit ball of ‖ · ‖.

Proof. By Lemma 6.5 with i := 2, one has

�(x1)⊥(A1, . . . , Ar) � C(ξ)
n∑

k=2

�xk
(A1, . . . , Ar).
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Plugging this estimate into the inequality (6.9) from Lemma 6.9, one gets the result. �

The following lemmata have been used in the proof of the above Lemma 6.9.

Lemma 6.11. Let (A1, . . . , Ar) be such that

(A) each line segment [AiAr], i = 1, . . . , r − 1, is ε-horizontal with respect to the axis x,
passing through Ar parallel to ν, and directed in the direction of ν;

(B) each line segment [AkAk+1], k ∈ {1, . . . , r − 1} which is ε-horizontal with respect to x
has projection on x of the same direction as that of [Ar−1Ar], that is, denoting by
xk := (Ak −Ar) · ν, one has

(xk+1 − xk)(xr − xr−1) � 0.

Then [A1Ar] has projection on x of the same direction as that of [Ar−1Ar], that is,

(xr − x1)(xr − xr−1) � 0, (6.11)

and

�x(A1, . . . , Ar) � |xr − x1| + 2�x⊥(A1, . . . , Ar) cot ε. (6.12)

It is worth emphasizing that Lemma 6.11 does not require that (A1, . . . , Ar) be self-
contracted.

Proof. We first prove that for each k = 1, . . . , r − 1, the line segment [AkAr] has projection
on x of the same direction as that of [Ar−1Ar], that is,

(xr − xk)(xr − xr−1) � 0, (6.13)

so that in particular (6.11) follows. The relationship (6.13) is proven by backward induction on
k. In fact, the base k = r − 1 is automatic, while the inductive step is proven by contradiction
as follows. Suppose that (6.13) holds for some k = j, where j ∈ {2, . . . , r − 1}, but does not
hold for k = j − 1. By assumption (B) this is only possible when [Aj−1Aj ] is ε-vertical with
respect to the x axis. Denoting for brevity a := Ar −Aj−1 and b := Aj −Ar, we have that
a and b have the same direction with respect to x, that is, (a · ν)(b · ν) > 0 and (̂a, ν′) � ε,
(̂b, ν′) � ε with either ν′ = ν or ν′ = −ν. Then

cos ̂((Aj−1Aj), x) � cos ̂(a + b, ν′) =
cos((̂a, ν′))|a| + cos((̂b, ν′))|b|

|a + b|

� cos ε
|a| + |b|
|a + b| � cos ε,

so that ̂((Aj−1Aj), x) � ε contradicting ε-verticality of [Aj−1Aj ] with respect to the x axis and
hence concluding the proof of (6.13).

To prove (6.12), we note that

xr − x1 =
∑

i∈{1,...,r−1}
[AiAi+1] horizontal

(xi+1 − xi) +
∑

i∈{1,...,r−1}
[AiAi+1] vertical

(xi+1 − xi),
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so that by (B), one has

|xr − x1| �

∣∣∣∣∣∣∣∣
∑

i∈{1,...,r−1}
[AiAi+1] horizontal

(xi+1 − xi)

∣∣∣∣∣∣∣∣
−

∑
i∈{1,...,r−1}

[AiAi+1] vertical

|xi+1 − xi|

=
∑

i∈{1,...,r−1}
[AiAi+1] horizontal

|xi+1 − xi| −
∑

i∈{1,...,r−1}
[AiAi+1] vertical

|xi+1 − xi|

=
r−1∑
i=1

|xi+1 − xi| − 2
∑

i∈{1,...,r−1}
[AiAi+1] vertical

|xi+1 − xi|

�
r−1∑
i=1

|xi+1 − xi| − 2
∑

i∈{1,...,r−1}
[AiAi+1] vertical

|px⊥(Ai+1 −Ai)| cot ε

� �x(A1, . . . , Ar) − 2�x⊥(A1, . . . , Ar) cot ε,

concluding the proof. �

Lemma 6.12. Assume that the vector (A1, . . . , Ar) be self-contracted with respect to the
norm ‖ · ‖. Let also ε ∈ (0, ε1], where ε1 is defined by Lemma 5.10, and for each line segment
[AkAk+1] with k = 2, . . . , r − 1 which is ε-horizontal with respect to x1 axis the preceding line
segment [Ak−1Ak] is either also ε-horizontal with respect to x1 axis and its projection on x1

is directed oppositely to that of [AkAk+1], that is,(
x1
k+1 − x1

k

) (
x1
k − x1

k−1

)
< 0,

or is ε-vertical with respect to x1 axis, and so is [Ak−1Ak+1]. Then

�x1(A1, . . . , Ar) � C�(x1)⊥(A1, . . . , Ar) + |A1A2|, (6.14)

with some positive constant C depending only on ε (and in particular, one can take C :=
cot ε + 8/ sin ε).

Proof. We denote by H (respectively, V ) the set of subvectors (Aqk , Aqk+1, . . . , Aqk+1) ⊂
(A1, . . . , Ar) such that each line segment [AiAi+1], i = qk, . . . , qk+1 − 1 is ε-horizontal (respec-
tively, ε-vertical) with respect to x1 axis and either qk = 1 or the preceding line segment
line [Aqk−1Aqk ] is ε-vertical (respectively, ε-horizontal) with respect to x1 axis. Consider
the partition 1 = q1 < q2 < · · · < qσ = r of the set {1, . . . , r} such that each subvector
(Aqk , Aqk+1, . . . , Aqk+1), k = 1, . . . , σ, either belongs to H or to V .

For (Aqk , Aqk+1, . . . , Aqk+1) ∈ H by the assumption of the statement being proven the line
segments of this polygonal line have alternating directions with respect to x1 axis and hence
by Corollary 5.11 we have

�x1

(
{Aj}qk+1

j=qk

)
� �

(
{Aj}qk+1

j=qk

)
� 4|AqkAqk+1|.

For (Aqk , Aqk+1, . . . , Aqk+1) ∈ V , we just estimate

�x1

(
{Aj}qk+1

j=qk

)
=

qk+1−1∑
j=qk

|A1
jA

1
j+1| �

qk+1−1∑
j=qk

|A⊥
j A

⊥
j+1| cot ε = �(x1)⊥

(
{Aj}qk+1

j=qk

)
cot ε.
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We have now

�x1(A1, . . . , Ar) =
σ−1∑
k=1

�x1(Aqk , . . . , Aqk+1)

=
∑

k∈{1,...,σ−1},
{Aj}qk+1

j=qk
∈V

�x1

(
{Aj}qk+1

j=qk

)
+

∑
k∈{1,...,σ−1},
{Aj}qk+1

j=qk
∈H

�x1

(
{Aj}qk+1

j=qk

)

� cot ε
∑

k∈{1,...,σ−1},
{Aj}qk+1

j=qk
∈V

�(x1)⊥

(
{Aj}qk+1

j=qk

)
+ 4

∑
k∈{1,...,σ−1},
{Aj}qk+1

j=qk
∈H

|AqkAqk+1|.

(6.15)

For each k ∈ {1, . . . , σ − 1} such that (Aqk , . . . , Aqk+1) ∈ H except k = 1 we estimate

|AqkAqk+1| � |Aqk−1Aqk | + |Aqk−1Aqk+1| � 1
sin ε

(|A⊥
qk−1A

⊥
qk
| + |A⊥

qk−1A
⊥
qk+1|

)
� 1

sin ε

(
2|A⊥

qk−1A
⊥
qk
| + |A⊥

qk
A⊥

qk+1|
)
� 2

sin ε

(|A⊥
qk−1A

⊥
qk
| + |A⊥

qk
A⊥

qk+1|
)
,

and if (Aq1 , . . . , Aq2) = (A1, . . . , Aq2) ∈ H, then just

|Aq1Aq1+1| = |A1A2|.
Plugging this into (6.15), we get

�x1

(
{Aj}rj=1

)
� cot ε

∑
k∈{1,...,σ−1},
{Aj}qk+1

j=qk
∈V

qk+1−1∑
j=qk

|A⊥
j+1A

⊥
j |

+
8

sin ε

∑
k∈{2,...,σ−1},
{Aj}qk+1

j=qk
∈H

(|A⊥
qk−1A

⊥
qk
| + |A⊥

qk
A⊥

qk+1|
)

+ |A1A2|

�
(

cot ε +
8

sin ε

) ∑
k∈{1,...,σ−1},
{Aj}qk+1

j=qk
∈V

qk+1−1∑
j=qk

|A⊥
j+1A

⊥
j |

+
8

sin ε

∑
k∈{2,...,σ−1},
{Aj}qk+1

j=qk
∈H

|A⊥
qk
A⊥

qk+1| + |A1A2|,

because [Aqk−1Aqk ] is ε-vertical with respect to x1 axis for {Aj}qk+1
j=qk

∈ H. Hence

�x1

(
{Aj}rj=1

)
�

(
cot ε +

8
sin ε

)
�(x1)⊥(A1, . . . , Ar) + |A1A2|

as claimed, concluding the proof. �

6.1.4. Estimate of �(A1, . . . , Ar). Finally we are able to prove Lemma 6.4 providing the
estimate on the total variation of (A1, . . . , Ar).
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Proof of Lemma 6.4. Plugging (6.10) (Corollary 6.10) into (6.6) (Lemma 6.8), we get

�xj (A1, . . . , Ar) � (2 + 4C2 tan δ)|A1Ar| + 4C1 tan δ

n∑
i=2

�xi(A1, . . . , Ar), j = 2, . . . , r,

where C1 and C2 are as in Corollary 6.10, that is, C1 := (3 cot ε1 + 8/ sin ε1)C(ξ) and
C2 := diam B, where B is the closed unit ball of ‖ · ‖. We may now apply Lemma 6.7 with

L0 := (2 + 4C2 tan δ)|A1Ar|,
Lj := �xj

(A1, . . . , Ar),

i := 2 and C := 4C1 tan δ (recalling tan δ < 1/(8(n− 1)C1) under conditions of the statement
being proven) to get

�xj (A1, . . . , Ar) � (4 + 8C2 tan δ)|A1Ar|, j = 2, . . . , r,

and plugging the latter estimate back into (6.10), we get

�x1(A1, . . . , Ar) � (C1(n− 1)(4 + 8C2 tan δ) + C2)|A1Ar|,
which concludes the proof. �

6.2. Inductive step

We prove now the following statement that will serve as an inductive step.

Lemma 6.13. Assume

δ ∈
(

0, δ̄ ∧ arctan
sin ε0

8(n− 1)C(ξ)

)
,

where ε0 > 0 is defined in Lemma 5.5, and suppose that the following inductive hypothesis
holds: if for some i ∈ {2, . . . , n− 1} there exists a constant Ci−1 > 0 such that whenever the
(n− i + 2)-tuple (Pαi−1 , . . . ,Pαn

) is admissible, the vector (A1, . . . , Ar, Ar+1, . . . Ar+n−i+1) is
self-contracted with respect to the norm ‖ · ‖ and (A1, . . . , Ar) ⊂ Pαj

+ Ar+n−j for all j =
i− 1, . . . , n, then

�(A1, . . . , Ar) � Ci−1|A1Ar|. (6.16)

Then this property holds also for i + 1, that is, there exists a constant Ci > 0 (depending
only on the norm ‖ · ‖, on Ci−1, on n, δ and ξ) such that whenever the (n− i + 1)-tuple
(Pαi

, . . . ,Pαn
) is admissible, the vector (A1, . . . , Ar, Ar+1, . . . , Ar+n−i) is self-contracted with

respect to the norm ‖ · ‖ and (A1, . . . , Ar) ⊂ Pαj
+ Ar+n−j for all j = i, . . . , n, then

�(A1, . . . , Ar) � Ci|A1Ar|. (6.17)

Proof. Let the n-tuple of sets (Pαi
, . . . ,Pαn

) with αj ∈ {1, . . . , N}, j = i, . . . , n, be
admissible, the vector (Aj)r+n−i

j=1 be self-contracted with respect to the norm ‖ · ‖ and
(A1, . . . , Ar) ⊂ Pαj

+ Ar+n−j for all j = i, . . . , n. Let xj be the axis in the direction ναj

determined by Pαj
passing through Ar, and consider the (i− 1)-dimensional linear subspace

Πi−1 := (span {ναj}nj=i)
⊥. The rest of the proof will be organized in several steps.

Step 1. We act similarly to the proof of Lemma 6.9. Namely, starting from the last line
segment [Ak−1Ak] with 1 < k � r which is ε0-horizontal with respect to Πi−1 (that is, with
maximum k ∈ {2, . . . , r} such that [Ak−1Ak] is ε0-horizontal with respect to this subspace),
if it exists, we find the minimum q ∈ {1, . . . , k − 1} such that for every j ∈ {q, . . . , k − 1} the
line segment [AjAk] is ε0-horizontal with respect to Πi−1. Note that in this way, if q > 1,
then [Aq−1Ak] is ε0-vertical with respect to Πi−1. Now we repeat the same operation with
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q − 1 instead of r, and continue in this way by backward induction as far as possible. In this
way we find a finite (possibly empty) sequence of disjoint subintervals {ql, ql + 1, . . . , kl}νl=1 of
{1, . . . , r} such that for every j ∈ {ql, . . . , kl − 1} the line segment [AjAkl

] is ε0-horizontal with
respect to Πi−1, while [Aql−1Akl

] is ε0-vertical with respect to this subspace (if ql > 1).
We claim that

�(Aql , . . . , Akl
) � C̄1

∑
Pαi−1 : (Pαi−1 ,Pαi

,...,Pαn )

admissible

�((Aql , . . . , Akl
) ∩ (Pαi−1 + Akl

)) + C̄2|AqlAkl
|

(6.18)

for all l = 1, . . . , ν, where C̄1 > 0 depends only on the norm ‖ · ‖, and C̄2 > 0 depends on
the norm and on δ. To show this claim, consider an arbitrary j ∈ {ql, . . . , kl − 1} such that
Aj+1 ∈ Pαi−1 + Akl

, but Aj 
∈ Pαi−1 + Akl
for some Pαi−1 such that (Pαi−1 ,Pαi

, . . . ,Pαn
) is

admissible. Then either

(i) j is the first index in {ql, . . . , kl} such that Aj+1 ∈ Pαi−1 + Akl
, that is,

{s ∈ {ql, . . . , j} : As ∈ Pαi−1 + Akl
} = ∅,

in which case we just use (Aj , Aj+1) ⊂ (Aql , . . . , Akl
) to estimate |AjAj+1| � C|AqlAkl

|
by Remark 5.9 for some C > 0 depending only on ‖ · ‖; the sum of Euclidean lengths
of all such line segments |AjAj+1| through all Pαi−1 such that (Pαi−1 ,Pαi

, . . . ,Pαn
) is

admissible, is estimated therefore from above by C̄2|AqlAkl
|, where C̄2 := CN(δ);

(ii) or there is an

s(j) := max{s ∈ {ql, . . . , j} : As ∈ Pαi−1 + Akl
},

and s(j) < j by the definition of s(·), hence (Aj , Aj+1) ⊂ (As(j), . . . , Aj+1) which implies
|AjAj+1| � C|As(j)Aj+1| again by Remark 5.9 for C > 0 depending only on ‖ · ‖ (same
as C in (i)). Therefore, with C̄1 := C ∨ 1 one has∑

j∈{ql,...,kl−1}
{Aj ,Aj+1}⊂Pαi−1+Akl

|AjAj+1| +
∑

j∈{ql,...,kl−1}
as in (ii)

|AjAj+1|

�
∑

j∈{ql,...,kl−1}
{Aj ,Aj+1}⊂Pαi−1+Akl

|AjAj+1| + C
∑

j∈{ql,...,kl−1}
as in (ii)

|As(j)Aj+1|

� C̄1

⎛
⎜⎜⎜⎝

∑
j∈{ql,...,kl−1}

{Aj ,Aj+1}⊂Pαi−1+Akl

|AjAj+1| +
∑

j∈{ql,...,kl−1}
as in (ii)

|As(j)Aj+1|

⎞
⎟⎟⎟⎠

= C̄1�((Aql , . . . , Akl
) ∩ (Pαi−1 + Akl

)).

From (i) and (ii) we get therefore (6.18).

Step 2. By the inductive assumption for each Pαi−1 with (Pαi−1 ,Pαi
, . . . ,Pαn

) admissible
one has for (Aj)j∈Λkl

:= (Aql , . . . , Akl
) ∩ (Pαi−1 + Aki

) (clearly, Λkl
⊂ {ql, ql + 1, . . . , kl}, and

kl ∈ Λkl
) the estimate

�((Aj)j∈Λkl
) � Ci−1|Aq̃lAkl

|, (6.19)

where q̃l stands for the first index in Λkl
. But since (Aj)j∈Λkl

⊂ (Aql , . . . , Akl
), then

|Aq̃lAkl
| � C|AqlAkl

|
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for some C > 0 depending only on the norm ‖ · ‖, and hence (6.19) implies �((Aj)j∈Λkl
) �

C|AqlAkl
|. Therefore, from (6.18) we get

�(Aql , . . . , Akl
) � C ′|AqlAkl

| (6.20)

for all l = 1, . . . , ν, where C ′ := C̄1Ci−1CN(δ) + C̄2 > 0 depends on δ and on ‖ · ‖, as well as
on Ci−1.

Step 3. Consider the subvector (Aj)j∈Λ ⊂ (A1, . . . , Ar) obtained from (A1, . . . , Ar) by
canceling all the points Aj with j ∈ ∪ν

i=1{qi + 1, . . . , ki − 1}. The inequality (6.20) yields then,
observing that clearly C ′ > 1, the estimate

�(A1, . . . , Ar) � C ′�((Aj)j∈Λ). (6.21)

To estimate the right-hand side of (6.21), we first note that by Lemma A.1

|Aqi−1Aqi | + |AqiAki
| � C|Aqi−1Aki

|
for a C > 0 depending only on ‖ · ‖, if qi > 1, and thus for a subvector (Aj)j∈Λ̃ ⊂ (Aj)j∈Λ

obtained from (Aj)j∈Λ by canceling all Aqi , i = 1, . . . , ν except possibly qi = min Λ = 1 (that is,
qi equal to the first index in Λ which is 1 by construction), and recalling that {qi − 1, qi, ki} ⊂ Λ
when qi > 1 again by construction, we get

�((Aj)j∈Λ) � C�((Aj)j∈Λ̃). (6.22)

Thus, in view of (6.22) and (6.21) the proof will be concluded once we show that for some
C̃ > 0 depending possibly on ξ, hence on ‖ · ‖, as well as on n and i, one has

�((Aj)j∈Λ̃) � C̃|Amin Λ̃Amax Λ̃| = C̃|A1Ar|, (6.23)

the last equality being due to the fact that min Λ̃ = 1 and max Λ̃ = r by construction.

Step 4. It remains to prove (6.23). We will in fact show it with C̃ > 0 depending possibly on
ξ, hence just on ‖ · ‖. To this aim observe that all the segments of the polygonal line (Aj)j∈Λ̃

except possibly the first one are ε0-vertical with respect to Πi−1. Denoting for convenience
(Ã1, . . . , Ãρ) := (Aj)j∈Λ̃, we have therefore that

�Πi−1((Aj)j∈Λ̃) � �((Aj)j∈Λ̃) = |Ã1Ã2| + �(Ã2, . . . , Ãρ)

� |Ã1Ã2| + 1
sin ε0

�(Πi−1)⊥((Aj)j∈Λ̃)

� C|Ã1Ãρ| + 1
sin ε0

�(Πi−1)⊥((Aj)j∈Λ̃) by Remark 5.9,

(6.24)

with a constant C > 0 depending only on ‖ · ‖ (here in the last inequality we used (Ã1, Ã2) ⊂
(Aj)j∈Λ̃). But for each j ∈ {i, . . . , n} one has

�xj ((Aj)j∈Λ̃) � |Ã1Ãρ| + 2 tan δ�(xj)⊥((Aj)j∈Λ̃) by Lemma 6.6

� |Ã1Ãρ| + 2 tan δ�((Aj)j∈Λ̃)

� |Ã1Ãρ| + 2 tan δ
(
�Πi−1((Aj)j∈Λ̃) + �(Πi−1)⊥((Aj)j∈Λ̃)

)

� |Ã1Ãρ| + 2 tan δ�Πi−1((Aj)j∈Λ̃) + 2C(ξ) tan δ

n∑
k=i

�xk((Aj)j∈Λ̃),

(6.25)
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the latter inequality being due to Lemma 6.5. By Lemma 6.7 with

L0 := |Ã1Ãρ| + 2 tan δ�Πi−1((Aj)j∈Λ̃),

Lk := �xk((Aj)j∈Λ̃)

and C := 2C(ξ) tan δ, recalling that tan δ < 1/(4(n− i + 1)C(ξ)) by assumption of the
statement being proven, we obtain then from (6.25) the estimate

n∑
j=i

�xj ((Aj)j∈Λ̃) � 2(n− i + 1)|Ã1Ãρ| + 4(n− i + 1) tan δ�Πi−1((Aj)j∈Λ̃). (6.26)

By Lemma 6.5 we have

�(Πi−1)⊥((Aj)j∈Λ̃) � C(ξ)
n∑

j=i

�xj ((Aj)j∈Λ̃)

� 2(n− i + 1)C(ξ)|Ã1Ãρ| + 4(n− i + 1)C(ξ) tan δ�Πi−1((Aj)j∈Λ̃),

(6.27)

the latter inequality being due to (6.26). Plugging (6.27) into (6.24) yields

�Πi−1((Aj)j∈Λ̃) �
(
C +

2(n− i + 1)C(ξ)
sin ε0

)
|Ã1Ãρ| + 4(n− i + 1)

sin ε0
C(ξ) tan δ�Πi−1((Aj)j∈Λ̃),

and hence, since tan δ < sin ε0/(8(n− i + 1)C(ξ)), one has

�Πi−1((Aj)j∈Λ̃) � 2
(
C +

2(n− i + 1)C(ξ)
sin ε0

)
|Ã1Ãρ|. (6.28)

Finally, plugging (6.28) into (6.27) and recalling

4(n− i + 1)C(ξ) tan δ � 1
2

sin ε0,

we get

�(Πi−1)⊥((Aj)j∈Λ̃) � (4(n− i + 1)C(ξ) + C sin ε0) |Ã1Ãρ|,

and which together with (6.28) gives (6.23) with C̃ := 3C + 4(n− i + 1)C(ξ)(1 + 1/ sin ε0) as
claimed. �

Appendix. Auxiliary lemmata

We used the following easy statements.

Lemma A.1. If (A1, A2, A3) is self-contracted with respect to the norm ‖ · ‖, then

|A1A2| + |A2A3| � C|A1A3|,
for some C > 0 depending only on ‖ · ‖.

Proof. In fact, |A2A3| � C|A1A3| with C as in the statement, which together with the
triangle inequality

|A1A2| � |A1A3| + |A2A3|,
implies the claim. �
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For every couple of distinct points {A,B} ⊂ Rn denote by M(A,B) the closed set

M(A,B) := {z ∈ Rn : ‖A− z‖ = ‖B − z‖}
(called mediatrix or equidistant set of {A,B}). Clearly, M(λA, λB) = λM(A,B) for all λ � 0
(in fact, even for all λ ∈ R if the norm is, as it is customary to assume, symmetric). Further,
M(A + x,B + x) = M(A,B). Observe also that M(A,B) ∩ (AB) is the midpoint C0 of [AB]
if the norm is symmetric.

Lemma A.2. There is a constant ε̄ > 0 depending only on the norm ‖ · ‖ such that for every
C ∈ M(A,B) with ∠ABC � 2ε̄ one has

|BC| � 3/4|AB|.

Proof. Since the statement is invariant with respect to translation and scaling, we may
assume without loss of generality that |AB| = 1 and B is the origin, so that M(A,B) depends
only on the direction ν ∈ Sn−1 of the segment [BA]. Let ε(ν) stand for the maximum
angle α such that for C ∈ M(A,B) with ∠ABC � α one has |BC| � 3/4. It suffices to
set now ε̄ := infν∈Sn−1 ε(ν) and observe that ε̄ > 0. In fact, otherwise there is a sequence
{Ak} ⊂ Sn−1, Ak → A, and {Ck} ⊂ M(Ak, B), Ck → C ∈ Rn for some A ∈ Sn−1 and C ∈ Rn

with ∠AkBCk → 0 as k → ∞ and |BCk| > 3/4. Clearly therefore C ∈ M(A,B), |BC| � 3/4
and ∠ABC = 0, hence C ∈ (AB), which implies that C is the midpoint of the segment [AB]
and hence |BC| = 1/2, this contradiction concluding the proof. �

Remark A.3. The proof of Lemma A.2 depends essentially on the fact that for {C} :=
M(A,B) ∩ (AB) one has C = C0, the midpoint of [AB]. It is worth noting however that if the
norm ‖ · ‖ is not assumed to be symmetric (that is, one does not have ‖x‖ = ‖ − x‖ for all
x ∈ E), then M(A,B) ∩ (AB) is still a singleton {C}, but it does not in general coincide with
C0, and one only has

c|AB| � |AC| � (1 − c)|AB|
for some c ∈ (0, 1) depending only on ‖ · ‖. Thus the claim of Lemma A.2 should be changed
in this case to

|BC| � (1 − c̄)|AB|
for some c̄ ∈ (0, 1) depending only on ‖ · ‖.
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