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Abstract: We construct an example of a Steiner tree with an in�nite number of branching points connecting
an uncountable set of points. Such a tree is proven to be the unique solution to a Steiner problem for the
given set of points. As a byproduct we get the whole family of explicitly de�ned �nite Steiner trees, which
are unique connected solutions of the Steiner problem for some given �nite sets of points, and with growing
complexity (i.e. the number of branching points).
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1 Introduction
In this paper we construct an explicit and rather natural example of an in�nite tree connecting some “frac-
tal” set of points (in fact, homeomorphic to a Cantor set, and in particular compact, uncountable and totally
disconnected) in the optimal way in the sense that it solves the Steiner problem for this set of points. The
Steiner problemwhich has various di�erent butmore or less equivalent formulations, is that of �nding a set S
with minimal length (one-dimensional Hausdor� measure H1) such that S ∪ A is connected, where A is
a given compact subset of a given complete metric spaceX. Namely, de�ned

St(A) := {S ⊂ X : S ∪ A is connected},

one has to �nd an element of St(A) with minimal length H1. This problem appeared in the work of V. Jarník
and O. Kössler of 1934, but actually became famous later, after having been cited in the book of R. Courant
and H. Robbins “What is Mathematics?” where it has been linked to the name of J. Steiner. Usually it is stated
in the case when the ambient space X is the Euclidean space ℝn (or even the Euclidean plane ℝ2), the set A
(interpreted, say, as the set of cities to be connected by roads) is �nite, while the solutions (interpreted in
this case as the sets of roads connecting the given cities in the optimal way) are required a priori to be the
�nite sets of line segments (for the case when A is the set of three points in the plane, this is nothing but the
famous problem posed by P. Fermat already in the seventeenth century). Even in such a formally restricted
setting this problem is subject of active study until nowadays, and presents still a lot of open problems (for
the extremely extensive literature on the subject see, for instance [1, 2] and references therein). The general
setting of this problem as stated above (i.e. withX generic metric space,A not necessarily �nite, and without
any a priori restriction on the class ofminimizers) has recently been studied in [5], in which under rathermild
assumptions on the ambient spaceX (which anyhow are true in the Euclidean space setting) it is shown that
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every solution S having �nite lengthH1(S) < +∞ has the following properties:
∙ S ∪ A is compact,
∙ S \ A has at most countably many connected components, and each of the latter has strictly positive

length,
∙ ̄S contains no loops (homeomorphic images of S1),
∙ the closure of every connected component of S is a topological tree (a connected, locally connected

compact set without loops) with endpoints on A (so that in particular it has at most countable number
of branching points), and with at most one endpoint on each connected component of A and all the
branching points having �nite order (i.e. �nite number of branches leaving them),

∙ if A has a �nite number of connected components, then S \ A has �nitely many connected components,
the closure of each of which is a �nite geodesic embedded graph with endpoints on A, and with at most
one endpoint on each connected component of A,

∙ for every open set U ⊂ X such that A ⊂ U one has that the set ̄S := S \ U is a subset of a �nite geodesic
embedded graph. Moreover, for a.e. ù > 0 one has that for U = {x : dist(x, A) < ù} the set ̄S is a �nite
geodesic embedded graph (in particular, it has a �nite number of connected components and a �nite
number of branching points).

Thus, if S is a solution to the Steiner problem for the given set A, then Σ := S ∪ A also does not containing
loops, unless of course A itself contains loops. In this case Σ is usually called Steiner tree, and, further, it is
called indecomposable when Σ \ A is connected. It is worth mentioning that rather few explicit examples of
solutions to the Steiner problem are known, and the known examples are mainly limited to the case when A
is a �nite set. In fact, while some necessary conditions for a given set to be optimal are quite easy to obtain,
it is usually quite hard to prove that the given set is optimal, and even harder to prove the uniqueness of
the Steiner set (in fact, in general the solutions may be non-unique, as can be easily seen on the example
whenA is the set of vertices of a square). A promising method to deal with such problems has been proposed
in [4]: although this method is not universal, sometimes it allows to prove the optimality of the concrete set.
In this paperwe provide an explicit example of a unique solution S∞ to a Steiner problem for some given set of
pointsA∞ ⊂ ℝ2 of “fractal” type. The set S∞ is connectedanddisjoint fromA∞, and thusΣ∞ := S∞ ⊔ A∞ is an
indecomposable Steiner tree with in�nitely many branching points (joined by countablymany line segments
meeting with equal angles of 2ð/3). As a byproduct we get the whole family of explicitly de�ned unique
connected solutions of the Steiner problem for some given �nite sets of points which are �nite binary trees
(it is customarily to say that these Steiner trees have full topology [2]), and with growing complexity (i.e. the
number of branching points). Note also that the existence of a (�nite) Steiner tree in the plane with arbitrary
(but �nitely) many branching points follows from the abstract result from [2].

The set A∞ consists of the root and uncountably many leafs of the tree. No segment of S∞ touches the
leafs, while every leaf is an accumulation point of segments of S∞. The in�nite treeΣ∞ is composed by a trunk
of some length ℓ which splits into two branches of length ë1ℓ both of which split further into two branches
of length ë1ë2ℓ and so on. Our proof requires that the sequence {ëj} vanish rather quickly (in fact, al least
be summable). It is an open question if in the case of a constant sequence ëj = ë (with ë > 0 small enough)
the same construction still provides a Steiner tree. This seems to be quite interesting since the resulting tree
would be, in that case, a self-similar fractal.

2 Notation
For a subset D ⊂ E of a metric space E we denote by D̄ and àD its closure and its topological boundary
respectively, and byHk(D) its k-dimensional Hausdor� measure, we set

dist(x, D) := inf{d(x, y) : y ∈ D}

wheneverx ∈ E, anddenote by (D)ù := {x ∈ E : dist(x, D) < ù} its ù-neighborhood. ByBr(x)wedenote the open
ball of radius r with center x ∈ E. The Euclidean norm inℝn is denoted by | ⋅ |.
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For pointsA,B in the planewe let (AB), [AB] and [AB) (or (BA]) stand for the respective line, line segment
and the raywith endpointA, while |AB| := |A − B|. By∠(a, b)wedenote the angle between the two rays a and b
(or between the ray and the line, depending on the context). By ΔABCwe denote the triangle with verticesA,
B andC, and by ∠ABC the angle at the vertex B. The notation for the angles and for their measure is the same.

3 Construction
For the sake of brevity we introduce the notation

M(A) := {S ∈ St(A) : H1(S) ≤ H
1(S�) for every S� ∈ St(A)}

for the set of solutions of the Steiner problem. Set also S(A) := H1(S), where S ∈ M(A).
We call Fermat point of the triangle ΔABC the point minimizing the sum of distances from the three

vertices of the triangle. Such a point is well known to be unique and will be denoted by F(A, B, C). When
all the angles of the triangle do not exceed 2ð/3, the Fermat point is inside the triangle and all sides of the
triangle are visible from Fermat point at the angle of 2ð/3.

Let L > 0 be a given length and let {ëj} be a given sequence of positive numbers. We construct three
sequences of points {xn, yn, zn}

∞
n=1 ⊂ ℝ

2 by the following recursive procedure (see Figure 1):
∙ y0 := (−L + 2ë1L, 0) ∈ ℝ

2,
∙ y1 := (0, 0) ∈ ℝ2, x1 = (2ëg(1)L, 0) ∈ ℝ

2 with g(j) := ⌊log2 j + 1⌋,
∙ zn := (xn + yn)/2 for n ≥ 1,
∙ the points xn, x2n, x2n+1 are the three vertices, listed in counter-clockwise order, of the equilateral triangle

inscribed in the circle with center zn and radius |xn − zn|,
∙ yn := 2ëg(n)y⌊n/2⌋ + (1 − 2ëg(n))xn for n ≥ 1 (observe that in this way yn = F(y⌊n/2⌋, x2n, x2n+1)).
Let i := g(j). The point xj will be called leaf of the i-th generation and the point yj is called Fermat point of
the i-th generation.

y1
x1z1

y0

x2

x3

ë1L
L

y�
0

y�
1

Σ1

Figure 1. The �rst tripod in the construction of Σn.

Let us de�ne the following sets for k = 0, 1, . . . :

òk := [y0, y1] ∪
2k−1
⋃
n=1

[yn, y2n] ∪ [yn, y2n+1], Σk := òk ∪
2k+1−1
⋃
n=2k [yn, xn],

Ak := {x2k , x2k+1, . . . , x2k+1−1} (the vertices of Σk),

S∞ :=
∞

⋃
k=1

òk, Σ∞ := S∞, A∞ := Σ∞ \ S∞,

Gen(xp) := {x2p, x2p+1, x4p, . . . , x2kp, . . . , x2kp+2k−1, . . . } (the set of the descendants of vertex xp),

Genk(xp) := Ak ∩ Gen(xp).
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Figure 2. Three iterations in the construction of Σn. The set Σ3 is blue.

Let us call Σk the sample tree for the set of points Ak (where k is �nite or k = ∞). Note that Σk depends on the
number L and the coe�cients ë1 ⋅ ⋅ ⋅ ën. Clearly, for the sample tree one has

∠y2jyjy2j+1 = ∠y2jyjy⌊j/2⌋ = ∠y⌊j/2⌋yjy2j+1 =
2ð
3
. (3.1)

Actually, by construction yj = F(y⌊j/2⌋, x2j, x2j+1) and all the angles of the triangle Δx2jy⌊j/2⌋x2j+1 do not
exceed 2ð/3, and thus all the sides of the triangle are visible from yj at the angle 2ð/3.

yn xnzn

x2n

x2n+1

y2n

y2n+1

Figure 3. The iteration in the construction of Σn.
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It is easy to see that there is a ë̄ > 0 such that if allëk < ë̄, then allΣk with k�nite and k = ∞donot contain
loops (homeomorphic images of S1) and hence are topological trees (i.e. connected and locally connected
compact sets without loops). Of course this condition must be satis�ed for Σk to be an optimal set.

3.1 Main result

The principal result of this paper is the following.

Theorem 3.1. Let Σk (where k is either �nite or k = ∞) be the sample tree constructed with decreasing sequence
of positive coe�cients {ëj} satisfying

ëj ≤
1

5000
, j ≥ 2, (3.2)

120
∞

∑
j=1

ëj <
ð
42

. (3.3)

Then Σk ∈ M({y0} ∪ Ak) and for every S ∈ M({y0} ∪ Ak) one has Sk ⊂ S ⊂ Σk.

It is worth remarking that the proof of the above theorem gives a bit more, namely some stability of the result
with precise geometric conditions on the data that guarantee still the same structure and length of the
Steiner tree as well as its uniqueness. We stress however the requirement that the sequence {ëj} be vanishing
as j → ∞. It is not clear whether the similar statement is true for non-vanishing sequences, say, for constant
ones ëj = ë for some su�ciently small ë > 0.

3.2 Some properties of the construction

For the readers’ convenience we remark here the basic properties of our construction.
Recall that a c ∈ Σ is called a topological endpoint of a compact connectedmetric spaceΣ if for every ù > 0

there is an open neighborhoodU of c in Σwith diamU ≤ ù and àU being a singleton [3]. It is easy to note then
that the closed set Ak is made of the topological endpoints of the tree Σk (for both k �nite and k = ∞), and
in the case k = ∞ it is uncountable (this is immediate by identifying each c ∈ A∞ with the itinerary in the
binary tree, say, encoded by a sequence of 0 and 1 standing for the directions chosen at each branching
point). Further, it is totally disconnected (i.e. its connected components are singletons), which can of course
be worked out “by hand” in our construction even for the case we do not know that Σk are Steiner trees, but
it is curious to observe that once we know Σk to be a Steiner tree, the respective properties of Ak can also be
seen as a general property of endpoints of Steiner trees according to the following statement.

Proposition 3.2. Suppose that Σ ⊂ E is a closed set solving the Steiner problem for some compact C ⊂ E,
i.e. Σ ∈ M(C), where E is a complete metric space, H1(Σ) < +∞. If the set of endpoints A of all connected
components of Σ is closed, then it is compact and totally disconnected. Moreover, Σ ∈ M(A).

Proof. Suppose that A is closed. By [5, Theorem 7.6] one has A ⊂ C, hence it is compact. Further, if there is
a shorter Σ connecting A, then it also connects C, hence, Σ ∈ M(A). Again by [5, Theorem 7.6] one has that
each connected component of Σ has at most one endpoint at each connected component of A, hence A is
totally disconnected.

Note that in our construction the set A∞ is compact, totally disconnected and perfect (i.e. it has no isolated
points, say, by Lemma 3.5 which implies in particular that for each c ∈ A∞ there is an arbitrarily small ball
containing c and containing in�nitely many other points ofA∞), and hence it is homeomorphic to the Cantor
set (which is yet another way to observe that it is uncountable).

Another easy statement below shows in particular that no binary tree can be an indecomposable Steiner
tree for the compact set of its endpointsA ifH1(A) ̸= 0. For simplicity it is provided here for sets in a Euclidean
space although it is clearly valid in a much more general context, as easily can be deduced from the proof.
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Proposition 3.3. Suppose that Σ ⊂ ℝn is a compact connected set, and H1(Σ) < +∞. Then for its set of
endpoints A one hasH1(A) = 0.

Proof. Recall that ifΣ is a compact connected set withH1(Σ) < +∞, then it is a trace of some Lipschitz curve è
of �nite length which without loss of generality may be arclength parameterized over some interval [0, l],
so that è([0, l]) = Σ. Let c ∈ A. Then for each t ∈ (0, l) such that è(t) = c one has ̇è(t) either does not exist or
̇è(t) = 0. In fact, otherwise there are two curves with traces Γ1 = è([t, t + ù]) ⊂ Σ and Γ2 = è([t − ù, t]) ⊂ Σ for

some ù > 0 such that Γ1 ∩ Γ2 = {c}, and hence c is not an endpoint of Σ. Thus {t ∈ [0, l] : è(t) ∈ A} must have
zero Lebesgue measure, which impliesH1(A) = 0.

In the sequel we also will need the following almost immediate technical lemmata.

Lemma 3.4. Every point c ∈ A∞ is a limit point of some sequence of points ak ∈ Ak.

Proof. Consider an arbitrary point c ∈ A∞ = Σ∞ \ S∞. There is a subsequence ck ∈ S∞ = ⋃∞k=1 òk converging
to c. It may be assumedwithout loss of generality that ck ∈ òk \ òk−1 (otherwise, there would be an n ∈ ℕ such
that c ∈ ò̄n ⊂ òn+1 ⊂ S∞). Then dist(ck, Ak) ≤ ëk ⋅ ⋅ ⋅ ë1L → 0. Since each Ak is a compact set, there is ak ∈ Ak

attaining this distance. But then
|c − ak| ≤ |c − ck| + |ck − ak| → 0

as k → ∞.

Lemma 3.5. For the sample tree constructed with decreasing sequence of coe�cients {ëk} satisfying ë1 < 1/2
one has Gen(xn) ⊂ B4Lë1 ⋅⋅⋅ëg(n) (xn) for every n ∈ ℕ.

Proof. Let xp ∈ Gen(xn). Then
dist(xn, xp) ≤ dist(yn, xn) + dist(yn, xp).

We estimate dist(yn, xp), keeping in mind that the radius of the circle circumscribed around the equilateral
triangleΔx2jx2j+1xj is equal to ëg(j) ⋅ ⋅ ⋅ ë1L = |yjx2j| = |yjx2j+1| (note that F(x2j, x2j+1, xj) ∈ [yjxj] is the center
of this circle), and hence

dist(y⌊j/2⌋, yj) < dist(y⌊j/2⌋, xj) = ëg(j)−1 ⋅ ⋅ ⋅ ë1L.

One has then

dist(yn, xp) ≤ dist(y⌊p/2⌋, xp) +
g(p)−g(n)−1

∑
l=1

dist(y⌊p/2l⌋, y⌊p/2l+1⌋)
≤ Lë1 ⋅ ⋅ ⋅ ëg(p)−1 +

g(p)−g(n)−1

∑
l=1

Lë1 ⋅ ⋅ ⋅ ël

=
g(p)−1

∑
l=g(n)

Lë1 ⋅ ⋅ ⋅ ël

= Lë1 ⋅ ⋅ ⋅ ëg(n)(1 +
g(p)−1

∑
l=g(n)+1

ëg(n)+1 ⋅ ⋅ ⋅ ël)

≤ Lë1 ⋅ ⋅ ⋅ ëg(n)

g(p)−g(n)−1

∑
l=0

ël
g(n)+1

≤ Lë1 ⋅ ⋅ ⋅ ëg(n)

1 − ëg(p)−g(n)
g(n)+1

1 − ëg(n)+1
< 2Lë1 ⋅ ⋅ ⋅ ëg(n),

because
1 − ëm−g(n)

g(n)+1

1 − ëg(n)+1
<

1
1 − ëg(n)+1

< 2,

since ëg(n)+1 < 1/2. But
dist(yn, xn) = 2Lë1 ⋅ ⋅ ⋅ ëg(n),

and therefore, dist(xp, xn) < 4Lë1 ⋅ ⋅ ⋅ ëg(n).
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4 Proof of the main result
Proof of Theorem 3.1. The proof will be achieved in several steps.

In Step 1 wewill prove that any Steiner tree inM({y�
0} ∪ Ak) has the structure similar to that of the sample

tree, i.e. is still a binary tree with each bifurcation at the angle of 2ð/3 (we will call such a structure regular),
once its root y�

0 is not too far away from y0 (the precise geometrical condition for “being not too far away” will
be provided, and it is worth emphasizing that it allows the distance |y0y

�
0| to be arbitrarily large). This is the

crucial step of the proof, and it will be accomplished by an inductive application of Lemma A.6. The latter is
of certain interest itself: it deals with a Steiner set connecting a vertex of an equilateral triangle with two very
small arbitrary compact sets very close to the other two vertices of this triangle, and says when it remains
a tripod (like the Steiner tree connecting the vertices of this triangle) away from these sets, giving the answer
in terms of a quantitative estimate on the data.

In Step 2 we �rst show under the same hypothesis that every �nite tree with regular structure connecting
{y�

0} ∪ Ak, k ∈ ℕ, has length |y�
0x1|, which together with the result of the Step 1 proves that every �nite Steiner

tree in M({y�
0} ∪ Ak) has length |y�

0x1|, so that in particular the optimality of sample trees follows for the
case k �nite. This is accomplished by a more or less straightforward application of Melzak’s construction [2].

Then (still in Step 2) knowing the exact value of the length of Steiner trees Σ�
k ∈ M({y�

0} ∪ Ak) for k �nite,
we show that it remains the same (i.e. equal to |y�

0x1|) also for k = +∞, proving inparticular also the optimality
of the sample tree for this case. This is an almost immediate application of Goła̧b’s theoremon semicontinuity
of length along sequences of Hausdor� convergent connected compact sets, and of the optimality of Σ�

k;
Finally, in Step 3 we will prove the uniqueness of the Steiner tree in M({y0} ∪ Ak) (i.e. with root y0). The

latter will be done for both the cases k �nite and k = +∞ simultaneously by the same argument (without
distinguishing between these cases). Note that in fact, here only the case k = +∞ is really interesting, since
uniqueness for k �nite is well-known and follows from convexity of the length of a Steiner tree as a function of
coordinates of branching points. However, the argument we use here works for both cases. Namely, we prove
by induction that for any Steiner tree inM({y0} ∪ Ak) its branching points coincide with those of the sample
tree, which is done again with the help of Step 1 and Step 2.

Since the proof is quite lengthy and technical, we found it reasonable to put all the necessary auxiliary
statements including the crucial Lemma A.6 in the Appendix.

Step 1. We prove that an arbitrary Steiner tree Σ�
k ∈ M({y�

0} ∪ Ak) has the same structure of the sample tree if
its root y�

0 is not too far away from y0. Namely, a tree with 2k − 1 branching points y�
j and endpoints x�

j, i.e.

Σ�
k = ò�

k ∪
2k+1−1
⋃
j=2k [y

�
j, x

�
j],

where

ò�
k := [y�

0, y
�
1] ∪

2k−1
⋃
j=1

([y�
j, y

�
2j] ∪ [y�

j, y
�
2j+1]),

and
y�
j = F(y�

2j, y
�
⌊j/2⌋, y

�
2j+1), j = 1, . . . , 2k−2,

so that all the angles

∠y�
2jy

�
jy

�
2j+1 = ∠y�

2jy
�
jy

�
⌊j/2⌋ = ∠y�

⌊j/2⌋y
�
jy

�
2j+1 =

2ð
3
,

and, further,
y�
j = F(x�

2j, x
�
2j+1, y

�
⌊j/2⌋), j = 2k−2, . . . , 2k−1,

and hence,

∠x�
2jy

�
jx

�
2j+1 = ∠x�

2jy
�
jy

�
⌊j/2⌋ = ∠y�

⌊j/2⌋y
�
jx

�
2j+1 =

2ð
3
,

will be said to have regular structure (in particular, this is the case of the sample tree according to (3.1)).
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The condition on the root y�
0 to be “not too far away” from y0 will be considered (and this is impor-

tant in the sequel) in the angular terms, namely, we assume that ∠y�
0x1y0 < â1 and y�

0 be outside the
ball B̄(40ë2+1)ë1L(z1) (see Figure 1).

The point y�
j will be called branching point of i-th generation if i = g(j). De�ne the sequence

â0 :=
ð
6
−

ð
21

, âi+1 := âi + 120ëi+1.

Then according to the assumption (3.3) of the main theorem, for each index i the inequality
ð
6
−

ð
21

< âi <
ð
7
=

ð
6
−

ð
42

holds. By induction on the generation i we prove now the following:

Claim. For all i < k, the Steiner tree Σ�
k outside the union of the balls ⨆g(l)=i+1 B20ëi+1 ⋅⋅⋅ë1L(xl) is the tree of

i-th generation having regular structure (i.e. it is the tree with regular structure having branching points
of all generations up to the i-th generation), with root y�

0 and the set of leafs x�
l belonging to the union of

circumferences ⨆g(l)=i+1 àB20ëi+1 ⋅⋅⋅ë1L(xl), with a single leaf on each circumference; moreover, each branching
point y�

j of i-th generation is located inside the angle of measure 2âi+1 with bisector [x2jyj) and outside the
ball B̄(40ëi+2L+1)ëi+1 ⋅⋅⋅ë1L(z2j), as well as inside the angle of the same value 2âi+1 with bisector [x2j+1yj) and outside
the ball B̄(40ëi+2L+1)ëi+1 ⋅⋅⋅ë1L(z2j+1).
Base of induction: i = 1. According to Lemma 3.5 the set Ak is located inside the balls with radius 4ë1ë2L
centeredatx2 andx3. Since for thepointsT� := y�

0,T := y0,V := x2,U := x3 and the setsA := Ak,AV := Genk(x2),
AU := Genk(x3) the conditions of Lemma A.6 are satis�ed, there are two points x�

2 := V� ∈ àB20ë2ë1L(x2) and
x�
3 := U� ∈ àB20ë2ë1L(x3) such that outside the balls B20ë2ë1L(x2) and B20ë2ë1L(x3) the optimal tree for {y�

0} ∪ Ak

coincides with the tripod connecting y�
0, U

�, V� and having branching point y�
1 = F(T�, U�, V�). Since T, T�,

U�,V�,W:= x1 satisfy the conditions of Lemma A.9 with â := â2 and á := ∠T�WT < â1 = â2 − 120ë2, it follows
that y�

1 is located inside the angle of 2â2 with bisector [x2y1), while in view of Remark A.10 it does not belong
to B̄(40ë3L+1)ë2ë1L(z2) (while applying Remark A.10 it is worth noting that here OV = z2).

The symmetrical assertion is also true: the point y�
1 is inside the angle of 2â2 with the bisector [x3y1) and

outside the ball B̄(40ë3L+1)ë2ë1L(z3). So the base of induction is proved.

Step of induction. Consider an arbitrary branching point y�
j of i-th generation (i.e. g(j) = i), for which the

inductive assumptionholds, in particular,y�
j exists and is located inside the angle of 2âi+1 withbisector [x2jyj)

(in other words, ∠y�
jx2jyj < âi+1) and outside the ball B̄(40ëi+2L+1)ëi+1 ⋅⋅⋅ë1L(z2j). The inductive assumption implies

that Σ�
k contains a subtree connecting y�

j with àB20ëi+1 ⋅⋅⋅ë1L(x2j) and therefore, since other parts of Σ�
k cannot

intersect this circle, it also contains the subtree connecting y�
j with Genk(x2j) ⊂ B4ëi+1 ⋅⋅⋅ë1L(x2j) and both

subtrees are optimal. Then in view of Lemma 3.5

Genk(x2j) = Genk(x4j) ⊔ Genk(x4j+1) ⊂ B4ëi+2 ⋅⋅⋅ë1L(x4j) ⊔ B4ëi+2 ⋅⋅⋅ë1L(x4j+1),

the assumptions of LemmaA.6 holdwith the setsAV := Genk(x4j) andAU := Genk(x4j+1), and thus there exist
two points V� ∈ àB20ëi+2 ⋅⋅⋅ë1L(x4j) and U� ∈ àB20ëi+2 ⋅⋅⋅ë1L(x4j+1) such that outside the balls B20ëi+2 ⋅⋅⋅ë1L(x4j) and
B20ëi+2 ⋅⋅⋅ë1L(x4j+1) any optimal set for {y�

j}∪Genk(x2j) coincideswith the tripod connectingy�
j,U

�,V� and having
branching point y�

2j = F(y�
j, U

�, V�). Then employing Lemma A.9 (with T� := y�
j, T := yj, V := x4j, U = x4j+1,

W:= x2j, â := âi+2, á := ∠T�WT < âi+1 = âi+2 − 120ëi+2 and Lë1 ⋅ ⋅ ⋅ ëi in place of L, ëi+1 in place of ë1 and
ëi+2 in place of ë2), we get that y�

2j is inside the angle of 2âi+2 with bisector [x4jy2j) and outside the
ball B̄(40ëi+3L+1)ëi+2 ⋅⋅⋅ë1L(z4j). Moreover, the point y�

2j is inside the angle of 2âi+2 with bisector [x4j+1y2j) and
in view of Remark A.10 (used with the same notations) is outside the ball B̄(40ëi+3L+1)ëi+2 ⋅⋅⋅ë1L(z4j+1). Similarly,
the pointy�

2j+1 is inside the angle of 2âi+2 withbisector [x4j+2y2j+1) andoutside the ball B̄(40ëi+3L+1)ëi+2 ⋅⋅⋅ë1L(z4j+2).
Moreover, it is inside the angle of 2âi+2 with bisector [x4j+3y2j+1) and outside the ball B̄(40ëi+3L+1)ëi+2 ⋅⋅⋅ë1L(z4j+3).

Further, since y�
2j = F(yj, U

�, V�), one has

∠x�
4jy

�
2jx

�
4j+1 = ∠y�

jy
�
2jx

�
4j = ∠x�

4j+1y
�
2jy

�
j =

2ð
3
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E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an in�nite Steiner tree | 9

for x�
4j+1 := U�, x�

4j := V�. The analogous statement is true for the point y�
2j+1. Thus the Steiner tree Σ�

k outside
the balls⨆g(l)=i+2 B20ëi+2 ⋅⋅⋅ë1L(xl) coincides with the tree of the i-th generation with the regular structure which
connects the root y�

0 with some vertices from the circumferences ⨆g(l)=i+2 àB20ëi+2 ⋅⋅⋅ë1L(xl) (one vertex on each
of the circumferences), which concludes the proof of the step of induction.

Step 2. We prove that the length of any Steiner tree for {y�
0} ∪ Ak (with k �nite or in�nite) is equal to |y�

0x1|,
once one has, as assumed in Step 1, that ∠y0x1y

�
0 < â1 and the point y�

0 is outside the ball B̄(1+40ë2)ë1L(z1).
First assume k to be �nite. We will show the claim for every tree with regular structure connecting the

set of points {y�
0} ∪ An. For this purpose we again use induction. The base (i = 0) is obvious, since every

tree having the regular structure connecting the points of the set {y�
0} ∪ A0 = {y�

0, x1} is just a segment with
length |y�

0x1|. It su�ces thus to prove that every tree of the regular structure connecting the vertices of the
set y�

0 ∪ An has length |y�
0x1| if the same is true for all trees of the regular structure connecting the vertices of

the set y�
0 ∪ An−1. To this end assume that p is such that g(p) = n. Then

y�
p = F(x2p, x2p+1, y⌊p/2⌋). (4.1)

By a corollary to Ptolemy’s theorem (Lemma A.1), if y�
p is on the circle circumscribed around the triangle

Δx2px2p+1xp and ∠x2py
�
px2p+1 =

2ð
3 (which is true in view of (4.1)), then |y�

px2p| + |y�
px2p+1| = |y�

pxp|. Let us
consider an arbitrary tree of regular structure connecting the vertices of the set y�

0 ∪ An, namely,

Σ�
n = ò�

n ∪
2n+1−1
⋃
j=2n [y�

j, xj] = [y�
0, y

�
1] ∪

2n+1
⋃
j=1

[y�
j, y

�
2j] ∪ [y�

j, y
�
2j+1] ∪

2n+1−1
⋃
j=2n [y�

j, xj].

Denote

ò�
n−1 := [y�

0, y
�
1] ∪

2n
⋃
j=1

[y�
j, y

�
2j] ∪ [y�

j, y
�
2j+1],

Σ�
n−1 := ò�

n−1 ∪
2n−1
⋃

j=2n−1[y
�
j, xj].

Since the tree Σ�
n has the regular structure, obviously, Σ�

n−1 has a regular structure too, since there are no new
branching points: with g(j) = n one has

∠y⌊j/2⌋y
�
jxj = ∠y⌊j/2⌋y

�
jy

�
2j + ∠y�

2jy
�
jxj =

2ð
3

+
ð
3
= ð. (4.2)

The second equality in the above chain is true because of the regular structure ofΣ�
n. SinceΣ

�
n−1 has the regular

structure, we can apply the induction hypothesis:

H
1(Σ�

n−1) = |y�
0x1|.

To verify the step of induction we only have to prove that

H
1(Σ�

n−1) = H
1(Σ�

n).

It is enough to verify that

H
1(

2n−1
⋃

j=2n−1[y
�
j, xj]) = H

1(
2n−1
⋃

j=2n−2+1[y
�
j, y

�
2j] ∪ [y�

j, y
�
2j+1] ∪

2n+1−1
⋃
j=2n [y�

j, xj]).

The latter equation is true because for p satisfying g(p) = n − 1 one has

|y�
pxp| = |y�

px2p| + |y�
px2p+1| in view of Lemma A.1

= |y�
py

�
2p| + |y�

2px2p| + |y�
py

�
2p+1| + |y�

2p+1x2p+1| in view of (4.2).

Therefore it is proven that every (�nite) tree with the regular structure has length |y�
0x1|. Since in Step 1

it has been proven that every Steiner tree has regular structure, we have that the length of every optimal tree
for the set {y�

0} ∪ Ak is |y�
0x1| for all �nite k.
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10 | E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an in�nite Steiner tree

Let us now consider a case of the in�nite number of vertices (k = ∞). We will �nd the length of the
treeΣ�

∞ ∈ M({y�
0}∪A∞). It cannot be greater than |y�

0x1|, because, in view of Lemma 3.4, the limit in Hausdor�
distance Σ̃∞ of each subsequence of trees having the regular structure Σ�

k connects the points of the set
{y�

0} ∪ A∞ (as Ak ⊂ Σ�
k) and its length satis�es

H
1(Σ̃∞) ≤ lim inf

n→∞
H

1(Σ�
n) = |y�

0x1|,

because of Goła̧b’s theorem on lower semicontinuity of H1 over Hausdor� convergent sequence of con-
nected compact sets ([5, Theorem 3.3]). We prove now by contradiction that the length of Σ∞ cannot be less
than |y�

0x1|. Assume the contrary, i.e. that it is |y�
0x1| − ù, where ù > 0. Estimating the length of the set

Rn :=
∞

⋃
k=n

2k−1
⋃

j=2k−1([xjzj] ∪ [x2jzj] ∪ [x2j+1zj])

connecting the vertices of An and A∞ (note that it is the union of sets connecting the vertices of the genera-
tions k − 1 and k, with k ≥ n), we get

H
1(Rn) =

∞

∑
k=n

2k−1
∑

n=2k−1 |xjzj| + |x2nzj| + |x2n+1zj|

=
∞

∑
k=n

2k−1
∑

n=2k−1 3ë1 ⋅ ⋅ ⋅ ëkL

≤
∞

∑
k=n

3L(2ë1)
k

= 3L
(2ë1)

n

1 − 2ë1
→ 0

as n → ∞. Choose an n ∈ ℕ such that H1(Rn) < ù/2. Then the points of the set {y�
0} ∪ An with n �nite can be

connected by Σ�
∞ ∪ Rn, namely, the points of the set {y�

0} ∪ A∞ are connected by Σ�
∞, and then points of the

setAn are connected to points of the set {y�
0} ∪ A∞ byRn. The total length of this construction does not exceed

(|y�
0x1| − ù) +

ù
2
< |y�

0x1|,

which contradicts the fact that every optimal tree {y�
0} ∪ An has length |y�

0x1|. This proves that every optimal
tree for the set {y�

0} ∪ A∞ has length |y�
0x1|.

Step3. Weprovenowuniqueness of the Steiner tree for {y0} ∪ Ak with k either �nite or k = ∞ at once (without
distinguishing the two cases). Since in Step 1 it has already been proven that every such tree Σ�

k has regular
structure outside the respective balls, it su�ces to show that all the branching points y�

j are at the sample
position, i.e. y�

j = yj for all j ∈ ℕ. We will do it by induction on the generation i. Since y�
0 := y0, base of

induction is proven. Let us prove the inductive step. Let the claim be true for all branching points y�
j up to the

i-th generation included (g(j) ≤ i). Then, as it was shown in Step 1, Σ�
k has the regular structure outside the

respective balls, and hence

Σ�
k = [y0, y1] ∪

2i−1
⨆
j=1

[yj, y2j] ∪
2i−1
⨆

j=2i−1 Trj,
where Trj ∈ M({yj/2} ∪ Genk(xj)). For the length of Σ�

k to be minimal, it is necessary that the trees Trl have
minimal length each,whereg(l) = i+1.Without loss of generality, consider the structure ofTr2j, whereg(j) = i
and y�

j = yj by the inductive hypothesis.
Then, using Step 1with yj in place of y0,Genk(x2j) in place ofAk, k − i in place of k, ëi ⋅ ⋅ ⋅ ë1L in place of L,

x2g(l)j+l−2g(l) in place ofxl andël+i in place ofël, we get that outside the ballsB20ëi+2 ⋅⋅⋅ë1L(x4j) andB20ëi+2 ⋅⋅⋅ë1L(x4j+1)
each tree Tr2j, optimal for the set {yj} ∪ Genk(x2j), coincides with the tripod connecting yj,U�,V� and having
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E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an in�nite Steiner tree | 11

branching point y�
2j = F(yj, U

�, V�), where V� ∈ àB20ëi+2 ⋅⋅⋅ë1L(x4j) and U� ∈ àB20ëi+2 ⋅⋅⋅ë1L(x4j+1). Then

Tr2j = [yj, y
�
2j] ⊔ Tr

�
4j ⊔Tr

�
4j+1,

where Tr�l ∈ M({y�
l/2} ∪ Genk(xl)). Note that the conditions of Lemma A.9 and Remark A.10 are ful�lled with

T� := T := yj, â := ð
6 − ð

21 + 120ëi+1 and ëi+1 in place of ë2, because

0 = ∠TWT� < â − 120ëi+1 =
ð
6
−

ð
21

.

Thus the branching point y2j� is inside the angle of 2â with the bisector [x4j+1y2j) and outside the ball
B̄(40ëi+3+1)ëi+2 ...ë1L(z2j). Then the conditions of the Step 2 are satis�ed for the point y�

2j and the set Genk(x4j)
(with y2j and y�

2j in place of y0 and y�
0, withGenk(x4j) in place ofAk, with k − i − 1 in place of k, ëi+1 ⋅ ⋅ ⋅ ë1L in

place of L, x2g(l)+1j+l−2g(l) in place of xl, ël+i+1 in place ël and â in place of â1). We thus have that the length of
the Steiner tree, connecting the points of the set {y�

2j} ∪ Genk(x4j), is |y�
2jx4j|. So

H
1(Tr�4j) = |y�

2jx4j|.

Similarly,
H

1(Tr�4j+1) = |y�
2jx4j+1|.

Therefore,
H

1(Tr2j) = H
1([yj, y

�
2j] ⊔ Tr

�
4j ⊔Tr

�
4j+1) = |yjy

�
2j| + |y�

2jx4j| + |y�
2jx4j+1|.

Since Tr2j has minimum possible length, the point y�
2j must minimize the expression on the right-hand side,

andhence coincidewith the Fermat pointF(yj, x4j, x4j+1) = y2j. Thus the induction step is proven, concluding
therefore the proof of the claim of Step 3, and hence, the proof of the theorem.

A Auxiliary lemmata
In this sectionwewill provide some technical assertions. Themost important results herewhich are of certain
independent interest are Lemma A.3 and Lemma A.6.

To make the readers’ life easier we recall the following very classical result the proof of which can be
found in virtually any nice book on elementary geometry.

Lemma A.1 (Corollary to Ptolemy’s theorem). If the quadrilateral ABCD is inscribed in a circumference and
the angles ∠BCD = ∠CBD = ð/3, then |AC| = |AB| + |AD|.

Consider now a triangle ΔTUV with all the angles less than 2ð/3. We will study what happens to its Fermat
point if the vertices of the triangle change their positions not too much, so that all angles remain less
than 2ð/3. The quantitative answer to this question is given in Lemma A.3.

We start with the following notation. Denote Y := F(T, U, V) and L := |TY| + |YU| + |YV|.

Lemma A.2. Let T be a point inside the angle ∠UWV and outside the closed circle circumscribed around the
equilateral triangle ΔUWV. Then the only compact S ∈ M({T, U, V}) is a tripod with branching in the Fermat
point F(T, U, V). The lengthH1(S) = |TW| can be found from Ptolemy’s theorem.

Proof. It su�ces to observe that each angle of the triangleΔTUV is less than 2ð/3 and so the respective Steiner
tree is a tripod.

Assumenow that |TU| = |TV|.Wedescribe a simple constructiondrawn inFigure 4.Note thatR := |YU| = |YV|
is the radius of the circle circumscribed around the equilateral triangleΔVUW. Denote the center of this circle
by O. Further, let the following hold:
∙ ë1 := R/L, ë1 < 3/7, ë2 < 1/120,
∙ the line t is a common tangent to the circles Bó(V) and Bó(U) with ó := 20ë1ë2L so that these circles are

on the opposite sides of it (note that under our assumption on ë2 we have that the circles B̄ó(V) and B̄ó(U)
are disjoint),
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12 | E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an in�nite Steiner tree

V

U

W

T

O

BR+2ó(O)

qV

qU

PV

PU

C

Q

sV

sU

Figure 4. The construction used in Lemma A.3.

∙ PV := t ∩ àBó(V), PU := t ∩ àBó(U) (without loss of generality assume that |TPV| < |TPU|),
∙ the point PW is such that the triangle ΔPVPUPW is equilateral (there are two such points; we choose the

one closest toW),
∙ the ray sV starts from the pointW and is parallel to the line (PVPW),
∙ the ray sU is symmetric to the ray sV with respect to the line (TW).

We emphasize that in view of the requirements on ë1 and ë2 one has that the three balls B̄ó(U), B̄ó(V)
and B̄2ó(W) are disjoint, and the point T is outside the ball B̄R+2ó(O) as can be veri�ed by an elementary
calculation.

Lemma A.3. The following assertions hold true.
(i) One has

÷ := ∠(sV, (TW)) = arccos
40
√3

ë2 −
ð
3
,

so that ÷ → ð/6 as ë2 → 0.
(ii) If the point T� is such that ∠TWT� < ÷, then

[TT�] ∩ sV = [TT�] ∩ sU = 0.

(iii) If T� is such that
[T�T] ∩ sU = [T�T] ∩ sV = 0

(in view of assertion (ii) it is true when ∠TWT� < ÷) and T� is outside the ball B̄R+2ó(O), then for every
U� ∈ B̄ó(U) and V� ∈ B̄ó(V) the unique Steiner tree S� ∈ M({T�, U�, V�}) is a tripod with H1(S�) = |T�W�|
whenever the triangle ΔV�U�W� is equilateral.
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E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an in�nite Steiner tree | 13

Remark A.4. Under the assumptions of Lemma A.3, the set of possible positions of the pointW� correspond-
ing to all the possible U� ∈ àBó(U) and V� ∈ àBó(V), as well as to all the possible U� ∈ B̄ó(U) and V� ∈ B̄ó(V),
is the closed ball B̄2ó(W). Indeed,

W = V +Rð/3(U − V),

W� = V� +Rð/3(U
� − V�),

whereRð/3 ∈ SO(2) is the matrix representing the rotation by ð/3. Then

W� = V + (V� − V) +Rð/3(U − V) +Rð/3((U
� − U) − (V� − V))

= W +Rð/3(U
� − U) + (Id −Rð/3)(V

� − V).

Therefore,
{W� : V� ∈ àBò(V), U

� ∈ àBñ(U)} = W +Rð/3(àBñ(0)) + (Id −Rð/3)(àBò(0))

= W + àBñ(0) + àBò(0)

= W + B̄ñ+ò(0) \ B(ñ−ò)∨0(0)

= B̄ñ+ò(W) \ B(ñ−ò)∨0(W),

where B0(0) := 0, the second equality is valid since

(Id −Rð/3)(àBò(0)) = àBò(0).

Applying this assertion for ò = ñ := ó as well as for all ò ∈ [0, ó] and ñ ∈ [0, ó], we get

{W� : V� ∈ àBó(V), U
� ∈ àBó(U)} = {W� : V� ∈ B̄ó(V), U

� ∈ B̄ó(U)} = B̄2ó(W)

as claimed.

Remark A.5. Under the assumptions of Lemma A.3, for the open ball B� circumscribed around the triangle
ΔV�W�U� one has

àB� ⊂ B̄R+2ó(O) \ BR−2ó(O),

so that
B� ⊂ BR+2ó(O).

In fact, for every z� ∈ àB� in the arc connecting V� andW�, we have that there is a rotationR by the angle not
exceeding ð/3 such that z� = U� +R(V� − U�). Denoting z := U +R(V − U), we have that clearly z ∈ àB in the
arc connecting V andW, where B is the circle circumscribed around ΔUWV, and

z� − z = R(V� − V) + (Id −R)(U� − U).

Letting ò := |V� − V| and ñ := |U� − U|, we get that

z� − z ∈ R(àBò(0)) + (Id −R)(àBñ(0)) ⊂ àBò(0)) + B̄ñ(0) ⊂ B̄ñ+ò(0) \ B(ñ−ò)∨0(0),

the second inclusion being valid because the angle of the rotation does not exceed ð/3. Thus, minding
that ò ≤ ó and ñ ≤ ó, we get

z� − z ∈ B̄2ó(0). (A.1)

Analogously, for every z� ∈ àB� in the arc connecting U� and W�, there is a z ∈ àB in the arc connecting U
andW such that (A.1) holds. In other words, the arc of àB� connectingV� andW� (resp.U� andW�) belongs to
the (closed) 2ó-neighborhood of the arc of àB connecting V and W (resp. U and W). To show the analogous
statement about the remaining arc of àB� connectingV� andU�, let R(x) := O +Rð/3(x − O)whereRð/3 is the
rotation by ð/3, so that R is the rotation by ð/3 aroundO, and setW�� := R(W�),V�� := R(V�) andU�� := R(U�),
so that R(ΔV�W�U�) = ΔV��W��U��. Note that R(ΔVWU) = ΔUVW, R(B) = B andV�� ∈ B̄ó(U),U�� ∈ Bó(W). For
every z� ∈ àB� in the arc connecting V� and U� we have that R(z�) ∈ R(àB�) belongs to the arc connecting V��

and U��. Applying what has already been proven to ΔV��W��U�� instead of ΔV�W�U�, R(àB�) instead of àB�,
and R(z�) instead of z�, we have that there is a z̃ ∈ àB in the arc connectingU andW such that |R(z�) − z̃| ≤ 2ó
(which is just (A.1) for R(z�) instead of z� and z̃ instead of z). Letting z ∈ àB in the arc connecting V and U be
such that R(z) = z̃, we get

|z� − z| = |R(z�) − R(z)| ≤ 2ó,
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14 | E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an in�nite Steiner tree

and thus the arc of àB� connecting V� and U� also belongs to the closed 2ó-neighborhood of the arc of àB
connecting V and U. In other words,

àB� ⊂ (àB)2ó = B̄R+2ó(O) \ BR−2ó(O),

showing the claim.

Proof. To prove the assertion (i) let us draw a line perpendicular to (UV) through the point U and denote
by SU its intersection with the line (PVPU). Set also S := (PVPU) ∩ (USU). Since the line (PVPW) is parallel
to sV and (USU) is parallel to (TW), then the angle between (PVPW) and (USU) is equal to ÷. Let us denote
ã := ∠USUPU and look at the triangle ΔSPVSU (see Figure 5). One observes then

÷ = ð − ∠PVSUS − ∠SPVSU = ∠USUPU − ∠SPVSU = ã −
ð
3
. (A.2)

DenoteQ := (PUPV) ∩ (TW). It is easy to see (looking at the trianglesΔUSUQ andΔUPUQ) that ∠QUPU = ã (see
Figure 6). From the triangle ΔUPUQ one has

cos ã =
|UPU|
|UQ|

=
ó

|UV|/2
. (A.3)

Therefore,
ã = arccos

2ó
|UV|

= arccos
40ë1ë2L
√3ë1L

=
40
√3

ë2, (A.4)

which means that
÷ = ã −

ð
3
= arccos

40
√3

ë2 −
ð
3
,

proving (i).

V

U

Q

D

E

PV

PU

PW

SU
S

Figure 5. The construction used in the proof of Lemma A.3.

Assertion (ii) is obvious. Let us prove (iii). Consider any points U� ∈ B̄ó(U) and V� ∈ B̄ó(V). For the
triangle ΔT�U�V� to have no angle greater than or equal to 2ð/3 it is su�cient that the following hold:
(A) T� is outside the circle B̄� circumscribed around the equilateral triangle ΔU�W�V�,
(B) T� is inside the angle ∠U�W�V�.
Clearly, (A) is just Remark A.5. To prove (B), denote

Q� := (U�V�) ∩ (TW),

J�V := [V�W�) ∩ (TW),

J�U := [U�W�) ∩ (TW).

First we show that
∠V�J�VQ

� ≥ ∠(sV, (TW)) = ÷. (A.5)
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ãã

Q

U SU

PU

V

W

KV kV

Figure 6. The construction used in the second step of the proof of Lemma A.3.

Because of
∠V�Q�W =

2ð
3

− ∠Q�J�VV
�

and the fact that ∠V�Q�W takes the greatest value whenV� := PV andU� = PU (i.e. whenQ� = Q) which corre-
sponds to the minimum value of the angle ∠Q�J�VV

�, the latter being therefore equal to ÷. Thus ∠Q�J�VV
� ≥ ÷

for all U� and V�.
Now let us show that B̄ó(V) is outside the angle formed by the rays sV and (TW] (with the vertex at

pointW). It is su�ces to prove that
∠(sV, (TW]) < ∠(kV, (TW]), (A.6)

where kV is the raywith the vertexW tangent to the circleBó(V), such that the circleBó(V) is outside the angle
formed by the rays kV and (TW]. Let us denote by KV the point of contact of the ray kV with the circumfer-
ence àBó(V). Note that

∠(kV, (TW)) = ∠TWV − ∠KVWV =
ð
6
− arcsin

ó
|WV|

(see Figure 6). In view of (A.2) and (A.4) one has

÷ = arccos
2ó

|UV|
−
ð
3
=

ð
6
− arcsin

2ó
|UV|

,

and hence
÷ <

ð
6
− arcsin

ó
|UV|

= ∠(kV, (TW]),

which shows the validity of (A.6) and therefore of the claim being proven.
Thus for everyU� ∈ B̄ó(U), V� ∈ B̄ó(U) one has ∠V�J�VQ

� > ∠(sV, (TW]), and, furthermore, the circle B̄ó(V)
is outside the angle ∠(sV, (TW]) and has a nonempty intersection with the ray (V�J�V]. Hence the part of
the angle formed by the rays sV and (TW] outside the circle B̄R+2ó(O) (which contains both B̄ó(V) and the
points W and J�V) is contained in the angle ∠V�J�VQ

�. Similarly, the part of the angle ∠U�J�UQ
� outside the

circle B̄R+2ó(O) contains the angle formedby the rays sU and (TW]. Then the part of the angle∠V�W�U� outside
the circle B̄R+2ó(O) contains the angle formed by the rays sV and sU, namely,

(V�W�]\B̄R+2ó(O) = (V�J�V]\B̄R+2ó(O), (U�W�]\B̄R+2ó(O) = (U�J�U]\B̄R+2ó(O)
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16 | E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an in�nite Steiner tree

and
∠V�W�U�\B̄R+2ó(O) = (∠V�J�VQ

� ∪ ∠Q�J�UU
�)\B̄R+2ó(O)

⊃ (∠(sV, (TW]) ∪ ∠(sU, (TW]))\B̄R+2ó(O) = ∠(sV, sU)\B̄R+2ó(O).

Thus from [T�T] ∩ sU = [T�T] ∩ sV = 0 and T� outside BR+2ó(O) it follows that T� is inside the angle ∠U�W�V�,
which proves (B), and therefore, concludes the proof of (iii) in view of Lemma A.2.

In the following crucial lemma we consider a Steiner problem of connecting a vertex of an isosceles triangle
with two very small arbitrary compact sets very close to the other two vertices of this triangle, and say in
quantitative termswhen every solution to this problem is still a tripod (similarly to the Steiner tree connecting
the vertices of this triangle) far away from these sets.

Lemma A.6. With the notations of Lemma A.3 assume additionally that ë2 < 1/5000 and let T� outside the
ball B̄R+2ó(O) be such that ∠TWT� < ð/7. Letting Σ ∈ St(A), whereA = AU∪AV∪{T

�} such thatAV ⊂ B4ë1ë2L(V)
and AU ⊂ B4ë1ë2L(U), we have that Σ \ (Bó(V) ∪ Bó(U)) is a tripod.

Remark A.7. Note that ∠TWT� < ð/7 < ÷ when ë2 < 3/1000, since in this case arcsin(40ë2/√3)) < ð/42, and
hence

÷ = arccos(
40
√3

ë2) −
ð
3
=

ð
6
− arcsin(

40
√3

ë2) >
ð
6
−

ð
42

=
ð
7
.

Proof. We �rst prove that

Claim A. There are points U� ∈ àBó(U) and V� ∈ àBó(V) such that S(T� ∪ àBó(U) ∪ àBó(V)) = S({T�, U�, V�}).

In fact, either Claim A holds, or:

Claim B. There are a set G ∈ M(T� ∪ àBó(U) ∪ àBó(V)) and two sets S1 and S2 such that S1 ∈ M({T�} ∪ àBó(V))
(without loss of generality), S2 ∈ M(àBó(U) ∪ àBó(V)), and G = S1 ∪ S2.

To this end consider an arbitrary S� ∈ M(T� ∪ àBó(U) ∪ àBó(V)). If Claim B holds, then in view of the obvious
relationships

S(àBó(U) ∪ àBó(V)) = |UV| − 2ó,

S({T�} ∪ àBó(V)) = |T�V| − ó,

we obtain
S(T� ∪ àBó(V) ∪ àBó(U)) = |UV| + |T�V| − 3ó.

On the contrary, if Claim A holds, then the length of a Steiner tree S� is equal to |T�W�|, hence, since S� is the
shortest possible, H1(S) is equal to the distance from T� to the set of all possible positions of the point W�,
which in view of Remark A.4 is the ball B̄2ó(W). Therefore, in this case

S(T� ∪ àBó(V) ∪ àBó(U)) = dist(T�, B2ó(W)) = |T�W| − 2ó.

We now observe that
|T�W| − 2ó < |UV| + |T�V| − 3ó. (A.7)

To show (A.7), drop the perpendicular ℎ from the point V to the line (T�W) and denote H := ℎ ∩ (T�W) (see
Figure 7 (a). Then keeping in mind the conditions on ë2 and T� which give

∠T�WV = ∠TWV − ∠TWT� >
ð
6
−
ð
7
=

ð
42

in view of Remark A.7, we get

|T�V| + |UV| − |T�W| = |T�V| + |VW| − |T�W| = (|T�V| − |T�H|) + (|VW| − |HW|)

≥ |VW| − |HW| = |VW|(1 − cos(∠T�WV))

≥ √3ë1L(1 − cos(
ð
42
)) > 0.0048ë1L > 20ë2ë1L = ó,

the latter inequality because ë2 < 1/5000, which proves (A.7), and hence rules out the validity of Claim B
proving Claim A.
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T

V

W

T�

H
ℎ

(a)

U

U�

DU

EU

(b)

Figure 7. The constructions used in the proof of Lemma A.6.

Let S0 ∈ M({T�, U�, V�}). Then

H
1(Σ \ (Bó(U) ∪ Bó(V))) ≥ H

1(S0), (A.8)

because Σ \ (Bó(U) ∪ Bó(V)) ∈ St(T� ∪ àBó(U) ∪ àBó(V) and S0 ∈ M(T� ∪ àBó(U) ∪ àBó(V)).
Clearly, since AU ⊂ B4ë1ë2L(U) = Bó/5(U), T� ̸∈ Bó(U) and Σ connects AU with AV ∪ {T�}, we have

Σ ∩ àBáó(U) ̸= 0 for all á ∈ (1/5, 1).

Suppose now that there is no á in this interval such that Σ ∩ àBáó(U) is a singleton, that is, it contains at least
two points for each á ∈ (1/5, 1). Then in view of the coarea inequality one has

H
1(Σ ∩ (Bó(U) \ Bó/5(U))) ≥ 2 ⋅

4
5
ó. (A.9)

There is the point DU such that DU ∈ àBó/5(U) ∩ Σ. Let CU be the semicircle of àB4ë1ë2L(U) which contains
bothDU and EU := [U�, U] ∩ àB4ë1ë2L(U) (see Figure 7 (b)). Consider the tree Σ0 de�ned as the disjoint union

Σ0 := S0 ⊔ [U�, EU] ⊔ CU ⊔ (Σ ∩ Bó/5(U)) ⊔ (Σ ∩ Bó(V)).

We have therefore
H

1(Σ0) = H
1(S0) + |U�EU| +H

1(CU) +H
1(Σ ∩ Bó/5(U)) +H

1(Σ ∩ Bó(V))

= H
1(S0) +

4ó
5

+
ðó
5

+H
1(Σ ∩ Bó/5(U)) +H

1(Σ ∩ Bó(V))

<
8ó
5

+H
1(S0) +H

1(Σ ∩ Bó/5(U)) +H
1(Σ ∩ Bó(V))

≤
8ó
5

+H
1(Σ \ (Bó(U) ∪ Bó(V))) +H

1(Σ ∩ Bó/5(U)) +H
1(Σ ∩ Bó(V)) by (A.8)

=
8ó
5

+H
1(Σ \ (Bó(U) \ Bó/5(U)))

≤ H
1(Σ ∩ (Bó(U) \ Bó/5(U))) +H

1(Σ \ (Bó(U) \ Bó/5(U))) by (A.9)
= H

1(Σ),

which contradicts the optimality of Σ, because Σ0 ∈ St(A). Therefore we proved that there is an á ∈ (1/5, 1)
such that Σ ∩ àBáó(U) is a singleton {U1}. Similarly there is an á� ∈ (1/5, 1) such that Σ ∩ àBá�ó(V) is a single-
ton {V1}. Then

Σ \ (Báó(U) ∪ Bá�ó(V)) ∈ M(T�, U1, V1).

The pointsU1, V1 and T� satisfy the conditions of Lemma A.3 and hence Σ \ (Báó(U) ∪ Bá�ó(V)) is a tripod, and
thus Σ \ (Bó(V) ∪ Bó(U)) is a tripod too.

Lemma A.8. When 0 < x < ð/6 − ð/42, 0 < y < ð/6 + ð/21, 1/8 > á > 0 the following inequalities are valid:

arcsin(
sin x
1 + á
) > x −

á
2
, (A.10)

arcsin(
sin y
1 − á
) < y + á. (A.11)
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18 | E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an in�nite Steiner tree

Proof. To prove (A.10) in view of the assumptions it su�ces to show
sin x
1 + á

> sin(x −
á
2
),

that is
(

1
1 + á

− cos
á
2
) sin x > − cos x sin

á
2
,

which keeping in mind conditions on x and á is equivalent to

tan x <
sin á

2

cos á2 − 1
1+á

.

The latter holds because

tan x < tan(
ð
6
−

ð
42
) <

1
2
<
sin á

2

cos á2 − 1
1+á

.

Similarly, to prove (A.11) in view of the assumptions it su�ces to show
sin y
1 − á

< sin(y + á),

or, equivalently,
(

1
1 − á

− cos á) sin y < cos y sin á,

which keeping in mind conditions on y and á reduces to

tan y <
sin á

1
1−á − cos á

.

The latter is valid because

tan y < tan(
ð
6
+

ð
21
) <

8
10

<
sin 1

8
1

1− 18 − cos 18
<
sin á

1
1−á − cos á

.

Lemma A.9. Under the assumptions of Lemma A.3, let â satisfy
ð
6
−

ð
21

< â <
ð
6
−

ð
42

and also assume that ë2 < 1/1000. Then in order for Y� := F(T�, U�, V�) to be inside the angle of 2â with
bisector [VY) for every pair of points U� ∈ B̄ó(U) and V� ∈ B̄ó(V), it is su�cient that T� is outside B̄R+2ó(O)
and inside the angle of 2á < 2(â − 120ë2) with bisector [WT).

Proof. DenoteK := (TW] ∩ àBR+2ó(O), and let J ∈ àBR+2ó(O) be the closest toV of two points in àBR+2ó(O) such
that ∠YVJ = â, and I ∈ àBR−2ó(O) be the farthest from V of two points in àBR−2ó(O) such that ∠YVI = â.

Let us describe the set of all possible positions of the point Y� := F(T�, U�, V�). It lies in the intersec-
tion of the ray (T�W�] and the circumference àBU�V�W� circumscribed around the three points U�, V�,W�

(i.e. Y� = (T�W�] ∩ àBU�V�W� ).
Let T� be inside the angle ä of the value 2á ≤ 2â with bisector (TW]. We draw two rays parallel to

the sides of this angle each one at distance 2ó from the respective side. The closed angle formed by these
rays will be denoted ã. Note that the sides of the angle ã are tangent to the ball B̄2ó(W) and that the
point W� in view of Remark A.4 belongs to this ball. Therefore the ray (T�W�] is inside the angle ã (except
possibly the endpoint W� which may belong to its boundary), the circumference àBU�V�W� is also inside the
annulus B̄R+2ó(O) \ BR−2ó(O) by Remark A.5. Thus

Y� ∈ ã ∩ (B̄R+2ó(O) \ BR−2ó(O)).

Consider the curvilinear trapezoid bounding the latter planar region and prove that it is contained in the
angle of 2âwith bisector [VY). We �rst claim that [VI] ∩ (TW) ̸= 0. In fact, assuming the contrary, we get the
existence of a pointH ∈ [TW] with ∠OHV = ð/2. Then, denoting I� := [IV) ∩ (TW], one has

R − 2ó = |OI| = √|OH|2 + |HI|2 < √|OH|2 + |HI�|2 = |OI�|.
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O

U

V

J

WK Y
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A

B

(a)

O
W

N1

S

P
H1

H2
Q

(b)

O W

NP1S1 B

(c)

Figure 8. The constructions used in Lemma A.9.

From the triangle ΔVI�O we get
|OI�|
sin(ð3 − â)

=
|VO|
sin(ð3 + â)

,

and hence

R − 2ó < |OI�| = R
sin(ð3 − â)

sin(ð3 + â)
= R
√3 − tan â
√3 + tan â

< R
√3 − tan ð

7

√3 + tan ð
7

,

which gives the contradictory chain of inequalities

1
50

> 20ë2 =
20ë1ë2

ë1L
=

ó
R

>
tan ð

7

√3 + tan ð
7

.

We now claim that [VJ] ∩ (TW) = 0. In fact, assuming the contrary, we have that ∠OVJ ≤ ∠OVK, so that

∠OVK ≥
ð
3
+ â

but ∠KOV = ð/3, and thus
∠VKO ≤

ð
3
− â <

ð
6
+

ð
21

.

Then from the law of sines for the triangle ΔVKO we have
|KO|
|VO|

=
sin ∠OVK
sin ∠VKO

. (A.12)
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20 | E. Paolini, E. Stepanov and Y. Teplitskaya, An example of an in�nite Steiner tree

Note that ∠KVO < ð/2 since
|KO| = R + 2ó <

|OV|
cos ∠KOV

=
R
cos ð3

= 2R.

Moreover,
∠OVK ≥

ð
3
+ â ≥

ð
2
−

ð
21

.

Then (A.12) implies

1 + 40ë2 =
R + 2ó

R
=

|KO|
|VO|

=
sin ∠OVK
sin ∠VKO

≥
sin(ð2 − ð

21 )

sin(ð6 + ð
21 )

>
3
2
,

which is impossible for ë2 < 1/1000. It is su�ces to prove that the boundary of the region under consideration
does not meet the rays [VJ) and [VI), because then we will immediately have that the whole region is located
inside the angle ã. Further, without loss of generality we will view (TW) as the horizontal line and call the
respective half-plane containing V upper, and the remaining one lower.

For the �rst assertion it is enough to prove that the point A, which is the intersection of the external
circumference with the upper side of the angle ã, located below the point J. Then the whole region is located
below the line (VJ). For the second assertion it is enough to prove that the point B which is the intersection
of the internal circumference with the lower side of the angle ã is located above the point I. Then the whole
region is above the line (VI). To prove that A is lower than J we consider the angle ∠TWA and show that

∠TWA < á + 50ë2 (A.13)

and
â − 10ë2 < ∠JWT. (A.14)

Then, choosing á in such a way that
á + 50ë2 < â − 10ë2, (A.15)

we obtain that the point A is inside the arc JK of the circumference àBR+2ó(O). To prove that the point B is
above the point I, consider ∠BWT and obtain

∠BWT < á + 80ë2. (A.16)

We will also prove that
∠IWT > â − 40ë2. (A.17)

Then, choosing á in such a way that
á + 80ë2 < â − 40ë2, (A.18)

we obtain that the point B is inside the arc of the circumference àBR−2ó(O) connecting I with the point
àBR−2ó(O) ∩ (TW], hence B is inside the angle ∠IVK ⊂ ∠IVJ. Since the condition (A.18) is stronger than the
condition (A.15), it is enough to choose á so as to satisfy

á < â − 120ë2.

The rest of the proof is dedicated to validation of the assertions (A.13), (A.14) as well as (A.16) and (A.17).
First we show that

∠TWS < á + 50ë2, (A.19)

where S is the point of intersection of the upper side of the angle ã and the circumference àBR(O). To this
end drop the perpendicular from the point O to the upper side of the angle ã. Denote the respective point of
intersection byH1 and the point of intersection of the perpendicular [OH1]with the upper side of the angle ä
byH2. Denote also the points of intersection of the upper side of the angle äwith the segment [OS] and with
the perpendicular to the upper side of the angle ã passing through S, by Q and P respectively. Then (see
Figure 8 (b))

|SP| = |H1H2| = 2ó.

Set
ÿ := ∠WQO = ∠PQS = ∠H1SO.
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One has then
sin ÿ = sin ∠H1SO =

|H1O|
|SO|

=
|H1H2| + |H2O|

|SO|

=
|H1H2| + |OW| sin ∠OWH2

|SO|
=

2ó + R sin á
R

= sin á + 40ë2

and
tan ∠PWS =

|SP|
|PW|

=
|SP|

|PQ| + |QH2| + |H2W|

≤
|SP|

|H2W|
=

|SP|
|OW| cos á

=
2ó

R cos á
<

40ë2

cos â
<

40ë2

cos(ð6 − ð
42 )

< 50ë2.

Then, since x < tan x, one gets
∠PWS < tan ∠PWS < 50ë2,

so that (A.19) follows by the calculation

∠TWS = ∠TWP + ∠PWS < á + 50ë2.

To prove (A.13), observe that
∠TWS > ∠TWA

and recall inequality (A.19).
We will prove now (A.16). Denote by S1 the point of intersection of the circumference àBR(O) with the

lower side of the angle ã, and by N the point where the lower side of the angle ã touches the circle B2ó(W)
(see Figure 8c)). Finally, let P1 be the point of intersection of the perpendicular dropped from the point O to
the lower side of the angle ã with the latter. Then

∠TWS1 = ∠TWS < á + 50ë2

and
|OP1| = |OH1| = R sin á + 2ó,

so that

∠OBW = ∠OBN − ∠WBN

= arcsin(
|OP1|
|BO|
) − arctan(

|WN|
|BN|
)

= arcsin(
R sin á + 2ó

R − 2ó
) − arctan(

|WN|
|BN|
).

Similarly, one has

∠OS1W = ∠OS1N − ∠WS1N

= arcsin(
|OP1|
|S1O|
) − arctan(

|WN|
|S1N|
)

= arcsin(
R sin á + 2ó

R
) − arctan(

|WN|
|S1N|
).

Therefore

∠OBW − ∠OS1W = (arcsin(
R sin á + 2ó

R − 2ó
) − arcsin(

R sin á + 2ó
R
))−(arctan(

|WN|
|BN|
) − arctan(

|WN|
|S1N|
)),

and hence in view of the inequality |WN|/|BN| > |WN|/|S1N| and the monotonicity of arctan we get

∠OBW − ∠OS1W < arcsin(
R sin á + 2ó

R − 2ó
) − arcsin(

R sin á + 2ó
R
). (A.20)

Since the function x Ü→ arcsin x − 2
√3

x decreases when x < 1/2, it follows that for b < a < 1/2 the inequality

arcsin a − arcsin b <
2
√3

(a − b) (A.21)
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is valid. Note that condition ë2 < 1/1000 implies

6ó
R

= 120ë2 < 1 − 2 sin
ð
7
< 1 − 2 sin á

and thus 6ó < R − 2R sin á, which can be written as

R sin á + 2ó
R − 2ó

<
1
2
.

Therefore we may apply the estimate (A.21) to (A.20) obtaining

∠OBW − ∠OS1W <
2
√3
(
R sin á + 2ó

R − 2ó
−
R sin á + 2ó

R
)

=
2
√3

(R sin á + 2ó)
2ó

R(R − 2ó)

<
2
√3

R2(sin á + 40ë2) ⋅ 40ë2

R2

=
80
√3

ë2(sin á + 40ë2)

≤
40
√3

ë2 < 30ë2,

where the penultimate inequality is valid because

sin á + 40ë2 ≤ sin
ð
7
+ 40ë2 <

1
2
,

which is true whenever ë2 < 1/800. Hence,

∠OS1W = ∠OWS1 = ∠TWS1 = ∠TWS

and therefore
∠TWB = ∠OWB < ∠OBW < ∠OS1W+ 30ë2 = ∠TWS + 30ë2 < á + 80ë2

(the last inequality of this chain is obtained applying (A.19)), which proves (A.16).
At last, to show (A.13), note that

∠OWJ > ∠WJO = ∠KOJ − ∠OWJ

= ∠KOV − ∠JOV − ∠OWJ

=
ð
3
− ∠JOV − ∠OWJ

=
ð
3
− (ð − ∠OVJ − ∠VJO) − ∠OWJ

=
ð
3
− (ð − (â +

ð
3
) − ∠VJO) − ∠OWJ

= â −
ð
3
+ ∠VJO − ∠OWJ,

which implies
∠OWJ >

â
2
−
ð
6
+
∠VJO
2

. (A.22)

The law of sines for the triangle ΔVJO gives

sin ∠VJO
sin ∠OVJ

=
|VO|
|OJ|

=
R

R + 2ó
=

1
1 + 40ë2

,

and hence one has

sin ∠VJO =
sin ∠OVJ
1 + 40ë2

=
sin(ð3 + â)

1 + 40ë2
,
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that is,

∠VJO = arcsin(
sin(ð3 + â)

1 + 40ë2
),

since ∠VJO < ð/2 in view of |VO| < |JO|. Applying Lemma A.8 to the latter relationship, we get

∠VJO > â +
ð
3
− 20ë2.

Using the latter relationship, we get
∠OWJ > â − 10ë2

from (A.22). Since ∠TWJ = ∠OWJ, this gives (A.16).
To prove (A.17), observe the validity of the equalities

∠OIW + ∠IWO = ∠IOK

= ∠IOV − ∠KOV

= (ð − ∠VIO − ∠OVI) −
ð
3

= (ð − ∠VIO − (
ð
3
− â)) −

ð
3

=
ð
3
+ â − ∠VIO. (A.23)

Applying the law of sines to the triangle ΔOIV, we get

sin ∠VIO
sin ∠OVI

=
|VO|
|IO|

=
R

R − 2ó
=

1
1 − 40ë2

,

so that

∠VIO = arcsin(
sin ∠OVI
1 − 40ë2

) = arcsin(
sin(ð3 − â)

1 − 40ë2
).

Applying LemmaA.8 to the latter equality, we get

∠VIO <
ð
3
− â + 40ë2.

Recalling (A.23) we get
∠OIW + ∠IWO > 2â − 40ë2 (A.24)

and from the law of sines for the triangle ΔOIW we get

sin ∠OIW
sin ∠IWO

=
|OW|
|IO|

=
R

R − 2ó
=

1
1 − 40ë2

.

Hence
∠OIW = arcsin(

1
1 − 40ë2

sin ∠IWO),

and applying Lemma A.8 to the latter relationship (we may do it since ∠IWO < ð/6), we obtain

∠OIW < ∠IWO + 40ë2.

Taking into account (A.24), this gives

2∠IWO + 40ë2 > ∠IWO + ∠OIW > 2â − 40ë2,

and hence
∠IWT = ∠IWO > â − 40ë2,

concluding the proof.
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Remark A.10. With the notation of Lemma A.3 and under the assumption that

ë3 ≤ ë2 ≤
1

5000
,

ð
6
−

ð
21

< ∠TWT� ≤ ÷ <
ð
6
−

ð
42

,

one has that the point Y� is outside the balls B̄ñ(OV) and B̄ñ(OU), where ñ := (1 + 40ë3)ë2ë1L, OV ∈ [YV],
|OVV| = ë2ë1L, OU ∈ [YU], |OUU| = ë2ë1L.

Proof. It su�ces to show that the distance from the point V to the ray pV is greater than twice the radius
of these balls (since the distance between the points OV and V is smaller than the radius (1 + 40ë3)ë2ë1L).
As is easily seen, the distance from the point V to the ray pV is equal to sin(ð/6 − ÷) ⋅ |VW| − 2ó, where
|VW| = √3ë1L, ó = 20ë2ë1L. Therefore, it is su�cient to verify the following inequality:

sin(
ð
6
− ÷)√3ë1L − 40ë2ë1L > 2(1 + 40ë3)ë2ë1L.

Since
7

100
< sin

ð
42

< sin(
ð
6
− ÷),

we only have to show that
√3 ⋅

7
100

> 42ë2 + 80ë3ë2,

which is true because of the assumptions on ë2 and ë3.
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