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Abstract
The Verma modules over the quantum groups Uq(gll+1) for arbitrary values 
of l are analysed. The explicit expressions for the action of the generators 
on the elements of the natural basis are obtained. The corresponding 
representations of the quantum loop algebras Uq(L(sll+1)) are constructed 
via Jimbo’s homomorphism. This allows us to find certain representations of 
the positive Borel subalgebras of Uq(L(sll+1)) as degenerations of the shifted 
representations. The latter are the representations used in the construction 
of the so-called Q-operators in the theory of quantum integrable systems. 
The interpretation of the corresponding simple quotient modules in terms of 
representations of the q-deformed oscillator algebra is given.

Keywords: quantum groups, Verma modules, submodules, q-oscillators

1.  Introduction

One of the most advanced methods of investigation of quantum integrable systems was devel-
oped on the basis of quantum groups [1–3]. The latter are, in a sense, the objects which 
have replaced the classical Lie groups and Lie algebras within the framework of the group-
theoretic, or algebraic, approach to physical models. The primary problem in the study of 
quantum integrable systems is to describe the spectrum of the corresponding transfer matri-
ces. This task reduces to the examination of functional relations in the system of transfer and 
Q-operators, being a substitution of the Bethe ansatz equations [4]4.
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In the quantum-group formalism the derivation of the functional relations is based on a 
thorough analysis of the appropriate representations of quantum groups and their Borel sub-
algebras. For the case of the quantum groups related to the Lie algebras sl2 and sl3 the corre
sponding work has been carried out in the papers [15–22].

In this paper we consider the case of the quantum groups Uq(L(sll+1)), l = 1, 2, . . . , see 
section 5 for the definition. These quantum groups are deformations of enveloping algebras 
of the loop algebras of Lie algebras L(sll+1). Presently, in this case it is common instead 
of the term a quantum group to use the term a quantum loop algebra. From the point of 
view of quantum integrable systems the most interesting representations of Uq(L(sll+1)) are 
those which are obtained from the Verma modules over the quantum groups Uq(gll+1) via the 
Jimbo’s homomorphism [23]. Thus, it is very useful and interesting to study the Verma mod-
ules over Uq(gll+1). In sections 2–4 we find the explicit form of the corresponding defining 
relations. By this we mean the explicit expressions for the action of the generators of Uq(gll+1) 
on the vectors of the natural basis of the Verma module. The corresponding representations of 
Uq(L(sll+1)) are considered in section 5.

In fact, to investigate a quantum integrable system one does not need to know representa-
tions of the whole quantum loop algebra but only of its Borel subalgebras. Furthermore, the 
representations of the Borel subalgebras which cannot be extended to representations of the 
whole quantum loop algebra are of special interest. Such representations are used to construct 
Q-operators. They can be constructed as certain degeneration of the shifted Verma modules, 
see, for example, [18] and [21, 22] for the case of Uq(L(sl2)) and Uq(L(sl3)). In the present 
paper we consider the general case of the quantum loop algebra Uq(L(sll+1)) (section 6). The 
obtained representations appear to be reducible. We find the corresponding submodules and 
construct the irreducible quotient modules (section 7). Finally, we give an interpretation of 
the corresponding irreducible modules in terms of representations of the q-oscillator algebra  
(section 8). Almost the same expression for q-oscillator representations was suggested by 
Kojima [7]. The advantage of our approach is that we get it as the result of degeneration of 
shifted Verma modules. This allows one to present Q-operators as a limit of transfer operators, 
see the papers [19–22] for the case l = 1, 2.

We assume that the deformation parameter q ∈ C× is not a root of unity. The notation 
κq = q − q−1 is often used, so that the definition of the q-number can be written as

[ν]q =
qν − q−ν

q − q−1 = κ−1
q (qν − q−ν), ν ∈ C.

For a nonnegative integer n and the corresponding q-number, we also use the notation

[n]q! = [1]q [2]q . . . [n]q.

It is assumed here that [0]q! = 1.

2.  Quantum group Uq(gll+1)

We start with a short reminder of some basics facts on the Cartan subalgebras and root systems 
of the general linear and special linear Lie algebras gll+1 and sll+1. The standard basis of the 
standard Cartan subalgebra kl+1 of gll+1 is formed by the matrices Ki, i = 1, . . . , l + 1, with 
the matrix entries

(Ki)jk = δij δik.
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There are l simple roots αi ∈ k∗l+1, which are usually defined by the equation

〈αi, Kj〉 = cji,� (2.1)

where

cij = δij − δi, j+1.� (2.2)

Then, the full system of positive roots is formed by the roots

αij =

j−1∑
k=i

αk, 1 � i < j � l + 1.

It is clear that αi = αi, i+1. Certainly, the negative roots are −αij .
The standard basis of the standard Cartan subalgebra hl+1 of sll+1 is formed by the matrices

Hi = Ki − Ki+1, i = 1, . . . , l.

As the positive and negative roots we take the restriction of αij and −αij  to hl+1. For the simple 
roots we have

〈αi, Hj〉 = aji,� (2.3)

where

aij = cij − ci+1, j

are the matrix entries of the Cartan matrix of sll+1.
Let q be the exponential of a complex number �, such that q is not a root of unity. We define 

the quantum group Uq(gll+1) as a unital associative C-algebra generated by the elements

Ei, Fi, i = 1, . . . , l, qX , X ∈ kl+1,� (2.4)

satisfying the following defining relations

q0 = 1, qX1 qX2 = qX1+X2 ,� (2.5)

qXEi q−X = q〈αi, X〉Ei, qXFi q−X = q−〈αi, X〉Fi,� (2.6)

[Ei, Fj] = δij
qKi−Ki+1 − q−Ki+Ki+1

q − q−1 .� (2.7)

Relations (2.6) can equivalently be written as

qνKi Ejq−νKi = qνcij Ej, qνKi Fjq−νKi = q−νcij Fj, ν ∈ C.� (2.8)

Besides, we have the Serre relations

EiEj = EjEi, FiFj = FjFi, |i − j| � 2,

E2
i Ei±1 − [2]qEi Ei±1 Ei + Ei±1 E2

i = 0, F2
i Fi±1 − [2]qFi Fi±1 Fi + Fi±1 F2

i = 0.

Note that the notation qX, X ∈ kl+1, is used to emphasize that the Cartan subalgebra kl+1 
parametrizes the corresponding set of elements of Uq(gll+1).

The quantum group Uq(sll+1) is generated by the same generators (2.4) as Uq(gll+1), how-
ever, in this case X ∈ hl+1. The defining relations are also the same, except that (2.7) should 
be written in the form
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[Ei, Fj] = δij
qHi − q−Hi

q − q−1 .

From the point of view of quantum integrable systems, it is important that Uq(gll+1) and 
Uq(sll+1) are Hopf algebras with respect to appropriately defined co-multiplication, antipode 
and counit. However, we do not use the Hopf algebra structure in the present paper.

Below we assume that

qX+ν = qνqX ,

[X + ν]q =
qX+ν − q−X−ν

q − q−1 =
qνqX − q−νq−X

q − q−1

for any complex number ν and element X of kl+1.

3.  Higher root vectors and q-commutation relations

The abelian group

Q =

l⊕
i=1

Zαi

is called the root lattice of gll+1. The algebra Uq(gll+1) can be considered as Q-graded if we 
assume that

Ei ∈ Uq(gll+1)αi , Fi ∈ Uq(gll+1)−αi , qX ∈ Uq(gll+1)0

for any i = 1, . . . , l and X ∈ kl+1. An element a of Uq(gll+1) is called a root vector corre
sponding to a root γ of gll+1 if a ∈ Uq(gll+1)γ . In particular, Ei and Fi are root vectors corre
sponding to the roots αi and −αi. It is possible to find linearly independent root vectors 
corresponding to all roots of gll+1. To this end, we denote

Λl = {(i, j) ∈ N× N | 1 � i < j � l + 1}

and, following Jimbo [23], introduce elements Eij and Fij, (i, j) ∈ Λl , with the help of the 
relations

Ei, i+1 = Ei, i = 1, . . . , l,

Eij = Ei, j−1 Ej−1, j − q Ej−1, j Ei, j−1, j − i > 1,

and

Fi, i+1 = Fi, i = 1, . . . , l,

Fij = Fj−1, j Fi, j−1 − q−1Fi, j−1 Fj−1, j, j − i > 1.

It is clear that the vectors Eij and Fij correspond to the roots αij and −αij  respectively. These 
vectors are linearly independent, and together with the elements qX, X ∈ kl+1, are called 
Cartan–Weyl generators of Uq(gll+1). It appears that the ordered monomials constructed from 
the Cartan–Weyl generators form a Poincaré–Birkhoff–Witt basis of Uq(gll+1). In this paper 
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we choose the following ordering. First endow Λl with the colexicographical order. It means 
that (i, j) < (m, n) if j < n, or if j = n and i < m5. Now we say that a monomial is ordered 
if it has the form

Fi1j1 . . .Firjr qX Em1n1 . . .Emsns ,� (3.1)

where (i1, j1) � . . . � (ir, jr), (m1, n1) � . . . � (ms, ns) and X is an arbitrary element of 
kl+1. The monomials of the same form with X ∈ hl+1, form a Poincaré–Birkhoff–Witt basis 
of Uq(sll+1).

Let us demonstrate that any monomial can be written as a sum of ordered monomials 
of the form (3.1). We will write the necessary equations  in the form of commutation or 
q-commutation relations. First of all, using (2.1), (2.3) and (2.8), we obtain

qνKi Emn q−νKi = qν
∑n−1

j=m cij Emn, qνKi Fmn q−νKi = q−ν
∑n−1

j=m cij Fmn,� (3.2)

and, similarly,

qνHi Emn q−νHi = qν
∑n−1

j=m aij Emn, qνHi Fmn q−νHi = q−ν
∑n−1

j=m aij Fmn.

To describe the relations allowing one to order the elements Eij and Fij, we follow H. 
Yamane [27]. Note that for (i, j), (m, n) ∈ Λl  such that (i, j) < (m, n), there are six cases6

CI : i = m < j < n, CII : m < i < j < n, CIII : i < m < j = n,� (3.3)

CIV : i < m < j < n, CV : i < j = m < n, CVI : i < j < m < n.� (3.4)

Here, the symbol Ca, a = I, . . . , VI, means a branch in Λl × Λl, where (i, j) and (m, n) are 
subject to the corresponding conditions (3.3)–(3.4). In any of these branches, or in a certain 
union of them, the relations in question are form-invariant.

According to our definitions, which are slightly different from those of the paper [27], we 
obtain

Eij Emn = q−1Emn Eij, ((i, j), (m, n)) ∈ CI ∪ CIII,� (3.5)

Eij Emn = Emn Eij, ((i, j), (m, n)) ∈ CII ∪ CVI,� (3.6)

Eij Emn − q Emn Eij = Ein, ((i, j), (m, n)) ∈ CV,� (3.7)

Eij Emn − Emn Eij = −κq Ein Emj, ((i, j), (m, n)) ∈ CIV.� (3.8)

Similarly, we have

Fij Fmn = q−1Fmn Fij, ((i, j), (m, n)) ∈ CI ∪ CIII,� (3.9)

Fij Fmn = Fmn Fij, ((i, j), (m, n)) ∈ CII ∪ CVI,� (3.10)

Fij Fmn − q Fmn Fij = −q Fin, ((i, j), (m, n)) ∈ CV,� (3.11)

Fij Fmn − Fmn Fij = −κq Fin Fmj, ((i, j), (m, n)) ∈ CIV.� (3.12)

5 Note that if we define an ordering of the positive roots so that αij < αmn if (i, j) < (m, n) we will have a normal 
ordering in the sense of [24, 25], see also [26].
6 Since we chose for the elements of Λl the colexicographical order, but not the lexicographical one as in [27], we 
define CII in a different way in comparison with [27].
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It is convenient to write (3.11) also as

Fmn Fij − q−1Fij Fmn = Fin.

Further, we obtain

[Eij , Fij] = κ−1
q

(
qHij − q−Hij

)
,

where, and in what follows, [ , ] means the usual commutator, and we denote

qνHij = qν
∑ j−1

k=i Hk , ν ∈ C, (i, j) ∈ Λl.

We also obtain the following commutation relations:

[Eij , Fmn] = −q−1Fjn q−Hij , ((i, j), (m, n)) ∈ CI,� (3.13)

[Eij , Fmn] = q Eim q−Hmn = q−Hmn Eim, ((i, j), (m, n)) ∈ CIII,� (3.14)

[Eij , Fmn] = 0, ((i, j), (m, n)) ∈ CII ∪ CV ∪ CVI,�
(3.15)

[Eij , Fmn] = κq Fjn Eim q−Hmj , ((i, j), (m, n)) ∈ CIV.� (3.16)

Note that in (3.16) the root vectors at the right hand side commute, [Fjn, Eim] = 0 for the given 
values of the indices, and, besides,

q−Hmj Fjn = q−1Fjn q−Hmj , q−Hmj Eim = q Eim q−Hmj .

Interchanging the pairs of indices (i, j) and (m, n) of the root vectors in the above commuta-
tion relations, additionally to (3.13)–(3.16) we obtain

[Emn , Fij] = −q qHij Ejn = −Ejn qHij , ((i, j), (m, n)) ∈ CI,� (3.17)

[Emn , Fij] = q−1qHmn Fim = Fim qHmn , ((i, j), (m, n)) ∈ CIII,� (3.18)

[Emn , Fij] = 0, ((i, j), (m, n)) ∈ CII ∪ CV ∪ CVI,�
(3.19)

[Emn , Fij] = −κq Fim Ejn qHmj , ((i, j), (m, n)) ∈ CIV.� (3.20)

Again, the root vectors at the right hand side of (3.20) commute for the given values of the 
indices, [Fim, Ejn] = 0, and similarly to the preceding we have

qHmj Ejn = q−1Ejn qHmj , qHmj Fim = q Fim qHmj .

Now, it is easy to demonstrate that equations (3.2) and (3.5)–(3.20) are sufficient to rewrite 
any monomial as a sum of ordered monomials of the form (3.1). In the case of the quantum 
group Uq(sll+1) we obtain the same result using the ordered monomials of the form (3.1) with 
X ∈ hl+1.

4.  Defining Verma Uq(gll+1)-module relations

Given λ ∈ k∗l+1, denote by Ṽλ the corresponding Verma Uq(gll+1)-module. This is a highest 
weight module with the highest weight vector vλ satisfying the relations

Ei vλ = 0, i = 1, . . . , l, qXvλ = q〈λ, X〉vλ, X ∈ kl+1, λ ∈ k∗l+1.
�

(4.1)

K S Nirov and A V Razumov﻿J. Phys. A: Math. Theor. 50 (2017) 305201
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Below we identify the highest weight λ with the set of its components

λi = 〈λ, Ki〉.

We denote by π̃λ the representation of Uq(gll+1) corresponding to Ṽλ. The structure and prop-
erties of Ṽλ and π̃λ for l = 1 and l = 2 are considered in much detail in our papers [19–22, 
28]. Here we deal with the case of general l.

Denote by m the l(l + 1)/2-tuple of non-negative integers mij , (i, j) ∈ Λl , arranged in the 
colexicographical order of (i, j). More explicitly,

m = (m12, m13, m23, . . . , m1j, . . . , mj−1, j, . . . , m1, l+1, . . . , ml, l+1).

The vectors

vm = Fm12
12 Fm13

13 Fm23
23 . . .Fm1, j

1, j . . .Fmj−1, j
j−1, j . . .Fm1, l+1

1, l+1 . . .Fml, l+1
l, l+1 v0,

where for consistency we denote v0 = vλ, form a basis of Ṽλ. The relations describing the 
action of the generators qνKi, Ei and Fi of the quantum group Uq(gll+1) on a general basis vec-
tor vm is what we exactly mean under defining Uq(gll+1)-module relations.

We first obtain how the generators qνKi act on the basis vectors. Using (3.2) and taking into 
account the second relation of (4.1), we derive

qνKi vm = qν(λi−
∑l

j=1
∑ j

r=1

∑l+1
s=j+1 cijmrs)vm, i = 1, . . . , l + 1.

Rearranging the summations in the exponential at the right hand side of the above equation, 
the same result can be written as

qνKi vm = qν(λi−
∑l+1

s=2

∑s−1
r=1

∑s−1
j=r mrscij)vm, i = 1, . . . , l + 1.

Recalling the exact form (2.2) of the quantities cij, we can make the above formulas more 
explicit and eligible for further use. We have

qνKi vm = qν(λi+
∑i−1

k=1 mki−
∑l+1

k=i+1 mik)vm, i = 1, . . . , l + 1.� (4.2)

Then, for qνHi, i = 1, . . . , l, where Hi = Ki − Ki+1, we obtain

qνHi vm = qν[λi−λi+1+
∑i−1

k=1(mki−mk,i+1)−2mi,i+1−
∑l+1

k=i+2(mik−mi+1,k)]vm.� (4.3)

To define the action of the generators Fk = Fk, k+1 on the basis vectors we need subsidiary 
formulas following from relations (3.9)–(3.12). These are

Fk, k+1 Fmik
ik = q−mik Fmik

ik Fk, k+1 + [mik]q Fmik−1
ik Fi, k+1

for i = 1, . . . , k − 1 and k = 2, . . . , l, and

Fj, k+1 Fmi, k+1
i, k+1 = qmi, k+1 Fmi, k+1

i, k+1 Fj, k+1, i < j = 2, . . . , k.

Applying these formulas for all k = 1, . . . , l, we obtain

Fi, i+1 vm = q−
∑i−1

k=1(mki−mk, i+1) vm+εi, i+1 +

i−1∑
j=1

q−
∑ j−1

k=1 (mki−mk, i+1) [mji]q vm−εji+εj, i+1 .

�

(4.4)

Here and below m + νεij means shifting by ν the entry mij  in the l(l + 1)/2-tuple m.
To define the action of the generators Ek = Ek, k+1, k = 1, . . . , l, on the basis vectors we 

mainly need the following subsidiary formulas obtained from equations  (3.13)–(3.16) and 
(3.17)–(3.20):
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Ek, k+1 Fmk, k+1
k, k+1 = Fmk, k+1

k, k+1 Ek, k+1 + [mk, k+1]q Fmk, k+1−1
k, k+1 [Hk − mk, k+1 + 1]q,

Ek, k+1 Fmkj
kj = Fmkj

kj Ek, k+1 − qmkj−2 [mkj]q Fmkj−1
kj Fk+1, j q−Hk ,

Ek, k+1 Fmi, k+1
i, k+1 = Fmi, k+1

i, k+1 Ek, k+1 + [mi, k+1]q Fik Fmi, k+1−1
i, k+1 qHk

for all possible values of i, j and k. These equations, supplied with (4.3), allow us to derive the 
desirable formula. We obtain

Ei, i+1 vm = [λi − λi+1 −
l+1∑

j=i+2

(mij − mi+1, j)− mi, i+1 + 1]q [mi, i+1]q vm−εi, i+1

+ qλi−λi+1−2mi, i+1−
∑l+1

j=i+2(mij−mi+1, j)
i−1∑
j=1

q
∑i−1

k=j+1(mki−mk, i+1) [mj, i+1]q vm−εj, i+1+εji

−
l+1∑

j=i+2

q−λi+λi+1−2+
∑l+1

k=j(mik−mi+1, k) [mij]q vm−εij+εi+1, j

�
(4.5)

for all i = 1, . . . , l.
To construct representations of Uq(L(sll+1)) we will also need in section 5 the action of the 

specific root vectors F1, l+1 and E1, l+1 on the basis vectors vm. Using the formulas

F1, l+1 Fm1j
1j = qm1j Fm1j

1j F1, l+1, j = 2, . . . , l,

and

F1, l+1 Fmij
ij = Fmij

ij F1, l+1, (i, j) ∈ Λl,

following from equations (3.9)–(3.12), we obtain

F1,l+1 vm = q
∑l

i=2 m1i vm+ε1, l+1 .� (4.6)

The corresponding formula for the action of E1, l+1 is given in the appendix.
Note that Ṽλ and π̃λ are infinite dimensional for the general weights λ ∈ k∗l+1. However, if 

the weights are such that λi − λi+1 ∈ Z+ for all i = 1, . . . , l, there is a maximal submodule, 
such that the respective quotient module is finite dimensional. We denote such Uq(gll+1)- 
module and the corresponding representation by Vλ and πλ, respectively. The reduction to the 
special linear case from the general linear one can be achieved simply by replacing relation 
(4.2) by (4.3) in the above module relations.

5.  Quantum loop algebras Uq(L(sll+1)) and some their representations

For the construction and investigation of quantum integrable systems one often uses finite 
and infinite dimensional representations of the quantum loop algebra Uq(L(sll+1)). The rel-
evant representations are usually obtained from Verma representations of the quantum group 
Uq(gll+1). Let us describe the corresponding procedure.

To define the quantum loop algebra Uq(L(sll+1)) it is convenient to start with the definition 
of the quantum group Uq(L̃(sll+1)). Remind that the Lie algebra L̃(sll+1) is a special exten-
sion of the loop algebra L(sll+1) by a one-dimensional center Cc [29]. For any i = 1, . . . , l 
denote by hi the image of the Cartan elements Hi of sll+1 under the natural embedding of sll+1 
into L̃(sll+1). We will also use the notation
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h̃l+1 = Cc ⊕
l⊕

i=1

Chi

for the ‘Cartan subalgebra’ of L̃(sll+1). Introducing the element h0 = c −
∑l

i=1 hi, we obtain 
a more symmetric expression:

h̃l+1 =

l⊕
i=0

Chi.

We define the ‘simple roots’ αi, i = 0, 1, . . . , l, of L̃(sll+1) as the elements of h̃∗l+1 satisfying 
the equation

〈αi, hj〉 = ãji,

where ãij are the entries of the generalized Cartan matrix of an affine Lie algebra of type A(1)
l .

The quantum group Uq(L̃(sll+1)) is a unital associative C-algebra generated by the ele-
ments ei, fi, i = 0, 1, . . . , l, and qx, x ∈ h̃l+1, satisfying certain defining relations. These are the 
following commutation relations:

q0 = 1, qx1 qx2 = qx1+x2 ,

qxei q−x = q〈αi, x〉ei, qxfi q−x = q−〈αi, x〉fi,

[ei, fj] = δij
qhi − q−hi

q − q−1 ,

supplemented by the Serre relations:

1−ãij∑
k=0

(−1)k(ei)
(1−ãij−k) ej (ei)

(k) = 0,
1−ãij∑
k=0

(−1)k( fi)(1−ãij−k) fj ( fi)(k) = 0.

Here we use the notation (ei)
(n) = (ei)

n/[n]q! and ( fi)(n) = ( fi)n/[n]q!.
The quantum group Uq(L̃(sll+1)) does not have any finite dimensional representations with 

qνc acting nontrivially [30, 31]. Therefore, to construct quantum integrable systems with finite 
dimensional state space one should use representations with trivial action of qνc. In fact, it 
appears more convenient to use the quantum loop algebra Uq(L(sll+1)) defined as the quotient

Uq(L(sll+1)) = Uq(L̃(sll+1))/〈qνc − 1〉ν∈C.

We consider the quantum loop algebra Uq(L(sll+1)) in terms of the same generators and defin-
ing relations as Uq(L̃(sll+1)), with the additional relations

qνc = 1, ν ∈ C×.� (5.1)

As the quantum group Uq(gll+1), also the quantum loop algebra Uq(L(sll+1)) is a Hopf alge-
bra with respect to appropriately defined co-multiplication, antipode and counit.

To construct representations of Uq(L(sll+1)), not only finite dimensional but also infinite 
dimensional ones, it is common to use the Jimbo’s homomorphism ε from the quantum loop 
algebra Uq(L(sll+1)) to the quantum group Uq(gll+1) defined by the equations [23]

ε(qνh0) = qν(Kl+1−K1), ε(qνhi) = qν(Ki−Ki+1),� (5.2)

ε(e0) = F1, l+1 qK1+Kl+1 , ε(ei) = Ei, i+1,� (5.3)
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ε( f0) = E1, l+1 q−K1−Kl+1 , ε( fi) = Fi, i+1,� (5.4)

where i runs from 1 to l. If π is a representation of Uq(gll+1) then π ◦ ε is a representation of 
Uq(L(sll+1)).

In fact, in applications to the theory of quantum integrable systems, one usually con-
siders families of representations parametrized by a complex parameter called a spec-
tral parameter. We introduce a spectral parameter with the help of a family of mappings 
Γζ : Uq(L(sll+1)) → Uq(L(sll+1)), ζ ∈ C×. Explicitly, Γζ is defined by its action on the gen-
erators as

Γζ(qx) = qx, Γζ(ei) = ζsi ei, Γζ( fi) = ζ−si fi,

where si are arbitrary integers. We denote the total sum of these integers by s. Now, for any 
representation ϕ of Uq(L(sll+1)) we define the corresponding family ϕζ  of representations as

ϕζ = ϕ ◦ Γζ .

Of our special interest are the families of representations (ϕ̃λ)ζ  and (ϕλ)ζ  related to infinite 
and finite dimensional representations π̃λ and πλ of Uq(gll+1), because they play a special role 
in the theory of quantum integrable systems. These families are defined as

(ϕ̃λ)ζ = π̃λ ◦ ε ◦ Γζ , (ϕλ)ζ = πλ ◦ ε ◦ Γζ .

Let us consider the corresponding defining Uq(L(sll+1))-module relations.
First, using (4.2) and (5.2), we obtain

qνh0 vm = qν[λl+1−λ1+
∑l

i=2(m1i+mi, l+1)+2m1, l+1] vm,� (5.5)

qνhi vm = qν[λi−λi+1+
∑i−1

k=1(mki−mk, i+1)−2mi, i+1−
∑l+1

k=i+2(mik−mi+1, k)]vm.� (5.6)

Further, taking into account that

qK1+Kl+1 vm = qλ1+λl+1−
∑l

i=2(m1i−mi, l+1) vm

and using (4.6), we obtain from the first equation of (5.3) the module relation for e0,

e0 vm = ζs0 qλ1+λl+1+
∑l

i=2 mi, l+1 vm+ε1, l+1 .� (5.7)

The module relations for ei, i = 1, . . . , l, follow from the second equation of (5.3) with account 
of equation (4.5),

ei vm = ζsi [λi − λi+1 −
l+1∑

j=i+2

(mij − mi+1, j)− mi, i+1 + 1]q [mi, i+1]q vm−εi, i+1

+ ζsi qλi−λi+1−2mi, i+1−
∑l+1

j=i+2(mij−mi+1, j)
i−1∑
j=1

q
∑i−1

k=j+1(mki−mk, i+1) [mj, i+1]q vm−εj, i+1+εji

− ζsi

l+1∑
j=i+2

q−λi+λi+1−2+
∑l+1

k=j(mik−mi+1, k) [mij]q vm−εij+εi+1, j .

�

(5.8)

K S Nirov and A V Razumov﻿J. Phys. A: Math. Theor. 50 (2017) 305201



11

Using (4.4) and the second relation from (5.4), we obtain the action of the generators fi on 
the basis vectors vm:

fi vm = ζ−si q−
∑i−1

j=1(mji−mj, i+1) vm+εi, i+1

+ ζ−si

i−1∑
j=1

q−
∑ j−1

k=1 (mki−mk, i+1) [mji]q vm−εji+εj, i+1 .
�

(5.9)

One can also obtain the action of f0 on vm using equations (A.1) and (4.2) and the first one of 
the maps given by (5.4).

Now, relations (5.5)–(5.8), and (5.9) together with an expression for f0vm constructed as 
just mentioned above, form the basic Uq(L(sll+1))-module relations.

6.  Degenerations of the shifted Uq(b+)-modules

From the point of view of quantum integrable systems, representations of the Borel subalge-
bras of the quantum groups under consideration are most interesting. There are two standard 
Borel subalgebras of Uq(L(sll+1)), the positive Borel subalgebra Uq(b+) generated by ei, 
i = 0, 1, . . . , l and qx, x ∈ h̃l+1, and the negative Borel subalgebra Uq(b−) generated by fi, 
i = 0, 1, . . . , l and qx, x ∈ h̃l+1. We restrict ourselves to the case of the positive Borel subalge-
bra used in our consideration of universal integrability objects [19–22].

Certainly, the restriction of any representation of Uq(L(sll+1)) to Uq(b+) is a representa-
tion of Uq(b+). In particular, we can consider the restriction of the representations (ϕ̃λ)ζ  
and (ϕλ)ζ . Here relations (5.5)–(5.8) constitute the corresponding Uq(b+)-module relations. 
The representations (ϕ̃λ)ζ  and (ϕλ)ζ  are used for the construction of very important inte-
grability objects called transfer operators. Besides, there are no less important integrability 
objects called Q-operators. The representations used for the construction of the Q-operators 
are essentially different. However, for the quantum integrable systems related to the quantum 
groups Uq(L(sll+1)) the latter can be obtained from the former as certain degenerations, see, 
for example, [18] and [21, 22].

The degenerations in question are obtained by sending each difference λi − λi+1, 
i = 1, . . . , l, to positive or negative infinity. However, looking at (5.5) and (5.6) we see that it 
gives either infinity or zero for the action of the corresponding elements qνhi. To overcome this 
difficulty we use the notion of a shifted representation.

Let ϕ be a representation of Uq(b+) and ξ ∈ h̃∗l+1. Then the relations

ϕ[ξ](ei) = ϕ(ei), ϕ[ξ](qx) = q〈ξ, x〉ϕ(qx)� (6.1)

define a representation ϕ[ξ] of Uq(b+) called a shifted representation. Note that due to (5.1) 
the element ξ must satisfy the equation

〈ξ, c〉 = 0.

We see that the only difference between the shifted and initial representations appears in the 
factor q〈ξ, x〉.

Now we consider the Uq(b+)-module defined by relations (5.5)–(5.8), and perform there a 
shift according to definition (6.1), with ξ specified by the equations

〈ξ, h0〉 = −λl+1 + λ1, 〈ξ, hi〉 = −λi + λi+1, i = 1, . . . , l.
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Obviously, this shift has an effect only on the relations describing the action of the generators 
qνhi, i = 0, 1, . . . , l. Now we have

qνh0 vm = qν(
∑l

j=2(m1j+mj, l+1)+2m1, l+1) vm,

qνhi vm = qν(
∑i−1

j=1(mji−mj, i+1)−2mi, i+1−
∑l+1

j=i+2(mij−mi+1, j))vm.

Since these relations do not contain λi, i = 1, . . . , l + 1, we can allow the differences λi − λi+1, 
i = 1, . . . , l, to go in these relations to positive or negative infinity. To be concrete, we are 
going to consider the limit

λi − λi+1 → −∞, i = 1, . . . , l.� (6.2)

The representations which can be obtained with other choices can be obtained then with the 
help of automorphisms of Uq(b+).

It is clear that some problems with the limit (6.2) for relations (5.7) and (5.8) remain. Let 
us define a new basis in the representation space formed by the vectors

wm = cmvm,

where

cm = q
∑l

i=1[λi−λi+1+1+(2λl+1−l)si/s]
∑i

j=1
∑l+1

k=i+1 mjk .

Here we note that

cm+νεij = qν
∑ j−1

k=i [λk−λk+1+1+(2λl+1−l)sk/s]cm.

Recall that s denotes the total sum of the integers si, i = 0, 1, . . . , l. Using this equation, we 
obtain from (5.7)–(5.8) the following Uq(b+)-module relations in the new basis,

e0 wm = ζ̃s0 q
∑l

i=2 mi, l+1 wm+ε1, l+1

and

ei wm = ζ̃si κ−1
q

(
q2(λi−λi+1)+2−

∑l+1
j=i+2(mij−mi+1, j)−mi, i+1

− q
∑l+1

j=i+2(mij−mi+1, j)+mi, i+1

)
[mi, i+1]q wm−εi, i+1

+ ζ̃si q2(λi−λi+1)+1−2mi, i+1−
∑l+1

j=i+2(mij−mi+1, j)

×
i−1∑
j=1

q
∑i−1

k=j+1(mki−mk, i+1) [mj, i+1]q wm−εj, i+1+εji

− ζ̃si

l+1∑
j=i+2

q
∑l+1

k=j(mik−mi+1, k)−1 [mij]q wm−εij+εi+1, j ,

where ζ̃  is the new spectral parameter defined as

ζ̃ = q(2λl+1−l)/s ζ.

Now we can consider the infinite limit (6.2). The final result is a degeneration of the shifted 
Uq(b+)-module described by the relations

qνh0 wm = qν(
∑l

i=2(m1i+mi, l+1)+2m1, l+1) wm,� (6.3)
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qνhi wm = qν(
∑i−1

j=1(mji−mj, i+1)−2mi, i+1−
∑l+1

j=i+2(mij−mi+1, j))wm� (6.4)

and

e0 wm = ζ̃s0 q
∑l

i=2 mi, l+1 wm+ε1, l+1 ,� (6.5)

ei wm =− ζ̃si κ−1
q q

∑l+1
j=i+2(mij−mi+1, j)+mi, i+1 [mi, i+1]q wm−εi, i+1

− ζ̃si

l+1∑
j=i+2

q
∑l+1

k=j(mik−mi+1, k)−1 [mij]q wm−εij+εi+1, j .
� (6.6)

These are our main Uq(b+)-module relations on the basis of which we will make all the sub-
sequent constructions.

7.  Factoring out the submodules

We denote by ρ′′ the representation of Uq(b+) defined by the relations

qνh0 vm = qν(
∑l

j=2(m1j+mj, l+1)+2m1,l+1) vm,

qνhi vm = qν(
∑i−1

j=1(mji−mj, i+1)−2mi, i+1−
∑l+1

j=i+2(mij−mi+1, j))vm,

e0 vm = q
∑l

i=2 mi,l+1 vm+ε1,l+1 ,

ei vm = −κ−1
q q

∑l+1
j=i+2(mij−mi+1, j)+mi, i+1 [mi, i+1]q vm−εi,i+1

−
l+1∑

j=i+2

q
∑l+1

k=j(mik−mi+1, k)−1 [mij]q vm−εij+εi+1, j ,

where i = 1, . . . , l. The Uq(b+)-module corresponding to ρ′′ is denoted by W ′′. It is clear that 
the representation described by (6.3)–(6.6) is (ρ′′)ζ̃ .

The representation ρ′′ is reducible. Indeed, let us define an l(l − 1)/2-tuple p of nonnega-
tive integers

p = ( p12, p13, p23, . . . , p1j, . . . , pj−1, j, . . . , p1, l, . . . , pl−1, l),� (7.1)

such that

i∑
k=1

(−1)i−kpkj � 0, 1 � i < j � l.

The subspaces generated by the vectors vm with the indices restricted by the inequalities

mi−1, j + mij � pij, 1 � i < j � l,

where we assume that m0j = 0, are invariant with respect to the action of the quantum group 
Uq(b+). We denote such Uq(b+)-submodule by W ′′

p .
Now we introduce a partial order for the l(l − 1)/2-tuples p of the form (7.1) by assuming 

that p′ < p if p′
ij < pij for all possible i = 1, . . . , l − 1 and j = 2, . . . , l.

Further, we denote by ρ′ the representation of Uq(b+) defined by the relations

qνh0 vm = qν(2m1+
∑l

j=2 mj) vm,� (7.2)
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qνhi vm = qν(mi+1−mi)vm, i = 1, . . . , l − 1,� (7.3)

qνhl vm = q−ν(2ml+
∑l−1

i=1 mi) vm,� (7.4)

e0 vm = q
∑l

j=2 mj vm+ε1 ,� (7.5)

ei vm = −qmi−mi+1−1 [mi]q vm−εi+εi+1 , i = 1, . . . , l − 1,� (7.6)

el vm = −κ−1
q qml [ml]q vm−εl ,� (7.7)

where m denotes now the l-tuple of nonnegative integers (m1, . . . , ml), and m + νεi means 
the respective shift of mi in this ordered tuple. The corresponding Uq(b+)-module is denoted 
by W ′. We see that there are isomorphisms

W ′′
p /

⋃
p′�p

W ′′
p′
∼= W ′[ξp],

where the shift ξp is determined by the relations

〈ξp, h0〉 =
l∑

j=2

p1j,

〈ξp, hi〉 =
i−1∑
k=1

k∑
j=1

(−1)k−j( pji − pj, i+1)− 2
i∑

j=1

(−1)i−jpj, i+1

− 2
l∑

k=i+2

i∑
j=1

(−1)i−jpkj +

l∑
k=i+2

pi+1, k, i = 1, . . . , l − 1,

〈ξp, hl〉 =
l−1∑
j=1

j∑
k=1

(−1) j−kpkl.

It should be noted here that the integers mi in the new multi-index m in the module relations 
(7.2)–(7.7) are nothing but the former mi, l+1, i = 1, . . . , l, survived the reduction to the factor 
module. We have denoted mi, l+1 shortly by mi after the reduction, and used a similar simplifi-
cation also for the shift units εi, l+1, for which we have reserved the notation εi.

8.  Interpretation in terms of q-oscillators

Degenerations of the shifted Uq(b+)-modules have a useful interpretation in terms of the so-
called q-oscillators [18–22]. The q-oscillator algebra Oscq is defined as a unital associative 
C-algebra with generators b†, b, qνN , ν ∈ C, and relations

q0 = 1, qν1Nqν2N = q(ν1+ν2)N ,

qνNb†q−νN = qνb†, qνNbq−νN = q−νb,

b†b = [N]q, bb† = [N + 1]q,

see, for example, section 5.1 of [32] and references therein. Here, we again consider the defor-
mation parameter to be q = exp �, where � is a complex number, such that q is not a root of 
unity.
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There are two standard representations of the q-oscillator algebra. They are constructed as 
follows. One can see that the relations

qνNvm = qνmvm,

b†vm = vm+1, b vm = [m]qvm−1,

supplied with the assumption v−1 = 0, endow the free vector space generated by the set 
{v0, v1, . . . } with the structure of an Oscq-module. We denote this Oscq-module by W+ and 
the corresponding representation by χ+. The other representation of Oscq is defined by the 
relations

qνNvm = q−ν(m+1)vm,

b vm = vm+1, b† vm = −[m]qvm−1,

where it is assumed again that v−1 = 0. Similarly as before, these relations endow the free 
vector space generated by the set {v0, v1, . . . } with the structure of an Oscq-module. This 
Oscq-module and the corresponding representation are denoted by W− and χ−, respectively. 
However, since the automorphism of Oscq

b → b†, b† → −b, qνN → q−ν(N+1)

relates these representations, it is actually sufficient to use only one of them.
We consider the tensor product of l copies of the q-oscillator algebra, 

Oscq ⊗ . . .⊗ Oscq = (Oscq)
⊗ l , and denote

bi = 1 ⊗ . . .⊗ b ⊗ . . .⊗ 1, b†i = 1 ⊗ . . .⊗ b† ⊗ . . .⊗ 1,

qνNi = 1 ⊗ . . .⊗ qνN ⊗ . . .⊗ 1,

where b, b† and qνN  occupy only the i-th place of the respective tensor products.
Let us consider the Uq(b+)-module W ′ and the corresponding representation ρ′ given by 

relations (7.2)–(7.7). Supply W ′ with the structure of (Oscq)
⊗ l-module assuming that

qνNi vm = qνmi vm,

b†
i vm = vm+εi , bi vm = [mi]qvm−εi .

Now, the module relations (7.2)–(7.7) can be written in terms of the q-oscillators as follows:

qνh0 vm = qν(2N1+
∑l

j=2 Nj) vm,

qνhi vm = qν(Ni+1−Ni) vm, i = 1, . . . , l − 1,

qνhl vm = q−ν(2Nl+
∑l−1

j=1 Nj) vm,

e0 vm = b†1 q
∑l

j=2 Nj vm,

ei vm = −bi b†
i+1 qNi−Ni+1−1 vm, i = 1, . . . , l − 1,

el vm = −κ−1
q bl qNl vm.

It is natural now to define a homomorphism ρ : Uq(b+) → Osc⊗ l
q  by the relations

ρ(qνh0) = qν(2N1+
∑l

j=2 Nj), ρ(qνhi) = qν(Ni+1−Ni), ρ(qνhl) = q−ν(2Nl+
∑l−1

j=1 Nj),

ρ(e0) = b†
1 q

∑l
j=2 Nj , ρ(ei) = −bi b†

i+1 qNi−Ni+1−1, ρ(el) = −κ−1
q bl qNl ,
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where i = 1, . . . , l − 1. In a sense, the homomorphism ρ plays the role of the Jimbo’s homo-
morphism ε. To get a representation of Uq(b+), one chooses some representation of (Oscq)

⊗ l, 
and then takes the composition of this representation with ρ. In particular, for the representa-
tion ρ′ one has

ρ′ = (χ+ ⊗ · · · ⊗ χ+) ◦ ρ ◦ Γζ .

More representations can be obtained using twisting by the automorphisms of Uq(b+). These 
are the representations used for the construction of the Q-operators.

9.  Conclusions

We have analysed the Verma modules over the quantum group Uq(gll+1) for arbitrary values 
of l. The explicit expressions for the action of the generators on the elements of the natural 
basis have been obtained. The corresponding representations of the quantum loop algebras 
Uq(L(sll+1)) have been constructed. This has allowed us to find certain representations of the 
positive Borel subalgebras of Uq(L(sll+1)) as degenerations of the shifted representations. 
These are the representations used in the construction of the so-called Q-operators in the 
theory of quantum integrable systems. The interpretation of the corresponding simple quotient 
modules in terms of representations of the q-deformed oscillator algebra has been given. The 
obtained results can be used for the investigation of quantum integrable systems in the spirit of 
the papers [15–18] and [19–22]. We expect also applications to the higher rank generalization 
of the quantum group approach to the construction of correlation functions for integrable spin 
chain and conformally invariant models [33–37].

The q-oscillator representations of the Borel subalgebras of Uq(L(sll+1)) are closely 
related to the prefundamental representations introduced by D. Hernandez and M. Jimbo [38]. 
The explicit relation for the case of Uq(L(sl2)) and Uq(L(sl3)) was found in the paper [28].
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Appendix

Acting by E1, l+1 on the basis vectors

Here we derive the action of the root vector E1, l+1 on the basis of the Verma Uq(gll+1)-module 
defined in section 4. To this end, we first obtain from equations (3.5)–(3.12) and (3.13)–(3.20) 
the following subsidiary formulas:

Ei, l+1 Fmij
ij = Fmij

ij Ei, l+1 − q−mij+1 [mij]q Fmij−1
ij Ej, l+1 qHij , 1 � i < j � l,

Ei, l+1 Fmi, l+1
i, l+1 = Fmi, l+1

i, l+1 Ei, l+1 + [mi, l+1]q Fmi, l+1−1
i, l+1 [Hi, l+1 − mi, l+1 + 1]q, 1 � i � l,

Ej, l+1 Fmik
ik = Fmik

ik Ej, l+1 − κq [mik]q Fij Fmik−1
ik Ek, l+1 qHjk , 1 � i < j < k � l,

Ej, l+1 Fmi, l+1
i, l+1 = Fmi, l+1

i, l+1 Ej, l+1 + [mi, l+1]q Fij Fmi, l+1−1
i, l+1 qHj, l+1 , 1 � i < j � l,

Ei, l+1 Fmj, l+1
j, l+1 = Fmj, l+1

j, l+1 Ei, l+1 + qmj, l+1 [mj, l+1]q Fmj, l+1−1
j, l+1 Eij q−Hj, l+1 , 1 � i < j � l,
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In the first equation of these five we take into account that Ej, l+1 Fij = Fij Ej, l+1 and

qHij Fij = q−2 Fij qHij , Ej, l+1 qHij = q−2 qHij Ej, l+1.

These commutations are needed to move the root vectors Ei, l+1, 1 � i � l , to the right, where 
they annihilate the highest weight vector v0. Due to the last relation a root vector Eij with 
1 � i < j � l  appears. However, it commutes with the remaining root vectors Fij and annihi-
lates v0.
Besides, one needs relations which enable the root vectors Fij arising during the commutations 
to move back to the left to occupy a proper position according to the prescribed ordering. Such 
relations are

Fmjk
jk Fij = q−mjk Fij Fmjk

jk + [mjk]q Fik Fmjk−1
jk , 1 � i < j < k � l + 1,

Fmjn
jn Fik = Fik Fmjn

jn + κq qmjn−1 [mjn]q Fin Fjk Fmjn−1
jn , 1 � i < j < k < n � l + 1.

To describe the final result, let us introduce some additional notations. First of all for 
0 � k � l − 1 denote

Λl, k = {(i0 = 1, i1, . . . , ik, ik+1 = l + 1) ∈ N×(k+2) | i0 < i1 < . . . < ik < ik+1}.

Note that the first and last elements of the tuples entering Λl, k  are fixed. However, it is con-
venient to consider the tuples of this form. Up to this extension, the set Λl introduced in 
section 3 coincides with Λl, 2. To make the formulas more compact we denote an element 
(i0, i1, . . . , ik, ik+1) of Λl, k  as i. Further, we use the notation

Ψl, k = {(i, j) ∈ Λl, k × Λl, k | ja−1 < ia � ja, a = 1, . . . k}.

Now we can write

E1, l+1vm =

l−1∑
k=0

∑
(i, j)∈Ψl, k

ik=jk

am|k, i, j vm−εj0 j1+εi1 j1−...−εjk−1 jk+εik jk−εjk jk+1

+

l−1∑
k=1

∑
(i, j)∈Ψl, k

ik �=jk

bm|k, i, j vm−εj0 j1+εi1 j1−...−εjk−1 jk+εik jk−εjk jk+1
.

�

(A.1)

Here we assume that εii = 0. The explicit form of the coefficients am|k, i, j  and bm|k, i, j  is

am|k, i, j = (−1)kκ
γi, j
q qλ1−λjk−

∑l+1
j=2 m1j+mjk , l+1−

∑k
a=1 δm|a, i, j+k−γi, j

× [λjk − λl+1 −
l∑

j=jk+1

mikj −
l∑

i=ik+1

mi, l+1 + 1]q
k+1∏
a=1

[mia−1ja ]q,

bm|k, i, j = (−1)kκ
γi, j−1
q qλ1−λl+1−

∑l+1
j=2 m1j−

∑k
a=1 δm|a, i, j+k−γi, j

k+1∏
a=1

[mia−1ja ]q,

where we denote

γi, j = �({a = 1, . . . , k | ia �= ja})
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and

δm|a, i, j =

ja−1∑
j=ja−1+1

mia−1j +

ia∑
i=ia−1+1

mija .

It is also assumed that mii = 0.
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