
Journal of Geometry and Physics 112 (2017) 1–28

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Quantum groups and functional relations for lower rank
Kh.S. Nirov a,1, A.V. Razumovb,*
a Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Ave 7a, 117312 Moscow, Russia
b Institute for High Energy Physics, NRC ‘‘Kurchatov Institute’’, 142281 Protvino, Moscow region, Russia

a r t i c l e i n f o

Article history:
Received 2 November 2015
Received in revised form 28 September
2016
Accepted 12 October 2016
Available online 4 November 2016

Keywords:
Integrable systems
Quantum loop algebras
Functional relations

a b s t r a c t

A detailed construction of the universal integrability objects related to the integrable
systems associated with the quantum loop algebra Uq(L(sl2)) is given. The full proof of the
functional relations in the form independent of the representation of the quantum loop
algebra on the quantum space is presented. The case of the general gradation and general
twisting is treated. The specialization of the universal functional relations to the case when
the quantum space is the state space of a discrete spin chain is described. This is a digression
of the corresponding consideration for the case of the quantum loop algebraUq(L(sl3))with
an extension to the higher spin case.
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1. Introduction

The modern approach to the study of quantum integrable systems is based on the concept of the transfer matrix, or
transfer operator, and the main problem here is to find its eigenvalues. The most productive method to do this is the Bethe
ansatz [1]. Unfortunately, it does not work for all the cases considered as integrable. More general method was invented by
Baxter, see, for example, [2,3]. He proposed to consider, together with the transfer operator, an auxiliary operator, called the
Q -operator. The transfer operator andQ -operator satisfy somedifference equation called the Baxter’s functional TQ -relation.
Note that in the general case we have a complex consisting of several transfer operators and Q -operators. At present, the
transfer operators and Q -operators are constructed as traces of the corresponding monodromy operators and L-operators.
We call all the operators, mentioned above, the integrability objects.

It was noted by Bazhanov, Lukyanov and Zamolodchikov [4–6] that the integrability objects can be constructed from
the universal R-matrix of the quantum group related to the quantum integrable system under consideration. In fact, in
applications to the theory of quantum integrable systemswedealwith a special type of quantumgroups called quantum loop
algebras. Here the corresponding functional relations follow from the properties of the used representations of the quantum
loop algebra under consideration. The method proved to be efficient for construction of R-operators [7–13], monodromy
operators and L-operators [4–6,12–18], and for the proof of functional relations [6,14,17–20].

The general notion of a quantum group was introduced by Drinfeld and Jimbo [21–23]. Roughly speaking, it is a special
kind of quasitriangular Hopf algebra. The completed tensor product of two copies of a quantum group contains the invertible
element, called the universal R-matrix, which relates its two comultiplications, see, for example [24]. The integrability
objects are determined by a choice of representations for the factors of that tensor product. The choice made for the first
factor determines an integrability object, and for the second factor a concrete integrable model. It is common to call the
representation space of the first factor an auxiliary space, and the representation space of the second one the quantum
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space. However, the roles of the factors can be interchanged. It appeared productive to fix representation only for the first
factor, see, for example [14,15,17,18,25]. We call the arising integrability objects and functional relations universal ones.
The integrability objects and functional relations for a concrete integrable model are obtained from the universal ones by
applying to them the corresponding representation acting on the quantum space.

In this paper we consider quantum integrable systems related to the quantum loop algebra Uq(L(sl2)). For this case the
main tool used to construct the needed representations is the Jimbo’s homomorphism [26]. In the paper [17] the Jimbo’s
homomorphism was defined as a mapping from Uq(L(sl2)) to Uq(sl2). It appears that the formulas become simpler and
the algebraic basis more transparent if one considers the Jimbo’s homomorphism as a mapping from Uq(L(sl2)) to Uq(gl2).
Therefore, we rederive the universal functional relations using the latter form of the Jimbo’s homomorphism. Here we use
a universal approach to TQ - and TT -relations proposed in the paper [18]. We find explicit expressions for the monodromy
operators and L-operators for the spin chains of ‘spin’ 1/2 particles. Then, using the fusion procedure, we construct the
expressions for the ‘spin’ 1 case. The results of the fusion procedure allow us to define integrability objects which are Laurent
polynomials on some power of the spectral parameter. Finally, we specialize the functional relations to the case of spin
chains defined by a choice of arbitrary finite dimensional representation for the quantum space and write them in terms of
polynomial objects.

We think that the main advantage of the undertaken consideration is a possibility, in conjunction with the results of the
paper [18], of a direct conjectural generalization to the case of Uq(L(sln)) for an arbitrary n. Additionally, in comparison with
the paper [17], we pay more attention to the systems of particles of higher ‘spin’. The expressions for the basic monodromy
operator and L-operator for the ‘spin’ 1 case are quite new. Stress that we consider the case of the general gradation and
general twisting.

Depending on the sense of the deformation parameter q, there are at least three definitions of a quantumgroup. According
to the first definition, q = exp h̄, where h̄ is an indeterminate, according to the second one, q is indeterminate, and according
to the third one, q = exp h̄, where h̄ is a complex number. In the first case the quantum group is a C[[h̄]]-algebra, in the
second case aC(q)-algebra, and in the third case it is just a complex algebra. To construct integrability objects one uses trace
operations on the quantum group under consideration. To define traces it seems convenient to use the third definition of
the quantum group. Therefore, we define the quantum group as a C-algebra, see, for example, the books [27,28].

We denote by L(g) the loop Lie algebra of a finite dimensional simple Lie algebra g, by L̃(g) its standard central extension,
and by L̂(g) the Lie algebra L̃(g) endowed with a derivation, see, for example, the book by Kac [29]. We follow the notations
introduced by Kac. Note that nowadays the symbol L̂ is often used instead of L̃ and vice versa.

The symbol Nmeans the set of natural numbers and the symbol Z+ the set of non-negative integers.
Depending on the context, the symbol ‘1’ means the integer one, the unit of an algebra, or the unit matrix. The symbol

⊗ denotes the tensor product of vector spaces and algebras and the Kronecker product of matrices with commuting or
noncommuting entries.

Below we use the notation

κq = q − q−1,

so that the definition of the q-deformed number can be written as

[ν]q =
qν − q−ν

q − q−1 = κ−1
q (qν − q−ν), ν ∈ C.

To construct integrability objects one uses spectral parameters. They are introduced by defining a Z-gradation of the
quantum loop algebra under consideration. In the case of the loop algebra Uq(L(sl2)) considered in this paper, a Z-gradation
is determined by two integers s0, s1. We often use the notation s = s0 + s1.

2. Integrability objects

2.1. Quantum group Uq(gl2)

To construct integrability objects one uses appropriate representations of the quantum loop algebra under consideration.
For the case of the quantum loop algebra Uq(L(sl2)) the most important way to obtain such representations is to use the
Jimbo’s homomorphism from Uq(L(sl2)) to the quantum group Uq(gl2). Therefore, we first remind the definition of Uq(gl2)
and discuss its representations, and then proceed to Uq(L(sl2)).

2.1.1. Definition
Denote by g the standard Cartan subalgebra of the Lie algebra gl2 and by Gi = Eii, i = 1, 2, the elements forming the

standard basis of g.2 The root system of gl2 relative to g consists of two roots α and −α where α is defined as

α(G1) = 1, α(G2) = −1. (2.1)

2 We use the usual notation Eij for the matrix units.
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The Lie algebra sl2 is a subalgebra of gl2, and the standard Cartan subalgebra h of sl2 is a subalgebra of g. Here the standard
Cartan generator H of sl2 is

H = G1 − G2,

and we have

α(H) = 2.

Let h̄ be a non-zero complex number such that q = exp h̄ is not a root of unity. We define the quantum group Uq(gl2) as
a unital associative C-algebra generated by the elements E, F and qX , X ∈ g, with the relations

q0 = 1, qX1qX2 = qX1+X2 , (2.2)

qXE q−X
= qα(X)E, qXF q−X

= q−α(X)F , (2.3)

[E, F ] = κ−1
q (qH − q−H ). (2.4)

Note that qX is just a convenient notation. There are no elements of Uq(gl2) corresponding to the elements of g. In fact, this
notation simply means a set of elements of Uq(gl2) parametrized by g. It is convenient to assume that

qX+ν
= qνqX

and that

[X + ν]q = κ−1
q (qX+ν

− q−X−ν) = κ−1
q (qνqX − q−νq−X ) (2.5)

for any X ∈ g and ν ∈ C. Here Eq. (2.4) takes the form

[E, F ] = [H]q.

Similar notations are used for the case of the quantum groups Uq(L̂(sl2)), Uq(L̃(sl2)) and Uq(L(sl2)).
With respect to the properly defined coproduct, counit and antipode the quantum group Uq(gl2) is a Hopf algebra. The

explicit form of the Hopf structure of Uq(gl2) is not important for our consideration. The quantum group Uq(sl2) can be
identified with a Hopf subalgebra of Uq(gl2) generated by E, F and qX , X ∈ h.

2.1.2. Highest weight modules
We identify an element λ ∈ g∗ with the set of its components (λ1, λ2) with respect to the dual basis of the basis {Gi}. In

fact we have

λ1 = λ(G1), λ2 = λ(G2).

For the simple root α we obtain the identification

α = (1, −1).

The Verma Uq(gl2)-module Ṽ λ, λ ∈ g∗, is the Uq(gl2)-module with the highest weight vector v0 satisfying the relations

qνG1v0 = qνλ1v0, qνG2v0 = qνλ2v0, Ev0 = 0. (2.6)

It is convenient to denote

µ = λ1 − λ2, (2.7)

so that for the generators qνH of Uq(sl2) we have

qνHv0 = qνµv0.

The vectors

vn = F nv0, (2.8)

where n ∈ Z+, form a basis of Ṽ λ. Let us describe the action of the generators of Uq(gl2) on the elements of this basis.
Using (2.3) and (2.1), we obtain

qνG1F = q−νFqνG1 , qνG2F = qνFqνG2 .

Now, taking into account (2.6), we see that

qνG1vn = qν(λ1−n)vn, qνG2vn = qν(λ2+n)vn.

Further, it follows directly from (2.8) that

Fvn = vn+1.
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Finally, using (2.4), (2.3) and (2.1) we come to the equation

Evn = [n]q[λ1 − λ2 − n + 1]qvn−1

which can be also written as

Evn = [n]q[µ− n + 1]qvn−1.

We denote the representation of Uq(gl2) corresponding to the module Ṽ λ by π̃λ. When the number µ defined by (2.7)
is a non-negative integer, the infinite dimensional module Ṽ (λ1,λ2) has an infinite dimensional submodule Ṽ (λ2−1,λ1+1). The
corresponding quotient module is (λ1 − λ2 + 1)-dimensional. We denote this finite dimensional Uq(gl2)-module by V λ and
the corresponding representation by πλ.

For the quantum group Uq(gl2) there are two independent quantum Casimir elements which we choose in the form

C (1)
= q−2G1−1

+ q−2G2+1
+ κ2

q FEq
−G1−G2

= q−2G1+1
+ q−2G2−1

+ κ2
q EFq

−G1−G2 , (2.9)

C (2)
= q−2G1−2G2 . (2.10)

For the representations π̃λ and πλ one has

π̃λ(C (1)) = πλ(C (1)) = q−2λ1−1
+ q−2λ2+1, (2.11)

π̃λ(C (2)) = πλ(C (2)) = q−2λ1−2λ2 . (2.12)

2.1.3. Appearance of BGG resolution
As we noted above, when the number λ1 − λ2 is a non-negative integer, the infinite dimensional module Ṽ (λ1,λ2) has an

infinite dimensional submodule Ṽ (λ2−1,λ1+1). The corresponding quotient module is (λ1 − λ2 + 1)-dimensional. In fact, we
have an exact sequence

0 −→ Ṽ (λ2−1,λ1+1) i
−→ Ṽ (λ1,λ2) p

−→ V (λ1,λ2) −→ 0, (2.13)

where i is the inclusion homomorphism and p the canonical projection. Let us show that this is an example of quantum
Bernstein–Gelfand–Gelfand (BGG) resolution [30].

Recall first some definitions and properties of the necessary objects. We have denoted the standard Cartan subalgebra of
the Lie algebra gl2 by g. TheWeyl groupW of the root system of gl2 is generated by the reflection r : g∗

→ g∗ defined by the
equation

r(λ) = λ− λ(H)α.

The minimal number of generators r necessary to represent an element w ∈ W is said to be the length of w and is denoted
by ℓ(w). It is assumed that the identity element has the length equal to 0.

Let {γi} be a dual basis of the standard basis {Gi} of g. Using (2.1), it is easy to see that

α = γ1 − γ2.

One can get convinced that

r(γ1) = γ2, r(γ2) = γ1.

Identifying an element of g∗ with the set of its components with respect to the basis {γi}, we see that the reflection r
transposes the first and second components. It is clear that the whole Weyl group W can be identified with the symmetric
group S2. Here (−1)ℓ(w) is evidently the sign of the permutation corresponding to the element w ∈ W . The order of W is
equal to two. There are one element of length 0 and one element of length 1. Denote

Uk =

⨁
w∈W
ℓ(w)=k

Ṽw·λ,

where w · λmeans the affine action of w defined as

w · λ = w(λ+ ρ) − ρ

with ρ = α/2 the half-sum of positive roots. One can verify that

r · (λ1, λ2) = (λ2 − 1, λ1 + 1).

Hence, we have

U0 = Ṽ (λ1,λ2), U1 = Ṽ (λ2−1,λ1+1).
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The quantum version of the Bernstein–Gelfand–Gelfand resolution for the quantum group Uq(gl2) is the following exact
sequence of Uq(gl2)-modules and Uq(gl2)-homomorphisms:

0 −→ U1
ϕ1

−→U0
ϕ0

−→U−1 −→ 0, (2.14)

where U−1 = V λ. Assuming that ϕ0 = p and ϕ1 = i, we see that (2.13) coincides with (2.14).

2.2. Quantum loop algebra Uq(L(sl2))

2.2.1. Definition
It is convenient for our purposes to start with the definition of the quantum group Uq(L̂(sl2)). Recall that the Cartan

subalgebra of L̂(sl2) is

ĥ = h ⊕ Cc ⊕ Cd,

where h = CH is the standard Cartan subalgebra of sl2, c the central element, and d the derivation [29]. Define the Cartan
elements

h0 = c − H, h1 = H,

so that one has

c = h0 + h1 (2.15)

and

ĥ = Ch0 ⊕ Ch1 ⊕ Cd.

The simple roots αi ∈ ĥ∗, i = 0, 1, are given by the equation

αj(hi) = âij, α0(d) = 1, α1(d) = 0,

where

(̂aij) =

(
2 −2

−2 2

)
is the Cartan matrix of the Lie algebra L̂(sl2).

As before, let h̄ be a non-zeros complex number such that q = exp h̄ is not a root of unity. The quantum group Uq(L̂(sl2))
is a unital associative C-algebra generated by the elements ei, fi, i = 0, 1, and qx, x ∈ ĥ, with the relations

q0 = 1, qx1qx2 = qx1+x2 , (2.16)

qxei q−x
= qαi(x)ei, qxfi q−x

= q−αi(x)fi, (2.17)

[ei, fj] = δij[hi]q (2.18)

satisfied for all i and j, and the Serre relations

e3i ej − [3]q e2i ej ei + [3]q ei ej e
2
i − ej e

3
i = 0, (2.19)

f 3i fj − [3]q f 2i fj fi + [3]q fi fj f
2
i − fj f

3
i = 0 (2.20)

satisfied for all distinct i and j.
The quantum group Uq(L̂(sl2)) is a Hopf algebra with the comultiplication∆, the antipode S, and the counit ε defined by

the relations3

∆(qx) = qx ⊗ qx, (2.21)

∆(ei) = ei ⊗ 1 + q−hi ⊗ ei, ∆(fi) = fi ⊗ qhi + 1 ⊗ fi, (2.22)

S(qx) = q−x, S(ei) = −qhiei, S(fi) = −fi q−hi , (2.23)

ε(qx) = 1, ε(ei) = 0, ε(fi) = 0. (2.24)

The elements of the form qνc , ν ∈ C, generate the centre of Uq(L̂(sl2)). The quantum group Uq(L̂(sl2)) has no finite
dimensional representations with non-trivial action of those elements, therefore we proceed to the quantum loop algebra

3 There are different, but essentially equivalent, definitions of the Hopf algebra structure for quantum groups. Since we use the construction of the
universal R-matrix proposed by Khoroshkin and Tolstoy, we follow the convention of their paper [31].
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Uq(L(sl2)). To this end we first introduce the quantum affine algebra Uq(L̃(sl2)) as the subalgebra of Uq(L̂(sl2)) generated by
ei, fi, i = 0, 1, and qx, x ∈ h̃, where

h̃ = h ⊕ Cc = Ch0 ⊕ Ch1.

Then, the quantum loop algebra Uq(L(sl2)) can be defined as the quotient algebra of Uq(L̃(sl2)) by the two-sided Hopf ideal
generated by the elements of the form qνc −1 with ν ∈ C×. It is convenient to consider the quantum loop algebra Uq(L(sl2))
as a C-algebra generated by the same generators as Uq(L̃(sl2)) with relations (2.16)–(2.20) and additional relations

qνc = 1, ν ∈ C×. (2.25)

It is a Hopf algebra with the Hopf structure defined by (2.21)–(2.24).

2.2.2. Cartan–Weyl generators
The abelian group

Q = Zα0 ⊕ Zα1

is called the root lattice of L̂(sl2). The algebra Uq(L(sl2)) can be considered as Q -graded if we assume that

ei ∈ Uq(L(sl2))αi , fi ∈ Uq(L(sl2))−αi , qx ∈ Uq(L(sl2))0

for any i = 0, 1 and x ∈ h̃. An element a of Uq(L(sl2)) is called a root vector corresponding to a root γ of L̂(sl2) if
a ∈ Uq(L(sl2))γ . It is clear that ei and fi are root vectors corresponding to the roots αi and −αi. One can find linearly
independent root vectors corresponding to all roots of L̂(sl2). These vectors, together with the elements qx, x ∈ h̃ are called
Cartan–Weyl generators of Uq(L(sl2)). It appears that the ordered monomials constructed from the Cartan–Weyl generators
form a Poincaré–Birkhoff–Witt basis of Uq(L(sl2)).

To construct root vectors we follow the papers [31–33]. Here we denote the root vector corresponding to a positive root
γ by eγ and the root vector corresponding to a negative root −γ by fγ . The system of positive roots of L̂(sl2) is

△̂+ = {α + kδ | k ∈ Z+} ∪ {kδ | k ∈ N} ∪ {(δ − α) + kδ | k ∈ Z+},

where

δ = α0 + α1, α = α1.

The full system of roots △̂ is the union of the systems of positive and negative roots, △̂ = △̂+ ∪ (−△̂+). For further purposes
we fix the following normal order of △̂+:

α, α + δ, . . . , α + kδ, . . . , δ, 2δ, . . . , kδ, . . . , . . . , (δ − α) + kδ, . . . , (δ − α) + δ, δ − α,

see the paper [31].
First of all we assume that

eα = e1, eδ−α = e0.

Then, we construct a root vector corresponding to the root δ by the relation

e′

δ = eα eδ−α − q−2eδ−α eα. (2.26)

The prime heremeans that belowwe redefine the vectors corresponding to the roots kδ. The next step is to construct vectors
corresponding to the roots α + kδ and (δ − α) + kδ with k > 0. To this end, we use the equations

eα+kδ = [2]−1
q (eα+(k−1)δ e′

δ − e′

δ eα+(k−1)δ), (2.27)

e(δ−α)+kδ = [2]−1
q (e′

δ e(δ−α)+(k−1)δ − e(δ−α)+(k−1)δ e′

δ). (2.28)

Finally, we construct root vectors corresponding to the roots kδ with k > 1 by the relations

e′

kδ = eα+(k−1)δ eδ−α − q−2eδ−α eα+(k−1)δ. (2.29)

The redefinition of the vectors e′

kδ mentioned above is performed with the help of the relation

κq eδ(ζ ) = log(1 + κq e′

δ(ζ )), (2.30)

where

e′

δ(ζ ) =

∞∑
k=1

e′

kδ ζ
k, eδ(ζ ) =

∞∑
k=1

ekδ ζ k.
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To construct root vectors corresponding to the negative roots we start with

fα = f1, fδ−α = f0.

Then, with the help of

f ′

δ = fδ−α fα − q2fα fδ−α, (2.31)

we define

fα+kδ = [2]−1
q (f ′

δ fα+(k−1)δ − fα+(k−1)δ f ′

δ ), (2.32)

f(δ−α)+kδ = [2]−1
q (f(δ−α)+(k−1)δ f ′

δ − f ′

δ f(δ−α)+(k−1)δ), (2.33)

and

f ′

kδ = fδ−α fα+(k−1)δ − q2fα+(k−1)δ fδ−α. (2.34)

The last step is to redefine the vectors f ′

kδ with the help of the relation

−κq fδ(ζ ) = log(1 − κq f ′

δ (ζ )),

where

f ′

δ (ζ ) =

∞∑
k=1

f ′

kδ ζ
−k, fδ(ζ ) =

∞∑
k=1

fkδ ζ−k.

2.2.3. Universal R-matrix
As any Hopf algebra the quantum loop algebra Uq(L(sl2)) has another comultiplication called the opposite comultiplica-

tion. It is defined by the equation

∆op
= Π ◦∆, (2.35)

where

Π (a ⊗ b) = b ⊗ a

for all a, b ∈ Uq(L(sl2)). When the quantum loop algebra Uq(L(sl2)) is defined as a C[[h̄]]-algebra it is a quasitriangular
Hopf algebra. It means that there exists an element of the completed tensor product R ∈ Uq(L(sl2))⊗̂Uq(L(sl2)), called the
universal R-matrix, such that

∆op(a) = R∆(a)R−1 (2.36)

for all a ∈ Uq(L(sl2)), and4

(∆⊗ id)(R) = R13R23, (id ⊗∆)(R) = R13R12. (2.37)

The most important property of the universal R-matrix is the equality

R12R13R23
= R23R13R12

called the Yang–Baxter equation for the universal R-matrix.
The expression for the universal R-matrix of Uq(L(sl2)) considered as a C[[h̄]]-algebra can be constructed using the

procedure proposed by Khoroshkin and Tolstoy [31]. Note that here the universal R-matrix is an element of Uq(b+)⊗̂Uq(b−),
where Uq(b+) is the Borel subalgebra of Uq(L(sl2)) generated by ei, i = 0, 1, and qx, x ∈ h̃, and Uq(b−) is the Borel subalgebra
of Uq(L(sl2)) generated by fi, i = 0, 1, and qx, x ∈ h̃.

In fact, one can use the expression for the universal R-matrix from the paper [31] also for the case of the quantum loop
algebra Uq(L(sl2)) defined as a C-algebra having in mind that in this case the quantum loop algebra is quasitriangular only
in some restricted sense. Namely, all the relations involving the universal R-matrix should be considered as valid only for
the weight representations of Uq(L(sl2)), see in this respect the paper [34]. This means that for any pair ϕ and ψ of weight
representations of Uq(L(sl2)) on the vector spaces V and U one can define the element Rϕ,ψ ∈ End(V ) ⊗ End(U) satisfying
the relations which allow to work with it as with an image of a real universal R-matrix. One can generalize the approach
of the paper [34] to the case when ϕ is an arbitrary homomorphism from Uq(L(sl2)) to an algebra A. In this case Rϕ,ψ is an
element of A ⊗ End(U) which is constructed in the following way.

4 For the explanation of the notation see, for example, the book [24] or the papers [12,17].
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Let ψ be a weight representation of Uq(L(sl2)) on the vector space U . This means that

U =

⨁
λ∈̃h∗

Uλ,

where

Uλ = {u ∈ U | qxu = qλ(x)u for any x ∈ h̃}.

Taking into account relations (2.25) and (2.15), we conclude that Uλ ̸= {0} only if

λ(h0 + h1) = 0. (2.38)

Let ϕ be a homomorphism from Uq(L(sl2)) to some algebra A. Define the element Rϕ,ψ ∈ A ⊗ End(U) as

Rϕ,ψ = (ϕ ⊗ ψ)(R≺δ R∼δ R≻δ)Kϕ,ψ . (2.39)

The factor R≺δ is the product over k ∈ Z+ of the q-exponentials

Rα+kδ = expq−2 (κq eα+kδ ⊗ fα+kδ). (2.40)

Here and below we use the q-exponential defined as

expq(x) =

∞∑
n=0

q−n(n−1)/4 xn

[n]q1/2 !

with

[n]q! = [n]q[n − 1]q . . . [1]q.

The order of the factors in R≺δ coincides with the chosen normal order of the roots α + kδ. For the factor R∼δ we have

R∼δ = exp
(
κq

∞∑
k=1

k
[2k]q

ekδ ⊗ fkδ

)
. (2.41)

The factor R≻δ is the product over k ∈ Z+ of the q-exponentials

R(δ−α)+kδ = expq−2
(
κq e(δ−α)+kδ ⊗ f(δ−α)+kδ

)
. (2.42)

The order of the factors in R≻δ coincides with the chosen normal order of the roots (δ − α) + kδ.
Any element u ∈ U can be uniquely represented as

u =

∑
λ∈̃h∗

uλ,

where uλ ∈ Uλ. Define the projectors prλ, λ ∈ h̃∗, by the equation

prλu = uλ.

Here we assume that prλ = 0 if Uλ = {0}.
Define the element Kϕ,ψ as

Kϕ,ψ =

∑
λ∈̃h∗

ϕ(qh1λ(h1)/2) ⊗ prλ.

It follows from (2.38) that this relation can be written in a more symmetric form

Kϕ,ψ =

∑
λ∈̃h∗

ϕ(q(h0λ(h0)+h1λ(h1))/4) ⊗ prλ. (2.43)

In general, the sum in the right hand side of the above equation is quite formal. However, it is well defined if the module U
is finite dimensional. It is the case considered in this paper.

One can show that it is possible to work with Rϕ,ψ defined by (2.39) as if it were an image of a universal R-matrix.

2.3. Universal monodromy and universal transfer operators

2.3.1. General remarks
To construct integrability objects we have to endow Uq(L(sl2)) with a Z-gradation, see, for example, [15,17]. The usual

way to do it is as follows. Given ζ ∈ C×, we define an automorphism Γζ of Uq(L(sl2)) by its action on the generators of
Uq(L(sl2)) as

Γζ (ei) = ζ siei, Γζ (fi) = ζ−si fi, Γζ (qx) = qx,
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where si are arbitrary integers. The family of automorphismsΓζ , ζ ∈ C×, generates aZ-gradationwith the grading subspaces

Uq(L(sl2))m = {a ∈ Uq(L(sl2)) | Γζ (a) = ζma}.

Taking into account (2.21) and (2.22), we see that

(Γζ ⊗ Γζ ) ◦∆ = ∆ ◦ Γζ .

It also follows from the explicit formof the universal R-matrix obtainedwith the help of the Tolstoy–Khoroshkin construction
that for any ζ ∈ C× we have

(Γζ ⊗ Γζ )(R) = R. (2.44)

Following the physics tradition, we call ζ the spectral parameter.
Let ϕ be a homomorphism of Uq(L(sl2)) to some unital associative algebra A. Given ζ ∈ C×, we denote by ϕζ the

homomorphism of Uq(L(sl2)) to A given by the equation

ϕζ = ϕ ◦ Γζ .

In particular, ϕ can be a representation of Uq(L(sl2)) on a vector space V . In this case A = End(V ). If we consider V as
a Uq(L(sl2))-module corresponding to a representation ϕ, we denote by Vζ the Uq(L(sl2))-module corresponding to the
representation ϕζ . Certainly, as vector spaces V and Vζ coincide.

The universal monodromy operator Mϕ(ζ ) corresponding to the homomorphism ϕ is defined by the relation

Mϕ(ζ ) = (ϕζ ⊗ id)(R).

It is clear that Mϕ(ζ ) is an element of A ⊗ Uq(L(sl2)).
Universal monodromy operators are auxiliary objects needed for the construction of universal transfer operators. The

universal transfer operator Tϕ(ζ ) corresponding to the universal monodromy operator Mϕ(ζ ) is defined as

Tϕ(ζ ) = (trA ⊗ id)(Mϕ(ζ )(ϕζ (t) ⊗ 1)) = ((trA ◦ ϕζ ) ⊗ id)(R(t ⊗ 1)),

where t is a group-like element of Uq(L(sl2)) called a twist element, and trA is a trace on the algebra A which means that
trA is a linear mapping from A to C satisfying the cyclicity condition

trA(ab) = trA(ba)

for all a, b ∈ A. In particular, if π is a representation ofA then tr ◦ π , where tr is a usual operator trace, is a trace onA. Note
also that trA ◦ ϕ is a trace on Uq(L(sl2)).

It is clear that Tϕ(ζ ) is an element of Uq(L(sl2)). An important property of the universal transfer operators Tϕ(ζ ) is that they
commute for all homomorphisms ϕ and all values of ζ . They also commute with all generators qx, x ∈ h̃, see, for example,
our papers [15,17].

2.3.2. Jimbo’s homomorphism and universal monodromy operators
As we noted above, for the case of the quantum loop algebra Uq(L(sl2)) the most important homomorphism used to

construct integrability objects is the Jimbo’s homomorphism. It is a homomorphism ϕ : Uq(L(sl2)) → Uq(gl2) defined by the
equations5

ϕ(qνh0 ) = qν(G2−G1), ϕ(qνh1 ) = qν(G1−G2),

ϕ(e0) = F q−G1−G2 , ϕ(e1) = E,

ϕ(f0) = E qG1+G2 , ϕ(f1) = F ,

see the paper [26]. We denote the corresponding universal monodromy operator simply as M(ζ ).
Starting with the infinite dimensional representations π̃λ of Uq(gl2), we define the infinite dimensional representations

ϕ̃λ = π̃λ ◦ ϕ, (2.45)

of Uq(L(sl2)), and denote the corresponding universal monodromy operators as M̃λ(ζ ). Similarly, starting with the finite
dimensional representations πλ, we define the finite dimensional representations

ϕλ = πλ ◦ ϕ,

and denote the corresponding universal monodromy operators as Mλ(ζ ). Slightly abusing notation, we denote the
Uq(L(sl2))-modules corresponding to the representations ϕ̃λ and ϕλ by Ṽ λ and V λ. For these modules we have

qνh0vn = qν(−µ+2n)vn, qνh1vn = qν(µ−2n)vn, (2.46)

e0vn = ζ s0q−λ1−λ2vn+1, e1vn = ζ s1 [µ− n + 1]q[n]qvn−1, (2.47)

f0vn = ζ−s0qλ1+λ2 [µ− n + 1]q[n]qvn−1, f1vn = ζ−s1vn+1. (2.48)

5 Recall that the Cartan generator H of sl2 is related to the Cartan generators of gl2 by the relation H = G1 − G2 .
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Here for the finite dimensional case when µ is a non-negative integer, say ℓ, the index n runs from 0 to ℓ, and we assume
that v−1 = 0 and vℓ+1 = 0. The universal monodromy operators corresponding to the representations ϕ̃λ and ϕλ can be
obtained from the universal monodromy operatorsM(ζ ) corresponding to the Jimbo’s homomorphismwith the help of the
relations

M̃λ(ζ ) = (π̃λ ⊗ id)(M(ζ )), Mλ(ζ ) = (πλ ⊗ id)(M(ζ )).

Additional universal monodromy operators can be obtained with the help of the automorphism σ of Uq(L(sl2)) defined
by the relations

σ (qνh0 ) = qνh1 , σ (qνh1 ) = qνh0 , (2.49)
σ (e0) = e1, σ (e1) = e0, (2.50)
σ (f0) = f1, σ (f1) = f0. (2.51)

Using the automorphism σ , we define a family of homomorphisms from Uq(L(sl2)) to Uq(gl2) generalizing the Jimbo’s
homomorphism as

ϕi = ϕ ◦ σ−i+1,

and the corresponding universal monodromy operators as

Mi(ζ ) = ((ϕi)ζ ⊗ id)(R).

Since σ 2 is the identity automorphism of Uq(L(sl2)), we have

Mi+2(ζ ) = Mi(ζ ). (2.52)

Therefore, there are only two different universal monodromy operators of such kind.
It follows from (2.21) and (2.22) that

(σ ⊗ σ ) ◦∆ = ∆ ◦ σ .

Similarly, (2.35) and (2.21), (2.22) give

(σ ⊗ σ ) ◦∆op
= ∆op

◦ σ .

Using the definition of the universal R-matrix (2.36), we obtain the equation

((σ ⊗ σ )(R))∆(σ (a))((σ ⊗ σ )(R))−1
= ∆op(σ (a)).

Taking into account the uniqueness theorem for the universal R-matrix [7], we conclude that

(σ ⊗ σ )(R) = R. (2.53)

Using this relation, it is not difficult to demonstrate that

Mi+1(ζ ) = (id ⊗ σ )(Mi(ζ ))|s→σ (s), (2.54)

where s → σ (s) stands for

s0 → s1, s1 → s0.

Using the representations π̃λ and πλ, we define the universal monodromy operators

M̃λ
i (ζ ) = (π̃λ ⊗ id)(Mi(ζ )), Mλ

i (ζ ) = (πλ ⊗ id)(Mi(ζ )).

It is evident that they satisfy relations similar to (2.52) and (2.54).

2.3.3. Universal transfer operators
To proceed to universal transfer operators we need to define traces on the algebra Uq(gl2). The common way to do this

is to use representations of Uq(gl2). Starting with the infinite dimensional representations π̃λ of the quantum group Uq(gl2)
described in Section 2.1.2, we define the traces

t̃rλ = tr ◦ π̃λ.

Similarly, when λ1 − λ2 is a non-negative integer, using the finite dimensional representations πλ, we define the traces

trλ = tr ◦ πλ.

In the case of an infinite dimensional representation there is a problem of convergence which can be solvedwith the help
of a nontrivial twist element. We use a twist element of the form

t = q(φ0h0+φ1h1)/4, (2.55)
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where φ0 and φ1 are complex numbers. Taking into account (2.25) and (2.15), we assume that

φ0 + φ1 = 0.

Now, we define a family of universal transfer operators associated with the infinite dimensional representations π̃λ of
Uq(gl2) as

T̃ λ(ζ ) = (t̃rλ ⊗ id)(M(ζ )(ϕζ (t) ⊗ 1)) = ((t̃rλ ◦ ϕζ ) ⊗ id)(R(t ⊗ 1)),

and a family of universal transfer operators associated with the finite dimensional representations πλ of Uq(gl2) as

T λ(ζ ) = (trλ ⊗ id)(M(ζ )(ϕζ (t) ⊗ 1)) = ((trλ ◦ ϕζ ) ⊗ id)(R(t ⊗ 1)).

Certainly, one can use the universal monodromy operators Mi(ζ ), or the homomorphisms ϕi, and define the universal
transfer operators

T̃ λi (ζ ) = (t̃rλ ⊗ id)(Mi(ζ )((ϕi)ζ (t) ⊗ 1)) = ((t̃rλ ◦ (ϕi)ζ ) ⊗ id)(R(t ⊗ 1))

and

T λi (ζ ) = (trλ ⊗ id)(Mi(ζ )((ϕi)ζ (t) ⊗ 1)) = ((trλ ◦ (ϕi)ζ ) ⊗ id)(R(t ⊗ 1)). (2.56)

Let us discuss the dependence of the universal transfer operators on the spectral parameter ζ . Consider, for example,
the universal transfer operator T̃ λ(ζ ). From the structure of the universal R-matrix, it follows that the dependence on ζ is
determined by the dependence on ζ of the elements of the form ϕζ (a), where a ∈ Uq(b+). Any such element is a linear
combination of monomials each of which is a product of E, F and qX for some X ∈ g. Let A be such a monomial. We have

qHAq−H
= q2(n1−n2)A,

where n1 and n2 are the numbers of E and F in A. Hence t̃rλ(A) can be non-zero only if

n1 = n2 = n.

Each E enters A with the factor ζ s1 and each F with the factor ζ s0 . Thus, for a monomial with non-zero trace we have a
dependence on ζ of the form ζ ns, where s = s0 + s1. Therefore, the universal transfer operator T̃ λ(ζ ) depends on ζ only via
ζ s. The same is evidently true for all other universal transfer operators defined above. Using this fact, we obtain from (2.54)
the relation

T̃ λi+1(ζ ) = σ (T̃ λi (ζ ))|φ→σ (φ),

where φ → σ (φ) stands for

φ0 → φ1, φ1 → φ0.

Similarly, for the universal transfer operators corresponding to the finite dimensional representations πλ we have

T λi+1(ζ ) = σ (T λi (ζ ))|φ→σ (φ).

In the case when λ1 − λ2 is a non-negative integer, it follows from the exact sequence (2.13) that

t̃r(λ1,λ2) = tr(λ1,λ2) + t̃r(λ2−1,λ1+1)
.

Hence, in this case

tr(λ1,λ2) = t̃r(λ1,λ2) − t̃r(λ2−1,λ1+1)
.

We consider the above equation as the definition of the trace trλ and Eq. (2.56) as the definition of the transfer operators
T λi (ζ ) for an arbitrary λ ∈ g∗. It is clear that we have

T (λ1,λ2)
i (ζ ) = T̃ (λ1,λ2)

i (ζ ) − T̃ (λ2−1,λ1+1)
i (ζ ). (2.57)

It follows from this relation that

T (λ2−1, λ1+1)
i (ζ ) = −T (λ1, λ2)

i (ζ ).

In particular, we have

T (ν, ν+1)
i (ζ ) = 0

for any ν ∈ C.
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2.4. Universal L-operators and universal Q-operators

2.4.1. General remarks
It follows from (2.39)–(2.43) that to construct universal monodromy operators and transfer operators it suffices to have a

representation of the Borel subalgebra Uq(b+). This observation is used to construct universal L-operators and Q -operators.
In distinction to the case of universal transfer operators, we use here representations of Uq(b+) which cannot be obtained
by restriction of representations of Uq(L(sl2)), or equivalently, representations of Uq(b+) which cannot be extended to
representations of Uq(L(sl2)). It is clear that to have interesting functional relations one should use for the construction
of universal L-operators and Q -operators representations which are connected in some way to the representations used for
the construction of universal monodromy operators and transfer operators.

In general, a universal L-operator associatedwith a homomorphismρ fromUq(b+) to some associative algebraB is defined
as

Lρ(ζ ) = (ρζ ⊗ id)(R).

As the universal monodromy operators are auxiliary objects needed for the construction of the universal transfer operators,
the universal L-operators are needed for the construction of the universal Q -operators. The universal Q -operator Qρ(ζ )
corresponding to the universal L-operator Lρ(ζ ) is defined as

Qρ(ζ ) = (trB ⊗ id)(Lρ(ζ )(ρζ (t) ⊗ 1)) = ((trB ◦ ρζ ) ⊗ id)(R(t ⊗ 1)),

where trB is a trace on B, and t is a twist element.

2.4.2. Basic representation
We start the construction of the universal L-operators and Q -operators with the construction of the basic representation

of Uq(b+). The initial point is the infinite dimensional representations ϕ̃λ of Uq(L(sl2)) defined by Eq. (2.45).
First define the notion of a shifted representation. Let ξ be an element of h̃∗ satisfying the equation

ξ (h0 + h1) = 0.

If ϕ is a representation of Uq(b+), then the representation ϕ[ξ ] defined by the relations

ϕ[ξ ](ei) = ϕ(ei), ϕ[ξ ](qx) = qξ (x)ϕ(qx)

is a representation of Uq(b+) called a shifted representation. If V is a Uq(b+)-module corresponding to the representation ϕ,
then V [ξ ] denotes the Uq(b+)-module corresponding to the representation ϕ[ξ ].

Consider the restriction of the representation ϕ̃λ to Uq(b+) and a shifted representation ϕ̃λ[ξ ] of Uq(b+). One can show
that for a non-zero ξ this representation cannot be extended to a representation of Uq(L(sl2)) and we can use it to construct
a universal Q -operator. However, it follows from (2.39) and (2.43) that the universal Q -operator definedwith the help of the
representation ϕ̃λ[ξ ] is connected with the universal transfer operator T̃ λ(ζ ) defined with the help of the representation ϕ̃λ
by the relation

Qϕ̃λ[ξ ](ζ ) = T̃ λ(ζ ) q(ξ (h0)h
′
0+ξ (h1)h

′
1)/4, (2.58)

where

h′

i = hi + φi.

Here we assume that the twist element is of the form (2.55). We see that the use of shifted representations does not give
anything really new.

Consider another method to obtain a new representation of Uq(b+). The restriction of the representation (̃ϕλ)ζ to Uq(b+)
is described by Eqs. (2.46) and (2.47). Let us try to go to the limit µ → ∞. Looking at relations (2.46) and (2.47), we see that
we cannot perform this limit directly. Therefore, we consider first a shifted representation (̃ϕλ)ζ [ξ ] with ξ defined by the
relations

ξ (h0) = µ, ξ (h1) = −µ.

Then we introduce a new basis

wn = cnvn,

where

c = q−µ−1−(2λ2−1)s1/s.

Now relations (2.46) imply that

qνh0wn = q2νnwn, qνh1wn = q−2νnwn, (2.59)
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and instead of relations (2.47) we have

e0wn = ζ̃ s0wn+1, e1wn = ζ̃ s1κ−1
q (q−n

− q−2µ+n−2)[n]qwn−1, (2.60)

where

ζ̃ = q−(2λ2−1)/sζ .

It is possible now to consider the limit µ → ∞. Relations (2.59) retain their form, while (2.60) go to

e0wn = ζ̃ s0wn+1, e1wn = ζ̃ s1κ−1
q q−n

[n]qwn−1.

Denote by θ the representation of Uq(b+) defined by the relations

qνh0vn = q2νnvn, qνh1vn = q−2νnvn, (2.61)

e0vn = vn+1, e1vn = κ−1
q q−n

[n]qvn−1, (2.62)

and byW the corresponding Uq(b+)-module. It is clear that if we define the universal Q -operator Q′(ζ ) by the relation

Q′(ζ ) = ((tr ◦ θζ ) ⊗ id)(R(t ⊗ 1)),

then, having in mind (2.58), we obtain

Q′(ζ ) = lim
µ→∞

(
T̃ (µ,0)(q−1/sζ ) qµ(h

′
0−h′

1)/4
)
.

Here the prime means that we will redefine Q -operators. It follows from the above relation that the universal Q -operators
Q′(ζ ) for all values of ζ commute. In addition, they commute with all universal transfer operators T̃ λi (ζ ), T λi (ζ ) and with all
generators qx, x ∈ h̃, see, for example, our papers [15,17].

We use the representation θ as the basic representation for the construction of all necessary universal L-operators and
Q -operators. In fact, it is an asymptotic, or prefundamental, representation of Uq(b+), see the papers [35,36].

2.4.3. Interpretation in terms of q-oscillators
It is useful to give an interpretation of relations (2.61) and (2.62) in terms of q-oscillators. Let us remind the necessary

definitions, see, for example, the book [37].
Let h̄ be a non-zero complex number and q = exp h̄.6 The q-oscillator algebra Oscq is a unital associative C-algebra with

generators b†, b, qνN , ν ∈ C, and relations

q0 = 1, qν1Nqν2N = q(ν1+ν2)N ,

qνNb†q−νN
= qνb†, qνNbq−νN

= q−νb,
b†b = [N]q, bb†

= [N + 1]q,

wherewe use the notation similar to (2.5). It is easy to understand that themonomials (b†)k+1qνN , bk+1qνN and qνN for k ∈ Z+

and ν ∈ C form a basis of Oscq.
Two representations of Oscq are interesting for us. First, let W+ be a free vector space generated by the set {v0, v1, . . .}.

One can show that the relations

qνNvn = qνnvn,
b†vn = vn+1, b vn = [n]qvn−1,

where we assume that v−1 = 0, endow W+ with the structure of an Oscq-module. We denote the corresponding
representation of the algebra Oscq by χ+. Further, let W− be a free vector space generated again by the set {v0, v1, . . .}.
The relations

qνNvn = q−ν(n+1)vn,

b vn = vn+1, b†vn = −[n]qvn−1,

where we again assume that v−1 = 0, endow the vector space W− with the structure of an Oscq-module. We denote the
corresponding representation of Oscq by χ−.

Assume that the generators of Oscq act on the moduleW defined by Eqs. (2.61)–(2.62) as on the moduleW+. This allows
us to write (2.61)–(2.62) as

qνh0vn = q2νNvn, qνh1vn = q−2νNvn,

e0vn = b†vn, e1vn = κ−1
q b q−Nvn.

6 We again assume that q is not a root of unity.
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These equations suggest defining a homomorphism ρ : Uq(b+) → Oscq by

ρ(qνh0 ) = q2νN , ρ(qνh1 ) = q−2νN , (2.63)

ρ(e0) = b†, ρ(e1) = κ−1
q b q−N . (2.64)

Using this homomorphism, we can write for the representation θ the equation

θ = χ+
◦ ρ.

2.4.4. Universal L-operators and universal Q-operators
Define the universal L-operator7

L′

ρ(ζ ) = (ρζ ⊗ id)(R)

being an element of Oscq⊗Uq(L(sl2)). Using the homomorphism ρ defined by (2.63), (2.64) and the automorphism σ defined
by (2.49)–(2.51), we define the homomorphisms

ρi = ρ ◦ σ−i,

where i = 1, 2, and the universal L-operators

L′

i(ζ ) = ((ρi)ζ ⊗ id)(R).

Here we use the fact that the Borel subalgebras Uq(b+) and Uq(b−) are invariant subspaces of σ . The universal L operators
L′

i(ζ ) are again elements of Oscq ⊗ Uq(L(sl2)). In the same way as for the universal monodromy operators, using relation
(2.53), we obtain the equation

L′

i+1(ζ ) = (id ⊗ σ )(L′

i(ζ ))|s→σ (s). (2.65)

To define universal Q -operators one should define traces on the algebra Oscq. Two standard representations χ+ and χ−

of Oscq generate two traces. We denote

tr+ = tr ◦ χ+, tr− = tr ◦ χ−.

We see that

tr+((b†)k+1qνN ) = 0, tr+(bk+1qνN ) = 0,

and that

tr+(qνN ) = (1 − qν)−1

for |q| < 1. For |q| > 1 we define the trace tr+ by analytic continuation. Since the monomials (b†)k+1qνN , bk+1qνN and qνN
for k ∈ Z+ and ν ∈ C form a basis of Oscq, the above relations are enough to determine the trace of any element of Oscq. It
appears that

tr− = −tr+.

Therefore, we can use only the trace tr+, and define the universal Q -operators corresponding to the universal L-operators
L′

i(ζ ) as

Q′

i(ζ ) = (tr+ ⊗ id)(L′

i(ζ )((ρi)ζ (t) ⊗ 1)) = ((tr+ ◦ (ρi)ζ ) ⊗ id)(R(t ⊗ 1)).

Similarly as for the case of the universal transfer operators, one can demonstrate that the universal Q -operators Q′

i(ζ )
depend on ζ via ζ s. Therefore, Eq. (2.65) leads to the relation

Q′

i+1(ζ ) = σ (Q′

i(ζ ))|φ→σ (φ).

Based on Section 2.4.2, all universalQ -operatorsQ′

i(ζ ) can be considered as limits of the corresponding universal transfer
operators. Therefore, they commute for all values of i and ζ . They commute also with all universal transfer operators T̃ λi (ζ ),
T λi (ζ ) and with all generators qx, x ∈ h̃.

3. Universal functional relations

3.1. Factorized and determinant representations of transfer operators

3.1.1. General remarks
Roughly speaking, functional relations for quantum integrable systems are some relations connecting products of integra-

bility objects, such as universal transfer operators and universal Q -operators. Here the most important are

7 The prime here and below means that the corresponding universal L-operators will be used to define primed universal Q -operators.
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relations representing universal transfer operators via products of universal Q -operators. To analyse products of universal
Q -operators one uses the following fact. Let θ1 and θ2 be two representations of the Borel subalgebra Uq(b+). Define the
corresponding universal Q -operators,

Qθ1 (ζ1) = ((tr ◦ (θ1)ζ1 ) ⊗ id)(R(t ⊗ 1)), Qθ2 (ζ2) = ((tr ◦ (θ2)ζ2 ) ⊗ id)(R(t ⊗ 1)).

Denote by θζ1, ζ2 the tensor product of the representations (θ1)ζ1 and (θ2)ζ2 ,

θζ1, ζ2 = (θ1)ζ1⊗∆(θ2)ζ2 = ((θ1)ζ1 ⊗ (θ2)ζ2 ) ◦∆.

One can show that

Qθ1 (ζ1)Qθ2 (ζ2) = ((tr ◦ θζ1, ζ2 ) ⊗ id)(R(t ⊗ 1)),

see, for example, the paper [17]. Hence, to analyse the product of universal Q -operators, one should analyse the tensor
product of the corresponding representations.

3.1.2. Tensor product of oscillator representations
Let us consider the product of the universal Q -operators Q′

1(ζ1) and Q′

2(ζ2) defined in Section 2.4.3. It is easy to see that
the universal Q -operators can be represented as

Q′

i(ζ ) = ((tr ◦ (χ+

i )ζ ) ⊗ id)(R(t ⊗ 1)) = −((tr ◦ (χ−

i )ζ ) ⊗ id)(R(t ⊗ 1)),

where

χ+

i = χ+
◦ ρi, χ−

i = χ−
◦ ρi.

Here χ+ and χ− are representations of Oscq described in Section 2.4.3. The mappings χ+

i and χ−

i are representations of
Uq(b+). Denote the corresponding Uq(b+)-modules byW+

i and W−

i .
It is convenient to use for Q1(ζ1) and Q2(ζ2) the representations

Q′

1(ζ1) = −((tr ◦ (χ−

1 )ζ1 ) ⊗ id)(R(t ⊗ 1)), Q′

2(ζ2) = ((tr ◦ (χ+

2 )ζ2 ) ⊗ id)(R(t ⊗ 1)),

and write

Q′

1(ζ1)Q
′

2(ζ2) = Q′

2(ζ2)Q
′

1(ζ1) = −((tr ◦ ((χ+

2 )ζ2⊗∆(χ−

1 )ζ1 )) ⊗ id)(R(t ⊗ 1)).

Consider now the tensor product (χ+

2 )ζ2⊗∆(χ−

1 )ζ1 . The corresponding Uq(b+)-module (W+

2 )ζ2⊗∆(W−

1 )ζ1 is also an
(Oscq ⊗ Oscq)-module. We use for the generators of the algebra Oscq ⊗ Oscq the following notation

b†
A = b†

⊗ 1, bA = b ⊗ 1, qνNA = qνN ⊗ 1,

b†
B = 1 ⊗ b†, bB = 1 ⊗ b, qνNB = 1 ⊗ qνN .

Using the explicit form of the comultiplication in Uq(b+) determined by Eqs. (2.21) and (2.22), we obtain for the action of the
generators of Uq(b+) on (W+

2 )ζ2⊗∆(W−

1 )ζ1 the following expressions

qνh0v = q2ν(NA−NB)v, qνh1v = q−2ν(NA−NB)v,

and

e0v = (ζ s02 b†
A + ζ

s0
1 κ

−1
q bBq

−2NA−NB )v,

e1v = (ζ s12 κ
−1
q bAq

−NA + ζ
s1
1 b†

Bq
2NA )v.

A basis of (W+

2 )ζ2⊗∆(W−

1 )ζ1 convenient for our purposes is formed by the vectors

wn,k = (ζ−s0qλ1+λ2e0)n(ζ
−s1
1 bB)kw0, n, k ∈ Z+,

where w0 is a unique vector of (W+

2 )ζ2⊗∆(W−

1 )ζ1 satisfying the relations

bAw0 = 0, b†
Bw0 = 0,

and λ1, λ2 and ζ are additional parameters. Using formulas of the paper [17], one can easily show that

qνh0wn,k = q2ν(n+k+1)wn,k, (3.1)

qνh1wn,k = q−2ν(n+k+1)wn,k, (3.2)

e0wn,k = ζ s0q−λ1−λ2wn+1,k, (3.3)

e1wn,k = ζ s1ζ−sqλ1+λ2 (q−nζ s2 − qnζ s1)[n]qwn−1,k − q2n[k]qwn,k−1. (3.4)

Assume now that

ζ1 = q−2(λ1+1/2)/sζ , ζ2 = q−2(λ2−1/2)/sζ ,
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and compare in this case (3.1)–(3.4) with (2.46) and (2.47). We see that there is an increasing filtration

{0} = ((W+

2 )ζ2⊗∆(W−

1 )ζ1 )−1 ⊂ ((W+

2 )ζ2⊗∆(W−

1 )ζ1 )0 ⊂ ((W+

2 )ζ2⊗∆(W−

1 )ζ1 )1 ⊂ . . .

formed by the submodules

((W+

2 )ζ2⊗∆(W−

1 )ζ1 )m =

m⨁
k=0

∞⨁
n=0

Cwn,k

with the quotient modules

((W+

2 )ζ2⊗∆(W−

1 )ζ1 )m/((W
+

2 )ζ2⊗∆(W−

1 )ζ1 )m−1 ≃ (Ṽ λ)[ξm]ζ .

Here the elements ξm ∈ h̃∗ are given by the equations

ξm(h0) = λ1 − λ2 + 2m + 2, ξm(h1) = −λ1 + λ2 − 2m − 2.

3.1.3. Factorized and determinant representations
Using relation (2.58) and the results of the above section we can write

Q′

1(q
−2(λ1+1/2)/sζ )Q′

2(q
−2(λ2−1/2)/sζ ) = −T̃ λ(ζ )

∞∑
m=0

q(ξm(h0)h′
0+ξm(h1)h′

1)/4.

The summation gives
∞∑

m=0

q(ξm(h0)h′
0+ξm(h1)h′

1)/4 = q(λ1−λ2+2)(h′
0−h′

1)/4(1 − q(h
′
0−h′

1)/2)−1. (3.5)

Introduce the notation

D1 = (h′

0 − h′

1)s/8, D2 = (h′

1 − h′

0)s/8,

and note that

D1 + D2 = 0.

Now Eq. (3.5) can be written as
∞∑

m=0

q(ξm(h0)h′
0+ξm(h1)h′

1)/4 = −q2(λ1+1/2)D1/s+2(λ2−1/2)D2/s(q2D1/s − q2D2/s)−1.

Redefining Q operators Q′

1(ζ ) and Q′

2(ζ ) in the following way,

Q1(ζ ) = ζD1Q′

1(ζ ), Q2(ζ ) = ζD2Q′

2(ζ ),

we come to the equation

C T̃ λ(ζ ) = Q1(q−2(λ1+1/2)/sζ )Q2(q−2(λ2−1/2)/sζ ),

where

C = (q2D1/s − q2D2/s)−1.

Now using Eq. (2.57) we obtain the determinant representation

C T (λ1−1/2, λ2+1/2)(ζ ) = det
(
Qi(q−2λj/sζ )

)
i,j=1,2. (3.6)

This representation allows us to obtain all functional relations and discover some interesting properties of the transfer
operators.

First of all we show that the transfer operators T λ1 (ζ ) and T λ2 (ζ ) coincide. To this end we observe that

σ (Di)|φ→σ (φ) = Di+1, (3.7)

and, therefore,

σ (C)|φ→σ (φ) = −C.

Furthermore, Eq. (3.7) gives

Qi+1(ζ ) = σ (Qi(ζ ))|φ→σ (φ).
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Applying the automorphism σ to the determinant representation (3.6), we see that

T λ1 (ζ ) = T λ2 (ζ ) = T λ(ζ ).

Therefore, we use below only universal transfer operators T λ(ζ ) obtained from the universal monodromy operators M(ζ )
and non-universal transfer and monodromy operators related to them.

Another interesting consequence of (3.6) is the equation

T (λ1+ν, λ2+ν)(q2ν/sζ ) = T (λ1, λ2)(ζ ) (3.8)

valid for any ν ∈ C. This equation means that we can use only the transfer operators of the form T (ν, 0)(ζ ). However, it is not
always convenient.

3.2. Functional relations in terms of universal integrability objects

3.2.1. TQ-relations
Let λj, j = 1, . . . , 3, be arbitrary complex numbers. It is evident that there is a trivial identity⏐⏐⏐⏐⏐⏐

Q1(q−2λ1/sζ ) Q1(q−2λ2/sζ ) Q1(q−2λ3/sζ )
Q2(q−2λ1/sζ ) Q2(q−2λ2/sζ ) Q2(q−2λ3/sζ )
Qk(q−2λ1/sζ ) Qk(q−2λ2/sζ ) Qk(q−2λ3/sζ )

⏐⏐⏐⏐⏐⏐ = 0,

for any k = 1, 2. Expanding the determinant over the third row, we obtain the relation

T (λ1−1/2, λ2+1/2)(ζ )Qk(q−2λ3/sζ ) − T (λ1−1/2, λ3+1/2)(ζ )Qk(q−2λ2/sζ ) + T (λ2−1/2, λ3+1/2)(ζ )Qk(q−2λ1/sζ ) = 0.

We call this equation the universal TQ -relation. Assuming that

λ1 = 1, λ2 = 0, λ3 = −1,

we obtain the relation

T (1/2, 1/2)(ζ )Qk(q2/sζ ) − T (1/2,−1/2)(ζ )Qk(ζ ) + T (−1/2,−1/2)(ζ )Qk(q−2/sζ ) = 0. (3.9)

It follows from the structure of the universal R-matrix that T (0, 0)(ζ ) = 1. Therefore, as follows from (3.8), we have

T (ν, ν)(ζ ) = 1

for any ν ∈ C. This property leads to a simpler form of (3.9):

T (1, 0)(q1/sζ )Qk(ζ ) = Qk(q2/sζ ) + Qk(q−2/sζ ). (3.10)

This equation is an analogue of the famous Baxter’s TQ -relations in the form independent of the representation of the
quantum loop algebra in the quantum space.

3.2.2. TT-relations
Now consider another identity⏐⏐⏐⏐⏐⏐

Q1(q−2λ1/sζ ) Q1(q−2λ2/sζ ) Q1(q−2λ3/sζ )
Q2(q−2λ1/sζ ) Q2(q−2λ2/sζ ) Q2(q−2λ3/sζ )

T (λ1−1/2, λ4+1/2)(ζ ) T (λ2−1/2, λ4+1/2)(ζ ) T (λ3−1/2, λ4+1/2)(ζ )

⏐⏐⏐⏐⏐⏐ = 0, (3.11)

where λj, j = 1, . . . , 4, are again arbitrary complex numbers. To prove this identity we just observe that

C T (λj−1/2, λ4+1/2)(ζ ) = Q1(q−2λj/sζ )Q2(q−2λ4/sζ ) − Q2(q−2λj/sζ )Q1(q−2λ4/sζ )

for any j = 1, 2, 3. Hence, the last row of the matrix in (3.11) is a linear combination of the first two rows, and the identity
is true. Expanding the determinant in (3.11) over the last row, we come to the equation

T (λ1−1/2, λ2+1/2)(ζ )T (λ3−1/2, λ4+1/2)(ζ )
− T (λ1−1/2, λ3+1/2)(ζ )T (λ2−1/2, λ4+1/2)(ζ )
+ T (λ2−1/2, λ3+1/2)(ζ )T (λ1−1/2, λ4+1/2)(ζ ) = 0, (3.12)

which we call the universal TT -relation.
Putting in (3.12)

λ1 = ν + 1, λ2 = ν, λ3 = 0, λ4 = −1,

where ν is an arbitrary complex number, we obtain

T (ν, 0)(q−1/sζ ) T (ν, 0)(q1/sζ ) = 1 + T (ν−1, 0)(q−1/sζ ) T (ν+1, 0)(q1/sζ ). (3.13)
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From the other hand the substitution

λ1 = ν + 1, λ2 = ν, λ3 = ν − 1, λ4 = −1,

where again ν is a complex number, gives

T (1, 0)(q−2ν/sζ ) T (ν, 0)(ζ ) = T (ν−1, 0)(ζ ) + T (ν+1, 0)(ζ ). (3.14)

Equations of the type (3.13) and (3.14) are usually called the fusion relations, see [19,38,39].

4. Spin chain

4.1. Monodromy operators

To construct amonodromyoperatorwe choose two representations of the quantum loop algebraUq(L(sl2)) for two factors
of the tensor product Uq(L(sl2)) ⊗ Uq(L(sl2)). For the case of a spin chain one uses the finite dimensional representations of
the form ϕ(k, 0), k ∈ Z+. Here we use the notation

Mk, ℓ(ζ |η) = (id ⊗ (ϕ(ℓ, 0))η)(M(k, 0)(ζ )) = ((ϕ(k, 0))ζ ⊗ (ϕ(ℓ, 0))η)(R).

In fact, one usually chooses for the first factor of Uq(L(sl2))⊗Uq(L(sl2)) the Jimbo’s homomorphism and defines the operators

M□, ℓ(ζ |η) = (id ⊗ (ϕ(ℓ, 0))η)(M(ζ )) = (ϕζ ⊗ (ϕ(ℓ, 0))η)(R)

called the basic monodromy operators, and then uses the equations

Mk, ℓ(ζ |η) = (π (k, 0)
⊗ id)(M□, ℓ(ζ |η)).

The above definitions refer to the case of a one site chain. In the case of a chain ofN siteswe define amonodromy operator
as

Mk, ℓ(ζ |η1, . . . , ηN ) = ((ϕ(k, 0))ζ ⊗ ((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN ))(R),

and a basic monodromy operator as

M□, ℓ(ζ |η1, . . . , ηN ) = ((ϕζ ⊗ ((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN )))(R). (4.1)

For one site monodromy operator it follows from (2.44) that

Mk, ℓ(ζ |η) = Mk, ℓ(ζη−1), M□, ℓ(ζ |η) = M□, ℓ(ζη−1),

where

Mk, ℓ(ζ ) = Mk, ℓ(ζ |1), M□, ℓ(ζ ) = M□, ℓ(ζ |1).

4.1.1. Basic monodromy operators for quantum space (V (1,0))η
In this section we consider the simplest basic monodromy operatorsM□, 1(ζ ). First of all note that

ϕζ (qνh0 ) = q−νH , ϕζ (qνh1 ) = qνH . (4.2)

To find the images of the root vectors under the mapping ϕζ we start with the evident relations

ϕζ (eδ−α) = ζ sδ−sα Fq−G1−G2 , ϕζ (eα) = ζ sαE,

ϕζ (fδ−α) = ζ−(sδ−sα )EqG1+G2 , ϕζ (fα) = ζ−sα F .

Here and sometimes below we use the notation

sδ = s0 + s1, sα = s1.

Using (2.26) and (2.31), we obtain

ϕζ (e′

δ) = ζ sδκ−1
q q−1[C (1)

− (q + q−1)(C (2))1/2q−H]
,

ϕζ (f ′

δ ) = −ζ−sδκ−1
q q(C (2))−1[C (1)

− (q + q−1)(C (2))1/2qH
]
,

where C (1) and C (2) are the quantum Casimir operators defined by Eqs. (2.9) and (2.10). Now Eqs. (2.27) and (2.32) give

ϕζ (eα+kδ) = ζ sα+ksδ (−1)kE(C (2))k/2q−k(H+2), (4.3)

ϕζ (fα+kδ) = ζ−sα−ksδ (−1)kF (C (2))−k/2qkH . (4.4)
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Similarly, it follows from (2.28) and (2.33) that

ϕζ (e(δ−α)+kδ) = ζ (sδ−sα )+ksδ (−1)kF (C (2))(k+1)/2q−kH , (4.5)

ϕζ (f(δ−α)+kδ) = ζ−(sδ−sα )−ksδ (−1)kq2kE(C (2))−(k+1)/2qkH . (4.6)

Further, Eq. (2.29) gives

ϕζ (e′

kδ) = ζ ksδκ−2
q (−1)k−1q−k(C (2))(k−1)/2[(qk − q−k) C (1) q−(k−1)H

− (qk−1
− q−k+1) (C (2))1/2q−(k−2)H

− (qk+1
− q−k−1) (C (2))1/2q−kH]

.

Using this equation, we determine that

ϕζ (1 + κqe′

δ(z)) = (1 + C (1)q−1ζ sδ z−1
+ C (2)q−2ζ 2sδ z−2)

× (1 + (C (2))1/2q−Hζ sδ z−1)−1(1 + (C (2))1/2q−H−2ζ sδ z−1)−1.

Now, it follows from the relation

log(1 + z−1) =

∞∑
k=1

(−1)k−1 z
−k

k

and from Eq. (2.30) that

ϕζ (ekδ) =
ζ ksδ

k
κ−1
q (−1)k−1q−k[Fk − (qk + q−k)(C (2))k/2q−kH]

,

where the quantities Fk are determined by the generating function

log(1 + C (1)z−1
+ C (2)z−2) =

∞∑
k=1

(−1)k−1Fk
z−k

k
. (4.7)

It is clear that all Fk belong to the centre of Uq(gl2). In particular, we have

F1 = C (1), F2 = (C (1))2 − 2C (2), F3 = (C (1))3 − 3C (1)C (2).

Using Eqs. (2.11), (2.12) and (4.7), we conclude that

πλ(Fk) = q−2(λ1+1/2)k
+ q−2(λ2−1/2)k. (4.8)

Finally, Eq. (2.34) gives

ϕζ (f ′

kδ) = ζ−ksδκ−2
q (−1)kqk(C (2))−(k+1)/2[(qk − q−k) C (1)q(k−1)H

− (qk−1
− q−k+1) (C (2))1/2q(k−2)H

− (qk+1
− q−k−1) (C (2))1/2qkH

]
,

and we obtain

ϕζ (1 − κqf ′

δ (z)) = (1 + C (1)(C (2))−1qζ−sδ z−1
+ (C (2))−1q2ζ−2sδ z−2)

× (1 + (C (2))−1/2qHζ−sδ z−1)−1(1 + (C (2))−1/2qH+2ζ−sδ z−1)−1.

It is not difficult to see that

ϕζ (fkδ) = −
ζ−ksδ

k
κ−1
q (−1)k−1qk

[
Fk(C (2))−k

− (qk + q−k)(C (2))−k/2qkH
]
.

Now we find images of the root vectors under the representation (ϕ(1, 0))η . Here the representation π (1, 0) is two
dimensional. Let {Enm}

1
n,m=0 be the basis of the algebra End((V (1, 0))η) associated with the basis {vn}

1
n=0 of (V (1, 0))η . It is easy

to determine that

π (1, 0)(qνG1 ) = qνE00 + E11, π (1, 0)(qνG2 ) = E00 + qνE11, (4.9)

π (1, 0)(E) = E01, π (1, 0)(F ) = E10. (4.10)

It follows from (4.2) that

(ϕ(1, 0))η(qνh0 ) = q−νE00 + qνE11, (ϕ(1, 0))η(qνh1 ) = qνE00 + q−νE11. (4.11)

Using Eqs. (4.3)–(4.6), one can demonstrate that

(ϕ(1, 0))η(eα+kδ) = ηsα+ksδ (−1)kq−2kE01,

(ϕ(1, 0))η(e(δ−α)+kδ) = η(sδ−sα )+ksδ (−1)kq−2k−1E10,

(ϕ(1, 0))η(fα+kδ) = η−sα−ksδ (−1)kq2kE10,

(ϕ(1, 0))η(f(δ−α)+kδ) = η−(sδ−sα )+ksδ (−1)kq2k+1E01.
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Eq. (4.8) takes the form

π (1, 0)(Fk) = q−k(q2k + q−2k),

and we have

(ϕ(1, 0))η(ekδ) =
ηksδ

k
(−1)k−1q−k

[k]q(E00 − q−2kE11),

(ϕ(1, 0))η(fkδ) =
η−ksδ

k
(−1)k−1qk[k]q(E00 − q2kE11).

Using the expression for the universal R-matrix given in Section 2.2.3, the above relations for the images of the root vectors
of Uq(L(sl2)), and the equation

Kϕζ , (ϕ(1, 0))η = q(G1−G2)/2E00 + q−(G1−G2)/2E11,

we obtain

M□, 1(ζ ) = exp(F2(ζ sδ ))(C (2))1/4
[
qG1 (1 − ζ sδq−2G1 ) ⊗ E00

+ ζ sδ−sακqq−G1F ⊗ E01 + ζ sακqEqG1 ⊗ E10

+ qG2 (1 − ζ sδq−2G2 ) ⊗ E11
]
, (4.12)

where

F2(ζ ) =

∞∑
k=1

1
qk + q−k Fk

ζ k

k
.

It is useful to have in mind that

F2(q ζ ) + F2(q−1ζ ) = − log(1 − C (1)ζ + C (2)ζ 2).

It also follows from (4.8) that

πλ(F2(ζ )) = f2(q−2(λ1+1/2)ζ ) + f2(q−2(λ2−1/2)ζ ),

where f2(ζ ) is the transcendental function defined as

f2(ζ ) =

∞∑
k=1

1
qk + q−k

ζ k

k
.

This function satisfies the following defining equation

f2(qζ ) + f2(q−1ζ ) = − log(1 − ζ )

with the initial condition f2(0) = 0.
For any non-negative integer ℓwe represent the corresponding basic monodromy operator as

M□, ℓ(ζ ) =

∑
n,m

M□, ℓ(ζ )nm ⊗ Enm (4.13)

and denote the matrix formed by M□, ℓ(ζ )nm by M□, ℓ(ζ ). Note that M□, ℓ(ζ )nm are elements of Uq(gl2). For the case of ℓ = 1
we have

M□, 1(ζ ) = exp(F2(ζ sδ ))(C (2))1/4
(
qG1 (1 − ζ sδq−2G1 ) ζ sδ−sακqq−G1F

ζ sακqEqG1 qG2 (1 − ζ sδq−2G2 )

)
.

4.1.2. Basic monodromy operators for quantum space (V (ℓ,0))η
One can construct the monodromy operator for the quantum space (V (ℓ, 0))η for ℓ > 1 in the same way as it is done for

the case of the quantum space (V (1,0))η in the preceding section . However, there is a simpler recursive way usually called
fusion [40–42].

Let us show that the representation (ϕ(ℓ−1, 0))η1⊗∆op (ϕ(1, 0))η2 , with an appropriate choice of η1, η2 and η, has a
subrepresentation isomorphic to the representation (ϕ(ℓ, 0))η . To this end first observe that the basis {vn} of the module
(V (ℓ, 0))η can be constructed as follows. We start with a vector v0 satisfying the conditions

qνh0v0 = q−νℓv0, qνh1v0 = qνℓv0, e1v0 = 0, (4.14)

and define

v1 = η−s0qℓ e0 v0, . . . , vℓ = η−s0qℓ e0 vℓ−1.
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Themodule (V (ℓ−1, 0))η1⊗∆op (V (1, 0))η2 contains the vector v0 ⊗v0 which satisfies the same conditions (4.14) as the vector
v0. Denote this vector by w0(η) and put

w1(η) = η−s0qℓ e0w0(η), . . . , wℓ(η) = η−s0qℓ e0wℓ−1(η).

The explicit expression for the vectors wn, n = 0, 1, . . . , ℓ, is

wn(η) = η−ns0η
(n−1)s0
1 η

s0
2 qn+ℓ−2

[n]q vn−1 ⊗ v1 + η−ns0η
ns0
1 q2n vn ⊗ v0,

where we assume that vℓ+1 ⊗ v0 = 0.
For arbitrary values of η1 and η2 the linear span of the vectors w0, w1, . . . , wℓ is not invariant under the action of the

generators of Uq(L(sl2)). In particular, we have

e1wℓ(η) = η−ℓs0η
(ℓ−1)s0
1 η

s0
2 q2(ℓ−1)

[ℓ]q
(
η
s1
1 q[ℓ− 1]q vℓ−2 ⊗ v1 + η

s1
2 vℓ−1 ⊗ v0

)
.

Hence, e1wℓ(η) is not proportional to

wℓ−1(η) = η−(ℓ−1)s0η
(ℓ−2)s0
1 q2ℓ−2(ηs02 q−1

[ℓ− 1]q vℓ−2 ⊗ v1 + η
s0
1 vℓ−1 ⊗ v0

)
,

as it should be. However, assuming that

η1 = q−2/sη, η2 = η,

we obtain

e1wℓ(η) = ηs1 [ℓ]qwℓ−1(η).

One can easily see that in this case the vectors wn(η) do not depend on η, so we write below just wn. One can demonstrate
that the vectors w0, w1, . . . , wℓ form a basis of the submodule of (V (ℓ−1, 0))q−2/sη⊗∆op (V (1, 0))η equivalent to the basis of the
module (V (ℓ, 0))η formed by the vectors v0, v1, . . . , vℓ.

Denote by S the linear mapping from (V (ℓ, 0))η to (V (ℓ−1, 0))q−2/sη⊗∆op (V (1, 0))η defined by the relation

S(vn) = wn,

and by S ′ the left inverse of S,

S ′
◦ S = id.

Notice that the mapping S ′ is not unique. However, one can use any mapping S ′ satisfying the above equation. It is clear that
for any choice we obtain

S ′(wn) = vn,

and have

S ′
◦

(
((ϕ(1, 0))q−2/sη⊗∆op (ϕ(1, 0))η)(a)

)
◦ S = (ϕ(2, 0))η(a)

for any a ∈ Uq(L(sl2)). Using this relation, we obtain

M□, ℓ(ζ |η) = (ϕζ ⊗ (ϕ(ℓ, 0))η)(R)
= (id ⊗ FS′, S)

(
(ϕζ ⊗ ((ϕ(ℓ−1, 0))q−2/sη⊗∆op (ϕ(1, 0))η))(R)

)
, (4.15)

where FS′,S denotes a mapping from End((V (ℓ−1, 0))q−2/sη⊗∆op (V (1, 0))η) to End(V (ℓ, 0))η defined as

FS′, S(A) = S ′
◦ A ◦ S.

Apply the mapping id ⊗Π23 to both sides of the second equation of (2.37). This gives

(id ⊗∆op)(R) = (id ⊗Π23)(R13R12) = R12R13.

Now, it follows from (4.15) that

M□, ℓ(ζ |η) = (id ⊗ FS′, S)
(
(M□, ℓ−1)12(ζ |q−2/sη)(M□, 1)13(ζ |η)

)
.

Having in mind the representation (4.13), we rewrite this equation as

M□, ℓ(ζ |η)

=

∑
n1,n2,m1,m2

M□, ℓ−1(ζ |q−2/sη)n1m1M
□, 1(ζ |q−2/sη)n2m2

⊗ (S ′
◦ (En1m1 ⊗ En2m2 ) ◦ S).
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It is not difficult to determine that

S ′
◦ (En1m1 ⊗ En2m2 ) ◦ S =

∑
n,m

S′

n|n1n2Sm1m2|m Enm,

where the quantities S′

n|n1n2
and Sm1m2|m are defined by the equations

S ′(vn1 ⊗ vn2 ) =

∑
n

vn S′

n|n1n2 , S(wm) =

∑
m1,m2

vm1 ⊗ vm2 Sm1m2|m.

Finally, we come to the relation

M□, ℓ(ζ ) = S′ (M□, ℓ−1(q2/sζ ) ⊗ M□, 1(ζ )) S,

where S′ and S are the matrices formed by the matrix entries S′

n|n1n2
and Sm1m2|m. The above equation shows that we can

recursively construct the basic monodromy operator M□, ℓ(ζ |η) from M□, 1(ζ |η). Notice that the matrix S is unique, while
there is some freedom in the choice of the matrix S′. For the case of ℓ = 2 one can use

S′
=

⎛⎝1 0 0 0
0 q−1 0 0
0 0 0 q−2s1/s[2]−1

q

⎞⎠ S =

⎛⎜⎝
1 0 0
0 q 0
0 q2s1/s 0
0 0 q2s1/s[2]q

⎞⎟⎠ . (4.16)

Then one comes to the following expression for the basic monodromy matrix

M□, 2(ζ ) = (1 − C (1)qζ s + C (2)q2ζ 2s)−1(C (2))1/2

×

[
q2G1 (1 − q−2G1ζ s)(1 − q2q−2G1ζ s)E00 + κqq2[2]qF (1 − q2q−2G1ζ s)ζ s0E01

+ κ2
q q

5
[2]qF 2q−2G1ζ 2s0E02 + κqE(1 − q−2G1ζ s)q2G1ζ s1E10

+ qG1+G2 (1 + q(C (1)
− [2]qq−2G1 − [2]qq−2G2 )ζ s + q2q−2(G1+G2)ζ 2s)E11

+ κqq2[2]qF (1 − q−2G2ζ s)q−G1+G2ζ s0E12
+ κ2

q q[2]
−1
q E2q2G1ζ 2s1E20 + κqE(1 − q2q−2G2ζ s)qG1+G2ζ s1E21

+ q2G2 (1 − q−2G2ζ s)(1 − q2q−2G2ζ s)E22
]
. (4.17)

4.2. R-operators

Usually a monodromy operator of the type Mℓ, ℓ(ζ ) is called an R-operator and denoted as Rℓ(ζ ). The R-operators play a
special role in the study of integrable systems. The R-operator Rℓ(ζ ) is obtained from the basicmonodromy operatorM□, ℓ(ζ )
by applying the corresponding representation π (ℓ, 0).

For the case of ℓ = 1, using the expression (4.12) for the basic monodromy operator M□, 1(ζ ) and Eqs. (4.9) and (4.10)
describing the representation π (1, 0), we obtain the well known result

R1(ζ ) = M1, 1(ζ ) = exp(f2(q−3ζ s) + f2(qζ s))q−1/2

×

[
q(1 − q−2ζ s)(E00 ⊗ E00 + E11 ⊗ E11) + (1 − ζ s)(E00 ⊗ E11 + E11E00)

+ κq(ζ s1E01 ⊗ E10 + ζ s0E10 ⊗ E01)
]
.

The representation π (2, 0) is described by the equations

π (2, 0)(qνG1 ) = q2νE00 + qνE11 + E22, π (2, 0)(qνG2 ) = E00 + qνE11 + q2νE22,

π (2, 0)(E) = [2]qE01 + [2]qE12, π (2, 0)(F ) = E10 + E21,

and, using (4.17), we obtain

R2(ζ ) =M2, 2(ζ ) = (1 − q2ζ s)−1(1 − q−4ζ s)−1q−2

×

[
q4(1 − q−2ζ s)(1 − q−4ζ s)(E00 ⊗ E00 + E22 ⊗ E22)

+ q2(1 − ζ s)(1 − q−2ζ s)(E00 ⊗ E11
+ E11 ⊗ E00 + E11 ⊗ E22 + E22 ⊗ E11)

+ (1 − ζ s)(1 − q2ζ s)(E00 ⊗ E22 + E22 ⊗ E00)

+ κq[2]qq2(1 − q−2ζ s)(ζ s1E01 ⊗ E10 + ζ s0E10 ⊗ E01
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+ ζ s1E12 ⊗ E21 + ζ s0E21 ⊗ E12)

+ κq[2]q(1 − ζ s)(ζ s1q2E01 ⊗ E21 + ζ s0E10 ⊗ E12
+ ζ s1E12 ⊗ E10 + ζ s0q2E21 ⊗ E01)

+ κ2
q q[2]q(ζ

2s1E02 ⊗ E20 + ζ 2s0E20 ⊗ E02)

+ q−2(q4 + (1 − 2q2 − 2q4 + q6)ζ s + q2ζ 2s)E11 ⊗ E11
]
.

This expression is consistent with the R-matrix of the Zamolodchikov–Fateev model [43].

4.3. L-operators

The L-operators corresponding to the quantum space (V (ℓ, 0))η are defined as

L
′ℓ
i (ζ |η) = (id ⊗ (ϕ(ℓ, 0))η)(L′

i(ζ )) = ((ρi)ζ ⊗ (ϕ(ℓ, 0))η)(R)

for one site chain, and as

L
′ℓ
i (ζ |η1, . . . , ηN ) = (id ⊗ ((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN )(L

′

i(ζ )))
= ((ρi)ζ ⊗ ((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN ))(R) (4.18)

for a chain of N sites. As for the case of the basic one site monodromy operators we have

L
′ℓ
i (ζ |η) = L

′ℓ
i (ζη

−1)

where L
′ℓ
i (ζ ) = L

′ℓ
i (ζ |1).

Construct the L-operators for the case of the quantum space (V (1, 0))η . First observe that for any a ∈ Uq(L(sl2)) we have

((ϕ(1, 0))η ◦ σ )(a) = O (ϕ(1, 0))η(a)O−1
|s→σ (s),

where O is a linear operator on (V (1, 0))η having the matrix form

O =

(
0 q
1 0

)
.

Using Eq. (2.65), we see now that

L
′1
i+1(ζ ) = OL

′1
i (ζ )O

−1
|s→σ (s). (4.19)

It is not difficult to find the necessary images of root vectors under ρζ . Indeed, start with the equations

ρζ (eα) = ζ sακ−1
q b q−N , ρζ (eδ−α) = ζ sδ−sαb†.

Then one easily determines that Eq. (2.26) together with (2.64) gives

ρζ (e′

δ) = κ−1
q q−1ζ s,

and, using (2.27) and (2.28), we immediately obtain

ρζ (eα+kδ) = 0, ρζ (e(δ−α)+kδ) = 0, k ≥ 1. (4.20)

Eq. (2.29) and Eqs. (4.20) give

ρζ (e′

kδ) = 0, k > 1,

and one finds that

ρζ (ekδ) = (−1)k−1κ−1
q q−k ζ

ks

k
.

The necessary images of root vectors under ϕ(1, 0)
η are given in Section 4.1.1. After all, having inmind (2.43), (4.11) and (2.63),

we observe that

Kρζ , (ϕ(1, 0))η = q−N
⊗ E00 + qN ⊗ E11.

All that allows us to find the expression for the L-operator L
′1
2 (ζ ). To obtain the expression for L

′1
1 (ζ ) one can use Eq. (4.19).

The explicit form of the L-operators L
′1
1 (ζ ) and L

′1
2 (ζ ) is

L
′1
1 (ζ ) = ef2(ζ

s)
[(qN − q−N−1ζ s) ⊗ E00 + b q−2N+1ζ s0 ⊗ E01 + κq b† qNζ s1 ⊗ E10 + q−N

⊗ E11], (4.21)

L
′1
2 (ζ ) = ef2(ζ

s)
[q−N

⊗ E00 + κq b† qN+1ζ s0 ⊗ E01 + b q−2Nζ s1 ⊗ E10 + (qN − q−N−1ζ s) ⊗ E11]. (4.22)
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The corresponding matrices look as

L
′1
1 (ζ ) = ef2(ζ

s)
(
qN − q−N−1ζ s b q−2N+1ζ s0

κq b† qNζ s1 q−N

)
,

L
′1
2 (ζ ) = ef2(ζ

s)
(

q−N κq b† qN+1ζ s0

b q−2Nζ s1 qN − q−N−1ζ s

)
.

To obtain the L-operators for the quantum space (V (ℓ,0))η with ℓ > 1 one can use the same fusion procedure as for the
basic monodromy operators. The main relation here is very similar,

L
′ℓ
i (ζ ) = S′ (L

′ℓ−1
i (q2/sζ ) ⊗ L

′1
i (ζ )) S

with S′ and S again given by Eq. (4.16).
Now, using Eq. (4.21), we obtain the expression

L
′2
1 (ζ ) = (1 − qζ s)−1

[
q2N (1 − qq−2Nζ s)(1 − q−1q−2Nζ s) ⊗ E00

+ q2[2]qb(1 − qq−2Nζ s)q−Nζ s0 ⊗ E01 + q6[2]qb2q−4Nζ 2s0 ⊗ E02
+ κqb†(1 − q−1q−2Nζ s)q2Nζ s1 ⊗ E10 + (1 + (q − [2]qq−2N )ζ s) ⊗ E11
+ q2[2]qbq−3Nζ s0 ⊗ E12 + κ2

q q[2]
−1
q (b†)2q2Nζ 2s1 ⊗ E20

+ κqb†ζ s1 ⊗ E21 + q−2N
⊗ E22

]
,

and, using (4.22), the expression

L
′2
2 (ζ ) = (1 − qζ s)−1

[
q−2N

⊗ E00 + κqq2[2]qb†ζ s0 ⊗ E01

+ κ2
q q

5
[2]q(b†)2q2Nζ 2s0 ⊗ E02 + bq−3Nζ s1 ⊗ E10

+ (1 + (q − [2]qq−2N )ζ s) ⊗ E11
+ κqq2[2]qb†(1 − q−1q−2Nζ s)q2Nζ s0 ⊗ E12
+ q2[2]−1

q b2q−4Nζ 2s1 ⊗ E20 + b(1 − qq−2Nζ s)q−Nζ s1 ⊗ E21

+ q2N (1 − qq−2Nζ s)(1 − q−1q−2Nζ s) ⊗ E22
]
.

4.4. Transfer operators and Q-operators

We define the transfer operator corresponding to the representations π (k, 0) and π (ℓ, 0) of Uq(gl2) by the equation

T k,ℓ(ζ |η1, . . . , ηN ) = ((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN )(T
(k, 0)(ζ ))

= (tr(k, 0) ⊗ ((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN ))(M(ζ )(ϕζ (t) ⊗ 1)).

Using Eq. (4.1) defining the basic monodromy operatorM□, ℓ(ζ |η1, . . . , ηN ), we can write

T k, ℓ(ζ |η1, . . . , ηN ) = (tr(k, 0) ⊗ id)(M□, ℓ(ζ |η1, . . . , ηN )(ϕζ (t) ⊗ 1)).

Represent the transfer operator T k, ℓ(ζ |η1, . . . , ηN ) as

T k, ℓ(ζ |η1, . . . , ηN ) =

∑
n1,...,nN
m1,...,mN

Tk, ℓ(ζ |η1, . . . , ηN )n1...nN |m1...mN En1m1 ⊗ · · · ⊗ EnNmN

and define the transfer matrix

Tk, ℓ(ζ |η1, . . . , ηN ) = (Tk, ℓ(ζ |η1, . . . , ηN )n1...nN |m1...mN ).

Now, using the equality

M□, ℓ(ζ |η1, . . . , ηN ) = (M□, ℓ)01(ζ |η1) · · · (M□, ℓ)0N (ζ |ηN ),

one can demonstrate that

Tk, ℓ(ζ |η1, . . . , ηN ) = tr(k, 0)((M□, ℓ(ζη−1
1 ) ⊗ · · · ⊗ M□, ℓ(ζη−1

N )) q−Φ1G1−Φ2G2 ),

see, for example, the paper [17]. Here we use the fact that

ϕζ (t) = q−Φ1G1−Φ2G2 ,
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where we denote

Φ1 = (φ0 − φ1)/4, Φ2 = (φ1 − φ0)/4.

We define the Q -operators corresponding to the representation π (ℓ, 0) of Uq(gl2) as

Q ℓ
i (ζ |η1, . . . , ηN ) = ((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN )(Qi(ζ ))
= ((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN )(Q

′

i(ζ )ζ
Di )

= (tr+ ⊗ ((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN ))(L
′

i(ζ )((ρi)ζ (t) ⊗ ζDi )).

It is easy to understand that

((ϕ(ℓ, 0))η1⊗∆op · · · ⊗∆op (ϕ(ℓ, 0))ηN )(ζ
Di ) = q−(N−1)Φis/2 ζ D

ℓ
i ⊗ · · · ⊗ ζ D

ℓ
i ,

where ζ D
ℓ
i is an element of End((V (ℓ, 0))η) defined by the equation

(ϕ(ℓ, 0))η(ζDi ) = ζ D
ℓ
i .

Hence, using (4.18), we come to the equation

Q ℓ
i (ζ |η1, . . . , ηN ) = q−(N−1)Φis/2(tr+ ⊗ id)(L′

i(ζ |η1, . . . , ηN )((ρi)ζ (t) ⊗ (ζ D
ℓ
i ⊗ · · · ⊗ ζ D

ℓ
i ))). (4.23)

Represent the Q -operator Q ℓ
i (ζ |η1, . . . , ηN ) as

Q ℓ
i (ζ |η1, . . . , ηN ) =

∑
n1,...,nN
m1,...,mN

Qℓi (ζ |η1, . . . , ηN )n1...nN |m1...mN En1m1 ⊗ · · · ⊗ EnNmN ,

and define the matrix

Qℓi (ζ |η1, . . . , ηN ) = (Qℓi (ζ |η1, . . . , ηN )n1...nN |m1...mN ).

One can get convinced that

L
′ℓ
i (ζ |η1, . . . , ηN ) = ((L

′ℓ
i )

01(ζ |η1) · · · (L
′ℓ
i )

0N (ζ |ηN )),

see, for example, the paper [17]. After all, using (4.23), we come to the equation

Qℓi (ζ |η1, . . . , ηN ) = q−(n−1)Φis/2tr+((L
′ℓ
i (ζη

−1
1 )ζD

ℓ
i ⊗ · · · ⊗ L

′ℓ
i (ζη

−1
N )ζD

ℓ
i ) (ρi)ζ (t)),

where ζD
ℓ
i is the matrix corresponding to the endomorphism ζ D

ℓ
i . Explicitly, we have

ζD
ℓ
1 = qΦ1s/2

⎛⎜⎜⎜⎝
ζ−ℓs/4

ζ−(ℓ−2)s/4

. . .

ζ ℓs/4

⎞⎟⎟⎟⎠ ,

ζD
ℓ
2 = qΦ2s/2

⎛⎜⎜⎜⎝
ζ ℓs/4

ζ (ℓ−2)s/4

. . .

ζ−ℓs/4

⎞⎟⎟⎟⎠ .

It is worth noting here that

(ρ1)ζ (t) = q−(Φ1−Φ2)N , (ρ2)ζ (t) = q−(Φ2−Φ1)N .

4.5. Functional relations

The functional relations for the transfer operators Tk, ℓ(ζ |η1, . . . , ηN ) and Q -operators Qℓk(ζ |η1, . . . , ηN ) can be obtained
by acting on the universal functional relations by the corresponding representations of Uq(L(sl2)). Therefore, they have one
and the same form. Note that the transfer operators and Q -operators usually contain some transcendental functions on the
spectral parameter ζ . From the point of view of concrete applications to integrable systems it is desirable to work with
rational functions on ζ , or on some fixed function on ζ . A simple analysis shows that the Q -operators Q̂ℓk(ζ |η1, . . . , ηN )
related to the Q -operators Qℓk(ζ |η1, . . . , ηN ) by the equation

Qℓk(ζ |η1, . . . , ηN ) = ζΦks/2

⎡⎣ N∏
i=1

ℓ∏
j=1

ζ s/4 exp
(
f2(q2(ℓ−j)ζ sη−s

i )
)⎤⎦ Q̂ℓk(ζ |η1, . . . , ηN )
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are Laurent polynomials on ζ s/2. Similarly, one can demonstrate that the transfer operators T̂k, ℓ(ζ |η1, . . . , ηN ) related to the
operators Tk, ℓ(ζ |η1, . . . , ηN ) by the equation

Tk, ℓ(ζ |η1, . . . , ηN )

=

⎡⎣ N∏
i=1

ℓ∏
j=1

q−k/2ζ s/2η
−s/2
i exp

(
f2(q2(ℓ−j)−2k−1ζ sη−s

i ) + f2(q2(ℓ−j)+1ζ sη−s
i )

)⎤⎦
× T̂k, ℓ(ζ |η1, . . . , ηN )

are Laurent polynomials on ζ s/2 as well. In fact, in this case we have Laurent polynomials on ζ s.
In terms of the polynomial objects we have the following analogue of the TQ -relation (3.10)

T̂1, ℓ(q1/sζ |η1, . . . , ηN )Q̂ℓk(ζ |η1, . . . , ηN )

= qΦk

⎡⎣ N∏
i=1

ℓ∏
j=1

qℓ−j b(q−(ℓ−j)+1/2ζ s/2η
−s/2
i )

⎤⎦ Q̂ℓk(q
2/sζ |η1, . . . , ηN )

+ q−Φk

⎡⎣ N∏
i=1

ℓ∏
j=1

qℓ−j b(q−(ℓ−j)−1/2ζ s/2η
−s/2
i )

⎤⎦ Q̂ℓk(q
−2/sζ |η1, . . . , ηN ).

Here and below we use the notation

b(ζ ) = ζ − ζ−1.

Relations (3.13) and (3.14) lead to the TT -relation

T̂k, ℓ(q−1/sζ |η1, . . . , ηN )̂Tk, ℓ(q1/sζ |η1, . . . , ηN )

=

N∏
i=1

ℓ∏
j=1

q2(l−j) b(q−(ℓ−j)+k+1/2ζ−s/2η
s/2
i ) b(q−(ℓ−j)−1/2ζ−s/2η

s/2
i )

+ T̂k−1, ℓ(q−1/sζ |η1, . . . , ηN )̂Tk+1, ℓ(q1/sζ |η1, . . . , ηN )

and to the TT -relation

T̂1, ℓ(q−2k/sζ |η1, . . . , ηN )̂Tk, ℓ(ζ |η1, . . . , ηN )

=

⎡⎣ N∏
i=1

ℓ∏
j=1

qℓ−j b(q−(ℓ−j)+k+1ζ s/2η
−s/2
i )

⎤⎦ T̂k−1, ℓ(ζ |η1, . . . , ηN )

+

⎡⎣ N∏
i=1

ℓ∏
j=1

qℓ−j b(q−(ℓ−j)+kζ s/2η
−s/2
i )

⎤⎦ T̂k+1, ℓ(ζ |η1, . . . , ηN ).

5. Conclusions

We have rederived the universal functional relations for the quantum integrable systems related to the quantum loop
algebra Uq(L(sl2)) treating the Jimbo’s homomorphism as a mapping from Uq(L(sl2)) to Uq(gl2). Comparing with the case
when the Jimbo’s homomorphism is considered as a mapping from Uq(L(sl2)) to Uq(sl2) we see that the arising formulas
are simpler. The obtained relations together with the results obtained for the systems related to the quantum loop algebra
Uq(L(sl3)) [18,19]make a generalization of the functional relations to the case of the quantum loop algebras Uq(L(sln)) almost
evident. We have derived expressions for monodromy operators and L-operators for the case of ‘spins’ 1/2 and 1. Finally, we
have rewritten the functional relations for the case of chains of arbitrary ‘spin’ particles in terms of polynomial objects. This
question was also treated earlier in the papers [44,45] by different approaches.
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