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Abstract. The calibration problem is considered for the accelerometer unit at a high-

precision test bench. Besides instrumental errors of the accelerometer unit itself, possible

faults of the test bench (which are accumulated during its operation) are taken into account.

One of the main problems is to choose the optimal design of the angular unit positions. The

guaranteed approach is proposed to determine this optimal design.

1 Introduction

It is well known that the accelerometer unit of a strapdown inertial navigation system
should be calibrated on a test bench [2], [3], [4], [5], [6], [7], [8], [10], [13], [14], [15],
[16].

The unit errors are determined by the inaccuracies of scale coefficients, the mis-
alignments of sensor axes and sensor biases. However, besides the errors mentioned,
the high-precision test bench during the long-term operation can have the faults caused
by the misalignments of its own test bench axes and the biases in the measurement of
the angles of the test bench rotation about its own axes. Then, aside from the cali-
bration problem itself, one has to solve the test bench functional diagnostic problem.
This circumstance makes the state vector to be high-dimensional. An example of such
test bench is the motion simulator produced by ”Acutronic” [9].

When dimension is high the engineering intuition may fail. Therefore it is necessary
to develop a mathematical problem statement for the calibration of the nominally
high-precision test benches taking into account the peculiarities mentioned above.
In the work, it is proposed to set and solve this mathematical problem basing on
the guaranteed approach. This approach allows us to design the optimal angular
positions of the high-precision test bench in the most simple way, to obtain the optimal
calibration algorithms, and to calculate the maximum attainable accuracy for the
desired parameters estimation.

The main result of the paper is the optimal design of experiments. By the estimates
of the test bench parameters one can conclude on whether to carry out expensive
maintenance work.
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2 Problem statement

Consider a test bench with two degrees of freedom, which is consisted of two frames
(gimble rings): outer an inner ones.

2.1 Ideal test bench scheme

Ideally, the base of the test bench is set exactly in the horizon. The outer axis is also
located in the horizontal plane and has a known asimuthal orientation. With zero
rotation angle i of the outer frame relative to the base, the inner axis coincides with
the geographical vertical. The outer and inner axes intersect at a point M b and are
orthogonal. A reference system M bi is bind up to outer frame so that the first axis
M bi1 coincides with the outer rotation axis, the third axis M bi3 coincides with the
inner rotation axis M bj3, and the second axis M bi2 makes with the first and the third
axes a right trihedron.

A right trihedron M bj is bound to the inner frame so that, under zero rotation
angle of the inner frame relative to the outer frame j, this trihedron coincides with the
trihedron M bi (and with an arbitrary j it has a common axis M bi3 = M bj3 with M bi).
A so-called faceplate is placed on the inner frame and the strapdown inertial navigation
system with accelerometer unit is mounted on the faceplate so that the instrumental
axes of the unit coincide with the axes of the trihedron M bj. Setting the test bench
in different positions it is required to determine the accelerometer unit parameters by
the measurements of the angles (i, j) and the signals of the accelerometers.

2.2 The scheme of the test bench with errors

Assume that the base of the test bench is set not exactly in the horizon (e.g., due
to a subsidence of foundation) In particular, the outer axis is not strictly horizontal.
Assume also that the outer and the inner axes intersect at the point M b but are not
strictly orthogonal. Introduce a vertical plane M bV that passes through geographical
vertical M bZ at the point M b and the outer rotation axis of the test bench. Introduce
also a normal vector M bn to the vertical plane M bV (which lies in the horizontal
plane) that forms with M bZ and the outer axis a right (non-orthogonal) trihedron.

Suppose that, because of the non-ideality of the test bench base installation, the
angle of the azimuthal orientation A of the vertical half-plane of the plane M bV con-
taining the outer axis relative to the geographical trihedron (this angle is measured
clockwise from the North direction when viewed from above) is known with small er-
ror ∆A. Besides, due to the non-ideality of the test bench installation, the outer axis
is deflected from the horizontal plane by a small angle δi02 measured in the positive
direction (counter-clockwise) around the normal M bn.

Bind up the reference system M bi with the outer frame so that the first axis M bi1
coincides with the outer rotation axis, the third axis M bi3 lies in the plane formed
by outer and inner axes (the third axis almost coincides with the inner axis), and the
second axis M bi2 makes a right orthogonal trihedron with M bi1 and M bi3. Due to
non-ideality of the test bench base installation in the horizon, the axis M bi3 coincides
with the plane M bV with unknown small angle of the outer frame rotation relative
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to the base i∗ ̸= 0. The rotation angle of the outer frame (the trihedron M bi) with
respect to the test bench base i is measured with a constant error ∆i.

Bind up the reference system M bj with the inner frame as follows. The axis M bj3
coincides with the inner rotation axis. In the plane formed by the outer and inner
axes (or, what is the same, in the plane formed by the axes M bi1, M

bi3), let us turn
the trihedron M bi around the axis M bi2 in positive direction by a small angle δj02 so
that the axis M bi3 coincides with the inner rotation axis M bj3. Thus the angle of the
non-orthogonality of the outer and inner axes is determined by the small angle deltaj02 .
Then with zero rotation angle of the inner frame relative to the outer frame j = 0 a
new position of the axis M bi1 will define the axis M bj1, which we bind up with the
inner frame. The axis M bj2 makes with the first and the third axes a right orthogonal
trihedron. With arbitrary value of the angle j the trihedron M bj transits to a new
position together with the inner frame. The rotation angle of the inner frame (the
trihedron M bj) relative to the outer frame j is measured with a constant error ∆j.

The right orthogonal trihedron that is bind up with the faceplate (which is set on
the inner frame) is rotated relative to the M bj by a small angle around an unknown
axis. In its turn, the instrumental trihedron M bz (along which axes the accelerometer
sensor axes must be located ideally) is rotated around the faceplate axes by another
one small angle around another one unknown axis. As aresult the orientation of the
instrumental trihedron M bz relative to the trihedron M bj is characterized by a small
vector angle (δzj1 , δzj2 , δzj3 )T .

Introduce also the following notation: 1) Γ11, Γ22, Γ33 – the errors of accelerometer
scale coefficients; 2) Γ12, Γ13, Γ21, Γ23, Γ31, Γ32 – the accelerometer misalignments; 3)
∆f 0

z1
, ∆f 0

z2
, ∆f 0

z3
– the constant accelerometer biases; 4) g′ – nominal gravity force

acceleration; 5) ∆g – an error in the knowledge of gravity force acceleration.
Setting the test bench in different positions it is required to determine the ac-

celerometer unit parameters and the constant test bench errors by the measurements
of the angles (i, j) and the accelerometer signals.

After cumbersome calculation one can get the dependence of the accelerometer
unit readings on the frame rotation angles. Then the calibration problem can be
represented in the form that is traditional in estimation theory. Namely, in the issue
we will assume that there are three groups of measurements:

(1)
z (i, j) =

(1)

H
T(i, j) q +

(1)
ϱ (i, j),

(1)
z (i, j) =

a′z1(i, j)

g′
, (1)

(2)
z (i, j) =

(2)

H
T(i, j) q +

(2)
ϱ (i, j),

(2)
z (i, j) =

a′z2(i, j)

g′
,

(3)
z (i, j) =

(3)

H
T(i, j) q +

(3)
ϱ (i, j),

(3)
z (i, j) =

a′z3(i, j)

g′
.

Here {i, j} are angle parameters, which characterize the angular positions of the

test bench and take the value from [0, 2π]; {
(1)
z (i, j),

(2)
z (i, j),

(3)
z (i, j)} are normalized

readings of the three accelerometers {a′z1(i, j), a
′
z2
(i, j), a′z3(i, j)}; {

(1)

H (i, j),
(2)

H (i, j),
(3)

H (i, j)} are known vectors from Rm (m = 15); q ∈ Rm is the vector of unknown
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parameters, which is consisted of the accelerometer unit errors; {
(1)
ϱ (i, j),

(2)
ϱ (i, j),

(3)
ϱ (i, j)} are unknown measurement (dimensionless) errors.

The estimated parameters have the form:

q1 = δi02 , q2 = ∆i+ i∗, q3 = δj02 ,

q4 = Γ13 − δzj2 , q5 = Γ11 − ∆g
g′
, q6 = Γ12 −∆j + δzj3 ,

q7 =
∆f0

z1

g′
, q8 = Γ23 + δzj1 , q9 = Γ21 +∆j − δzj3 ,

q10 = Γ22 − ∆g
g′
, q11 =

∆f0
z2

g′
, q12 = Γ31 + δzj2 ,

q13 = Γ32 − δzj1 , q14 = Γ33 − ∆g
g′
, q15 =

∆f0
z3

g′
.

(2)

The vectors
(p)

H (i, j) ∈ Rm (m = 15) are defined by the expressions:

(1)

H (i, j)=



− cos j

− cos i sin j

− cos i cos j

cos i

sin i sin j

sin i cos j

1

0

0

0

0

0

0

0

0



,
(2)

H (i, j)=



sin j

− cos i cos j

cos i sin j

0

0

0

0

cos i

sin i sin j

sin i cos j

1

0

0

0

0



,
(3)

H (i, j)=



0

sin i

0

0

0

0

0

0

0

0

0

sin i sin j

sin i cos j

cos i

1



.

(3)

Thus the formulas (1) describe the continuum of every possible readings of the
accelerometer unit at all its conceivable positions. The problem is to determine all

entries of the vector parameters q by means of the measurements
(p)
z (i, j), p = 1, 2, 3.

3 Guaranteed estimation method

In accordance with the guaranteed approach to estimation [11, 1] we assume that the
measurements errors are bounded in absolute value by a parameter σ:

|
(1)
ϱ (i, j)| ≤ σ, |

(2)
ϱ (i, j)| ≤ σ, |

(3)
ϱ (i, j)| ≤ σ, i, j ∈ [0, 2π].
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Consider linear estimators for l = aT q of the form

l̂ =
3∑

p=1

∫
(p)

Φ (i, j)
(p)
z (i, j) di dj (4)

where
(p)

Φ (i, j) are weight functions. For the estimate of the ν-th entry of the unknown
parameter vector q the vector a = e(ν), where e(ν) ∈ Rm consists of zeroes except for
the unity at the ν-th place.

The quantity
sup

q∈Rm, |
(p)
ϱ (i,j)|≤σ, p=1,2,3

| l̂ − l|

is called the guaranteed estimation error. With a chosen estimator this is a maximal
value of the estimation error under all possible values of uncertain factors. Let us

search the weight coefficients
(p)

Φ (i, j) that minimize the guaranteed estimation error,
i.e., from the solution of the following minmax problem:

inf
(p)

Φ (i,j), p=1,2,3

sup

q∈Rm, |
(p)
ϱ (i,j)|≤σ, p=1,2,3

| l̂ − l|.

This problem is called the optimal guaranteed estimation problem.
It can be shown that this problem reduces to the following variational problem of

the form:

inf
(p)

Φ (i,j), p=1,2,3

σ
3∑

p=1

∫
|
(p)

Φ (i, j)| di dj (5)

subject to the constraints (they are called unbiasedness conditions)

3∑
p=1

∫
(p)

H (i, j)
(p)

Φ (i, j) di dj = a. (6)

If the vectors
(p)

H (i, j) ∈ Rm are continuous, then the solution of (5), (6) exists and
can be represented by the impulse function with m pulses (Dirac delta-functions)

[1],[12]. In this case, the value σ
∑3

p=1

∫
|
(p)

Φ0(i, j)| di dj, where
(p)

Φ0(i, j) are the optimal
coefficients, define the optimal guaranteed estimation error of the parameter l.

Note also that the involving of nonlinear estimators instead of (4) will not reduce
the guaranteed estimation error [12].

4 Analytical solution of the calibration problem

Using the features of the calibration problem we will find a solution in analytical form.
In order to do it, first note that if we have to estimate a parameter qν , then the
corresponding entry of the vector a (with the number ν) in the unbiasedness condition
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6) is equal to 1 and the other entries of the a are zero. Consider the ν-th row in
the unbiasedness condition. Since the absolute values of all entries of the vectors
(p)

H (i, j) are less or equal to unity, it is obvious that for any estimator (subjected to the
unbiasedness condition) the following relations hold: (for any ν = 1, . . . ,m):

σ =

∣∣∣∣∣ σ
3∑

p=1

∫
(p)

Hν (i, j)
(p)

Φ (i, j) di dj

∣∣∣∣∣ ≤ σ
3∑

p=1

∫
|

(p)

Hν (i, j)
(p)

Φ (i, j) | di dj (7)

≤ σmax
p

max
(i,j)

|
(p)

Hν (i, j) | ·
3∑

p=1

∫
|

(p)

Φ (i, j) | di dj = σ
3∑

p=1

∫
|

(p)

Φ (i, j) | di dj.

This means that the optimal guaranteed estimation error for any parameter qν is not
less than σ. So, if we can find an estimate with the guaranteed accuracy σ, then it is
optimal one.

Investigate the formulas (3). As candidates for the optimal values of i, j we can
take the angles that maximize the absolute value of the corresponding coefficient at
the estimated parameter. Then it is easy to determine the following estimators for qν
(here δ((i, j)− (i0, j0)) is the Dirac delta-function centered at (i0, j0)):
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(1)

Φ1 (i, j) =
1

2
[δ((i, j)−(−π/2, π))−δ((i, j)−(π/2, 0))] ,

(2)

Φ1 (i, j)=
(3)

Φ1 (i, j)=0,

(3)

Φ2 (i, j) =
1

2
[δ((i, j)−(π/2, 0))−δ((i, j)−(−π/2, π))] ,

(1)

Φ2 (i, j)=
(2)

Φ2 (i, j)=0,

(1)

Φ3 (i, j) =
1

4
[− δ((i, j)−(0, 0)) +δ((i, j)−(0, π)) +

+ δ((i, j)−(π, 0))−δ((i, j)−(π, π))] ,
(2)

Φ3 (i, j)=
(3)

Φ3 (i, j)=0,

(1)

Φ4 (i, j) =
1

2
[δ((i, j)−(0, π/2))−δ((i, j)−(π, −π/2))] ,

(2)

Φ4 (i, j)=
(3)

Φ4 (i, j)=0,

(1)

Φ5 (i, j) =
1

2
[δ((i, j)−(π/2, π/2))−δ((i, j)−(π/2, −π/2))] ,

(2)

Φ5 (i, j)=
(3)

Φ5 (i, j)=0,

(1)

Φ6 (i, j) =
1

2
[δ((i, j)−(π/2, 0))−δ((i, j)−(−π/2, 0))] ,

(2)

Φ6 (i, j)=
(3)

Φ6 (i, j)=0,

(1)

Φ7 (i, j) =
1

2
[δ((i, j)−(π/2, π/2)) +δ((i, j)−(π/2, −π/2))] ,

(2)

Φ7 (i, j)=
(3)

Φ7 (i, j)=0,

(2)

Φ8 (i, j) =
1

4
[δ((i, j)−(0, π/2))−δ((i, j)−(π, −π/2)) +

+ δ((i, j)−(0, −π/2))−δ((i, j)−(π, π/2))] ,
(1)

Φ8 (i, j)=
(3)

Φ8 (i, j)=0,

(2)

Φ9 (i, j) =
1

2
[δ((i, j)−(π/2, π/2))−δ((i, j)−(−π/2, π/2))] ,

(1)

Φ9 (i, j)=
(3)

Φ9 (i, j)=0,

(2)

Φ10 (i, j) =
1

2
[δ((i, j)−(π/2, 0))−δ((i, j)−(−π/2, 0))] ,

(1)

Φ10 (i, j)=
(3)

Φ10 (i, j)=0,

(2)

Φ11 (i, j) =
1

2
[δ((i, j)−(π/2, 0)) +δ((i, j)−(−π/2, 0))] ,

(1)

Φ11 (i, j)=
(3)

Φ11 (i, j)=0,

(3)

Φ12 (i, j) =
1

2
[δ((i, j)−(π/2, π/2))−δ((i, j)−(π/2, −π/2))] ,

(1)

Φ12 (i, j)=
(2)

Φ12 (i, j)=0,

(3)

Φ13 (i, j) =
1

2
[δ((i, j)−(π/2, 0))−δ((i, j)−(π/2, π))] ,

(1)

Φ13 (i, j)=
(2)

Φ13 (i, j)=0,

(3)

Φ14 (i, j) =
1

2
[δ((i, j)−(0, 0))−δ((i, j)−(π, 0))] ,

(1)

Φ14 (i, j)=
2)

Φ14 (i, j)=0,

(3)

Φ15 (i, j) =
1

2
[δ((i, j)−(0, 0)) +δ((i, j)−(π, 0))] ,

(1)

Φ15 (i, j)=
(2)

Φ15 (i, j)=0.

Clearly, the guaranteed estimation errors for all of these estimators are equal to σ. It
was shown above that these guaranteed values are not less than σ. Consequently, the
estimators mentioned above are optimal.
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Thus applying the guaranteed approach to the estimation of desired parameters
we obtained analytically the following formulas for the optimal guaranteed estimates
and corresponding optimal design (the first argument in the measurements suggests
the value of the angle i, and the second one suggests the value of the angle j):

q̂1 =
1

2

[
(1)
z (−π/2, π)−

(1)
z (π/2, 0)

]
, (8)

q̂2 =
1

2

[
(3)
z (π/2, 0)−

(3)
z (−π/2, π)

]
,

q̂3 =
1

4

[
−

(1)
z (0, 0)+

(1)
z (0, π)+

(1)
z (π, 0)−

(1)
z (π, π)

]
,

q̂4 =
1

2

[
(1)
z (0, π/2)−

(1)
z (π, −π/2)

]
,

q̂5 =
1

2

[
(1)
z (π/2, π/2)−

(1)
z (π/2, −π/2)

]
,

q̂6 =
1

2

[
(1)
z (π/2, 0)−

(1)
z (−π/2, 0)

]
,

q̂7 =
1

2

[
(1)
z (π/2, π/2)+

(1)
z (π/2, −π/2)

]
,

q̂8 =
1

4

[
(2)
z (0, π/2)−

(2)
z (π, −π/2)+

(2)
z (0, −π/2)−

(2)
z (π, π/2)

]
,

q̂9 =
1

2

[
(2)
z (π/2, π/2)−

(2)
z (−π/2, π/2)

]
,

q̂10 =
1

2

[
(2)
z (π/2, 0)−

(2)
z (−π/2, 0)

]
,

q̂11 =
1

2

[
(2)
z (π/2, 0)+

(2)
z (−π/2, 0)

]
,

q̂12 =
1

2

[
(3)
z (π/2, π/2)−

(3)
z (π/2, −π/2)

]
,

q̂13 =
1

2

[
(3)
z (π/2, 0)−

(3)
z (π/2, π)

]
,

q̂14 =
1

2

[
(3)
z (0, 0)−

(3)
z (π, 0)

]
,

q̂15 =
1

2

[
(3)
z (0, 0)+

(3)
z (π, 0)

]
.
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In these formulas for the optimal guaranteed estimates, the angles in parentheses
defines the optimal calibration design, i.e., they characterize the optimal positions for
the test bench. The total angular positions are as follows (their amount is equal to
m=15):

(±π
2
, π), (±π

2
, 0), (0, 0), (0, π), (π, 0), (π, π), (0,±π

2
), (π,±π

2
), (±π

2
, π
2
), (π

2
,−π

2
).

4.1 Estimates for misalignments

The estimates for misalignments of accelerometers are of interest. Up to terms of the
second order of smallness, they are defined by the following formulas [1]:

Γ12 + Γ21 = q6 + q9, Γ13 + Γ31 = q4 + q12 Γ23 + Γ32 = q8 + q13.

One can show that the corresponding optimal (guaranteed) estimates have the form:

̂(q6 + q9) = q̂6 + q̂9, ̂(q4 + q12) = q̂4 + q̂12 and ̂(q8 + q13) = q̂8 + q̂13. (9)

Note that the relations (9) for the guaranteed approach in general case are not valid (in
contrast to the least squares method). However, for the problem under consideration
they are do valid albeit this is not so obvious. Let us prove this assertion.

Really, the vector a in the unbiasedness condition (6) with two units in the 6-th
and 9-th place (and remaining zeros) corresponds to the estimate of q6 + q9. Consider
two these rows in the unbiasedness condition (with numbers 6 and 9). Summing and
subtracting them (with preserving of other rows in (6)) we get the restrictions that
are equivalent to the initial unbiasedness condiiton (6). By virtue of the structure

of the vectors
(p)

H (i, j), which are defined by the formulas (3), when added we get a
vector with the entries that all are less or equal to unity (in absolute value). This is
because that in the corresponding places one of two add-in elements is zero. Therefore,
similarly to (7), we get

2σ ≤ σ
3∑

p=1

∫
|

(p)

Φ (i, j) | di dj.

Hence the optimal guaranteed estimation error for q6 + q9 is not less than 2σ. If we
show that the guaranteed estimation error of q̂6 + q̂9 is not greater than 2σ, then this
is an optimal guaranteed estimate for q6 + q9.

Indeed, let the optimal estimates q6 q9 have the form

q̂6 =
3∑

p=1

∫
(p)

Φ6 (i, j)
(p)
z (i, j) di dj q̂9 =

3∑
p=1

∫
(p)

Φ9 (i, j)
(p)
z (i, j) di dj,

respectively, where
(p)

Φ6 (i, j) and
(p)

Φ9 (i, j) are optimal unbiased weight functions for q6
q9. Then as is easy to see

q̂6 + q̂9 − (e(6) + e(9))T q

=

(
3∑

p=1

∫
(p)

Φ6 (i, j)
(p)

H (i, j) di dj − e(6) +
3∑

p=1

∫
(p)

Φ9 (i, j)
(p)

H (i, j) di dj − e(9)

)T

q (10)
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+
3∑

p=1

∫
(p)

Φ6 (i, j)
(p)
ϱ (i, j) di dj +

3∑
p=1

∫
(p)

Φ9 (i, j)
(p)
ϱ (i, j) di dj.

Since
(p)

Φ6 (i, j) and
(p)

Φ9 (i, j) are unbiased estimators, the expression in parentheses in
(10) is zero. Therefore,

sup

q∈Rm, |
(p)
ϱ (i,j)|≤σ, p=1,2,3

∣∣q̂6 + q̂9 − (e(6) + e(9))T q
∣∣

= sup

|
(p)
ϱ (i,j)|≤σ, p=1,2,3

∣∣∣∣∣
3∑

p=1

∫
(p)

Φ6 (i, j)
(p)
ϱ (i, j) di dj +

3∑
p=1

∫
(p)

Φ9 (i, j)
(p)
ϱ (i, j) di dj

∣∣∣∣∣
≤

3∑
p=1

∫
|
(p)

Φ6 (i, j)
(p)
ϱ (i, j)| di dj +

3∑
p=1

∫
|
(p)

Φ9 (i, j)
(p)
ϱ (i, j)| di dj

≤ σ

3∑
p=1

∫
|
(p)

Φ6 (i, j)| di dj + σ

3∑
p=1

∫
|
(p)

Φ9 (i, j)| di dj = 2 σ.

The same consideration is true for other two parameters in (9).

5 Conclusion

The paper is devoted to the application of the guaranteed approach to the calibration
of the accelerometer unit of a strapdown inertial navigation system. The optimal
design of calibration is constructed for the estimation of each unknown parameter.
This method is supposed to apply for the accelerometer unit calibration by means of
a two-axes test bench produced by ”Acutronic” [9]. The obtained results are planned
to be extended to the case of nonlinear models of the accelerometer unit when the
unit parameters depend on the sign of signal measured. Clearly, our approach can be
generalized to the calibration by means of three-axes test benches.
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