
Local Lp-Brunn–Minkowski inequalities for p < 1

Alexander V. Kolesnikov1 and Emanuel Milman2

December 10, 2017

Abstract

The Lp-Brunn–Minkowski theory for p ≥ 1, proposed by Firey and devel-
oped by Lutwak in the 90’s, replaces the Minkowski addition of convex sets
by its Lp counterpart, in which the support functions are added in Lp-norm.
Recently, Böröczky, Lutwak, Yang and Zhang have proposed to extend this
theory further to encompass the range p ∈ [0, 1). In particular, they conjec-
tured an Lp-Brunn–Minkowski inequality for origin-symmetric convex bodies in
that range, which constitutes a strengthening of the classical Brunn-Minkowski
inequality. Our main result confirms this conjecture locally for all (smooth)
origin-symmetric convex bodies in Rn and p ∈ [1 − c

n3/2 , 1). In addition, we
confirm the local log-Brunn–Minkowski conjecture (the case p = 0) for small-
enough C2-perturbations of the unit-ball of `nq for q ≥ 2, when the dimension
n is sufficiently large, as well as for the cube, which we show is the conjectural
extremal case. For unit-balls of `nq with q ∈ [1, 2), we confirm an analogous re-
sult for p = c ∈ (0, 1), a universal constant. It turns out that the local version
of these conjectures is equivalent to a minimization problem for a spectral-gap
parameter associated with a certain differential operator, introduced by Hilbert
(under different normalization) in his proof of the Brunn–Minkowski inequality.
As an application, we obtain local uniqueness results in the even Lp-Minkowski
problem.

1Faculty of Mathematics, Higher School of Economics, Moscow, Russia. The author was sup-
ported by RFBR project 17-01-00662 and DFG project RO 1195/12-1. The article was prepared
within the framework of the Academic Fund Program at the National Research University Higher
School of Economics (HSE) in 2017–2018 (grant No 17-01-0102) and by the Russian Academic
Excellence Project “5-100”. Emails: akolesnikov@hse.ru, sascha77@mail.ru.

2Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel.
The research leading to these results is part of a project that has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 637851). Email: emilman@tx.technion.ac.il.

2010 Mathematics Subject Classification: 52A40, 52A23, 35P15, 58J50.
Keywords: Lp-Brunn–Minkowski theory, Convex bodies, Aleksandrov body, Hilbert–Brunn–
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1 Introduction

The celebrated Brunn–Minkowski inequality [52, 20] states that if K0,K1 are two
convex sets in Rn then:

V ((1− λ)K0 + λK1)
1
n ≥ (1− λ)V (K0)

1
n + λV (K1)

1
n ∀λ ∈ [0, 1]. (1.1)

Here V denotes Lebesgue measure (volume) and

(1− λ)K0 + λK1 = {(1− λ)a+ λb ; a ∈ K0, b ∈ K1}

denotes Minkowski addition (or interpolation). This inequality and its generaliza-
tions lie at the heart of the Brunn–Minkowski theory of convex sets, which is by
now a classical object of study, having applications in a multitude of other fields
[52, 21, 9, 20].

In the 60’s, W. J. Firey [18] proposed an Lp extension (p ∈ [1,∞]) of the
Minkowski addition operation, the so-called Lp-Firey–Minkowski addition, or simply
Lp-sum. To describe it, let hK denote the support function of a convex body K (see
Section 2 for definitions). If K0,K1 are convex compact sets containing the origin in
their interior (“convex bodies”), their Lp interpolation, denoted (1−λ) ·K0 +pλ ·K1,
is defined when p ≥ 1 and λ ∈ [0, 1] as the convex body with support function:

h(1−λ)·K0+pλ·K1
= (1− λ) · hK0 +p λ · hK1 := ((1− λ)hpK0

+ λhpK1
)
1
p . (1.2)

The case p = 1 corresponds to the usual Minkowski sum. Note that λ ·K = λ
1
pK,

and the implicit dependence of · on p is suppressed. Firey established the following
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Lp-Brunn–Minkowski inequality when p ≥ 1:

V ((1− λ) ·K0 +p λ ·K1)
p
n ≥ (1− λ)V (K0)

p
n + λV (K1)

p
n ∀λ ∈ [0, 1], (1.3)

which turns out to be a consequence of the classical p = 1 case (1.1) by a simple
application of Jensen’s inequality. The resulting Lp-Brunn–Minkowski theory was
extensively developed by E. Lutwak [42, 43], leading to a rich theory with many
parallels to the classical one (see also [25] and the references therein for further
extensions to more general Orlicz norms).

Fairly recently, K. Böröczky, Lutwak, D. Yang and G. Zhang [7, 6] have proposed
to extend the Lp-Brunn–Minkowski theory to the range p ∈ [0, 1). To describe their
extension, recall that the Aleksandrov body (or Wulff shape) associated to a positive
(Wulff) function w ∈ C(Sn−1), is defined as the following convex body:

A[w] :=
⋂

θ∈Sn−1

{x ∈ Rn ; 〈x, θ〉 ≤ w(θ)} .

In other words, A[w] it the largest convex body K so that hK ≤ w. While the
right-hand-side of (1.2) is no longer a support function in general when p ∈ [0, 1),
Böröczky–Lutwak–Yang–Zhang defined:

(1− λ) ·K0 +p λ ·K1 := A[((1− λ)hpK0
+ λhpK1

)
1
p ],

interpreting the case p = 0 in the limiting sense as:

(1− λ) ·K0 +0 λ ·K1 := A[h1−λ
K0

hλK1
].

This of course coincides with Firey’s definition when p ≥ 1. With this notation,
they proposed the following conjectural extension of (1.3) when p ∈ [0, 1) and n ≥ 2
(the case n = 1 is trivial):

Conjecture (Lp-Brunn–Minkowski Conjecture given p ∈ [0, 1)). The Lp-Brunn–
Minkowski inequality holds for all origin-symmetric convex bodies K0,K1 in Rn:

V ((1− λ) ·K0 +p λ ·K1) ≥
(

(1− λ)V (K0)
p
n + λV (K1)

p
n

)n
p ∀λ ∈ [0, 1]. (1.4)

In the case p = 0, called the log-Brunn–Minkowski Conjecture, (1.4) is interpreted
in the limiting sense as:

V ((1− λ) ·K0 +0 λ ·K1) ≥ V (K0)1−λV (K1)λ ∀λ ∈ [0, 1]. (1.5)
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The motivation for considering this question in [6] was an equivalence established
by Böröczky–Lutwak–Yang–Zhang between the conjectured (1.5) for all origin-symmetric
convex bodies, and the uniqueness question in the even log-Minkowski problem, the
p = 0 analogue of the classical Minkowski problem (for the existence question, a
novel necessary and sufficient condition was obtained in [7], see Section 11). The
restriction to origin-symmetric convex bodies is an interesting feature of the above
conjectures, which we will elucidate in this work (see Subsection 5.1); for now, let us
just remark that the conjectures are known to be false for general convex bodies, as
seen by selecting K1 to be an infinitesimal translated version of an origin-symmetric
convex body K0. As before, it is easy to check using Jensen’s inequality that the
above conjectures become stronger as p decreases from 1 to 0, with the strongest case
(implying the rest) being the p = 0 one. For general origin-symmetric convex bodies,
there is no point to consider the Lp-Brunn–Minkowski conjecture for p < 0, since
(1.4) is then easily seen to be false when K0 = ×ni=1[−ai, ai] and K1 = ×ni=1[−bi, bi]
are two non-homothetic origin-symmetric cubes. However, other particular bod-
ies K0,K1 may satisfy (1.4) with p < 0, explaining the convention of putting the
exponent n

p on the right-hand-side (when p > 0, this makes no difference).

Being a conjectural strengthening of the ubiquitous Brunn–Minkowski inequality,
establishing the validity of the Lp-Brunn–Minkowski conjecture, for any p strictly
smaller than 1, would be of fundamental importance to the Brunn–Minkowski theory
and its numerous applications.

1.1 Previously Known Partial Results

The following partial results in regards to the log-Brunn–Minkowski conjecture have
been previously obtained:

• Böröczky–Lutwak–Yang–Zhang [6] confirmed the conjecture in the plane R2.
See also Ma [45] for an alternative proof, and Xi–Leng [58] for an extension of
this result which does not require origin-symmetry.

• C. Saroglou [50] verified the conjecture when K0,K1 ⊂ Rn are both simultane-
ously unconditional with respect to the same orthogonal basis, meaning that
they are invariant under reflections with respect to the principle coordinate
hyperplanes {xi = 0}. In that case, a stronger version of the conjecture fol-
lows from a multiplicative version of the Prékopa–Leindler inequality on the
positive orthant (e.g. [16, Proposition 10]).

• L. Rotem [49] observed that the conjecture for complex convex bodiesK0,K1 ⊂
Cn follows from a more general theorem of D. Cordero–Erausquin [15].
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• A. Colesanti, G. Livshyts and A. Marsiglietti [13] verified the conjecture locally
for small-enough C2-perturbations of the Euclidean ball Bn

2 (see below for
more details).

• The log-Brunn–Minkowski conjecture has been shown by Saroglou [50, 51] to
be intimately related to the generalized B-conjecture. Further connections
to a conjecture of R. Gardner and A. Zvavitch [22] on a dimensional Brunn–
Minkowski inequality for even log-concave measures were observed by Livshyts,
Marsiglietti, P. Nayar and Zvavitch [41]. A surprising relation to a conjecture
of S. Dar [17] was observed by Xi and Leng in [58].

1.2 Main Results

Our first main result in this work confirms the following local version of the Lp-
Brunn–Minkowski conjecture for a certain range of p’s strictly smaller than 1. Let
K2

+ denote the class of convex bodies with C2 smooth boundary and strictly posi-
tive curvature, and let K2

+,e denote its origin-symmetric members. We reserve the
symbols c, C,C ′ etc.. to denote positive universal numeric constants, independent
of any other parameter.

Theorem 1.1 (Local Lp-Brunn–Minkowski). Let n ≥ 2 and p ∈ [1− c
n3/2 , 1). Then

for any K0,K1 ∈ K2
+,e so that:

(1− λ) ·K0 +p λ ·K1 ∈ K2
+,e ∀λ ∈ [0, 1] , (1.6)

the Lp-Brunn–Minkowski conjecture (1.4) for K0,K1 holds true:

V ((1− λ) ·K0 +p λ ·K1) ≥
(

(1− λ)V (K0)
p
n + λV (K1)

p
n

)n
p ∀λ ∈ [0, 1].

The condition (1.6) is deceptively appealing: while for p ≥ 1 it is always au-
tomatically satisfied, this is not the case in general for p ∈ [0, 1) (see Corollary
3.7). Consequently, we do not know how to conclude the validity of the (global)
Lp-Brunn–Minkowski conjecture for all origin-symmetric K0,K1 and p in the above
range. On the other hand, for every K ∈ K2

+,e, there exists a C2-neighborhood NK

so that for all K0,K1 ∈ NK , (1.6) is satisfied, so we can confirm the Lp-Brunn–
Minkowski conjecture locally. See also Section 3 for an equivalent local formulation
in terms of the second variation d2

(dε)2
V (A[hK +p ε · f ])

p
n ≤ 0 for appropriate test

functions f .

Let us mention here that we conjecture the logical equivalence between the local
and global formulations of the Lp-Brunn–Minkowski conjecture - see Conjecture 3.8
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and the preceding discussion. This is an extremely interesting and tantalizing ques-
tion, which leads to the study of the second variation of volume of an Aleksandrov
body d2

(dε)2
V (A[hK+εf ]), when no smoothness is assumed on K or f . While the first

variation has been studied by Aleksandrov himself and is well understood (see [52,
Lemma 6.5.3]), to the best of our knowledge, nothing concrete is known regarding
the second variation when K is not assumed smooth, even when f is the difference
of two support functions.

Our second type of results pertain to the verification of the local log-Brunn–
Minkowski conjecture (case p = 0) for various classes of origin-symmetric convex
bodies. For instance, we obtain the following result regarding Bn

q , the unit-ball of
`nq . Note that Bn

q /∈ K2
+,e unless q = 2. To emphasize the invariance of the conjecture

under non-degenerate linear transformations GLn, we state it explicitly.

Theorem 1.2 (Local log-Brunn–Minkowski for Bn
q ). For all q ∈ [2,∞), there exists

nq ≥ 2 so that for all n ≥ nq, there exists a neighborhood NC
Bnq

of Bn
q in the Hausdorff

topology, so that for any K ∈ NC
Bnq
∩K2

+,e, there exists a C2-neighborhood NK of K

in K2
+,e so that for all T ∈ GLn and K1,K0 ∈ T (NK), the log-Brunn–Minkowski

conjecture (1.5) for K0,K1 holds true:

V ((1− λ) ·K0 +0 λ ·K1) ≥ V (K0)1−λV (K1)λ ∀λ ∈ [0, 1].

For more general statements, see Theorems 5.13, 9.1, 9.5, 9.6 and 10.4. The
two extremal cases above are of particular interest. For the Euclidean ball Bn

2 ,
Theorem 1.2 in fact holds with n2 = 2, i.e. in all dimensions n ≥ 2. In this
particular case, Theorem 1.2 strengthens [13, Theorem 1.4] of Colesanti–Livshyts–
Marsiglietti, where it was assumed that K0,K1, B

n
2 are “co-linear”, i.e. that K0 =

(1 − ε) · K1 +0 ε · Bn
2 for some ε ∈ [0, 1]; in addition, the linear invariance under

GLn was not noted there (strictly speaking, the result in [13] does not yield a
C2-neighborhood of Bn

2 for which the latter statement holds, since the allowed C2-
distance of K1 from Bn

2 depended on K1, but the latter caveat was very recently
remedied by Colesanti and Livshyts in [12], concurrently to our work).

On the other extreme lies the unit-cube Bn
∞. In an appropriate sense, described

in the next subsection, the cube turns out to be the conjectural extremal case for
the log-Brunn–Minkowski inequality. The local extremality can be seen as follows
(see Theorems 8.5 and 10.2 for a more streamlined formulation):

Theorem 1.3 (Extremal local log-Brunn–Minkowski for Bn
∞). For any

{
Ki
}
i≥1
⊂

K2
+,e which approximate Bn

∞ in the Hausdorff metric, there exist {pi}i≥1 converging

to 0, with the following property: for all i ≥ 1, there exists a C2-neighborhood NKi
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of Ki in K2
+,e, so that for all T ∈ GLn and Ki

0,K
i
1 ∈ T (NKi), we have:

V ((1− λ) ·Ki
0 +pi λ ·Ki

1) ≥
(

(1− λ)V (Ki
0)

pi
n + λV (Ki

1)
pi
n

) n
pi ∀λ ∈ [0, 1].

Moreover, if Ki = Bn
qi with qi → ∞, it is impossible to find {pi} with the above

property, which instead of converging to zero, satisfy lim inf pi < 0.

We do not know how to handle the range q ∈ [1, 2) in Theorem 1.2. In particular,
it would be very interesting to establish analogues of Theorem 1.2 or Theorem 1.3
(without the “moreover” part) for Bn

1 . We can however obtain for any unconditional
convex body, and in particular for Bn

1 , a local strengthening of Saraoglu’s confirma-
tion of the log-Brunn–Minkowski conjecture for unconditional convex bodies – see
Theorem 8.3 and Corollary 10.3. We can also show (see Theorem 10.5):

Theorem 1.4 (Local Lc-Brunn–Minkowski for Bn
q ). There exists a universal con-

stant c ∈ (0, 1), so that for all q ∈ [1, 2), there exists a neighborhood NC
Bnq

of Bn
q

in the Hausdorff topology, so that for any K ∈ NC
Bnq
∩ K2

+,e, there exists a C2-

neighborhood NK of K in K2
+,e so that for all T ∈ GLn and K1,K0 ∈ T (NK), the

p-Brunn–Minkowski conjecture (1.4) for K0,K1 holds true with p = c:

V ((1− λ) ·K0 +c λ ·K1) ≥
(

(1− λ)V (K0)
c
n + λV (K1)

c
n

)n
c ∀λ ∈ [0, 1].

An application of the above results to local uniqueness in the even Lp-Minkowski
problem is presented in Section 11.

1.3 Spectral Interpretation via the Hilbert–Brunn–Minkowski op-
erator

An additional contribution of this work lies in revealing the connection between
the local Lp-Brunn–Minkowski conjecture and a spectral-gap property of a certain
second-order elliptic operator LK on Sn−1 associated to any K ∈ K2

+. Modulo the
different normalization we employ in our investigation, this operator was in fact
considered by Hilbert in his proof of the classical Brunn–Minkowski inequality, and
subsequently generalized by Aleksandrov in his second proof of the Aleksandrov–
Fenchel inequality [5, pp. 108–110]. Consequently, we call LK the Hilbert–Brunn–
Minkowski operator. Our normalization has several advantages over the one em-
ployed by Hilbert (see Remark 5.6); for instance, it ensures an important equiv-
ariance property of the correspondence K 7→ LK under linear transformations (see
Theorem 5.8), which to the best of our knowledge was previously unnoted.
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Let us denote by λ1(−LK) the spectral-gap of −LK beyond the trivial 0 eigen-
value, and by λ1,e(−LK) the even spectral-gap beyond 0 when restricting to even
functions. By the previous comments, both are linear invariants of K. It was shown
by Hilbert that (with our normalization) the Brunn–Minkowski inequality (1.1) is
equivalent to the uniform spectral-gap estimate λ1(−LK) ≥ 1 for all K ∈ K2

+; more-
over, Hilbert showed that λ1(−LK) = 1, with the corresponding eigenspace being
precisely the one spanned by (normalized) linear functions, generated by translations
of K. A natural question is then:

is there a uniform spectral-gap of −LK for all K ∈ K2
+ beyond 1?

It turns out that the local Lp-Brunn–Minkowski conjecture for K ∈ K2
+,e and p ∈

[0, 1) is precisely equivalent to the conjecture that:

λ1,e(−LK) ≥ n− p
n− 1

( > 1). (1.7)

In other words, it is a “next eigenvalue” conjecture (similar in spirit to the B-
conjecture for the Gaussian measure, established in [16]). This elucidates the re-
quirement that K be origin-symmetric, since then even functions are automatically
orthogonal to the odd (normalized) linear functions; moreover, this interpretation
suggests a plausible extension of the conjecture to non-symmetric convex bodies
(see Remark 5.5). Theorem 1.1 asserts that (1.7) holds with p = c

n3/2 , answering in
the positive the question of whether there is a uniform even spectral-gap for −LK
beyond 1.

It is easy to calculate that λ1,e(−LBn2 ) = 2n
n−1 (corresponding to p = −n in (1.7)),

yielding Theorem 1.2 for q = 2 and n2 = 2. A much greater challenge is to establish
that:

lim inf
K2

+,e3Ki→Bn∞ in Hausdorff metric
λ1,e(−LKi) =

n

n− 1
,

corresponding to p = 0 in (1.7), and yielding Theorem 1.3. In other words, the
local log-Brunn–Minkowski conjecture is equivalent to the conjecture that the cube
Bn
∞ is a minimizer of the linearly invariant spectral parameter λ1,e(−LK) over all

origin-symmetric convex bodies K ∈ K2
+,e. In our opinion, this provides the most

convincing and natural reason for believing the validity of the local log-Brunn–
Minkowski conjecture, and emphasizes its importance. We also conjecture that the
Euclidean ball Bn

2 is in fact a maximizer of λ1,e(−LK).

1.4 Method of Proof

Our main tool for obtaining estimates on λ1,e(−LK) is the Reilly formula, which is a
well-known formula in Riemannian geometry obtained by integrating the Bochner–
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Lichnerowicz–Weitzenböck identity. In our previous work [34], we obtained a con-
venient weighted version of the Reilly formula, incorporating a general density. By
applying the generalized Reilly formula with an appropriate log-convex (not log-
concave!) density, we obtain a sufficient condition for establishing the local log-
Brunn–Minkowski conjecture – see Theorem 9.1. Curiously, this condition resem-
bles a dual log-convex form of the classical Brascamp–Lieb inequality [8]. Using the
known estimates on the Poincaré constant of Bn

q , we are able to verify this condition
when q ∈ (2,∞) and n is large enough, yielding Theorem 1.2.

To obtain our other results, we derive a different sufficient condition for establish-
ing the local Lp-Brunn–Minkowski conjecture, in terms of a boundary Poincaré-type
inequality for harmonic functions on K – see Theorem 6.1. In Section 7, we inter-
pret this sufficient condition in terms of a first order pseudo-differential operator on
∂K, which we call the second Steklov operator, due to its analogy with the classi-
cal Steklov (or Dirichlet-to-Neumann) operator. We are able to precisely calculate
the spectrum of this operator for Bn

2 , and to calculate the sharp constant in the
boundary Poincaré-type inequality for Bn

∞. After establishing the continuity of this
boundary Poincaré-type constant B(K) with respect to the Hausdorff metric, we
are able to deduce Theorem 1.3.

To handle arbitrary origin-symmetric convex K, we obtain a general (rough) es-
timate on B(K) in terms of the in and out radii of K, as well as the (usual) Poincaré
constant of K. Contrary to the linear invariance of the Lp-Brunn–Minkowski con-
jecture, our sufficient condition is no longer linearly invariant, and so we are required
to apply it to a suitable linear image of K. By using the isotropic position, and
the recent estimates of Y.-T. Lee and S. Vempala [39] on the Poincaré constant of
K vis-à-vis the Kannan–Lovász–Simonovits conjecture [29], we are able to deduce
Theorem 1.1.

The rest of this work is organized as follows. In Section 2, we introduce some
convenient notation. In Section 3, we establish a couple of standard equivalent ver-
sions of the global Lp-Brunn–Minkowski conjecture, introduce the local Lp-Brunn–
Minkowski conjecture, and discuss the relation between the global and local versions.
In Section 4 we derive various equivalent infinitesimal formulations of the local con-
jecture: in terms of a second Lp-Minkowski inequality involving mixed-volumes, in
terms of a Poincaré-type inequality on Sn−1 and finally in terms of an equivalent
version on ∂K. In Section 5 we obtain an equivalent formulation involving the
spectral-gap of the Hilbert–Brunn–Minkowski operator LK , and establish its linear
equivariance. In Section 6 we obtain a sufficient condition in terms of a boundary
Poincaré-type inequality, establishing Theorem 1.1. In Section 7 we introduce the
second Steklov operator, use it to rewrite our sufficient condition, and calculate its
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spectrum for Bn
2 . In Section 8 we obtain sharp bounds on our boundary Poincaré-

type inequality for unconditional convex bodies and calculate it precisely for the
cube. In Section 9 we obtain another sufficient condition for establishing the log-
Brunn–Minkowski conjecture, in preparation for Theorem 1.2. In Section 10, we
establish the continuity of our boundary Poincaré-type inequality, and use this to
deduce Theorems 1.2, 1.3 and 1.4. An application to local uniqueness in the even
Lp-Minkowski problem is presented in Section 11.

2 Notation

Given t ∈ R and p > 0, we denote:

tp := sgn(t) |t|p .

If f, g : X → R, we employ the following notation:

f +p g := (fp + gp)
1
p .

More generally, if t, α, β ∈ R, we write:

t · g := t
1
p g and α · f +p β · g := (αfp + βgp)

1
p , (2.1)

suppressing the dependence of · on p. When p < 0, we will specify 1
pf

p : X → R,

even though f itself may not be defined. Given 1
pf

p, 1
pg
p : X → R, we use (2.1) to

define α · f +p β · g only for α, β ∈ R so that αfp +βgp is positive. The limiting case
when p = 0 only makes sense when f, g : X → (0,∞), and unless otherwise stated,
is interpreted throughout this work as:

1

p
fp := log f , α · f +p β · g := fαgβ for p = 0.

For instance, note that limp→0
1
p(fp − 1) = log f , but instead of using 1

p(fp − 1) we

use 1
pf

p in all statements pertaining to concavity or regularity, as the missing −1
p

makes no difference. In a few places where ambiguity may arise, we will use the full
1
p(fp − 1) expression.

A convex body in Rn is a convex, compact set with non-empty interior. We
denote by K the collection of convex bodies in Rn having the origin in their interior.
The support function hK : Rn → (0,∞) of K ∈ K is defined as:

hK(y) := max
x∈K
〈y, x〉 , y ∈ Rn.

11



It is easy to see that hK is continuous and convex. Clearly, it is 1-homogeneous, so we
will mostly consider its restriction to the Euclidean unit-sphere Sn−1. Conversely, a
convex 1-homogeneous function h : Rn → (0,∞) is necessarily a support function of
some K ∈ K (which is obtained as the polar body to {h ≤ 1}). Given f ∈ C(Sn−1),
we will denote:

K +p ε · f := A[hK +p ε · f ].

We will only consider ε ∈ R so that hK +p ε · f > 0, ensuring that K +p ε · f ∈ K.

As usual, we denote by Ck(M), k = 0, 1, . . . ,m, the space of k-times continuously
differentiable functions on a Cm-smooth differentiable manifold M , equipped with
its natural Ck-norm. When k = 0, we simply write C(M). It is known [52, Theorem
1.8.11] that convergence of elements of K in the Hausdorff metric is equivalent to
convergence of the corresponding support functions in the C(Sn−1) norm; we will
refer to this as C-convergence for brevity. We denote by Ck>0(Sn−1) the convex cone
of positive functions in Ck(Sn−1).

It will be convenient to introduce the following notation for a function h ∈
C2(Sn−1). Given a local orthonormal frame e1, . . . , en−1 on Sn−1, we use hi and hi,j
to denote (∇Sn−1)eih and (∇Sn−1)2

ei,ejh, respectively, where ∇Sn−1 is the covariant

derivative on the sphere Sn−1 with its canonical Riemannian metric δ. Extending h
to a 1-homogeneous function on Rn and denoting by ∇Rn the covariant derivative on
Euclidean space Rn, we define the symmetric 2-tensor D2h on Sn−1 as the restriction
of ∇2

Rnh onto TSn−1; in our local orthonormal frame, this reads as:

(D2h)i,j = (∇Rn)2
ei,ejh = hi,j + hδi,j , i, j = 1, . . . , n− 1.

The latter identity follows since the second fundamental form of Sn−1 ⊂ Rn satisfies
IISn−1 = δ, and since in general:

∇2
Sn−1f(θ) = ∇2

Rnf(θ)|TSn−1 − fθIISn−1(θ),

and fθ = 〈∇Rnf, θ〉 = f for any 1-homogeneous function f . Note that h ∈
C2
>0(Sn−1) is a support-function of K ∈ K if and only if D2hK ≥ 0 as a (n − 1

by n− 1) positive semi-definite tensor.

We denote by Km+ the subset of K of convex bodies with Cm boundary and
strictly positive curvature. By [52, pp. 106-107, 111], for m ≥ 2, K ∈ Km+ if and
only if hK ∈ Cm(Sn−1) and D2hK > 0 (as a n− 1 by n− 1 positive-definite tensor).
It is well-known that K2

+ is dense in K in the C-topology [52, p. 160]. We also denote
by C2

h(Sn−1) :=
{
hK ; K ∈ K2

+

}
=
{
h ∈ C2

>0(Sn−1) ; D2h > 0
}

, the convex cone
of strictly convex C2 support functions. It is immediate to check that C2

h(Sn−1) is
open in C2(Sn−1) (see e.g. [52, pp. 38, 111],[11], or simply use that the condition

12



D2hK > 0 is open in C2(Sn−1)). This induces the natural C2-topology on K2
+,

where Ki → K in C2 if and only if hKi → hK in C2
h(Sn−1).

We will always use Se to denote the origin-symmetric (or even) members of a
set S, e.g. Ke and K2

+,e denote subset of origin-symmetric bodies in K and K2
+,

respectively, and C2
h,e(S

n−1) and C2
e (Sn−1) denote the subset of even functions in

C2(Sn−1) and C2
h(Sn−1), respectively.

Finally, we abbreviate throughout this work the phrase “Lp-Brunn–Minkowski”
by p-BM, and “log-Brunn–Minkowski” by log-BM.

3 Global vs. Local Formulations of the Lp-Brunn–Minkowski
Conjecture

3.1 Standard Equivalent Global Formulations

Lemma 3.1. The following are equivalent for a given dimension n ≥ 2 and p < 1
(with the usual interpretation when p = 0):

(1) For all K,L ∈ Ke, the global p-BM conjecture is valid:

V ((1− λ) ·K +p λ · L) ≥
(

(1− λ)V (K)
p
n + λV (L)

p
n

)n
p ∀λ ∈ [0, 1].

(2) For all K,L ∈ Ke, the following function is concave:

[0, 1] 3 s 7→ 1

p
V ((1− s) ·K +p s · L)

p
n .

(3) For all K,L ∈ Ke, the following function is concave:

R+ 3 t 7→
1

p
V (K +p t · L)

p
n .

The derivation is completely standard when p ≥ 1, since in that case the support
and Wullf functions of K +p t · L coincide, and hence:

(1− λ) · (K +p t1 · L) +p λ · (K +p t2 · L) = K +p ((1− λ)t1 + λt2) · L.

When p < 1, there is in general only a one-sided containment, which fortunately
goes in the right direction for us.

13



Proof. Clearly (2) implies (1) by checking concavity at the three points s = 0, λ, 1.
To show that (1) implies (2), let s0, s1 ∈ [0, 1], set sλ = (1−λ)s0 +λs1. When p < 1,
we only have:

(1− λ) · ((1− s0) ·K +p s0 ·L) +p λ · ((1− s1) ·K +p s1 ·L) ⊂ (1− sλ) ·K +p sλ ·L.

Indeed, the support function of (1 − si) ·K +p si · L on the left is not larger than
the Wulff function ((1 − si)hpK + sih

p
L)1/p, and hence we have the above inequality

for the corresponding Wulff functions, and hence for the associated Aleksandrov
bodies. Applying 1

pV (·)p/n to both sides and invoking (1), the desired concavity (2)
is established. An identical argument also shows that (1) implies (3).

To show that (3) implies (1), apply (3) to the bodies K = (1−λ)·K̄ and L = λ
β ·L̄

at the points t = 0, β, 1:

V ((1−λ) · K̄ +p λ · L̄) ≥
(

(1− β)V ((1− λ) · K̄)
p
n + βV ((1− λ) · K̄ +p

λ

β
· L̄)

p
n

)n
p

.

Then letting β → 0, it is easy to see by monotonicity and homogeneity that βV ((1−
λ) · K̄ +p

λ
β · L̄)p/n → λV (L̄)p/n, and we obtain in the limit:

V ((1− λ) · K̄ +p λ · L̄) ≥
(

(1− λ)V (K̄)
p
n + λV (L̄)

p
n

)n
p
.

Remark 3.2. It is worth mentioning an alternative argument for showing that (3)
implies (1): the concavity implies that the derivative at t = 0 is larger than the
secant slope as t→∞, i.e.:

1

n
V (K)

p
n
−1 d

dt

∣∣∣∣
t=0+

V (K +p t · L) ≥ lim
t→∞

1
pV (K +p t · L)

p
n − 1

pV (K)
p
n

t
=

1

p
V (L)

p
n .

Equivalently, using the Lp-mixed-volume Vp(K,L) introduced by Lutwak [42]:

Vp(K,L) :=
p

n
lim
t→0+

V (K +p t · L)− V (K)

t
, (3.1)

we have:
1

p
(Vp(K,L)− V (K)) ≥ V (K)

1

p

((
V (L)

V (K)

) p
n

− 1

)
, (3.2)

with the case p = 0 interpreted in the limiting sense. The latter is precisely the first
p-Minkowski inequality, which has been shown by Böröczky–Lutwak–Yang–Zhang
in [6] when p ≥ 0 to be equivalent to the global p-BM inequality (1). Their proof
extends to p < 0 with appropriate modifications.
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3.2 Global vs. Local Lp-Brunn–Minkowski

We now introduce the following local version of the global p-BM conjecture.

Conjecture 3.3 (Local Lp-Brunn–Minkowski conjecture). Let n ≥ 2 and p ∈ [0, 1).
For all K ∈ K2

+,e:

∀ 1

p
fp ∈ C2

e (Sn−1)
d2

(dε)2

∣∣∣∣
ε=0

1

p
V (K +p ε · f)

p
n ≤ 0. (3.3)

Recall that when p = 0, this is interpreted as:

∀ positive f ∈ C2
e (Sn−1)

d2

(dε)2

∣∣∣∣
ε=0

log V (K +0 ε · f) ≤ 0. (3.4)

Whenever referring to (3.3) with p = 0, we will always interpret this as (3.4). It
follows from the results of this work (see Theorem 10.2) that for a fixed p < 0, (3.3)
cannot hold for all K ∈ K2

+,e, but nevertheless for a particular K, (3.3) may hold
with p = pK < 0.

The following is standard:

Lemma 3.4 (Global p-BM implies Local p-BM for given K ∈ K2
+,e). Fix p ∈ R and

K ∈ K2
+,e. Assume that the global p-BM conjecture holds for K, namely:

[0, 1] 3 λ 7→ 1

p
V ((1− λ) ·K +p λ · L)

p
n is concave ∀L ∈ NK ,

for some C2-neighborhood NK of K in K2
+,e. Then the local p-BM conjecture (3.3)

holds for K.

Proof. We know that hK ∈ C2
h,e(S

n−1) since K ∈ K2
+,e. Let 1

pf
p ∈ C2

e (Sn−1), and

consider the Wulff function wε := hK +p ε · f = (hpK + εfp)1/p, which is in C2
e (Sn−1)

for small enough |ε| since hK is strictly positive. As wε is a C2 perturbation of hK
and since C2

h,e(S
n−1) is open in C2

e (Sn−1) and locally convex, it follows that for small
enough ε0 > 0, wε is the support function of a convex body Kε = K +p ε · f ∈ NK ,
for all ε ∈ [0, ε0].

Since wλε0 = (1 − λ) · hK +p λ · wε0 for all λ ∈ [0, 1], it follows that Kλε0 =
(1− λ) ·K +p λ ·Kε0 . Our global assumption (with L = Kε0) therefore implies that
[0, 1] 3 λ 7→ 1

pV (Kλε0)p/n is concave, and in particular, its second derivative at λ = 0
is non-positive, yielding (3.3). Note that the function [−ε0, ε0] 3 ε 7→ V (K+p ε ·f) is
indeed in C2, as witnessed by writing an explicit differential formula for the volume
in terms of the support function (as we shall do in the next section).
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We also have the following conditional converse:

Lemma 3.5 (Local p-BM implies Global p-BM assuming geodesic in K2
+,e). Fix

p ∈ R and K0,K1 ∈ K2
+,e. Assume that:

∀t ∈ [0, 1] Kt := (1− t) ·K0 +p t ·K1 is in K2
+,e (3.5)

If the local p-BM conjecture (3.3) holds for Kt for all t ∈ [0, 1], then the global p-BM
conjecture holds between Kt0 and Kt1 for all t0, t1 ∈ [0, 1]:

V ((1− λ) ·Kt0 + λ ·Kt1) ≥
(

(1− λ)V (Kt0)
p
n + λV (Kt1)

p
n

)n
p ∀λ ∈ [0, 1]. (3.6)

This is not as obvious as it may seem. The proof crucially relies on a classical
observation of Aleksandrov [52, Lemma 6.5.1]:

Lemma 3.6 (Aleksandrov). If K = A[w] for some w ∈ C>0(Sn−1), then for any
θ ∈ Sn−1 so that hK(θ) < w(θ), ∂K has at least two normals at any contact point
x0 ∈ ∂K ∩ {x ∈ Rn ; 〈x, θ〉 = hK(θ)}; in particular, ∂K is not C1 smooth at x0.

The usual application of this lemma is to deduce that the set of contact points
corresponding to bad directions θ as above has zero (n− 1)-dimensional Hausdorff
measure Hn−1, since ∂K is (twice) differentiable Hn−1 almost-everywhere. We will
only require the following:

Corollary 3.7. Let K0,K1 ∈ K2
+, p ∈ R and t ∈ [0, 1]. Denote wt := (1−t) ·hK0 +p

t · hK1 ∈ C2(Sn−1), and set Kt := A[wt]. Then:

Kt ∈ K2
+ ⇔ wt = hKt ⇔ wt is a support function.

Proof. If wt is a support function then it must coincide with hKt , and therefore
hKt ∈ C2(Sn−1), i.e. Kt ∈ K2

+. Conversely, if Kt ∈ K2
+, Aleksandrov’s lemma

implies that wt = hKt and so wt is a support function.

Proof of Lemma 3.5. By the previous corollary, our assumption (3.5) is equivalent
to:

hKt = (1− t) · hK0 +p t · hK1 ∀t ∈ [0, 1]. (3.7)

The global concavity of [0, 1] 3 λ 7→ 1
pV ((1−λ) ·K0 +λ ·K1)

p
n now follows by testing

its second derivative at a given λ ∈ [0, 1], which must be non-positive by the local p-
BM assumption (3.3) for the body K = Kλ and the function 1

pf
p := 1

ph
p
K1
− 1

ph
p
K0
∈

C2
e (Sn−1). The latter concavity is equivalent to the desired (3.6).
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Note that when p ≥ 1, (3.7) holds automatically since the Wulff function (1 −
t) · hK0 +p t · hK1 is a support function (being an Lp-combination of two support
functions). Consequently, assumption (3.5) on the smoothness of the entire geodesic
t 7→ Kt is satisfied when p ≥ 1, and employing a standard approximation argument
for general (non-smooth) end points K0,K1, it is immediate to deduce the global
p-BM formulation (1.4) from the local one (3.3).

However, this is definitely not the case in general when p ∈ [0, 1). First, the
semi-group property (3.7) will not hold in general when p ∈ [0, 1), and one can
only ensure that the left-hand-side is a subset of the right-hand one. This time, the
inclusion goes in the unfavorable direction for us:

Kλ,ε := Kλ +p ε · f ⊂ Kλ+ε,

and so knowing that ε 7→ 1
pV (Kλ,ε)

p/n is concave at ε = 0 for every λ ∈ [0, 1] will

not tell us much about the (local) concavity of [0, 1] 3 λ 7→ 1
pV (Kλ)p/n. While it

is possible to bypass this point, the main obstacle for deducing the global p-BM
conjecture (1.4) from the local one (3.3) when p ∈ [0, 1) is the violation of the
smoothness assumption (3.5). By Aleksandrov’s lemma, Kt will necessarily have a
singular boundary whenever the Wulff function (1− t) · hK0 +p t · hK1 is no longer a
support function. For such t’s, we will need to approximate Kt by bodies Ki

t ∈ K2
+,e,

and establish a relation between:

lim
i→∞

d2

(dε)2

∣∣∣∣
ε=0

V (Ki
t +p ε · f) and

d2

(dε)2

∣∣∣∣
ε=0

V (Kt +p ε · f).

This turns out to be an extremely difficult and tantalizing question, which boils
down to the study of the second variation of the volume of the Aleksandrov body
for non-smooth K ∈ K:

d2

(dε)2

∣∣∣∣
ε=0

V (A[hK + εf ]);

here f may be assumed to be the difference of two support functions. While the
first variation of volume was studied by Aleksandrov himself and is well understood
(see e.g. [52, Lemma 6.5.3]), to the best of our knowledge, the second variation is
terra incognita.

Being unable to establish the equivalence between the global and local formula-
tions, we state this as:

Conjecture 3.8. Given p ∈ [0, 1), the validity of the local p-BM conjecture (3.3)
for all K ∈ K2

+,e is logically equivalent to the validity of the global p-BM conjecture
(1.4) for all K0,K1 ∈ Ke.
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For future reference, we record the following:

Proposition 3.9. Let p ∈ R and K ∈ K2
+,e. Then the following statements are

equivalent:

(1) There exists a C2-neighborhood NK of K in K2
+,e so that the local p-BM con-

jecture (3.3) holds for all K ′ ∈ NK .

(2) There exists a C2-neighborhood N ′K of K in K2
+,e so that for all K0,K1 ∈ N ′K

and t ∈ [0, 1], Kt := (1− t) ·K0 +p t ·K1 ∈ N ′K , and the global p-BM conjecture
(1.4) holds between Kt0 ,Kt1 for all t0, t1 ∈ [0, 1].

Furthermore, given p0 ∈ R, the following statements are equivalent:

(1’) For every p > p0, (1) or (2) above hold.

(2’) The local p0-BM conjecture (3.3) holds for K.

The equivalence between (1’) and (2’) follows from the results of the next sec-
tions, but at the risk of forward-referencing, we include this result in the present
section as it fits more naturally here; the reader may wish to skip its proof in the
first reading.

Proof. Lemma 3.4 verifies that (2) implies (1) with NK = N ′K . To show that (1)
implies (2), assume for simplicity that p 6= 0; the case p = 0 follows analogously.
Denoting by NhK = {hK′ ; K ′ ∈ NK} the corresponding neighborhood of hK in
C2
h,e(S

n−1), set Np
hK

:= {hp ; h ∈ NhK}, which is an open subset of C2
e (Sn−1). As

C2
e (Sn−1) is locally convex, we may find a convex neighborhood N ′phK of hpK in Np

hK
.

Setting N ′hK := {h1/p ; h ∈ N ′phK}, the latter is an open subset of NhK ⊂ C2
h,e(S

n−1)
containing hK which is convex with respect to the +p operation: if hK0 , hK1 ∈ N ′hK
then wλ := (1−λ)·hK0 +pλ·hK1 ∈ N ′hK ⊂ C

2
h,e(S

n−1) for all λ ∈ [0, 1]. By Corollary
3.7, since wλ is a support function, it must be that of Kλ := (1−λ)·K0 +pλ·K1, and
therefore Kλ ∈ K2

+,e. Consequently, defining N ′K = {K ′ ∈ K2
+,e ; hK′ ∈ N ′hK}, the

latter is an open subset of NK ⊂ K2
+,e containing K which is convex with respect to

the Lp-Minkowski operation. The smoothness assumption (3.5) is therefore satisfied
between any K0,K1 ∈ N ′K , and so the assertion follows from Lemma 3.5.

To show that (1’) implies (2’), apply the local p-BM conjecture (3.3) to K in
any of the equivalent forms given in the next sections (e.g. Propositions 4.2, 4.4, 4.6
or 5.2), and take the limit as p→ p0. The implication that (2’) implies (1’) follows
from the equivalent spectral characterization of the local p-BM conjecture given in
Corollary 5.4, and the continuity of the spectrum of the Hilbert–Brunn–Minkowski
operator −LK under C2 perturbations asserted in Theorem 5.3 (4).
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4 Local Lp-Brunn–Minkowski Conjecture – Infinitesi-
mal Formulation

In this section we fix K ∈ K2
+,e, and derive equivalent infinitesimal formulations to

the local p-Brunn–Minkowski conjecture for K.

4.1 Mixed Surface Area and Volume of C2 functions

It was shown by Minkowski (e.g. [52, 5]) that when {Ki}mi=1 are convex bodies in Rn,
then the volume of their Minkowski sum is a polynomial in the scaling coefficients:

V (

m∑
i=1

tiKi) =
∑

1≤i1,...,in≤m
ti1 · . . . · tinV (Ki1 , . . . ,Kin) ∀ti ≥ 0.

The coefficient V (Ki1 , . . . ,Kin) is called the mixed volume of the n-tuple (Ki1 , . . . ,Kin);
it is uniquely defined by requiring in addition that it be invariant under permuta-
tion of its arguments. In this subsection, we extend the definition of mixed volume
V (h1, . . . , hn) to a n-tuple of functions in C2(Sn−1), in a manner ensuring that:

V (hK1 , . . . , hKn) = V (K1, . . . ,Kn) ∀ {Ki}ni=1 ⊂ K
2
+.

Recall our notation given a local orthonormal frame e1, . . . , en−1 on Sn−1:

(D2h)i,j = (∇Rn)2
ei,ejh = hi,j + hδi,j , i, j = 1, . . . , n− 1.

Let Dm(A1, . . . , Am) denote the mixed discriminant (or mixed determinant) of an
m-tuple (A1, . . . , Am) with Ai ∈Mm, the set of m by m matrices (over R), namely:

Dm(A1, . . . , Am) :=
1

m!

∑
σ,τ∈Sm

(−1)sgn(σ)+sgn(τ)A1
σ(1),τ(1) · . . . ·A

m
σ(m),τ(m),

where Sm denotes the permutation group on {1, . . . ,m}. Recall that the mixed dis-
criminant is simply the multi-linear polarization of the usual determinant functional
det on Mm, and so in particular is invariant under permutation of its arguments
and satisfies Dm(A, . . . , A) = detA.

Definition. Given a tuple (h1, . . . , hn−1) of functions in C2(Sn−1), define their
“mixed surface area function” S(h1, . . . , hn−1) ∈ C(Sn−1) by:

S(h1, . . . , hn−1)(θ) := Dn−1(D2h1(θ), . . . , D2hn−1(θ))

= Dn(∇2
Rnh1(θ), . . . ,∇2

Rnhn−1(θ), θ ⊗ θ)
= Dn(∇2

Rnh1(θ), . . . ,∇2
Rnhn−1(θ), Id)
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It is easy to see that the former expression does not depend on the choice of local
orthonormal frame. The latter two equalities follow easily by expanding Dn accord-
ing to the last entry, since for any 1 homogeneous function h, θ is an eigenvector of
the symmetric ∇2

Rnh with eigenvalue zero, and hence ∇2
Rnh = Pθ⊥∇2

RnhPθ⊥ where
Pθ⊥ denotes orthogonal projection perpendicular to θ.

The surface-area measure of K, denoted dSK , is the Borel measure on Sn−1

obtained by pushing forward the (n − 1)-dimensional Hausdorff measure Hn−1 on
∂K via the Gauss map ν∂K : ∂K → Sn−1 [52, p. 115,207]. Here ν∂K(x) is the
unit outer-normal to ∂K at x, which by convexity is well-defined and unique for
Hn−1-a.e. x ∈ ∂K.

Note that when K ∈ K2
+, ν∂K : ∂K → Sn−1 is in fact a C1 diffeomorphism.

Identifying between the tangent spaces Tx∂K and Tν∂K(x)S
n−1, we have [52, p.

107]:
dν∂K(x) = II∂K(x) ∀x ∈ ∂K,

where II∂K(x) denotes the second fundamental form of ∂K at x. The inverse of the
Gauss map is the Weingarten map ∇RnhK : Sn−1 → ∂K, and therefore [52, p. 108]:

D2hK(ν∂K(x)) = II−1
∂K(x) ∀x ∈ ∂K.

If follows by the change-of-variables formula that:

dSK(θ) = det(D2hK)(θ)dθ = S(hK , . . . , hK)(θ)dθ; (4.1)

this explains the name “mixed surface-area function” for S(h1, . . . , hn).

Recall that when K1, . . . ,Kn ∈ K2
+ then hK1 , . . . , hKn ∈ C2(Sn−1), and so their

mixed volume may be expressed as [5, p. 64], [52, p. 115,275]:

V (K1, . . . ,Kn) =
1

n

∫
Sn−1

hKnS(hK1 , . . . , hKn−1)dθ; (4.2)

this is just a multi-linear polarization of the usual formula:

V (K, . . . ,K) = V (K) =
1

n

∫
Sn−1

hKdSK =
1

n

∫
Sn−1

hKS(hK , . . . , hK)(θ)dθ.

The fact that the expression on the right-hand-side of (4.2) is invariant under per-
mutation of K1, . . . ,Kn is a nice exercise in integration by parts, which we shall
reproduce below. Consequently, it is natural to give the following:

Definition. Given h1, . . . , hn ∈ C2(Sn−1), define their “mixed-volume” as:

V (h1, . . . , hn) :=
1

n

∫
Sn−1

hnS(h1, . . . , hn−1)dθ.

Note that the mixed-volume is indeed multi-linear in its arguments.
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4.2 Properties of Mixed Surface Area and Volume

Next, if A1, . . . , An−1 ∈Mn−1, a direct computation verifies:

Dn−1(A1, . . . , An−1) =
∑
i,j

A1
i,jQ

i,j(A2, . . . , An−1) , (4.3)

Qi,j(A2, . . . , An−1) :=
(−1)i+j

n− 1
Dn−2(M i,j(A2), . . . ,M i,j(An−1)),

where M i,j(A) is the minor resulting after removing the i-th row and the j-th column
from A ∈Mn−1. Consequently, when A2 = . . . = An−1 = A ∈ GLn−1, we see that:

Qi,j(A) := Qi,j(A, . . . , A) =
(−1)i+j

n− 1
det(M i,j(A))

=
1

n− 1
adj(A)i,j =

1

n− 1
det(A)(A−1)i,j . (4.4)

Clearly Qi,j = Qj,i is symmetric and multi-linear in its arguments. Furthermore,
the first of the following properties [1, Lemma 2-12] will be constantly used (the
second is mentioned for completeness):

• For any h1, . . . , hn−1 ∈ C3(Sn−1) and i = 1, . . . , n − 1, the (local) C1 vector
field on Sn−1

n−1∑
j=1

Qi,j(D2h1, . . . , D
2hn−1)ej

is divergence free.

• For anyK1, . . . ,Kn−1 ∈ K2
+,
∑

i,j Q
i,j(D2hK1 , . . . , D

2hKn−1)ei⊗ej is a positive

definite (local) 2-tensor on Sn−1.

It is easy to see that the above two properties do not depend on the choice
of local orthonormal frame. We will henceforth freely employ Einstein summation
convention, summing over repeated indices. Our choice of using local orthonormal
frames instead of local coordinates is in order to simplify notation, dispensing with
the need to keep track of the covariance / contravariance of our various tensors.
In local coordinates, we would apply the mixed discriminant Dm to 1-covariant 1-
contravariant tensors Aij , and as suggested by the present notation, Qi,j would be a
2-contravariant tensor.

Lemma 4.1. For any h1, . . . , hn ∈ C2(Sn−1), the mixed volume V (h1, . . . , hn) is
invariant under permutation of its arguments.
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Proof. By approximation, we may assume h3, . . . , hn ∈ C3(Sn−1); it is then enough
to show that:

V (f, g, h3 . . . , hn) = V (g, f, h3 . . . , hn) ∀f, g ∈ C2(Sn−1),

since the last n − 1 arguments are invariant under permutation by definition of V
and D. Abbreviating Qi,j = Qi,j(D2h3, . . . , D

2hn), integrating by parts, and using
the divergence free property of Qi,·, we have:

V (f, g, h3 . . . , hn) =
1

n

∫
Sn−1

fS(g, h3, . . . , hn)dθ =
1

n

∫
Sn−1

f(gi,j + gδi,j)Q
i,jdθ

=
1

n

∫
Sn−1

(
Qiifg − (fQi,j)jgi

)
dθ =

1

n

∫
Sn−1

(
Qiifg −Qi,jfjgi

)
dθ.

The latter expression is symmetric in f, g (by symmetry of Qi,j), and so the assertion
is established.

4.3 Second Lp-Minkowski Inequality

We now fix K ∈ K2
+ and p < 1. Given 1

pf
p ∈ C2(Sn−1), the strict convexity of K

and the positivity of hK imply that for small enough |ε|, the Wulff function hK+pε·f
is a C2-smooth support function, and consequently:

hK+pε·f = hA[hK+pε·f ] = hK +p ε · f ∀ |ε| � 1.

Denoting:

z :=

{
1
hpK

fp

p p 6= 0

log f p = 0
∈ C2(Sn−1) , (4.5)

a second-order Taylor expansion immediately yields:

hK+p ε ·f = hK+εzhK+
ε2

2
(1−p)z2hK+R(ε) , lim

ε→0

Rh(ε)

ε2
= 0 in C2(Sn−1). (4.6)

Now denote:

Jp(ε) := V (K +p ε · f) = V (K +p ε · f, . . . ,K +p ε · f),

apply the differential formula for mixed-volume (4.2), and expand using the above

Taylor expansion. Inspecting the coefficients of ε and ε2

2 in the expansion of Jp(ε),
and noting that the remainder term RJp(ε) satisfies:

∣∣RJp(ε)∣∣ ≤ ChK ,z,p,n ‖Rh(ε)‖C2(Sn−1) and hence lim
ε→0

RJp(ε)

ε2
= 0,
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it follows by multi-linearity of mixed-volume and invariance under permutation of
its arguments that:

J ′p(0) = nV (zhK ; 1) , J ′′p (0) = nV ((1− p)z2hK ; 1) +

(
n

2

)
2V (zhK ; 2), (4.7)

where we employ the abbreviation:

V (f ;m) = V (f, . . . , f︸ ︷︷ ︸
m times

, hK , . . . , hK︸ ︷︷ ︸
n−m times

).

Proposition 4.2 (Second Lp-Minkowski Inequality). Given K ∈ K2
+,e and p < 1,

the local p-BM conjecture (3.3) for K is equivalent to the assertion that:

∀z ∈ C2
e (Sn−1)

1

V (K)
V (zhK ; 1)2 ≥ n− 1

n− p
V (zhK ; 2) +

1− p
n− p

V (z2hK ; 1). (4.8)

Proof. The local p-BM conjecture is the assertion that ( ddε)
2|ε=0

1
pJp(ε)

p/n ≤ 0 for

all 1
pf

p ∈ C2
e (Sn−1), or equivalently, that:

n− p
n

J ′p(0)2 ≥ Jp(0)J ′′p (0).

Plugging in the expressions for J
(m)
p (0) obtained in (4.7), the equivalence with (4.8)

immediately follows after noting that (4.5) gives a bijection between 1
pf

p ∈ C2
e (Sn−1)

and z ∈ C2
e (Sn−1).

Remark 4.3. Note that the validity of (4.8) remains invariant under K 7→ λK (as
all terms are n-homogeneous in K), z 7→ λz (as all terms are quadratic in z) and
z 7→ z+λ (this requires a quick check of both the linear term in λ and the quadratic
one). Consequently, (4.8) is equivalent to:

∀z ∈ C2
e (Sn−1) V (zhK ; 1) = 0 ⇒ −V (zhK ; 2) ≥ 1− p

n− 1
V (z2hK ; 1).

4.4 Comparison with classical p = 1 case

Before proceeding, let us compare (4.8) with the classical case p = 1. Plugging in
p = 1 in (4.8), the quadratic term in z2 disappears, and denoting w = zhK , we
obtain:

∀w ∈ C2
e (Sn−1) V (w; 1)2 ≥ V (w; 2)V (w; 0); (4.9)

this is the classical Minkowski’s second inequality, valid without any evenness as-
sumption on K or w, which indeed is well-known to be equivalent to the local
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concavity of ε 7→ V (K + εw)
1
n , and hence to the global Brunn–Minkowski inequal-

ity.

In addition, let us check that the conjectured (4.8) for p ∈ [0, 1) is indeed stronger
than the classical case p = 1. To see this, first note that by (4.1), for all w ∈
C2(Sn−1) (in fact, C(Sn−1) is enough for the first mixed volume):

V (w; 1) = V (w, hK , . . . , hK) =
1

n

∫
Sn−1

wS(hK , . . . , hK)dθ =
1

n

∫
Sn−1

wdSK .

(4.10)
In particular V (K) = 1

n

∫
Sn−1 hKdSK . Applying Cauchy–Schwarz, it follows that:

V (z2hK ; 1) =
1

n

∫
Sn−1

z2hKdSK ≥
(

1
n

∫
Sn−1 zhKdSK

)2
1
n

∫
Sn−1 hKdSK

=
V (zhK ; 1)2

V (K)
. (4.11)

This means that when p ∈ [0, 1), since 1−p
n−p > 0, we can always make the inequal-

ity (4.8) weaker by replacing the last term by the one on the left-hand-side, and
after rearranging terms and setting w = zhK , we obtain (4.9) corresponding to the
classical case p = 1.

4.5 Infinitesimal Formulation On Sn−1

Let us now obtain an explicit expression for the second mixed volume appearing in
(4.8). Recall by (4.4) that:

Qi,jK := Qi,j(D2hK , . . . , D
2hK) =

1

n− 1
det(D2hK)((D2hK)−1)i,j . (4.12)

Plugging this below assuming K ∈ K3
+, after integrating by parts in j and using

the divergence-free property of Qi,·K , and finally recalling (4.1), we obtain for any
w ∈ C2(Sn−1):

V (w; 2) = V (w,w, hK , . . . , hK) =
1

n

∫
Sn−1

wS(w, hK , . . . , hK)dθ

=
1

n

∫
Sn−1

w(wi,j + wδi,j)Q
i,j
K dθ

=
1

n

(∫
Sn−1

(QK)iiw
2dθ −

∫
Sn−1

(Qi,jK w)jwidθ

)
=

1

n

(∫
Sn−1

(QK)iiw
2dθ −

∫
Sn−1

Qi,jK wjwidθ

)
=

1

n(n− 1)

(∫
Sn−1

((D2hK)−1)ii w
2dSK −

∫
Sn−1

((D2hK)−1)i,jwiwjdSK

)
. (4.13)
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Proposition 4.4 (Infinitesimal p-BM on Sn−1). Given K ∈ K2
+,e and p < 1, the

local p-BM conjecture (3.3) for K is equivalent to the assertion that:

∀w ∈ C1
e (Sn−1)

∫
Sn−1

〈
(D2hK)−1∇Sn−1w,∇Sn−1w

〉
dSK ≥ (4.14)∫

Sn−1

tr((D2hK)−1)w2dSK + (1− p)
∫
Sn−1

w2

hK
dSK −

n− p
n

1

V (K)

(∫
Sn−1

wdSK

)2

.

Proof. The equivalence for w ∈ C2
e (Sn−1) and K ∈ K3

+ is immediate by setting
w = zhK in (4.8) and using the expressions for the first and second mixed-volume
derived in (4.10) and (4.13). When w ∈ C1

e (Sn−1) and K ∈ K2
+, the equivalence

follows by a standard approximation argument, utlizing the fact that only first
derivatives of w and second derivatives of hK appear in (4.13).

Remark 4.5. The case p = 0 (local log-BM) of Proposition 4.4 was previously
derived by Colesanti–Livshyts–Marsiglietti in [13].

4.6 Infinitesimal Formulation On ∂K

By using the Weingarten map:

ν−1
∂K : Sn−1 3 θ 7→ ∇RnhK(θ) ∈ ∂K,

we may transfer the infinitesimal formulation of the local p-BM conjecture obtained
in the previous subsection from Sn−1 to ∂K. Indeed, recall that dν∂K(x) = II∂K(x),
dν−1
∂K(θ) = D2hK(θ) and D2hK(ν∂K(x)) = II−1

∂K(x) (with the usual identification of

tangent spaces), and that Jac(ν−1
∂K)(θ) = det(D2hK)(θ) = dSK(θ)

dθ .
Denoting Ψ(x) = w(ν∂K(x)), we see that:∫

Sn−1

w(θ)dSK(θ) =

∫
∂K

Ψ(x)dx,

∫
Sn−1

tr((D2hK)−1)w2(θ)dSK(θ) =

∫
∂K

tr(II∂K)Ψ2(x)dx,

and as hK(ν∂K(x)) = 〈x, ν∂K(x)〉,∫
Sn−1

w2(θ)

hK(θ)
dSK(θ) =

∫
∂K

Ψ2(x)

〈x, ν∂K(x)〉
dx.

Lastly, as w(θ) = Ψ(ν−1
∂K(θ)) we have, setting x = ν−1

∂K(θ):

∇Sn−1w(θ) = dν−1
∂K(θ)∇∂KΨ(x) = II−1

∂K(x)∇∂KΨ(x),
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and therefore:∫
Sn−1

〈
(D2hK)−1∇Sn−1w,∇Sn−1w

〉
dSK =

∫
∂K

〈
II∂KII−1

∂K∇∂KΨ, II−1
∂K∇∂KΨ

〉
dx

=

∫
∂K

〈
II−1
∂K∇∂KΨ,∇∂KΨ

〉
dx.

Plugging the above identities into Proposition 4.4, and using the fact that the
Weingarten map is a C1 diffeomorphishm when K ∈ K2

+, we immediately obtain:

Proposition 4.6 (Infinitesimal p-BM on ∂K). Given K ∈ K2
+,e and p < 1, the local

p-BM conjecture (3.3) for K is equivalent to the assertion that:

∀Ψ ∈ C1
e (∂K)

∫
∂K

〈
II−1
∂K∇∂KΨ,∇∂KΨ

〉
dx ≥ (4.15)∫

∂K
H∂K(x)Ψ2(x)dx+ (1− p)

∫
∂K

Ψ2(x)

〈x, ν∂K(x)〉
dx− n− p

n

1

V (K)

(∫
∂K

Ψ(x)dx

)2

,

where H∂K(x) = tr(II∂K)(x) denotes the mean-curvature of ∂K at x ∈ ∂K.

Remark 4.7. Remark 4.3 translates into the fact that the validity of (4.14) is
invariant under w 7→ w + λhK , or equivalently, that (4.15) is invariant under Ψ 7→
Ψ + λ 〈x, ν∂K(x)〉. Consequently, (4.15) is equivalent to:

∀Ψ ∈ C1
e (∂K)

∫
∂K

Ψ(x)dx = 0 ⇒ (4.16)∫
∂K

〈
II−1
∂K∇∂KΨ,∇∂KΨ

〉
dx ≥

∫
∂K

H∂K(x)Ψ2(x)dx+ (1− p)
∫
∂K

Ψ2(x)

〈x, ν∂K(x)〉
dx.

Remark 4.8. The classical case p = 1 of Proposition 4.6 was previously derived
by Colesanti in [11]. See also [31] for extensions of the case p = 1 to the setting
of weighted Riemannian manifolds satisfying the Curvature-Dimension condition
CD(0, N), [35] for an analogous statement involving Ehrhard’s inequality for the
Gaussian measure, and [14] for a version involving other intrinsic volumes.

5 Relation to Hilbert–Brunn–Minkowski Operator and
Linear Equivariance

It is easy to show that the validity of the local p-BM conjecture (3.3) as a function of
K ∈ K2

+,e is invariant under linear transformations. More precisely, given T ∈ GLn

26



and 1
pf

p ∈ C2
e (Sn−1), define fT : Sn−1 → R by extending f as a 1-homogeneous

function to Rn and pushing it forward via T−t, namely:

fT (θ) = T−t∗ f(θ) = f(T tθ) = f

(
T tθ

|T tθ|

) ∣∣T tθ∣∣ .
It is easy to see that pfpT ∈ C2

e (Sn−1) and that:

T (K) +p ε · fT = T (K +p ε · f). (5.1)

Indeed, by definition, we have:

hT (K)(θ) = hK(T tθ), (5.2)

ans so for small enough |ε| � 1 and all θ ∈ Sn−1:

hT (K)+pε·fT (θ) =
(
hpT (K)(θ) + εfpT (θ)

) 1
p

=

(
hpK

(
T tθ

|T tθ|

)
+ εfp

(
T tθ

|T tθ|

)) 1
p ∣∣T tθ∣∣

=
(
hpK + εfp

) 1
p

(
T tθ

|T tθ|

) ∣∣T tθ∣∣ = hK+pε·f

(
T tθ

|T tθ|

) ∣∣T tθ∣∣ = hK+pε·f (T tθ) = hT (K+pε·f)(θ).

In fact, it is equally easy to check that (5.1) remains valid for all ε ∈ R as equality
between Aleksandrov bodies, even when the support function of K +p ε · f does not
coincide with the corresponding defining Wulff function.

In any case, since 1
pf

p 7→ 1
pf

p
T is clearly a bijection on C2

e (Sn−1), the invariance
under linear transformations K 7→ T (K) of the validity of (3.3) immediately follows.
Consequently, the invariance under linear transformations of the validity of the
equivalent infinitesimal versions (4.14) on Sn−1 and (4.15) on ∂K follows as well.
This is not surprising, since this is just an infinitesimal manifestation of the (easily
verifiable) fact that:

T (K +p L) = T (K) +p T (L) ∀T ∈ GLn,

which implies that the validity of the p-BM conjecture (1.4) for K,L is equivalent
to that for T (K), T (L).

However, one of our goals in this section is to establish a somewhat deeper linear
equivariance of a certain second-order linear differential operator LK associated to
every K ∈ K2

+, which extends the above elementary observation. Modulo our differ-
ent normalization, this operator was already been considered by Hilbert in his proof
of the Brunn–Minkowski inequality, and generalized by Aleksandrov in his second
proof of the Aleksandrov–Fenchel inequality (see [5, pp. 108–110]). Consequently,
we call LK the Hilbert–Brunn–Minkowski operator.

27



5.1 Hilbert–Brunn–Minkowski operator

Definition (Hilbert–Brunn–Minkowski operator). Given K ∈ K2
+, the associated

Hilbert–Brunn–Minkowski operator, denoted LK , is the second-order linear differen-
tial operator on C2(Sn−1) defined by:

LK := L̃K − Id , L̃Kz :=
S(zhK ,

n− 2 times︷ ︸︸ ︷
hK , . . . , hK)

S(hK , . . . , hK︸ ︷︷ ︸
n− 1 times

)
.

Remark 5.1. Abbreviating Qi,j = Qi,j(D2hK) and h = hK , observe that:

S(zh, h, . . . , h)− zS(h, h, . . . , h) = Qi,j((zh)i,j − zhi,j)

= Qi,j(zihj + hizj + hzi,j) = Qi,j
1

h
(h2zi)j , (5.3)

where the last transition follows by the symmetry of Qi,j . Recalling (4.12), we
obtain:

LKz =
1

n− 1
((D2h)−1)i,j(zihj + hizj + hzi,j) =

1

n− 1

((D2h)−1)i,j

h
(h2zi)j . (5.4)

In particular, we see that LK has no zeroth order term.

Definition (Cone Measure). The cone measure of K, denoted dVK , is the Borel
measure on Sn−1 defined by:

dVK :=
1

n
hKdSK .

It is easy to check that for any Borel set A ⊂ Sn−1, VK(A) equals the volume
of the cone in K generated by ν−1

K (A) with vertex at the origin. In particular,
VK(Sn−1) = V (K). When K ∈ K2

+, we have by (4.1):

dVK =
1

n
hKS(hK , . . . , hK)dθ.

Fixing K ∈ K2
+, and recalling the terms appearing in the second p-Minkowski

inequality (Proposition 4.2), we rewrite:

V (zhK ; 1) =
1

n

∫
Sn−1

zhKdSK =

∫
Sn−1

zdVK

V (z2hK ; 1) =
1

n

∫
Sn−1

z2hKdSK =

∫
Sn−1

z2dVK

V (zhK ; 2) =
1

n

∫
Sn−1

zhKS(zhK , hK , . . . , hK)dθ =

∫
Sn−1

(L̃Kz)zdVK .
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Plugging these expressions into Proposition 4.2, and applying Remark 4.3, we
obtain:

Proposition 5.2. Given K ∈ K2
+,e and p < 1, the local p-BM conjecture (3.3) for

K is equivalent to the assertion that:

∀z ∈ C2
e (Sn−1)

∫
Sn−1

zdVK = 0 ⇒
∫
Sn−1

(−LKz)zdVK ≥
n− p
n− 1

∫
Sn−1

z2dVK .

The latter formulation has a clear spectral flavor. Let us make this more precise.

Theorem 5.3. Let K ∈ K2
+.

(1) The operator LK : C2(Sn−1)→ C(Sn−1) is symmetric on L2(dVK).

(2) The operator LK is elliptic and hence admits a unique self-adjoint extension
in L2(dVK) with domain Dom(LK) = H2(Sn−1), which we continue to denote
by LK . Its spectrum σ(LK) ⊂ R is discrete, consisting of a countable sequence
of eigenvalues of finite multiplicity tending (in absolute value) to ∞.

(3) −LK is positive semi-definite and therefore σ(−LK) ⊂ R+. We denote its
eigenvalues (arranged in non-decreasing order and repeated according to mul-
tiplicity) by {λm}m≥0.

(4) If {Ki} ⊂ K2
+ and Ki → K in C2 then limi→∞ λm(−LKi) = λm(−LK) for all

m ≥ 0.

(5) 0 is an eigenvalue of −LK with multiplicity one corresponding to the one-
dimensional subspace of constant functions E0 := span(1).

(6) −LK |1⊥ ≥ Id|1⊥ (as positive semi-definite operators on L2(dVK)).

(7) 1 is an eigenvalue of −LK with multiplicity precisely n corresponding to the
n-dimensional subspace EK1 spanned by the (renormalized) linear functions:

`Kv (θ) =
〈θ, v〉
hK(θ)

, v ∈ Rn.

Proof. (1) If z1, z2 ∈ C2(Sn−1) then:∫
Sn−1

(LKz1)z2dVK =
1

n

∫
Sn−1

z1hKS(z2hK , hK , . . . , hK)dθ = V (z1hK , z2hK , hK , . . . , hK).

By Lemma 4.1, the mixed volume is invariant under permutations, so the
right-hand-side is symmetric in z1, z2, and hence so is the left-hand-side, as
asserted.
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(2) The ellipticity of LK follows since by (5.4), its (leading) second-order term is
given by:

hK
n− 1

((D2hK)−1)i,jzi,j .

Since K ∈ K2
+, there exist a, b > 0 so that aδ ≤ D2hK ≤ bδ on Sn−1, where δ

denotes the standard metric on Sn−1, and the (uniform) ellipticity follows.

As for essential self-adjointness, it is well known using elliptic regularity theory
[56, Section 8.2], [55] that a symmetric second-order elliptic operator with
continuous coefficients on a compact closed manifold M has a unique self-
adjoint extension from C2(M) to the Sobolev space H2(M). Its resolvent is
necessarily compact, and hence its spectrum is discrete.

(3) This actually follows from (5) and (6), but for completeness, we provide a
direct verification. By density, it is enough to verify this for z ∈ C2(Sn−1).
Abbreviating as usual Qi,j = Qi,j(D2hK) and h = hK , it follows by (5.3) and
the divergence free property of Qi,· when K ∈ K3

+ that:∫
Sn−1

(−LKz)zdVK = − 1

n

∫
Sn−1

zQi,j(h2zi)jdθ =
1

n

∫
Sn−1

Qi,jh2zizjdθ.

Recalling (4.12), we conclude that:∫
Sn−1

(−LKz)zdVK =
1

n− 1

∫
Sn−1

h((D2h)−1)i,jzizjdVK ≥ 0,

since D2h is positive definite. The case of a general K ∈ K2
+ follows by

approximation.

(4) The continuity of the eigenvalues as a function of the coefficients of a family
of uniformly elliptic operators on a compact manifold is classical (e.g. [26,
Theorem 2.3.3]). Indeed, the C2 convergence of Ki to K ensures that the
coefficients of −LKi converge in C(Sn−1) to those of −LK ; using the uniform
ellipticity (as D2hKi ≥ 1

2D
2hK ≥ cδ for some c > 0 and large enough i),

one shows pointwise convergence of the corresponding compact resolvent op-
erators, from whence norm convergence of the resolvent operators is deduced,
yielding the convergence of eigenvalues.

(5) Clearly LK1 = 0 as it has no zeroth order term (or since clearly L̃K1 = 1).
The standard fact that the multiplicity of the 0 eigenvalue is precisely one
follows since LK is second-order elliptic with no zeroth order term and since
the sphere is a connected compact manifold. Note that this also follows from
(6).
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(6) The spectral-gap estimate −LK |1⊥ ≥ Id|1⊥ is a deep fact which is equivalent
to the (local, and hence global) Brunn–Minkowski inequality. Under a dif-
ferent normalization, this equivalence was first noted by Hilbert (see [5, pp.
108–109] and Remark 5.6), who obtained a direct proof of the former spectral-
gap estimate by employing the method of continuity, thereby obtaining a novel
proof of the Brunn–Minkowski inequality. To see the equivalence, simply apply
Proposition 5.2 in the classical case p = 1, and note that the Brunn–Minkowski
inequality holds without any symmetry assumptions on K,L, so that the even-
ness assumption on the test function z is unnecessary in this case.

(7) It is immediate to check that `Kv is indeed an eigenfunction of −LK with
eigenvalue 1, since:

∇2
Rn 〈θ, v〉 = 0 and hence L̃K`

K
v =

S(〈θ, v〉 , hK , . . . , hK)

S(hK , hK , . . . , hK)
= 0.

Consequently, the multiplicity of the eigenvalue 1 is at least n (the dimension
of linear functionals on Rn). The fact that there are no other eigenfunctions
with eigenvalue 1, and hence that the corresponding multiplicity is precisely
n, was established by Hilbert (see [5, p. 110] for an alternative argument) in
his proof of the spectral-gap estimate (6), and in fact constitutes the crux of
Hilbert’s argument.

Theorem 5.3, which modulo our different normalization is essentially due to
Hilbert (see Remark 5.6 below), interprets the Brunn–Minkowski inequality as a
uniform spectral-gap statement (beyond the trivial λ0 = 0 eigenvalue corresponding
to E0 = span(1)):

λ1(−LK) := minσ(−LK |1⊥) ≥ 1 ∀K ∈ K2
+.

Moreover, it provides the additional information that λ1(−LK) = 1 with corre-
sponding eigenspace EK1 of dimension precisely n. Consequently, the next eigen-
value λn+1(−LK), which is obtained by restricting −LK to the (invariant) subspace
perpendicular to EK1 + E0, satisfies:

λn+1(−LK) := minσ(−LK |(EK1 )⊥∩1⊥) > 1 ∀K ∈ K2
+.

A naturally arising question, which perhaps could have been asked by Hilbert
himself (had he been using our normalization), is whether the above next eigenvalue
gap beyond 1 is actually uniform over all K ∈ K2

+. The most convenient way to
obtain a necessary condition for this to hold, is to assume thatK is origin-symmetric,
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and so the `Kv eigenfunctions will all be odd, as the ratio of linear (odd) functions
and an even one. If we only consider test-functions z ∈ H2(Sn−1) which arise from
perturbations of K by another origin-symmetric body L, they will always be even,
and hence constitute an invariant subspace Eeven for −LK , which is in addition
automatically perpendicular to EK1 , and hence:

λ1,e(−LK) := minσ(−LK |Eeven∩1⊥) ≥ minσ(−LK |(EK1 )⊥∩1⊥) = λn+1(−LK).

Proposition 5.2 thus translates into an interpretation of the local p-BM conjecture
as a question on the even spectral-gap of −LK beyond 1:

Corollary 5.4. Given K ∈ K2
+,e and p < 1, the local p-BM conjecture (3.3) for K

is equivalent to the following even spectral-gap estimate for −LK beyond 1:

λ1,e(−LK) ≥ n− p
n− 1

.

This gives a concrete spectral reason for the restriction to origin-symmetric convex
bodies in the p-BM conjecture when p ∈ [0, 1), and explains why the conjecture fails
for general convex bodies K – without being perpendicular to EK1 , the spectral-
gap beyond 0 is precisely 1 and never better (as seen by the test functions `Kv ,
corresponding to translations of K).

Remark 5.5. The above discussion suggests a plausible extension of the local p-BM
conjecture which does not require that K ∈ K2

+ be origin-symmetric. In spectral
terms it naturally reads as:

λn+1(−LK) ≥ n− p
n− 1

,

or equivalently:

∀z ∈ C2(Sn−1)

∫
Sn−1

zhKdSK = 0 and

∫
Sn−1

~θ z(θ)dSK(θ) = ~0 ⇒ (5.5)∫
Sn−1

(−LKz)zdVK ≥
n− p
n− 1

∫
Sn−1

z2dVK .

In terms of local concavity as in (3.3), recalling the derivation in Subsection 4.3,
this reads as:

d2

(dε)2

∣∣∣∣
ε=0

1

p
V (A[hK(1 + εz)

1
p ])

p
n ≤ 0 for all z ∈ C2(Sn−1) satisfying (5.5).

However, we do not know how to translate the local condition (5.5) on z = 1
p
hpL−h

p
K

hpK
into a global requirement on K,L which would guarantee the local condition along
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the p-Minkowski interpolation between K and L. In this regard, we note that it was
shown in [58] that for all convex bodies K,L in the plane, there exist translations of
K,L (“dilation positions”) for which the log-BM conjectured inequality holds true.

Remark 5.6. Hilbert originally considered [5, pp. 108-109] the operator:

HKw := S(w, hK , . . . , hK),

which is elliptic and essentially self adjoint on L2(dθ) with respect to the Lebesgue
measure dθ on Sn−1. However, this operator is not well suited for our investigation.
Indeed, setting as usual w = zhK in Remark 4.3, the local p-BM conjecture for
K ∈ K2

+,e is then equivalent to:

∀w ∈ C2
e (Sn−1)

∫
wdSK = 0 ⇒

∫
Sn−1

(−HKw)wdθ ≥ 1− p
n− 1

∫
Sn−1

w2

hK
dSK ,

which does not have a nice spectral interpretation when p 6= 1. Furthermore, the
correspondence K 7→ HK does not posses the useful equivariance property under
linear transformations we shall establish for LK in the next subsection, and it is
not even invariant under homothety, so there is no chance of obtaining uniform
estimates for HK valid for all convex bodies K. The normalization we employ in
our definition of LK may be uniquely characterized (up to scaling) as defining a
second-order differential operator with no zeroth order term, which is essentially
self-adjoint on L2(µK), and so that the conjectured second p-Minkowski inequality
(4.8) may be equivalently rewritten as a spectral-gap inequality on the subspace of
L2(µK) of even functions perpendicular to the constant ones. The unique (up to
scaling) measure µK satisfying these requirements turns out to be the cone measure
dVK (for all values of p, not just p = 0!), amounting further evidence to the intimate
relation between the p-BM conjecture and the cone measure.

5.2 Linear equivariance of the Hilbert–Brunn–Minkowski operator

In this subsection, we establish an important equivariance property of the Hilbert-
Brunn–Minkowski operators LT (K) under linear transformations T ∈ GLn.

Denote by T (0) the following “0-homogeneous” linear change of variables:

T (0) : Sn−1 3 θ 7→ T−tθ

|T−tθ|
∈ Sn−1.

We denote by T
(0)
∗ z the push-forward of a (Lebesgue) measurable function z ∈

L(Sn−1) via T (0), i.e. an application of a linear change of variables when treating z
as a 0-homogeneous function on Rn:

T
(0)
∗ : L(Sn−1) 3 z(θ) 7→ z((T (0))−1θ) = z(T tθ) ∈ L(Sn−1).
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We now state the two main results of this subsection:

Lemma 5.7. T (0) pushes forward dVK onto 1
|det(T )|dVT (K). In particular, T

(0)
∗ is an

isometry from L2(dṼK) to L2(dṼT (K)), where dṼQ := dVQ/Vol(Q) is the normalized
cone probability measure.

Theorem 5.8. For any K ∈ K2
+ and T ∈ GLn, the following diagram commutes:

LK : L2(dVK) ⊃H2(Sn−1)→ L2(dVK)

T
(0)
∗ ↓ T

(0)
∗ ↓

LT (K) : L2(dVT (K)) ⊃H2(Sn−1)→ L2(dVT (K)).

In particular, it follows by the previous lemma that LK and LT (K) are conjugates
via an isometry of Hilbert spaces, and therefore have the same spectrum:

σ(−LK) = σ(−LT (K)).

The proof involves several calculations. We will constantly use the linear con-
travariance of the support function (5.2).

Lemma 5.9. ∣∣∣Jac T (0)(θ)
∣∣∣ =

1

|det(T )| |T−tθ|n
.

Proof. Complete θ to an orthonormal basis θ, e1, . . . , en−1 of Rn. Denote by V ({vi}n−1
i=1 )

the volume of the n − 1-dimensional parallelepiped spanned by v1, . . . , vn−1. Now
calculate:

∣∣∣Jac T (0)(θ)
∣∣∣ = V

{P(T−tθ)⊥T
−tei

|T−tθ|

}n−1

i=1

 =
1

|T−tθ|n−1V

({
P(T−tθ)⊥T

−tei

}n−1

i=1

)
.

On the other hand, by expanding the determinant of T−t (volume of the paral-
lelepiped spanned by the vectors T−tθ, T−te1, . . . , T

−ten−1):

∣∣det(T−t)
∣∣ = V

({
P(T−tθ)⊥T

−tei

}n−1

i=1

) ∣∣T−tθ∣∣ ,
and so the assertion follows.

Lemma 5.10. Let h1, . . . , hn−1 denote 1-homogeneous C2 functions on Rn. Then:

S(h1 ◦ T t, . . . , hn−1 ◦ T t)(T (0)θ) = det(T )2
∣∣T−tθ∣∣n+1

S(h1, . . . , hn−1)(θ).
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Proof. Let us abbreviate ∇2 = ∇2
Rn . Since ∇2(g ◦ T t)(x) = T (∇2g)(T tx)T t, we

calculate, using the fact that ∇2g is −1-homogeneous if g is 1-homogeneous and the
multi-linearity of the mixed discriminant Dn:

S(h1 ◦ T t, . . . , hn−1 ◦ T t)(T (0)θ)

=Dn(∇2
Rn(h1 ◦ T t)(T (0)θ), . . . ,∇2

Rn(hn−1 ◦ T t)(T (0)θ), T (0)θ ⊗ T (0)θ)

=
∣∣T−tθ∣∣n−3

Dn(T (∇2h1)(θ)T t, . . . , T (∇2hn−1)(θ)T t, T−tθ ⊗ T−tθ)

= det(T )2
∣∣T−tθ∣∣n−3

Dn(∇2h1(θ), . . . ,∇2hn−1(θ), T−2tθ ⊗ T−2tθ).

Recalling that ∇2h1(θ) = Pθ⊥∇2h1(θ)Pθ⊥ , we proceed by expanding the mixed
discriminant in the last entry:

= det(T )2
∣∣T−tθ∣∣n−3 〈

T−2tθ, θ
〉2
Dn−1(Pθ⊥∇2h1(θ)Pθ⊥ , . . . , Pθ⊥∇2hn−1(θ)Pθ⊥)

= det(T )2
∣∣T−tθ∣∣n+1

S(h1, . . . , hn−1)(θ).

Proof of Lemma 5.7. Recall that the surface area measure dSK and the cone mea-
sure dVK are defined as the following measures on Sn−1:

dSK = S(hK , . . . , hK)dθ , dVK =
1

n
hKdSK .

Lemma 5.10 implies that:

dST (K)(T
(0)θ) = S(hK◦T t, . . . , hK◦T t)(T (0)θ)dθ = det(T )2

∣∣T−tθ∣∣n+1
S(hK , . . . , hK)(θ)dθ,

and so together with Lemma 5.9:

dVT (K)(T
(0)θ) =

1

n
hT (K)(T

(0)θ)dST (K)(T
(0)θ) = det(T )2

∣∣T−tθ∣∣n+1 1

n
hK(T tT (0)θ)S(hK , . . . , hK)(θ)dθ

= det(T )2
∣∣T−tθ∣∣n 1

n
hK(θ)S(hK , . . . , hK)(θ)dθ =

1∣∣Jac T (0)(θ)
∣∣ |det(T )| dVK(θ),

confirming that T (0) pushes forward dVK onto 1
|det(T )|dVT (K).

Proof of Theorem 5.8. We would like to prove that:

(T
(0)
∗ )−1 ◦ LT (K) ◦ T

(0)
∗ = LK ,

or equivalently, that for all z ∈ H2(Sn−1):

LT (K)(T
(0)
∗ z)(T (0)θ) = (LKz)(θ). (5.6)

35



By density, it is enough to establish this for z ∈ C2(Sn−1). Recall that in this case:

L̃K(z) =
S(zhK , hK , . . . , hK)

S(hK , . . . , hK)
,

so that:

L̃T (K)(T
(0)
∗ z)(T (0)θ) =

S(T
(0)
∗ z · hT (K), hT (K), . . . , hT (K))(T

(0)θ)

S(hT (K), . . . , hT (K))(T (0)θ)
.

We think of z as 0-homogeneous (T
(0)
∗ z(x) = z(T tx)) and of course hK is 1-

homogeneous and satisfies hT (K)(x) = hK(T tx), and so w := zhK is 1-homogeneous
and satisfies:

T
(0)
∗ z · hT (K)(x) = z(T tx)h(T tx) = w(T tx).

By Lemma 5.10:

S(T
(0)
∗ z · hT (K), hT (K), . . . , hT (K))(T

(0)θ)

= S(w ◦ T t, hK ◦ T t, . . . , hK ◦ T t)(T (0)θ)

= det(T )2
∣∣T−tθ∣∣n+1

S(w, hK , . . . , hK)(θ),

and in particular:

S(hT (K), . . . , hT (K))(T
(0)θ) = det(T )2

∣∣T−tθ∣∣n+1
S(hK , hK , . . . , hK)(θ).

Taking the quotient of the latter two expressions, we verify:

L̃T (K)(T
(0)
∗ z)(T (0)θ) = (L̃Kz)(θ).

Since L = L̃− Id, (5.6) is established.

5.3 Spectral Minimization Problem and Potential Extremizers

We now restrict our discussion to origin-symmetric K ∈ K2
+,e. Recall that:

λ1,e(−LK) := minσ(−LK |Eeven∩1⊥,L
2(dVK )),

and that Theorem 5.3 implies that:

λ1,e(−LK) > 1 ∀K ∈ K2
+,e. (5.7)

In addition, since the isometry T
(0)
∗ : L2(dṼK) → L2(dṼT (K)) clearly maps Eeven ∩

1⊥,L
2(dVK) onto Eeven ∩ 1⊥,L

2(dVT (K)), it follows by Theorem 5.8 that:

λ1,e(−LT (K)) = λ1,e(−LK) ∀K ∈ K2
+,e ∀T ∈ GLn.

Corollary 5.4 therefore translates into:

36



Corollary 5.11. Given p < 1, the validity of the local p-BM conjecture (3.3) for
all K ∈ K2

+,e is equivalent to the validity of the following lower bound for the mini-
mization problem over the linearly invariant spectral parameter λ1,e(−LK):

inf
K∈K2

+,e/GLn
λ1,e(−LK) ≥ n− p

n− 1
. (5.8)

Observe that by F. John’s Theorem [21, Theorem 4.2.12], Ke/GLn is a compact
set of equivalence classes of origin-symmetric convex bodies (with respect to the
natural Hausdorff topology C), the so-called Banach-Mazur compactum. Also note
that by Theorem 5.3 (4), K2

+,e 3 K 7→ λ1,e(−LK) is continuous in the C2 topology.
Unfortunately, K2

+,e/GLn isn’t closed in either of these topologies, and is only a
dense subset of the Banach-Mazur compactum. In particular, we do not know how
to show from general functional-analytic arguments that the infimum in (5.8) is
strictly greater than 1, even though we have the individual estimate (5.7). However,
we will see in the next section that we can verify the validity of (4.15) without
resorting to compactness arguments for a concrete range of p < 1, which translates
into the following:

Theorem 5.12. There exists a constant c > 0 so that:

inf
K∈K2

+,e/GLn
λ1,e(−LK) ≥ n− pn

n− 1
> 1 where pn := 1− c

n3/2
.

This provides a positive answer to the qualitative question of whether there is a
uniform even spectral-gap for −LK beyond 1, and so the only remaining question is
the quantitative one – how big is it? By Corollary 5.11, the (local) log-BM conjecture
(p = 0 case) predicts it should be n

n−1 , an a-priori mysterious quantity. Better insight
is gained by inspecting several natural candidates K for being a minimizer in (5.8).
As with essentially all minimization problems over linearly invariant parameters in
Convexity Theory, there are three immediate suspects:

• K = Bn
2 , the Euclidean unit-ball. Recalling (5.4), we immediately see that

LBn2 = 1
n−1∆Sn−1 , where ∆Sn−1 is the Laplace-Beltrami operator on Sn−1.

The spectral decomposition of ∆Sn−1 is classical [57, 10], with k-th distinct
eigenvalue (k ≥ 0) equal to k(k + n − 2), corresponding to the eigenspace of
spherical harmonics of degree k. As expected, spherical harmonics of degree 0
are constant functions, of degree 1 are linear functions `v, and of degree 2 are
homogeneous quadratic harmonic polynomials (which are in particular even).
It follows that for −LBn2 :

λ0 = 0 , λ1 = . . . = λn =
n− 1

n− 1
= 1 , λ1,e = λn+1 =

2n

n− 1
,
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and we see that we get a much better even spectral-gap (corresponding to
p = −n in (5.8)) than the conjectured lower bound n

n−1 . So Bn
2 is not a

minimizer for (5.8).

Applying Proposition 3.9 (with p0 = −n and p = 0) and the invariance under
linear transformations, we obtain:

Theorem 5.13. λ1,e(−LBn2 ) = 2n
n−1 ; equivalently, the local (−n)-BM inequal-

ity (3.3) holds for Bn
2 . In particular, there exists a C2-neighborhood NBn2

of
Bn

2 in K2
+,e so that for all T ∈ GLn, for all K1,K0 ∈ T (NBn2

), the local log-BM
conjecture (3.4) holds for K0 and

V ((1− λ) ·K0 +0 λ ·K1) ≥ V (K0)1−λV (K1)λ ∀λ ∈ [0, 1].

This confirms Theorem 1.2 for q = 2 for all n ≥ 2.

• K = Bn
∞ = [−1, 1]n, the unit cube. Note that Bn

∞ is not smooth, so LBn∞ is
not well-defined. However, defining for any K ∈ Ke:

λ1,e(K) := lim inf
K2

+,e3Ki→K in C
λ1,e(−LKi), (5.9)

we obtain a lower semi-continuous function on the Banach–Mazur compactum
Ke/GLn, which must attain a minimum. By Theorem 5.12, this minimum is
strictly greater than 1. We will verify in Theorem 10.2 that:

λ1,e(B
n
∞) =

n

n− 1
.

Consequently, we have the following natural interpretation:

Proposition 5.14. The validity of the local log-BM conjecture (3.4) for all
K ∈ K2

+,e is equivalent to the validity of the conjecture that the cube K = Bn
∞

is a minimizer of the linearly invariant even spectral-gap λ1,e(K):

min
K∈Ke/GLn

λ1,e(K) = λ1,e(B
n
∞).

In our opinion, the latter conjecture is extremely natural, and constitutes the
best justification for believing that the local log-BM conjecture is true.

• K = Bn
1 , the unit-ball of `n1 . This might be the only natural potential counter-

example to the log-BM conjecture, and we presently do not know how to verify
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the conjecture for it. As before, Bn
1 is not smooth so LBn1 is not well-defined.

However, we will verify in Corollary 10.3 that:

λ1,uncond(K) ≥ n

n− 1
∀K ∈ Kuncond.

Here Kuncond, K2
+,uncond and Euncond denote the unconditional elements of

K, K2
+ and H2(Sn−1), respectively, meaning that they are invariant under

reflections with respect to the coordinate hyperplanes; for K ∈ K2
+,uncond we

define:
λ1,uncond(−LK) := minσ(−LK |Euncond∩1⊥),

and for K ∈ Kuncond we set:

λ1,uncond(K) := lim inf
K2

+,uncond3Ki→K in C
λ1,uncond(−LKi). (5.10)

In particular, we have λ1,uncond(Bn
1 ) ≥ n

n−1 , which is a good sign.

While the p-BM conjecture pertains to the minimization problem (5.8), it also
makes sense to consider the corresponding maximization problem. In view of the
above examples, we make the following:

Conjecture 5.15.

max
K∈K2

+,e/GLn
λ1,e(−LK) =

2n

n− 1
,

with equality for origin-symmetric ellipsoids K = T (Bn
2 ).

6 Obtaining Estimates via the Reilly Formula

We are finally ready to prove our main results in this work. These are based on an
integral formula obtained by twice integrating-by-parts the Bochner–Lichnerowicz–
Weitzenböck identity, which in the Riemannian setting is due to Reilly [48]. In the
description below, we specialize the Reilly formula to our Euclidean setting (see
[34, Theorem 1.1] for a proof of a more general version, which holds on weighted
Riemannian manifolds, and involves an additional curvature term).

We denote by ∇ the Euclidean connection, and by ∆ the Euclidean Laplacian.
We denote by

∥∥∇2u
∥∥ the Hilbert-Schmidt norm of the Euclidean Hessian ∇2u. If

Ω ⊂ Rn is a compact set with Lipschitz boundary, we denote by S0(Ω) the class of
functions u on Ω which are in C2(int(Ω))∩C1(Ω). We shall henceforth assume that
∂Ω is C2 smooth with outer normal ν = ν∂Ω, and denote by SN (Ω) the elements
in S0(Ω) which satisfy uν := 〈∇u, ν〉 ∈ C1(∂Ω). Let µ = exp(−V (x))dx denote
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a measure on Ω with V ∈ C2(Ω), and denote µ∂Ω = exp(−V (x))dHn−1|∂Ω(x).
Introduce the following weighted Laplacian, defined by:

Lµu := ∆u− 〈∇V,∇u〉 ∀u ∈ C2(int(Ω));

it satisfies the following weighted integration-by-parts property (see [34, Remark
2.2]): ∫

Ω
Lµu dµ =

∫
∂Ω
uνdµ∂Ω ∀u ∈ S0(Ω). (6.1)

As usual, we denote by II∂Ω the second fundamental form of ∂Ω ⊂ Rn, and define
its generalized mean curvature at x ∈ ∂Ω as:

H∂Ω,µ := tr(II∂Ω)− 〈∇V, ν〉 .

Finally, ∇∂Ω denotes the induced connection on ∂Ω.

Theorem (Generalized Reilly Formula). For any function u ∈ SN (Ω):∫
Ω

(Lµu)2dµ =

∫
Ω

∥∥∇2u
∥∥2
dµ+

∫
Ω

〈
∇2V ∇u,∇u

〉
dµ+∫

∂Ω
H∂Ω,µu

2
νdµ∂Ω +

∫
∂Ω
〈II∂Ω ∇∂Ωu,∇∂Ωu〉 dµ∂Ω − 2

∫
∂Ω
〈∇∂Ωuν ,∇∂Ωu〉 dµ∂Ω .

(6.2)

We will also use the following classical existence and regularity results for linear
elliptic PDEs (e.g. [23, Chapter 8], [40, Chapter 5], [36, Chapter 3]):

Theorem. Let f ∈ Cα(int(Ω)) for some α ∈ (0, 1), let Ψ ∈ C1(∂Ω), and assume
that: ∫

Ω
fdµ =

∫
∂Ω

Ψdµ∂Ω . (6.3)

Then there exists a function u ∈ C2,α
loc (int(Ω)) ∩ C1,β(Ω) for all β ∈ (0, 1), which

solves the following Poisson equation with Neumann boundary conditions:

Lµu = f in int(Ω) , uν = Ψ on ∂Ω. (6.4)

Moreover, u is unique up to an additive constant.

Note that in particular, the function u above is in SN (Ω). By (6.1), the com-
patibility condition (6.3) is also a necessary condition for solving (6.4).
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6.1 A sufficient condition for confirming the local p-BM inequality

We now derive a sufficient condition for confirming the local p-BM inequality (3.3)
in its equivalent infinitesimal form (4.16) on ∂K. Our motivation comes from our
previous work [31], where we obtained a new proof of the (local, and hence global)
Brunn–Minkowski inequality (p = 1 case), by verifying (4.16) directly (for all test
functions Ψ ∈ C1(∂K), without any evenness assumption). In fact, our proof in
[31] applies to a general weighted Riemannian manifold satisfying the Curvature-
Dimension condition CD(0, N), yielding a novel interpretation of Minkowski addi-
tion in the Riemannian setting.

Given K ∈ K2
+,e, let µ denote the Lebesgue measure dx on Ω = K (corresponding

to V = 0, Lµ = ∆ and H∂K,µ = H∂K above). Given Ψ ∈ C1
e (∂K) with

∫
∂K Ψdx = 0,

the classical L2-method consists of solving for u ∈ SN (K) the Laplace equation:

∆u = 0 in int(K) , uν = Ψ on ∂K,

(which clearly satisfies the necessary and sufficient compatibility condition (6.3)).
The origin-symmetry of K and evenness of Ψ guarantee that u(−x) is also a solution,
and so by uniqueness of the solution it follows that u is necessarily even; we denote
by SN,e(K) the even elements of SN (K) (and similarly for S0,e(K)). We see that the
above procedure yields a bijection between Ψ ∈ C1

e (∂K) and harmonic u ∈ SN,e(K),
characterized by the property that uν = Ψ.

Now, applying the Reilly formula (6.2) to u, using that ∆u = 0, and plugging
in the resulting expression for

∫
∂K H∂Ku

2
νdx into (4.16), we obtain:

Theorem 6.1. Given K ∈ K2
+,e and p < 1, the local p-BM conjecture (3.3) for K

is equivalent to the assertion that:

∀u ∈ SN,e(K) ∆u = 0 in int(K) ⇒
∫
K

∥∥∇2u
∥∥2
dx ≥ (1−p)

∫
∂K

u2
ν(x)

〈x, ν∂K(x)〉
dx−RK(u),

where:

RK(u) :=

∫
∂K
〈II∂K∇∂Ku,∇∂Ku〉 dx+

∫
∂K

〈
II−1
∂K∇∂Kuν ,∇∂Kuν

〉
dx−2

∫
∂K
〈∇∂Kuν ,∇∂Ku〉 dx.

In particular, as RK(u) ≥ 0 by Cauchy–Schwarz (since II∂K > 0), a sufficient
condition for the local p-BM conjecture to hold for K is that:

∀u ∈ S0,e(K) ∆u = 0 in int(K) ⇒
∫
K

∥∥∇2u
∥∥2
dx ≥ (1− p)

∫
∂K

u2
ν(x)

〈x, ν∂K(x)〉
dx.
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Remark 6.2. For future reference, we mention the following alternative expression
for RK(u) when u ∈ C2(K):

RK(u) =

∫
∂K

〈
II−1
∂KPT∂K

[
∇2u · ν

]
, PT∂K

[
∇2u · ν

]〉
dx,

where PT∂K denotes projection to the tangent space to ∂K. Indeed, this follows by
plugging above:

∇∂Kuν = ∇∂K 〈∇u, ν〉 = II∂K∇∂Ku+ PT∂K
[
∇2u · ν

]
.

The sufficient condition of Theorem 6.1 naturally leads us to the following:

Definition (BH(K) and B(K)). Given K ∈ Ke, let BH(K) denote the best constant
B in the following boundary Poincaré-type inequality for harmonic functions:

∀u ∈ S0,e(K) ∆u = 0 in int(K) ⇒
∫
∂K

u2
ν(x)

〈x, ν∂K(x)〉
dx ≤ B

∫
K

∥∥∇2u
∥∥2
dx.

Without the requirement that ∆u = 0, the above inequality is called a boundary
Poincaré-type inequality, and the best constant B above is denoted by B(K).

Note that all expressions above are well-defined without any smoothness or strict
convexity assumptions on ∂K, since ν∂K(x) exists for Hn−1-a.e. x ∈ ∂K. We also
take this opportunity to introduce:

Definition (D(K)). Given K ∈ K, let D(K) denote the best constant in the fol-
lowing absolute boundary Poincaré-type inequality:

∀u ∈ S0(K)

∫
K

~∇u dx = ~0 ⇒
∫
∂K

|∇u(x)|2

〈x, ν∂K(x)〉
dx ≤ D(K)

∫
K

∥∥∇2u
∥∥2
dx.

Note that the evenness assumption on u from the former definitions has been re-
placed by a balancing condition in the latter one, and that the u2

ν term has been
replaced by (the possibly larger) |∇u|2 one. Since ∇u is odd for any even function
u, and hence integrates to zero on any origin-symmetric K, it immediately follows
that:

BH(K) ≤ B(K) ≤ D(K) ∀K ∈ Ke.

We will soon see that D(K) <∞ for all K ∈ K, so the above definitions are non-
trivial. It is easy to see that the constants BH(K), B(K) and D(K) are invariant
under homothety K 7→ λK. However, they are no longer invariant under general
linear transformations as in Section 5. This can be seen from the following:
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Example 6.3. For a 2-dimensional cube K = [−a, a]×[−b, b], BH(K) ≥ 1
6

(
b2

a2
+ a2

b2

)
,

as witnessed by the even harmonic function u = x1x2. Consequently, BH(K), B(K), D(K)→
∞ as the aspect-ratio of K grows to infinity, demonstrating the absence of invariance
under GLn.

Consequently, while the validity of the first condition of Theorem 6.1 is invari-
ant under GLn (being equivalent to the local p-BM conjecture), the validity of the
second sufficient condition is not, and requires putting K in a “good position”, i.e.
a suitable linear image. This is due to application of the Cauchy–Schwarz inequal-
ity when transitioning from the first formulation to the second, which identifies
between tangent and cotangent spaces, and thus destroys the natural covariance–
contravariance enjoyed by the first formulation. We summarize all of the relevant
information we have obtained thus far in the following:

Theorem 6.4. Given K ∈ K2
+,e, assume that BH(T0(K)) ≤ 1

1−p for some p < 1 and
T0 ∈ GLn. Then the local p-BM conjecture (3.3) holds for T (K) for all T ∈ GLn.

In the notation of Section 5, we equivalently have:

Theorem 6.5. For all K ∈ K2
+,e, λ1,e(−LK) ≥ 1 + supT∈GLn

1
(n−1)BH(T (K)) .

Proof. This follows immediate from Corollary 5.4, which asserts that λ1,e(−LK) ≥
n−p
n−1 if and only if the local p-BM conjecture (3.3) holds for K, and the sufficient
condition for its validity for T (K) given by Theorem 6.4.

6.2 General Estimate on D(K)

Unfortunately, getting a handle on BH(K) or B(K) directly is quite a formidable
task, and it is easier to upper bound the larger D(K) constant. Recall that the
Poincaré constant CPoin(K) is defined as the best constant in the following inequal-
ity:

∀f ∈ C1(int(K))

∫
K
f(x)dx = 0 ⇒

∫
K
f2(x)dx ≤ C2

Poin(K)

∫
K
|∇f |2 dx.

Equivalently, 1/C2
Poin(K) is the first positive eigenvalue of the Neumann Laplacian

on K.

Theorem 6.6. Let K ∈ K and assume that rBn
2 ⊂ K ⊂ RBn

2 . Then:

D(K) ≤ 1

r2

(
C2
Poin(K)n+ 2CPoin(K)R

)
.
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Proof. Let u ∈ S0(K) be such that
∫
K
~∇u dx = ~0. Applying Cauchy-Schwarz, we

have for any λ > 0:

div(|∇u|2 x) = n |∇u|2 + 2
〈
∇2u · ∇u, x

〉
≤ n |∇u|2 + λ

∥∥∇2u
∥∥2

+
1

λ
|∇u|2 |x|2 .

Using the assumption that 〈x, ν∂K(x)〉 = hK(ν∂K(x)) ≥ r, integrating by parts, and
finally that K ⊂ RBn

2 , we obtain:∫
∂K

|∇u|2

〈x, ν∂K(x)〉
dx ≤ 1

r2

∫
∂K
|∇u|2 〈x, ν∂K(x)〉 dx =

1

r2

∫
K

div(|∇u|2 x)dx

≤
(
n

r2
+
R2

r2

1

λ

)∫
K
|∇u|2 dx+

λ

r2

∫
K

∥∥∇2u
∥∥2
dx.

Since
∫
K uidx = 0 for all i = 1, . . . , n, by applying the Poincaré inequality to ui and

summing the resulting inequalities, we obtain:∫
K
|∇u|2 dx ≤ C2

Poin(K)

∫
K

∥∥∇2u
∥∥2
dx.

It follows that for all λ > 0:∫
∂K

|∇u|2

〈x, ν∂K(x)〉
dx ≤

((
n

r2
+
R2

r2

1

λ

)
C2
Poin(K) +

λ

r2

)∫
K

∥∥∇2u
∥∥2

HS
dx.

Using the optimal λ = CPoin(K)R and recalling the definition of D(K), the assertion
is established.

Corollary 6.7. For all K ∈ K, D(K) <∞.

Proof. Any K ∈ K satisfies rB2 ⊂ K ⊂ RBn
2 with some r,R > 0. By a well-known

theorem of Payne–Weinberger [47], for any K ∈ K we have CPoin(K) ≤ D
π where D

is the diameter of K. As D ≤ 2R, the assertion follows by Theorem 6.6.

In order to apply Theorem 6.4, we would like to apply our estimate for D(K) in
a good position of K ∈ K. Recall that the isotropic position is defined as an affine
image of K ∈ K having barycenter at the origin and for which:∫

K
〈x, θ〉2 dx = |θ|2 ∀θ ∈ Sn−1.

It is well known [46] that such a position always exists and is unique up to orthogonal
transformations. In this position, we have the following (sharp) estimates on the in
and out radii of K [29]: √

n+ 2

n
Bn

2 ⊂ K ⊂
√

(n+ 2)nBn
2 .
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As for the Poincaré constant in isotropic position, a bold conjecture of Kannan,
Lovász and Simonovits [29] predicts that CPoin(K) ≤ C for some universal numeric
constant C > 1, independent of the dimension n. The current best known estimate
on the KLS conjecture has recently been improved by Lee and Vempala [39], who
showed that:

CPoin(K) ≤ C ′ 4
√
n (6.5)

for all isotropic K ∈ K. We immediately deduce from Theorem 6.6 the following:

Corollary 6.8. There exists a universal numeric constant C > 1, independent of the
dimension n, so that for all K ∈ K in isotropic position, D(K) ≤ Cn3/2. Assuming
a positive answer to the KLS conjecture, the latter estimate may be improved to
D(K) ≤ Cn.

Since any K ∈ Ke has a linear isotropic image and satisfies BH(K) ≤ D(K),
Theorem 6.4 in conjunction with Corollary 6.8 and Lemma 3.5 immediately yield
Theorem 1.1, which we re-state as follows:

Theorem 6.9. The local p-BM conjecture (3.3) holds for all K ∈ K2
+,e and p ∈

[1 − 1
Cn3/2 , 1). Equivalently, for all p in this range, for all K0,K1 ∈ K2

+,e so that

(1− λ) ·K0 +p λ ·K1 ∈ K2
+,e for all λ ∈ [0, 1], we have:

V ((1− λ) ·K0 +p λ ·K1) ≥
(

(1− λ)V (K0)
p
n + λV (K1)

p
n

)n
p ∀λ ∈ [0, 1].

6.3 Examples

Of course, using the known estimates on CPoin(K) which improve over the general
(6.5) for various classes of convex bodies K (see e.g. [30, 3, 28, 32, 33]), one may
obtain an improved estimate for p above. It will be instructive in this work to
concentrate on the unit-balls of `nq , denoted Bn

q .

Theorem 6.10 (Sodin, Lata la–Wojtaszczyk). For all q ∈ [1,∞], CPoin(Bn
q ) is of

the order of n
− 1
q .

Proof. It was shown by S. Sodin [53] for q ∈ [1, 2] and by R. Lata la and J. Wo-
jtaszczyk [37] for q ∈ [2,∞] that if λnqB

n
q has volume 1 then λnqCPoin(Bn

q ) =
CPoin(λnqB

n
q ) is of the order of 1. An easy and well-known computation verifies

that λnq is of the order of n1/q, yielding the claim.

Lemma 6.11. For any K ∈ Ke, D(K) ≥ B(K) ≥ 1.
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Proof. Testing the even function u(x) = |x|2
2 , note that:∫

∂K

u2
ν

〈x, ν∂K(x)〉
dx =

∫
∂K
〈x, ν∂K(x)〉 dx =

∫
K

div(x)dx = nV (K) =

∫
K

∥∥∇2u
∥∥2
dx.

It follows by definition that D(K) ≥ B(K) ≥ 1.

Lemma 6.12. For any q ∈ [1, 2], 1 ≤ D(Bn
q ) ≤ C. For any q ∈ [2,∞], D(Bn

q ) ≤
Cn

1− 2
q .

Proof. The lower estimate is given by the previous lemma. The upper bound follows
from the general estimate of Theorem 6.6 in combination with Theorem 6.10 and the

obvious estimates rBn
2 ⊂ Bn

q ⊂ RBn
2 with r = n

min(0, 1
2
− 1
q

)
and R = n

max(0, 1
2
− 1
q

)
.

For the cube Bn
∞, we can obtain rather tightly matching lower and upper esti-

mates.

Lemma 6.13. 1
3n ≤ D(Bn

∞) ≤ 4
π2n+ 4

π

√
n.

Proof. The upper bound follows from the general estimate of Theorem 6.6, using
Bn

2 ⊂ Bn
∞ ⊂

√
nBn

2 and C2
Poin(Bn

∞) = 4
π2 [38]. For the lower bound, consider the

function u(x) = x2
1/2 ∈ S0,e(B

n
∞), for which u1(x) = x1 and ui(x) = 0 for all

i = 2, . . . , n. Calculating the contribution on each boundary facet, we have:∫
∂Bn∞

|∇u|2

〈x, ν〉
dx = 2 · 2n−1 + 2(n− 1)2n−2

∫ 1

−1
x2

1dx1,

and clearly: ∫
Bn∞

∥∥∇2u
∥∥2
dx = 2n.

Taking the quotient of these two expressions, we see that D(Bn
∞) ≥ 1+(n−1)/3.

Remark 6.14. Is not hard to improve the constant 1
3 in Lemma 6.13 to 3

8 by using
a function u(x) = u(x1) so that u1(x1) = x1/ε ∨ −1 ∧+1 for an appropriate ε > 0.
In addition, we see that the conjectural estimate D(K) ≤ Cn for isotropic K, which
by Corollary 6.8 would follow from a positive answer to the KLS conjecture, is best
possible (up to the value of the constant C).

The above examples demonstrate that the general estimate given by Theorem
6.6 is in fact fairly accurate in a variety of situations, and so in order to make further
progress on the local p-BM conjecture, it is best to work with the BH(K) or B(K)
constants. Indeed, we will see in the next sections that BH(Bn

2 ) = 2
n+2 < 1 and
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BH(Bn
∞) = 1, which are better by an order of n from the corresponding values of

D(Bn
2 ), D(Bn

∞) estimated above. Furthermore, we will see that when q ∈ (2,∞),
for n ≥ nq large enough, BH(Bn

q ) < 1. In view of these results and examples, we
make the following:

Conjecture 6.15. For all K ∈ Ke, there exists T0 ∈ GLn so that BH(T0(K)) ≤ 1.

By Theorem 6.4, a positive answer to the latter conjecture will imply a positive
answer to the local log-BM conjecture.

7 The second Steklov operator and BH(B
n
2 )

In this section, we obtain an operator-theoretic interpretation of the inequality:

∀u ∈ S0,e(K) ∆u = 0 in int(K) ⇒
∫
∂K

u2
ν

〈x, ν∂K(x)〉
dx ≤ BH(K)

∫
K

∥∥∇2u
∥∥2
dx,

(7.1)
which we will use for calculating BH(Bn

2 ). It is related to the classical Steklov (or
Dirichlet-to-Neumann) 1st order elliptic pseudo-differential operator S [2, 24].

7.1 Second Steklov operator

Let us assume for simplicity that ∂K is C∞ smooth, and denote by C∞0 (∂K) the
subspace of smooth functions integrating to zero on ∂K. The Neumann-to-Dirichlet
operator D, which is the inverse of S on C∞0 (∂K), is the linear operator defined by:

D : C∞0 (∂K) 3 Ψ 7→ u|∂K ∈ C∞(∂K),

where u = uΨ ∈ C∞(K) solves:

∆u = 0 in K , uν = Ψ on ∂K.

In fact, D may be extended to a compact operator [2] on:

L2
0(∂K) :=

{
Ψ ∈ L2(dx|∂K);

∫
∂K

Ψdx = 0

}
,

(and moreover to the Sobolev space H
−1/2
0 (∂K), but we will not require this here).

Note that D is self-adjoint and positive semi-definite on L2
0(∂K), since for all

Ψ,Φ ∈ C∞0 (∂K), denoting v = uΨ and w = uΦ, we have (integrating by parts and
using that ∆w = 0):∫

∂K
(DΨ)Φdx =

∫
∂K

vwνdx =

∫
K

div(v∇w)dx =

∫
K
〈∇v,∇w〉 dx.
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By analogy, we introduce the second Steklov operator S2, by requiring that:∫
∂K

(S2Ψ)Φdx =

∫
K

〈
∇2v,∇2w

〉
dx. (7.2)

Indeed, on C∞0 (∂K), S2Ψ has the following explicit description:

S2Ψ := −∆∂K(DΨ)−D(∆∂KΨ)−H∂KΨ +D∇∂K · II∂K∇∂KDΨ,

where of course ∇∂K · denotes the divergence operator on ∂K. To see this, denote
v = uΨ (so that vν = Ψ), integrate by parts on ∂K, use the self-adjointness of D,
and finally apply the Reilly formula (6.2), to obtain:∫
∂K

(S2Ψ)Ψdx

= −
∫
∂K
〈∆∂Kv, vν〉 dx−

∫
∂K
〈D∆∂Kvν , vν〉 −

∫
∂K

H∂Kv
2
νdx+

∫
∂K

(D∇∂K · II∂K∇∂Kv)vνdx

= 2

∫
∂K
〈∇∂Kv,∇∂Kvν〉 −

∫
∂K

H∂Kv
2
νdx−

∫
∂K
〈II∂K∇∂Kv,∇∂Kv〉 dx =

∫
K

∥∥∇2v
∥∥2
dx,

and so (7.2) follows by polarization. In particular, (7.2) implies that S2 is symmetric
and positive semi-definite on L2

0(∂K), and hence admits a Friedrichs self-adjoint
extension. Note that as S is of order 1, D is of order −1, and hence S2 is also of
order 1, like S, explaining our nomenclature.

Recalling (7.1), we see that BH(K) for K ∈ K∞e is the best constant in the
following inequality for the second Steklov operator:

∀Ψ ∈ C∞0,e(∂K)

∫
∂K

(S2Ψ)Ψdx ≥ 1

BH(K)

∫
∂K

Ψ2

〈x, ν∂K(x)〉
dx.

In this sense, we can think of the sufficient condition of Theorem 6.1 as a 1st
order relaxation (via the second Steklov operator) of the original 2nd order spectral
problem (for the Hilbert–Brunn–Minkowski operator).

7.2 Computing BH(B
n
2 )

When K = Bn
2 , BH(Bn

2 ) is the best constant in:

∀Ψ ∈ C∞0,e(Sn−1)

∫
Sn−1

(S2Ψ)Ψdθ ≥ 1

BH(Bn
2 )

∫
Sn−1

Ψ2dθ,

and so BH(Bn
2 ) is the reciprocal of the first eigenvalue of S2 corresponding to an

even eigenfunction in C∞0 (Sn−1). As HSn−1 ≡ n − 1 and IISn−1 = δSn−1 , we see
that:

S2 = −∆Sn−1D −D∆Sn−1 − (n− 1)Id +D∆Sn−1D. (7.3)
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As both operators ∆Sn−1 and D clearly intertwine the natural action of SO(n) on
L2

0(∂K), so does S2. It follows by Schur’s lemma [57] that the eigenspaces of S2

are given by Hk, the subspace of degree k spherical harmonics on Sn−1, for k ≥ 1
(k = 0 is excluded since we are in C∞0 (Sn−1)). For h ∈ Hk it is well known [57, 10]
that −∆Sn−1h = k(k+n−2)h. In addition, h is already the restriction to Sn−1 of a
harmonic homogeneous polynomial of degree k on Bn

2 , which we continue to denote
by h; it follows by Euler’s identity that hν = kh, and so by definition Dh = 1

kh.
Consequently, (7.3) yields a complete description of the spectral decomposition of
S2:

S2|Hk =

(
2
k(k + n− 2)

k
− (n− 1)− k(k + n− 2)

k2

)
Id|Hk .

It follows that the first even eigenfunction of S2 lies in H2 (quadratic harmonic
polynomials), with corresponding eigenvalue 1 + n

2 . We thus obtain:

Theorem 7.1. BH(Bn
2 ) = 2

n+2 < 1.

By Theorem 6.4, this corresponds to sufficient condition for confirming the local
p-BM conjecture with p = −n

2 . Note that this is worse by a factor of 2 than the
equivalent characterization from Subsection 5.3 using λ1,e(−LBn2 ) = 2n

n−1 , which
corresponds to p = −n. This means that the Cauchy-Schwarz inequality we have
employed in Theorem 6.1 is indeed wasteful for Bn

2 , but still we obtain a good
enough condition to reaffirm the local log-BM conjecture (case p = 0) for Bn

2 (and
its C2-perturbations), as BH(Bn

2 ) < 1.

8 Unconditional Convex Bodies and the Cube

It is also a challenging task to compute B(K) even for some concrete convex bodies.
In this section, we precisely compute the variant Buncond(K), when only testing
unconditional functions on an unconditional convex body K. In the case of the
cube Bn

∞, we also manage to precisely compute B(Bn
∞) and consequently BH(Bn

∞),
in precise agreement with the worst-possible predicted value by the local log-BM
conjecture.

8.1 Unconditional Convex Bodies

Let Kuncond denote the class of unconditional convex bodies, namely convex bodies
which are invariant under reflections with respect to the coordinate hyperplanes
{xi = 0}, i = 1, . . . , n. We denote by u ∈ S0,uncond(K) the elements of S0(K) which
are invariant under the aforementioned reflections.
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Definition (Buncond(K)). Given K ∈ Kuncond, let Buncond(K) denote the best con-
stant in the following boundary Poincaré-type inequality for unconditional func-
tions:

∀u ∈ S0,uncond(K)

∫
∂K

u2
ν(x)

〈x, ν∂K(x)〉
dx ≤ Buncond(K)

∫
K

∥∥∇2u
∥∥2
dx.

Observe that Buncond(K) ≥ 1, by testing the unconditional function u(x) = |x|2
2

as in Lemma 6.11. Note that when K ∈ Kuncond, it is easy to see that νixi ≥ 0 for all
i = 1, . . . , n and Hn−1-a.e. x ∈ ∂K. The Cauchy–Schwarz inequality immediately
yields:

Lemma 8.1. For all K ∈ Kuncond and u ∈ C1(K), we have for Hn−1-a.e. x ∈ ∂K:

u2
ν

〈x, ν〉
=

(
∑n

i=1 uiνi)
2∑n

i=1 xiνi
≤

n∑
i=1

u2
i

xi
νi.

We also have the following lemma, inspired by the method in our previous work
[32]:

Lemma 8.2. For any K ∈ K, u ∈ S0(K) and i = 1, . . . , n so that ui ≡ 0 on
K ∩ {xi = 0}, we have:∫

∂K

u2
i

xi
νi =

∫
K

(
2
ui
xi
uii −

u2
i

x2
i

)
dx ≤

∫
K
u2
iidx.

Proof. The first identity follows by integration-by-parts on K+ := K ∩ {xi ≥ 0}
and K− := K ∩ {x0 ≤ 0} separately. The assumption that ui ≡ 0 on K ∩ {xi = 0}
and u ∈ S0(K) are crucial here, to ensure that limx→x0

ui(x)
xi

= uii(x
0) if x0 ∈

int(K) ∩ {xi = 0}. Defining:

ξ(x) :=

{
u2i
xi
ei K ∩ {xi > 0}

0 K ∩ {xi = 0}
,

it follows that the vector field ξ is in C1(int(K+)) ∩ C(K+), and hence integrating
by parts: ∫

∂K∩{xi≥0}
〈ξ, ν∂K〉 dx =

∫
∂K+

〈
ξ, ν∂K+

〉
dx =

∫
K+

div(ξ)dx.

Repeating the argument for K− and summing, the first equality follows. The second
inequality follows by applying the Cauchy–Schwarz (Geometric–Arithmetic mean)
inequality 2ab ≤ a2 + b2.
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Applying the previous two lemmas and summing over i = 1, . . . , n, we deduce:

Theorem 8.3. Let K ∈ Kuncond. Then for all u ∈ S0(K) such that ui ≡ 0 on
K ∩ {xi = 0} for all i = 1, . . . , n, we have:∫

∂K

u2
ν

〈x, ν〉
dx ≤

∫
K

n∑
i=1

u2
iidx ≤

∫
K

∥∥∇2u
∥∥2
dx. (8.1)

In particular, this holds for all u ∈ S0,uncond(K), and therefore Buncond(K) = 1.

Remark 8.4. Note that the latter theorem does not follow from Saroglou’s global
affirmation of the log-BM conjecture for unconditional convex bodies [50]. When
K,L ∈ Kuncond, all relevant test functions Ψ on ∂K (and thus the harmonic u on
K) for the local log-BM conjecture will indeed be unconditional. However, Theorem
8.3 confirms the stronger sufficient condition given in Theorem 6.4, and moreover,
without the requirement that u be harmonic.

8.2 The Cube

In the case of the cube, we can use the off-diagonal elements of D2u to control the
non-unconditional part of a general test function u:

Theorem 8.5. BH(Bn
∞) = B(Bn

∞) = 1.

Proof. To show that B(Bn
∞) ≤ 1, we need to show for all u ∈ S0,e(B

n
∞) that:∫

∂Bn∞

u2
νdx ≤

∫
Bn∞

∥∥∇2u
∥∥2
dx.

To this end, it is enough to establish for all i = 1, . . . , n that:∫
∂Bn∞

u2
i |νi| dx ≤

∫
Bn∞

|∇ui|2 dx. (8.2)

Without loss of generality, we may assume that i = 1. For x = (x1, . . . , xn) ∈ Rn,
set y = (x2, . . . , xn), and write u = u+ + u−, where u+ is even w.r.t. both x1

and y (u+(−x1, y) = u+(x1,−y) = u+(x1, y)) and u− is odd w.r.t. both x1 and y
(u−(−x1, y) = u−(x1,−y) = −u−(x1, y), namely:

u+(x) :=
1

2
(u(x1, y) + u(x1,−y)) , u−(x) :=

1

2
(u(x1, y)− u(x1,−y))

(recall that u was assumed even). It is enough to verify (8.2) for u+ and u− sepa-
rately, since it is easy to see that the behavior under reflections and the uncondition-
ality of the cube guarantee that

∫
∂Bn∞

u+
1 u
−
1 |ν1| dx = 0 and

∫
Bn∞

〈
∇u+

1 ,∇u
−
1

〉
dx = 0.

51



Note that u+
1 is odd w.r.t. x1 and hence u+

1 ≡ 0 on Bn
∞ ∩ {x1 = 0}. It follows

by Lemma 8.2 that:∫
∂Bn∞

(u+
1 )2 |ν1| dx =

∫
∂Bn∞

(u+
1 )2

x1
ν1dx ≤

∫
Bn∞

(u+
11)2dx ≤

∫
Bn∞

∣∣∇u+
1

∣∣2 dx.
As for u−1 , which is even w.r.t. x1, write:

(u−1 )2(1, y) =

∫ 1

0

∂

∂x1
(x1(u−1 )2(x1, y))dx1 =

∫ 1

0
(2x1u

−
1 (x1, y)u−11(x1, y)+(u−1 )2(x1, y))dx1.

Using the evenness of the above integrand in x1, we obtain:∫
∂Bn∞

(u−1 )2 |ν1| dx =

∫
Bn−1
∞

∫ 1

−1
(2x1u

−
1 (x1, y)u−11(x1, y) + (u−1 )2(x1, y))dx1dy

≤
∫
Bn∞

(x2
1(u−11)2(x) + 2(u−1 )2(x))dx, (8.3)

where the last inequality follows by completing the square. The first term on the
right is trivially controlled by:∫

Bn∞

x2
1(u−11)2(x)dx ≤

∫
Bn∞

(u−11)2(x)dx.

For the second term, note the u−1 (x1, y) is odd w.r.t. y, and hence integrates to
zero on each (n− 1)-dimensional slice Bt := Bn

∞ ∩ {x1 = t}. Applying the Poincaré
inequality on Bt, and recalling the well known fact [38] that C2

Poin(Bk
∞) = 4

π2 for
any k ≥ 1, it follows that:

2

∫
Bn∞

(u−1 )2(x)dx = 2

∫ 1

−1

∫
Bx1

(u−1 )2(x1, y)dydx1 ≤
8

π2

∫ 1

−1

∫
Bx1

∣∣∇yu−1 ∣∣2 dydx1.

Since 8
π2 < 1, combining the contributions of the above two terms to (8.3), we

obtain: ∫
∂Bn∞

(u−1 )2 |ν1| dx ≤
∫
Bn∞

∣∣∇u−1 ∣∣2 dx,
as required.

This concludes the proof thatB(Bn
∞) ≤ 1. Consequently, we also haveBH(Bn

∞) ≤
1. It remains to note that the constant 1 is sharp in both cases, as witnessed by the

even harmonic function u(x) =
x21
2 −

x22
2 , and therefore BH(Bn

∞) = B(Bn
∞) = 1.

Remark 8.6. Note that the value BH(Bn
∞) = 1 is in precise accordance with the

threshold required in Theorem 6.4 for confirming the local log-BM conjecture in the
case of smooth bodies in K2

+,e. In this formal sense, the cube can be thought as
satisfying the local log-BM conjecture. We will give this a more rigorous sense in
Section 10.
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9 Local log-Brunn–Minkowski via the Reilly Formula

In this section, we apply the generalized Reilly formula to a measure on K with
log-convex (not log-concave!) density, specifically constructed for verifying the local
log-BM conjecture for certain classes of convex bodies.

9.1 Sufficient condition for verifying local log-Brunn–Minkowski

Recall by Proposition 4.6 and Remark 4.7 that the validity of the local log-BM
conjecture (3.4) for K ∈ K2

+,e is equivalent to the validity of the following assertion:

∀Ψ ∈ C1
e (∂K)

∫
∂K

Ψ(x)dx = 0 ⇒∫
∂K

〈
II−1
∂K∇∂KΨ,∇∂KΨ

〉
dx ≥

∫
∂K

H∂K(x)Ψ2(x)dx+

∫
∂K

Ψ2(x)

〈x, ν∂K(x)〉
dx. (9.1)

GivenK ∈ Ke, the associated norm ‖·‖K is defined by ‖x‖K = min {t > 0;x ∈ tK}.
Let w : [0, 1]→ R denote a C2 function with w′(0) = 0 and w′(1) = 1.

W (x) := w(‖x‖K) , µ := exp(W (x))dx|K .

Note that w cannot be concave, and typically will be chosen to be convex, so that
µ is log-convex (and not log-concave). Assuming K ∈ K2

+,e and abbreviating ‖x‖ =
‖x‖K and ν = ν∂K , observe that on ∂K:

〈∇W, ν〉 = w′(1) 〈∇ ‖x‖ , ν〉 = |∇ ‖x‖| = ‖x‖
〈x, ν〉

=
1

〈x, ν〉
,

and hence:

H∂K,µ = H∂K + 〈∇W, ν〉 = H∂K +
1

〈x, ν〉
.

Also note that:
dµ∂K = ew(1)dHn−1|∂K .

Given Ψ ∈ C1
e (∂K) with

∫
∂K Ψdx = 0, since also

∫
∂K Ψdµ∂K = 0, we may solve

for u ∈ SN,e(K) the Laplace equation:

Lµu = 0 in int(K) , uν = Ψ on ∂K. (9.2)

Applying the Reilly formula to u on K equipped with the measure µ, we have:

0 =

∫
K

(Lµu)2dµ =

∫
K

∥∥∇2u
∥∥2
dµ−

∫
K

〈
∇2W ∇u,∇u

〉
dµ+

ew(1)

(∫
∂K

(
H∂K +

1

〈x, ν〉

)
u2
νdx+

∫
∂K
〈II∂K ∇∂Ku,∇∂Ku〉 dx− 2

∫
∂K
〈∇∂Kuν ,∇∂Ku〉 dx

)
.

(9.3)
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Using II∂K > 0 and applying the Cauchy–Schwarz inequality as in Theorem 6.1, we
deduce (recalling that uν = Ψ):∫

K

〈
∇2W∇u,∇u

〉
eWdx ≥

∫
K

∥∥∇2u
∥∥2
eWdx (9.4)

+ ew(1)

(∫
∂K

(
H∂K +

1

〈x, ν〉

)
Ψ2dx−

∫
∂K

〈
II−1
∂K∇∂KΨ,∇∂KΨ

〉
dx

)
.

Comparing this with our desired inequality (9.1), we deduce:

Theorem 9.1. Let w : [0, 1]→ R denote a C2 function with w′(0) = 0 and w′(1) =
1. Given K ∈ K2

+,e denote W (x) = w(‖x‖K), and assume that:

∀u ∈ SN,e(K) ∆u+〈∇W,∇u〉 = 0 in int(K) ⇒
∫
K

〈
∇2W∇u,∇u

〉
eWdx ≤

∫
K

∥∥∇2u
∥∥2
eWdx.

Then the local log-BM conjecture (3.4) holds for T (K) for all T ∈ GLn.

As usual, the application of the Cauchy–Schwarz inequality destroyed the linear
invariance of the validity of the above sufficient condition, in contrast with the
invariance of the local log-BM conjecture.

Remark 9.2. Observe that when w is convex, the sufficient condition in Theorem
9.1 is some sort of dual log-convex formulation of the classical Brascamp–Lieb in-
equality [8] (which in itself is known to be equivalent to the Prékopa–Leindler, and
hence Brunn–Minkowski, inequality).

We can also obtain the following version of Theorem 9.1 for perturbations:

Theorem 9.3. With the same assumptions as in Theorem 9.1, assume in addition
the existence of ε > 0 so that:

∀u ∈ SN,e(K) ∆u+ 〈∇W,∇u〉 = 0 in int(K) ⇒∫
K

〈
∇2W∇u,∇u

〉
eWdx ≤ (1− ε)

∫
K

∥∥∇2u
∥∥2
eWdx. (9.5)

Then there exists a C2 neighborhood NK of K in K2
+,e, so that the local log-BM

conjecture (3.4) holds for T (K ′) for all K ′ ∈ NK and T ∈ GLn. Equivalently, for
all T ∈ GLn and K1,K0 ∈ T (NK):

V ((1− λ) ·K0 +0 λ ·K1) ≥ V (K0)1−λV (K1)λ ∀λ ∈ [0, 1].
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Proof. Plugging (9.5) into (9.4), we obtain for all Ψ ∈ C1
e (∂K) with

∫
∂K Ψdx = 0:∫

∂K

(
H∂K +

1

〈x, ν〉

)
Ψ2dx−

∫
∂K

〈
II−1
∂K∇∂KΨ,∇∂KΨ

〉
dx ≤ −δ

∫
K

∥∥∇2u
∥∥2
dx

(9.6)
with δ = εeminw−w(1), where u solves (9.2). By definition:∫

K

∥∥∇2u
∥∥2
dx ≥ 1

B(K)

∫
∂K

u2
ν

〈x, ν〉
dx ∀u ∈ S0,e(K),

and by Theorem 6.6, B(K) ≤ D(K) < ∞. Consequently, we deduce from (9.6)
that:∫

K

〈
II−1
∂K∇∂KΨ,∇∂KΨ

〉
dx ≥

∫
∂K

H∂KΨ2dx+

(
1 +

δ

D(K)

)∫
∂K

Ψ2

〈x, ν〉
dx.

In other words, (4.16) holds with pK := − δ
D(K) , and so the local pK-BM conjecture

(3.3) holds for K. The assertion then follows by Proposition 3.9 (with p0 = pK < 0
and p = 0) and the invariance under linear images.

Corollary 9.4. The assumption and hence conclusion of Theorem 9.3 hold if:

QK,w := max
x∈K

∥∥∇2W (x)
∥∥
op
emaxw−minwC2

Poin(K) < 1.

Proof. For any u ∈ SN,e(Bn
q ):∫

K

〈
∇2W∇u,∇u

〉
eWdx ≤ max

x∈K

∥∥∇2W (x)
∥∥
op
emaxw

∫
K

n∑
i=1

u2
i (x)dx.

Since u is even, ui is odd, and hence integrates to zero on K. Applying the Poincaré
inequality on K for each ui and summing, we obtain:∫
K

〈
∇2W∇u,∇u

〉
eWdx ≤ max

x∈K

∥∥∇2W (x)
∥∥
op
emaxw−minwC2

Poin(K)

∫
K

∥∥∇2u
∥∥2
eWdx.

The assertion follows from Theorem 9.3.

9.2 An alternative derivation via estimating BH(K)

The approach of the previous subsection has the advantage of uncovering a certain
duality between the sufficient condition of Theorem 9.1 and the Brascamp–Lieb
inequality (see Remark 9.2). In this subsection, we provide an alternative simpler
derivation of an estimate very similar to that of Corollary 9.4, which is devoid of
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the former insight. On the other hand, it has the advantage of providing an upper
estimate on BH(K), so that even when the latter is strictly larger than 1, Theorem
6.4 may be used to deduce the local p-BM conjecture for K for some p ∈ (0, 1). In
addition, we do not need to assume that K ∈ K2

+.

Theorem 9.5. Let w : [0, 1] → R denote a C2 function with w′(0) = 0 and
maxt∈[0,1] |w′(t)| = w′(1) = 1. Given K ∈ Ke so that ‖·‖K ∈ C2(Sn−1), denote
W (x) = w(‖x‖K), and assume that K ⊃ rBn

2 . Then:

BH(K) ≤ CPoin(K)

r
+ C2

Poin(K) max
x∈K

∥∥∇2W (x)
∥∥
op
.

Proof. Let u ∈ S0,e(K) be harmonic in int(K). As usual:

∇W (x) = w′(‖x‖)∇‖x‖ = w′(‖x‖) ‖x‖
〈x, ν(x/ ‖x‖)〉

ν(x/ ‖x‖) ∀x ∈ K,

so ∇W |∂K = 1
〈x,ν〉ν and |∇W | ≤ maxt∈[0,1]|w′(t)|

maxν∈Sn−1 hK(ν) ≤
1
r on K. Integrating by parts

and utilizing the harmonicity of u:∫
∂K

u2
ν

〈x, ν〉
dx =

∫
∂K

uν 〈∇u,∇W 〉 dx =

∫
K

div
(
∇u〈∇u,∇W 〉

)
dx

=

∫
K

(
〈∇2u∇u,∇W 〉+ 〈∇2W∇u,∇u〉

)
dx.

Applying Cauchy–Schwarz and the usual Poincaré inequality on each ui, we have
for any λ > 0:

≤ λ

2

∫
K

∥∥∇2u
∥∥2
dx+

1

2λ

∫
K
|∇u|2 |∇W |2 dx+ max

x∈K

∥∥∇2W (x)
∥∥
op

∫
K
|∇u|2 dx

≤ λ

2

∫
K

∥∥∇2u
∥∥2
dx+

(
1

2λr2
+ max

x∈K

∥∥∇2W (x)
∥∥
op

)∫
K
|∇u|2 dx

≤
(
λ

2
+

(
1

2λr2
+ max

x∈K

∥∥∇2W (x)
∥∥
op

)
C2
Poin(K)

)∫
K

∥∥∇2u
∥∥2
dx.

Setting λ = CPoin(K)
r , the assertion follows.

It is particularly convenient to apply Theorem 9.5 to Bn
q , the unit-balls of `nq ,

for q ∈ (2,∞).

Theorem 9.6. For all q ∈ (2,∞), BH(Bn
q ) ≤ C(n−1/q + qn−2/q).

Proof. Set w(t) = 1
q t
q and W (x) = w(‖x‖`nq ) = 1

q

∑n
i=1 |xi|

q. Observe that ∇2W =

(q − 1)diag(|xi|q−2), and hence maxx∈Bnq ‖∇
2W (x)‖op = q − 1 whenever q ≥ 2. It

remains to recall that CPoin(Bn
q ) is of the order of n−1/q by Theorem 6.10 and that

Bn
2 ⊂ Bn

q when q ≥ 2, and so Theorem 9.5 yields the assertion.
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10 Continuity of BH, B, D with application to Bn
q

10.1 Continuity of BH, B, D in C-topology

Proposition 10.1. Let {Ki} ⊂ Ke. If Ki → K in the C-topology then B(Ki) →
B(K), BH(Ki)→ BH(K) and D(Ki)→ D(K).

Proof. As this is not a cardinal point in this work, let us only sketch the proof, as
providing all details would be tedious.

It is easy to see that the mappings Ke 3 K 7→ BH(K), B(K), D(K) are lower
semi-continuous in the C topology, being the suprema of a continuous family of func-
tionals (parametrized by u). For instance, for BH , B and a fixed u, the functional
is:

Ke 3 K 7→

∫
∂K

u2ν
〈x,ν∂K(x)〉dx∫

K ‖∇2u‖2 dx
,

which are continuous in C since the vector valued measure 1
〈x,ν∂K(x)〉ν∂KH

n−1|∂K
weakly converges under C convergence of convex bodies (for a more general state-
ment regarding generalized curvature measures, also known as support measures,
see [52, Theorem 4.2.1]).

The harder part is to show the upper semi-continuity. To see this for D(K),
for instance, let {Ki} denote a sequence on which lim supKi→K D(Ki) is attained.
Since K 7→ D(K) is invariant under homothety, we may assume w.l.o.g. that rBn

2 ⊂
K1 ⊂ K2 ⊂ . . .K ⊂ RBn

2 . Denote by ui the test function for which:∫
Ki

∥∥∇2ui
∥∥2
dx = 1 and

∫
∂Ki

∣∣∇ui∣∣2
〈x, ν∂Ki(x)〉

dx ≥ D(Ki)−
1

i
.

As {ui}i≥j are bounded in H2(Kj), they have a weakly convergent subsequence in
H2(Kj), and by a diagonalization argument, we may extract a subsequence (which
we continue to denote {ui}) weakly converging to u ∈ H2(K), so that:

lim
i→∞

∫
Ki

〈
∇2(ui − u), ϕ

〉
dx = 0

for any smooth 2-tensor ϕ on K. The weak convergence implies that
∫
K

∥∥∇2u
∥∥ dx ≤

1. By compactness [4, Corollary 7.4] of the trace embedding of Sobolev space on
Lipschitz domains with upper Alfhors measures (such as µK := 1

〈x,ν∂K〉dH
n−1|∂K

in our setting), which in fact holds with a uniform constant for all Ki (as they are
uniformly Lipschitz and µK is uniformly upper Ahlfors, owing to convexity and r,R
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being uniform), the weak convergence in H2 implies strong convergence in the trace
H1 norm:

lim
i→∞

∫
∂Ki

∣∣∇ui −∇u∣∣2 dµKi = 0.

By weak convergence of µKi to µK (as for the lower semi-continuity direction), there
exists for any ε > 0 a large enough iε, so that for all i ≥ iε:

D(K) ≥

∫
∂K

|∇u|2
〈x,ν∂K(x)〉dx∫

K ‖∇2u‖2 dx
≥
∫
∂K
|∇u|2 dµK ≥

∫
∂Ki

|∇u|2 dµKi − ε

≥
∫
∂Ki

∣∣∇ui∣∣2 dµKi − ∫
∂Ki

∣∣∇ui −∇u∣∣2 dµKi − ε
≥ D(Ki)−

1

i
−
∫
∂Ki

∣∣∇ui −∇u∣∣2 dµKi − ε.
Taking the limit as i → ∞ and ε → 0+, the upper semi-continuity of D follows.
Note that the limiting u is not guaranteed to be in SN,e(K), only in H2(K), but can
be approximated in H2(K) by functions in SN,e(K), and by the trace embedding
theorem, also in H1(dµK), and hence the above lower bound on D(K) is legitimate.

The proof is identical for B(K). For BH(K), one just has to note that the
limiting u will be harmonic as the weak H2 limit of the harmonic ui.

10.2 The Cube

We can now extend Theorem 8.5 to a result on the even spectral-gap λ1,e(B
n
∞)

of the formal Hilbert–Brunn–Minkowski operator associated to Bn
∞. Recalling the

notation from Section 5, and in particular the definition (5.9):

λ1,e(B
n
∞) := lim inf

K2
+,e3K→Bn∞ in C

λ1,e(−LK),

we have:

Theorem 10.2. λ1,e(B
n
∞) = n

n−1 .

Proof. By Proposition 10.1 and Theorem 8.5, we have:

lim
K2

+,e3Ki→Bn∞ in C
BH(Ki) = B(Bn

∞) = 1.

By Theorem 6.5, we know that λ1,e(−LK) ≥ 1 + 1
(n−1)BH(K) for any K ∈ K2

+,e.
Consequently:

lim inf
K2

+,e3K→Bn∞ in C
λ1,e(−LK) ≥ n

n− 1
.
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To see that we actually have equality in the above inequality, it is enough to test the
specific sequence

{
Bn
q

}
⊂ K2

+,e which converges to Bn
∞ in C as q → ∞. Moreover,

it is enough to show that the inequality RBnq (u0) ≥ 0 we employed in Theorem 6.1,
when transitioning from the equivalent condition for the local log-BM conjecture
to the sufficient one, is not wasteful for the extremal even harmonic function u0 :=
x21
2 −

x22
2 for Bn

∞. Using Remark 6.2, we need to show:

RBnq (u0) =

∫
∂Bnq

〈
II−1
∂Bnq

PT∂Bnq

[
∇2u0 · ν

]
, PT∂Bnq

[
∇2u0 · ν

]〉
dx→ 0 as q →∞ .

(10.1)
A computation verifies that on the positive orthant:

ν(x) =
{xq−1

i }ni=1√∑n
i=1 x

2(q−1)
i

, II∂Bnq = Λ1/2UΛ1/2|T∂Bnq ,

where:

Λ(x) =
q − 1√∑n
i=1 x

2(q−1)
i

diag(xq−2
i ) , U = 〈Λν, ν〉〈Λ−1ν, ν〉ê2 ⊗ ê2 +

n∑
k>2

êk ⊗ êk ,

and {êk}nk=1 is an orthonormal frame with:

êi =
ẽi
|ẽi|

, ẽ1 = Λ1/2ν , ẽ2 = Λ−1/2ν − 1

〈Λν, ν〉
Λ1/2ν.

Consequently:

II−1
∂Bnq

=
(
Λ−

1
2 ŨΛ−

1
2

)
|T∂K with Ũ =

1

〈Λν, ν〉〈Λ−1ν, ν〉
ê2 ⊗ ê2 +

n∑
k>2

êk ⊗ êk .

It follows that the integrand in (10.1) is bounded by:〈
II−1
∂Bnq

PT∂K
[
∇2u0 · ν

]
, PT∂K

[
∇2u0 · ν

]〉
≤ max

(
1,

1

〈Λν, ν〉〈Λ−1ν, ν〉

) ∣∣∣Λ− 1
2PT∂K

[
∇2u0 · ν

]∣∣∣2 .
It is easy to check that:

PT∂K
[
∇2u0 · ν

]
=
{ai(x)xq−1

i }ni=1√∑n
i=1 x

2(q−1)
i

, |ai(x)| ≤ 2.

Plugging in the above expression for Λ and applying Hölder’s inequality (using∑n
i=1 x

q
i = 1), a straightforward calculation verifies that the integrand goes to zero

uniformly in x as q →∞, and the claim is established.
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In view of Corollary 5.4 and Proposition 3.9, Theorem 1.3 is a reformulation
of Theorem 10.2. Similarly, recalling definition (5.10), we extend Theorem 8.3 to
non-smooth K ∈ Kuncond:

Corollary 10.3. For all K ∈ Kuncond, λ1,uncond(K) ≥ n
n−1 .

10.3 Unit-balls of `nq

Observe that Bn
q /∈ K2

+ whenever q 6= 2. Consequently, we will use Proposition

10.1 to obtain a neighborhood NC
Bnq

of Bn
q in the Ce-topology, so that the results of

the previous sections may be applied to its dense subset NC
Bnq
∩ K2

+,e. This yields

Theorems 1.2 and 1.4 from the Introduction, which we restate here as follows:

Theorem 10.4. For all q ∈ (2,∞), there exists nq ≥ 2 so that for all n ≥ nq,
there exists a neighborhood NC

Bnq
of Bn

q in the Ce-topology, so that the local log-BM

conjecture (3.4) holds for T (K) for all K ∈ NC
Bnq
∩K2

+,e and T ∈ GLn. In addition,

for any K ∈ NC
Bnq
∩ K2

+,e, there exists a C2-neighborhood NK of K in K2
+,e so that

for all T ∈ GLn and K1,K0 ∈ T (NK):

V ((1− λ) ·K0 +0 λ ·K1) ≥ V (K0)1−λV (K1)λ ∀λ ∈ [0, 1].

Proof. Recall that by Theorem 9.6, BH(Bn
q ) ≤ C(n−1/q + qn−2/q). Setting nq =

exp( q2 log(C ′q)), it follows that BH(Bn
q ) ≤ 1

2 for all n ≥ nq. By Proposition 10.1,

there exists a neighborhood NC
Bnq

of Bn
q in the Ce-topology so that BH(K) ≤ 3

4 for

all K ∈ NC
Bnq

. Consequently, Theorem 6.4 implies that the local p-BM conjecture

(3.3) holds with p = −1
3 for T (K) for all K ∈ NC

Bnq
∩K2

+,e and T ∈ GLn, implying in

particular the first assertion. The second assertion follows by invoking Proposition
3.9.

Theorem 10.5. There exists a universal constant c ∈ (0, 1) so that for all q ∈
[1, 2), there exists a neighborhood NC

Bnq
of Bn

q in the Ce-topology, so that the p-BM

conjecture (3.3) holds with p = c for T (K) for all K ∈ NC
Bnq
∩ K2

+,e and T ∈ GLn.

In addition, for any K ∈ NC
Bnq
∩ K2

+,e, there exists a C2-neighborhood NK of K in

K2
+,e so that for all T ∈ GLn and K1,K0 ∈ T (NK):

V ((1− λ) ·K0 +c λ ·K1) ≥
(

(1− λ)V (K0)
c
n + λV (K1)

c
n

)n
c ∀λ ∈ [0, 1].

Proof. By Lemma 6.12, there exists a universal constant C > 1 so that for all
q ∈ [1, 2), BH(Bn

q ) ≤ D(Bn
q ) ≤ C. By Proposition 10.1, there exists a neighborhood
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NC
Bnq

of Bn
q in the Ce-topology so that BH(K) ≤ 2C for all K ∈ NC

Bnq
. Consequently,

Theorem 6.4 implies that the local p-BM conjecture (3.3) holds with p = 1 − 1
2C

for T (K) for all K ∈ NC
Bnq
∩ K2

+,e and T ∈ GLn, implying in particular the first

assertion. Setting c = 1− 1
3C , the second assertion follows by invoking Proposition

3.9.

11 Local Uniqueness for Even Lp-Minkowski Problem

To conclude this work, we mention an application (which is by now well-understood
and standard – see [42, 6]) of our local p-BM and log-BM inequalities to local
uniqueness statements for the even Lp-Minkowski and log-Minkowski problems.

The classical Minkowski problem (see [52, 44] and the references therein) asks
for necessary and sufficient conditions on a finite Borel measure µ on Sn−1, to
guarantee the existence and uniqueness (up to translation) of a convex body K ∈ K
so that its surface-area measure dSK coincides with µ. It was shown by Minkowski
for polytopes and by Aleksandrov for general convex bodies, that a necessary and
sufficient condition is to require that the centroid of µ is at the origin and that its
support is not contained in a great subsphere. In [42], Lutwak proposed to study
the analogous Lp-Minkowski problem, where the role of the surface-area measure
dSK is replaced by the Lp-surface-area measure:

dSK,p := h1−p
K dSK .

For even measures, Lutwak showed in [42] that Minkowski’s condition is again nec-
essary and sufficient for existence and uniqueness (no translations required now) in
the case 1 < p 6= n (see also Lutwak–Yang–Zhang [44] for the case p = n).

The same question may be extended to the range p < 1. Of particular interest
is the the log-Minkowski problem, which pertains to the cone-measure dVK (corre-
sponding to the case p = 0). For even measures µ, a novel necessary and sufficient
subspace concentration condition ensuring the existence question was obtained in
[7], and the uniqueness question was settled in [6] in dimension n = 2; it remains
open in full generality in dimension n ≥ 3 (see also [19] for the planar uniqueness
question for smooth convex bodies with strictly positive curvature, and [54] for ex-
istence and uniqueness in the even planar problem when µ is assumed discrete).
Various other partial results pertaining to the uniqueness question are known (see
e.g. [27, 45, 58, 12] and the references therein). Without assuming evenness of
µ, both existence and uniqueness problems are more delicate, and there is a huge
body of works on this topic which we do not attempt to survey here. Instead, let
us mention the known intimate relation between the uniqueness question and the
p-BM inequality with its equality conditions.
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Recall the definition (3.1) of the Lp-mixed-volume Vp(K,L), introduced by Lut-
wak in [42]. It was shown in [6] (for p ∈ (0, 1), but the proof extends to all p < 1)
that:

Vp(K,L) =
1

n

∫
Sn−1

hpLdSK,p.

Proposition 11.1. Let K0,K1 ∈ Ke and p < 1. Then each of the following state-
ments implies the subsequent one:

(1) The function [0, 1] 3 λ 7→ gp(λ) := 1
pV ((1−λ) ·K0 +p λ ·K1)

p
n is concave, and

it is affine if and only if K0 and K1 are dilates.

(2) The first Lp-Minkowski inequality (3.2) holds for the pair K,L = K0,K1 and
for the pair K,L = K1,K0, with equality in either of these cases if and only
if K0 and K1 are dilates.

(3) dSK0,p = dSK1,p implies K0 = K1.

Slightly more is required for the converse implications to hold, as worked out in
[6], but we do not require this here.

Proof. It was shown in [6] (for p ∈ [0, 1), but the proof extends to all p < 1) that:

d

dλ

∣∣∣∣
λ=0+

V ((1−λ)·K0+pλ·K1) =
1

p

∫
Sn−1

h1−p
K0

(hpK1
−hpK0

)dSK0 =
n

p
(Vp(K0,K1)− V (K0)) .

Consequently, the chain rule yields:

d

dλ

∣∣∣∣
λ=0+

gp(λ) = V (K0)
p
n
−1 1

p
(Vp(K0,K1)− V (K0)) ,

with the case p = 0 understood in the limiting sense. The concavity in statement (1)
implies d

dλ |λ=0+gp(λ) ≥ gp(1) − gp(0), which is precisely (3.2). Reversing the roles
of K0,K1 by the symmetry of (1), (3.2) also holds in that case. Clearly we have
equality in (3.2) if K0 and K1 are dilates. Conversely, equality in (3.2) translates
to d

dλ |λ=0+gp(λ) = gp(1)− gp(0), and since gp is assumed concave, it follows that it
must be affine, and so the equality conditions in (1) imply those in (2).

If dSK0,p = dSK1,p, then for any Q ∈ K:

Vp(K0, Q) =
1

n

∫
Sn−1

hpQdSK0,p =
1

n

∫
Sn−1

hpQdSK1,p = Vp(K1, Q).

Assuming for simplicity that p > 0 (but an identical argument holds for general p),
we have by (3.2) for both i = 0, 1 that:

V (Ki) = Vp(Ki,Ki) = Vp(K1−i,Ki) ≥ V (K1−i)
1− p

nV (Ki)
p
n .
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It follows that V (K0) = V (K1) and hence we have equality in (3.2) for the pair
K1−i,Ki. The equality conditions in (2) therefore imply that K0 = K1.

Definition. Given p < 1 and K ∈ K2
+,e, we will say that the even Lp-Minkowski

problem has a locally unique solution in a neighborhood of K if there exists a C2-
neighborhood NK,p of K in K2

+,e, so that for all T ∈ GLn, for all K0,K1 ∈ T (NK,p),
if dSK0,p = dSK1,p then K0 = K1.

Theorem 11.2. Assume that the local p0-BM conjecture (3.3) holds for K ∈ K2
+,e

and some p0 < 1. Then for any p ∈ (p0, 1), the even Lp-Minkowski problem has a
locally unique solution in a neighborhood NK,p of K.

Proof. Given p ∈ (p0, 1), denote p1 = p+p0
2 ∈ (p0, p). Proposition 3.9 ensures the

existence of a neighborhood NK,p so that for all T ∈ GLn and K0,K1 ∈ T (NK,p),
K0 satisfies the local p1-BM inequality (3.3), and in addition, the function gp(λ)
appearing in Proposition 11.1 (1) is concave. It remains to establish the equality
conditions in Proposition 11.1 (1) to deduce the local uniqueness statement in (3).
Assume that K0,K1 ∈ T (NK,p) are such that the function gp(λ) is affine. It follows
by the argument in the proof of Lemmas 3.4 and 3.5 that equality holds in the local p-
BM inequality (3.3) for the body K0 and 1

pf
p
0 = 1

ph
p
K1
− 1
ph

p
K0
∈ Ce(Sn−1). Recalling

the equivalent formulations of the local p-BM equality and p1-BM inequality derived
in Section 4, and denoting:

z0 :=


1

hpK0

fp0
p = 1

p

((
hK1
hK0

)p
− 1
)

p 6= 0

log f0 = log
hK1
hK0

p = 0

as in (4.5), we deduce (say, using the formulation of (4.8)):

1

V (K0)
V (z0hK0 ; 1)2 =

n− 1

n− p
V (z0hK0 ; 2) +

1− p
n− p

V (z2
0hK0 ; 1) ,

1

V (K0)
V (z0hK0 ; 1)2 ≥ n− 1

n− p1
V (z0hK0 ; 2) +

1− p1

n− p1
V (z2

0hK0 ; 1).

Equating the V (z0hK0 ; 2) terms above and using that p1 < p < 1 ≤ n, it follows
that:

V (z2
0hK0 ; 1) ≤ 1

V (K0)
V (z0hK0 ; 1)2.

On the other hand, the reverse inequality is always satisfied by Cauchy–Schwarz
(4.11). By the equality conditions of Cauchy–Schwarz, it follows that z0 must be a
constant dSK0-a.e. on Sn−1. Using the fact that dSK0 and the Lebesgue measure
are equivalent since K0 ∈ K2

+, and as support functions are continuous, it follows
that hK1 = ChK0 identically on Sn−1 for some C > 0, and the equality case in
Proposition 11.1 (1) is established.
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It is now immediate to translate the results of this work into the following:

Theorem 11.3. The even Lp-Minkowski problem has a locally unique solution in a
neighborhood of K for all p ∈ (pK , 1), in the following cases:

(1) For any K ∈ K2
+,e and pK = 1− c

n3/2 .

(2) For K = Bn
2 and pK = −n.

(3) For any ε > 0, for all K ∈ NC,ε
Bn∞
∩ K2

+,e and pK = ε, where NC,ε
Bn∞

is an

appropriate C-neighborhood of Bn
∞ (depending on ε).

(4) If q ∈ (2,∞), for all K ∈ NC
Bnq
∩ K2

+,e and pK = 1− c
n−1/q+qn−2/q , where NC

Bnq
is an appropriate Ce-neighborhood of Bn

q .

(5) If q ∈ [1, 2), for all K ∈ NC
Bnq
∩ K2

+,e and pK = c ∈ (0, 1), where NC
Bnq

is an

appropriate Ce-neighborhood of Bn
q .

Proof. (1) follows from Theorem 6.9. (2) follows from Theorem 5.13. (3) follows
from Theorem 10.2 and Corollary 5.4. (4) follows from Theorem 10.4. (5) follows
from Theorem 10.5.

Case (2) should be compared with a result of Colesanti and Livshyts [12], who
considered local uniqueness for the log-Minkowski problem (the case p = 0), and
showed the existence of a C2-neighborhood NBn2

of Bn
2 , so that for all K ∈ NBn2

, if
dVK = dVBn2 then necessarily K = Bn

2 .

References

[1] B. Andrews. Entropy estimates for evolving hypersurfaces. Comm. Anal.
Geom., 2(1):53–64, 1994.

[2] W. Arendt and R. Mazzeo. Friedlander’s eigenvalue inequalities and the
Dirichlet-to-Neumann semigroup. Commun. Pure Appl. Anal., 11(6):2201–
2212, 2012.

[3] F. Barthe and D. Cordero-Erausquin. Invariances in variance estimates. Proc.
Lond. Math. Soc. (3), 106(1):33–64, 2013.

[4] M. Biegert. On traces of Sobolev functions on the boundary of extension do-
mains. Proc. Amer. Math. Soc., 137(12):4169–4176, 2009.

[5] T. Bonnesen and W. Fenchel. Theory of convex bodies. BCS Associates,
Moscow, ID, 1987. Translated from the German and edited by L. Boron, C.
Christenson and B. Smith.

64
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