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1. Introduction’

There are two main types of sports tournaments: knockout tournaments and
round robin tournaments. In knockout tournaments, after each round all losers are
eliminated and all winners are promoted to the next round. In round robin tour-
naments, all participants play against each other. The main advantage of knockout
tournaments is a sufficiently lower number of matches and rounds. As a result,
the spectator interest increases from round to round. For example, if the number
of participants in a tournament equals N = 2" then the number of games (with
two players in one match) in a knockout tournament equals 2" — 1, and in a
round robin tournament equals 2"~1(2" + 1), the number of rounds in a knock-
out tournament equals n, and in round robin tournament 2™ — 1. The lower re-
quirement for time, sports facilities, and increasing spectator interest are the main
reasons for the popularity of knockout tournaments.

There are many single-winner games with a higher number of players in one
match (e.g. some card games Blackjack, Poker). Football teams are typically di-
vided into groups, with four teams in each group. A round robin subtournament,
within one group, can be considered as one match with 4 teams.

Running tracks, swimming pools, bowling lanes and other sports facilities
have limited capacities. It is not possible to organize one race for all athletes. Be-
cause of limited capacities of sports facilities, usually several rounds of races are
organized: — e.g. a qualification round, regular races, the final. In cases of a high
number of participants, the knockout tournament structure of the competition is
applied. In our setting, the lane position does not matter. Only the set of race
(match) participants matters. Real sports tournaments have own specific rules
(e.g. not only relative, but also absolute results matter), but in this paper we de-
velop a general theory of such tournaments, which can be applied for all tourna-
ments.

This paper generalizes knockout tournaments model considering tournaments
with the number of participants in one match higher than two. There are many
ways of scheduling knockout tournaments. Different knockout tournament sched-
ules are called seedings (assignment of players to tournament brackets, having

" The author would like to thank Constantine Sorokin and Fuad Aleskerov for their valuable
comments. The article was prepared within the framework of the Basic Research Program at the
National Research University Higher School of Economics (HSE) and supported within the
framework of a subsidy by the Russian Academic Excellence Project ‘5-100°.
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information regarding the initial order of participants' strengths mainly from his-
torical data). In computational social choice, knockout tournaments correspond
with a voting tree or an agenda [Vassilevska Williams, 2016]. Finding a seeding
with predefined properties is a combinatorial optimization problem, which is
solved under different constraints [Dagaev, Suzdaltsev, 2017; Karpov, 2016].

In this paper, a combinatorial approach for generalized knockout tournament
seedings is developed. We define several desirable properties of seedings and enu-
merate seedings, that satisfy these properties. Several new knockout tournament
seedings are proposed and justified by the set of properties. Sports tournament or-
ganizers can easily apply the proposed seedings to real competitions.

Because of the novelty of the combinatorial object, all enumeration formulas
are new. References to (OEIS) for sequences in the standard case of two partici-
pants in one match are quoted in the text.

The structure of the paper is as follows. Section 2 describes generalized
knockout tournament seedings and its properties. Section 3 presents representa-
tion theorems for different seedings.

2. Framework

Let k be the number of participants in one match, n be the number of rounds
and X = {1,2,...,k™} be the set of participants of the knockout tournament
(henceforth in the text tournament). The indices of the participants represent the
order of the participants' strengths, where participant 1 is the strongest and partic-
ipant k™ is the weakest.

Knockout tournament seeding, or simply the seeding, is a hypergraph with k™
vertices labeled from 1 to k™, described by a following set system (nested set sys-
tem). There are k™! disjoint sets of k vertices (each such set is one match), k™2
disjoint sets of k? vertices, such that each new set unites k sets of k vertices (each
such set is a subtournament with two rounds), k™3 disjoint sets of k3 vertices,
such that each new set unites k sets of k? vertices (each such set is a subtourna-
ment with three rounds), etc.

For example, a seeding of tournament with k = 2 participants in each match
and n=3 rounds 1is described by set system {1,4},{2,3},{5,8},
{6,7},{1,2,3,4},{5,6,7,8},{1,2,3,4,5,6,7,8}, but it is more convenient to describe

this seeding as a nested set system, {{{1,4}, {2,3}}, {{5,8}, {6,7}}}. This is called

the nested set representation of seeding. There are two subtournaments



{{1,4}, {2,3}} and {{5,8}, {6,7}}, each of them also contains two subtournaments.

In each subsequent round, the winners of subtournaments meet. The order of sets
inside subtournament does not matter. {{{1,4}, {2,3}}, {{5,8}, {6,7}}} and

{{{1,4}, {3,2}}, {{6,7}, {8,5}}} represent the same seeding.

For k = 2, the most popular tournament seeding (called standard seeding)
creates pairs in the first round of the strongest participant with the weakest partic-
ipant, the second strongest participant with the second weakest participant, etc.
The pairs in subsequent rounds are determined in a way that preserves the first
two participants from the head-to-head match before the final and that delays the
confrontations between other strong participants until later rounds. Strong partici-
pants are rewarded for their success through such a seeding. Fork = 2, n = 3, it

is T3 = {{{1,8}, (4,53}, {(2.7}, (3.63}}.
Each tournament with n > 2 rounds is a set which consists of & subtourna-
ments. Each subtournament with n > 2 rounds is a set which also consists of &

subtournaments. T,Z_T;;i is a subtournament 7 with m rounds. It is a part of a tourna-
ment with n rounds. For notational convenience, let T,?_n = Ty, and Tkofl = {i}.
Subtournaments Tk‘";;i, T,:Zl'j are nonoverlapping if there is no participant that plays
in both subtournaments. A tournament with 7 rounds is a set Ty, = U, g ™,
where all subtournaments are nonoverlapping. A subtournament with m rounds is
a set T,:_';;i = Uk, Tkrl':l_l’i, where all subtournaments are nonoverlapping.

Let Ty ,, be the set of all possible seedings with & participants in one match
and n rounds. The cardinality of the set of all possible seedings is denoted as
#T) -

Proposition 1. The number of seedings equals to

1-k"
#Tyn = (kD)1 (k™). (1)
Proof. There are k™! permutations of participants. Each permutation corre-
. —_Ln
sponds with the nested set representation of a seeding. There are Y1 k! = %

matches, subtournaments and tournament. For each of them, there are k! permuta-
tions of participants (subtournaments), that do not change a tournament.



For k = 2, it is A067667 in (OEIS). Considering the tournament as the union
of k subtournaments we obtain the recursive representation of formula (1):

n
#Ten = e (FTencn) 2)

A knockout tournament seeding is a purely combinatorial object, without any
assumptions about participants’ behavior. For the purpose of studying the proper-
ties of seedings, we assume that a stronger participant always wins in a match
with weaker participants. We introduce several properties of tournaments. Some
of them have the close prototype in [Karpov, 2016], where the case of k = 2 is
considered. All combinatorial formulas are new; some sequences in case of k = 2
that are mentioned in (OEIS) are added by the author.

The first property makes a tournament invariant under strength/weakness
ranking transformation. There are no special rules for weak or strong participants.
A tournament designed for strength-ordered participants is equal to a tournament
designed for weakness-ordered participants.

Symmetry. A seeding is invariant under the point mapping i = k™ + 1 — i.

{{1,4},{2,33},{{5,8},{6,73}} and {{1,8},{2,7}},{{3,4},{5,6}} are examples of
symmetric seedings.

Proposition 2. The number of seedings, that satisfy the symmetry property,

equals to
for odd k
kK—nk+n-1 k"—1)l
4TS =2 2 2 L 3)
o (k!)%(%_") [(%)']n
for even k
k .
n #TS 2 -1y \2
#15, = (5) 124 ki_l"'"zf)k ( z kn_1_1> . @)
(( g )l) in(E-i) \en =1

Proof. A pair of sets A, B € {1, ..., x} are said to be symmetric if and only if
|[Al=|Bl=y,y<xand ifi € A, thenx+1—i€B. A setA<{l,..,x}are
said to be self-symmetric if and only if |A| =y, y<x and ifi € A, then
x+1—-i€A.



Odd k. For each tournament, there is only one self-symmetric set of the cardi-
nality of k™ 1. There are #’Il‘ﬁ'n_1 ways to define a symmetric subtournament

. k— . .
generated by the self-symmetric set. There are 71 symmetric pairs of sets of the
cardinality of k™. There are 2"11_1_1#’11‘,{,,1_1 ways to define two subtourna-

ments generated by the symmetric pair. Considering a tournament as the union of
k subtournaments we obtain

)
(kn—21_1)!(kn—1 !)%(%)[

1

k—
o k1
#Ti,n—l(zkn 1#’]I‘k,n—l) ’ . (5)

#Ty , =

Having #Tj ; = 1, we obtain

(ki—1>‘ (ki_1—1)(k—1)
2 ) 2 2z
#T5 , = [

i=2 (ki—21—1)!(%)! (k!)@

(6)

Simplifying we obtain the result.
Even k. We have an even number of self-symmetric sets of the cardinality of
k™ 1. Thus, we have
k/2 (%)' n-1_ L, 2i
#TE, = 22 — (2" T pe)” (#TE o) (D)
<(""2_1)!) (en=1n2 iy (5

Substituting #T), ,,_,, we obtain the result.
For k = 2, it is A261187 in (OEIS). In this case the formula (4) has a simpler
representation

#T3, = 2"y, ®)

where y, = 0.5(y,,_1)? + 1, with y; = 1.
For an odd k there is another representation of the recurrence (5). For each tour-

nament, there is only one self-symmetric set of the cardinality k (one match set).
Eh1-1 . . .
symmetric pairs of sets of the cardinality of k. There are 2%~1

There are >

ways to define a symmetric pair of sets from a self-symmetric set of the cardinality
of 2k. Considering the tournament as the union of k™ !matches we obtain



Kn-1 . Wn=1_
#Ti,n = ( 21)1 (zk 1) #Tkn 1 9

(7 (252

Having #’]I‘i‘1 = 1, we obtain formula (6). These two representations of tour-

nament (tournament as the union of k subtournaments (formula (5)) or the union
of k™ 1 matches (formula (9))) are applied to all derivations of subsequent com-
binatorial formulas.

Following Wright [2014], competitive intensity is a key property for sports
competition design. The closer the strength of the participants the higher the
competitive intensity is. The two strongest participants of the match are main ri-
vals. From round to round, the two strongest participants of each match become
stronger and strengths of participants become closer. The intensity of competition
increases, supporting spectator interest. In the final match, the two strongest par-
ticipants play against each other.

Increasingly competitive intensity. /n each subsequent round, a winner fa-
ces at least one stronger rival than the strongest rival in the previous round.

Proposition 3. The number of seedings, that satisfy the increasingly competi-
tive intensity property, equals to

gn-i

TIC! = ((k _ 2),)1 If T, [( (ki-2)! _ (10)

(ki—l—l)!)z((ki—l)!)k

Proof. The strongest participant and the second strongest participant should
be in different subtournaments. Thus, we have

rcr _ 1 (k™-2)! e \k
T = Gd P o2 Thn-1) (1)

Having #T}¢] = 1, we obtain the result.

Fork = 2, formula (11) is also the number of binary heaps (A056972 in

(OEIS)). Increasingly competitive intensity is a very weak condition, with

il icI

. 2 .

limy_,q P 1 and lim,,_, ,
k2

= e~1. The next property strengthens the in-

creasingly competitive intensity property guaranteeing the strongest final match,
the strongest semifinal, etc.



Delayed confrontation (Schwenk 2000). Participants rated among the top
kJ participants shall never meet until the number of participants has been re-
duced to k’ or fewer.

It is a core property for tournament design. This property is aimed to support
spectator interest. Matches with, and between the strongest participants draw the
interest of spectators. These participants should not be dropped out at the begin-
ning of the tournament. This property allocates strong participants equally be-
tween subtournaments. Thus, there is no subtournament with only weak partici-
pants or only with strong participants.

Proposition 4. The number of seedings, that satisfy the delayed confrontation
property, equals to

#IZE = (G — DY) = T2, Gl = ki), (12)

Proof. From delayed confrontation property, participants {k"™1 + 1, ..., k"}
should lose in round 1, participants {k™~2 + 1, ..., k" '} should lose in round 2,
etc. Thus we have

n_pn-1
#TRG = SRy (13)

Having #T7$ = 1, we obtain the result.

For k = 2, it is A261125 in (OEIS). Delayed confrontation property does not
require assumption about the deterministic result of each match. Strong partici-
pants are divided between different subtournaments and do not play against each
other. We introduce several refinements of the delayed confrontation property:
sincerity rewarded, equal difference, equal sums, balance and equal partition of
losers properties.

The sincerity rewarded property goes back to [Schwenk, 2000]. We should en-
courage strong participants, otherwise, they have incentives to lose in pretourna-
ment games and get a weaker rival (a model with such incentives is developed in
[Dagaev, Sonin, 2017].

Sincerity rewarded. [n addition to the delayed confrontation property, in
each round r, the absolute value of the difference between the two strongest par-



ticipants ranks in the match among top k™™" participants strictly increases with
the strength of the top participant.

The standard seeding satisfies this property. The strongest participant plays
against the weakest participant, guaranteeing the highest absolute value of the
difference between participants ranks.

The weakest violation of the sincerity rewarded property leads to the equal
difference property. It implements an idea of favoritism minimize property from
[Schwenk, 2000]. We generalize competitive intensity measure of Dagaev, Suz-
daltsev [2017] for k higher than 2. The competitive intensity is an absolute value
of the difference between the strongest participant rank and the second strongest
participant rank in the match. Equalizing competitive intensities of all matches of
the round we obtain the equal differences property.

Equal differences. /n addition to the delayed confrontation property, all
matches of one round should have an equal absolute value of the difference bet-
ween the strongest participant rank and the second strongest participant rank in
the match.

Proposition 5. The number of seedings, that satisfy the equal difference pro-
perty, equals to

k—k"

#Tho = ((k — 2)1) & [T, (k' — 2k, (14)

Proof. From the equal differences property, participants {1, ..., k"~1} should
be matched with participants {k™~1 + 1, ..., 2k™1}. Thus, we have

K™—2k™ 1)1
= (2 g (15)

#TED
fon ((e-2)1)

Having #T73 = 1, we obtain the result.
The subsequent property equates qualities of matches [Dagaev, Suzdaltsev,

2017] and supports spectator interest to all matches.

Equal sums. /n addition to the delayed confrontation property, all matches of
one round should have equal sum of ranks of match’s participants.

10



The subsequent property simplifies symmetry property in presence of delayed
confrontation property.

Balance. In addition to the delayed confrontation property, all matches of one
round should be invariant under the point mapping i > k™ "1 + 1 — i, where r
is the number of the round.

Proposition 6. The number of seedings, that satisfy the balance property,
equals to

for odd k
#TE, =0, (16)
for even k
k=K -
k k=1 kt—2ki"1
H#TE, = ((E - 1) !) L (). (17)

Proof. Odd k. Only one match can be invariant under the point mapping
P>k 41—
Even k. The strongest k™! participants play in different matches against the
n_opn—1 —
weakest k™1 participants. There are (%) 1((0.5k — D" ways to
assign all other participants to k™! matches consistent with the balance property.
Thus, we have

(k"—zk"—l)
)

= # T . (18)

B _
#Thn = ((0.5k—1)k™1

Having #T}; = 1 we obtain the result.
The balance property implies the equal sums property. Sincerely rewarded,
equal difference, equal sums, and balance properties are quite strong, with

#T3R = #TED = #T55, = #T5, = 1. (19)
The next property equates matches by the presence of the weakest partici-

pants. We eliminate advantages of having many weak competitors.

Equal partition of losers. In addition to the delayed confrontation property,
in all matches of one round there should be only one participant from the set of
participants {k™""1 — k™7 4+ 1, .., k™ "1} where r is the number of the round.

11



Proposition 7. The number of seedings, that satisfy the equal partition of lo-
sers property, equals to

k—k"

#TER = ((k = 2)0) 7 [T, k1 G = 2k, (20)

Proof. From the equal differences property, participants {1, ..., k"~1} should
be matched with participants {k™ — k™~ + 1, ..., k™}. Thus, we have

n n—-1
wrgrt = e BB D e 1)

Having #T5" = 1, we obtain the result.

For k = 2, the equal partition of losers coincides with the delayed confronta-
tion property. The balance property implies the equal partition of losers. Sincerely
rewarded, equal differences, equal sums, balance, equal partition of losers proper-
ties can be reformulated saving constrain only for the first match. In this case,
these properties can be applied for the tournament design without the determinis-
tic assumption about the result of the match. We definitely know only participants

of all matches in the first round. All recursive combinatorial formulas can be re-
written through the substitution of #']I‘i_rrf_pfrty by #T} ,_1. By such substitution,
recursive formulas become explicit formulas. Even without certain knowledge
about all matches in the tournament, the application of above-mentioned proper-

ties for all round adds consistency for the tournament design.
3. Representation theorems

3.1. Standard seeding

For k = 2, the most popular seeding is the standard seeding. 1t is defined re-
cursively. For any m from 1 to n, we have

mi _ [pm—-1i pm-12"""F1_j41) . =
Tt = {rnot T Ji=T,27m,

Thus, for n = 3, we have

rsiendare = {{{1,8}, (4,53}, {27}, (3.6}}}.

There are several justifications of the standard seeding.

12



Proposition 8. [Karpov, 2016] For k = 2, the standard seeding is an unique
seeding that satisfies the equal rank sums property.

Proposition 9. For k = 2, the standard seeding is an unique seeding that sa-
tisfies the sincerely rewarded property.

Proof. Participant 2"~ — 1 has a weaker rival than participant 2”1, etc. Be-
cause participant 2”1 + 1 should have a rival, we should have a match
{2n=1,2"1} The standard seeding is the only way to pair all other participants.

Proposition 10. For k = 2, the standard seeding is an unique seeding that
satisfies the balance property.

Proposition 10 follows from Proposition 6. The standard seeding also satisfies
the equal partition of losers property. There is no direct generalization of the
standard seeding for arbitrary k. For k = 3 and n = 2, {{1,6,8}, {2,4,93, {3,5,7}}
and {{1,5,9}, {2,6,73, {3,4,8}} satisfies symmetry and equal rank sums properties,
but not the sincerely rewarded property, {{1,6,7}, {2,5,8}, {3,4,9}} satisfies sym-
metry and sincerity rewarded properties, but not the equal rank sums property.
We develop two seedings, for k = 3 and k = 4, that satisfy properties of the
standard seeding.

For k = 3 the modified standard seeding is defined recursively. For any m
from 1 to n, we have

m,i m-1,i »m—1,23"""—i+1 m-1,2:3""""4i| . =
T3,n = {T3,n 'T3,n ’T3,n , L= 1, 3n-m,

Thus, for k = 3 and n = 3, we have
T =
{{{1,18,19}, {6,13,24},{7,12,25}},{{2,17,20}, {5,14,23}, {8,11,2 6}},}
{{3,16,21},{4,15,22},{9,10,27}} '

Proposition 11. For k = 3 the modified standard seeding is an unique seed-
ing that satisfies sincerity rewarded and symmetry properties.

Proof. It is true for n = 1. Suppose in is true for n — 1. Let us prove for n.
Because the sincerity rewarded property leads to delayed confrontation, it is
sufficient to define only first-round matches. By the sincerely rewarded property

13



the strongest 3"~ participants play in different matches. By the symmetry pro-
perty the weakest 3™~ participants play in different matches. By the sincerely
rewarded property the strongest participant among participants {1, ..., 3"71} plays
against the weakest participant among participants {371 + 1, ...,2 - 3"71}, the
second strongest with the second weakest, etc. we have the following matches
{i,2-3"1—i+1,?}. By the symmetry property, the participant 2 - 3"~ — i +
1 corresponds to the participant 3% —2-3"" 1+ —1+1=2-3""1—-37"1 4
It is a second weakest participant of a match. Thus there is only one way to assign
the third participant of the match (it is an image of the participant i’ = 3""1 — i +
1 of the symmetric match, 3" 1 —i +1 - 2-3""1 +{). We design an unique
seeding for a tournament with n rounds.

For k = 4, the modified standard seeding is defined recursively. For any m
from 1 to n, we have

gn-m+1 gn—m+1
{ m-—1, 2 —i+1 m—l,TH m—1,4"_m+1—i+1}
)

m,i _
T4,n -

-1,i
T T, T

4n ’T4n > fan

i=1,4"m

Thus, for k = 4 and n = 2, we have
T = {{1,8,9,16},{2,7,10,15}, {3,6,11,14}, {4,5,12,13}}.

Proposition 12. For k = 4, the modified standard seeding is an unique seed-
ing that satisfies sincerely rewarded and balance properties.

Proof. By the balance property, for any m from 1 to n, we have Tl_',ll'i =

m-1,i m-1,4""M+1_j1q
{rmior

an an }, i = 1,4™""™ By sincerely rewarded property, we

-1 —i+1 _m-1,

have Tmi {Tm—l,i Tm — T 2 Tt Tm—1,4"‘m+1—i+1
4n — 4n 4

an—m+1 Jn-m+l
4n v an rLan L=

1,4n-m,

3.2. Equal gap seeding

For k = 2, the equal gap seeding is investigated in (Karpov 2016). Here we
generalize it. The equal gap seeding is defined recursively. For any m from 1 to n,
we have

m,i k—1pLitjEm™ . -
Tin = Ujzo Tin ! i=T1kmTm

14



Thus, for k = 2 and n = 4,we have
TES = {{{{1,9}, {5,133}, {{3.12}, {7,15}}} , {{{2,10}, {6,143}, {{4,13}, {8,16}}}};

for k = 3 and n = 3, we have

EG _
T3,3 -

{{{1,10,19}, {4,13,22},{7,16,25}},{{2,11,20},{5,14,23}, {8,17,26}},}.
{{3,12,21},{6,15,24},{9,18,27}} ’

for k = 4 and n = 2,we have
T = {{1,59,13},{2,6,10,14},{3,7,11,15}, {4,8,12,16}}.

There are several justifications of the equal gap seeding.

Proposition 13. [Karpov, 2016]. For k = 2 the equal gap seeding is an unique
seeding that satisfies the equal difference property.
For k = 2 the equal gap tournament also satisfies the symmetry property.

Proposition 14. For k = 3 the equal gap seeding is an unique seeding that
satisfies equal difference and symmetry properties.

Proof. It is true for n = 1. Suppose in is true for n — 1. Let us prove for n.
Because the equal differences property leads to the delayed confrontation, it is
sufficient to define only first-round matches. By equal differences property, the
strongest 3™~! participants play in different matches against participants
{31 +1,..,2+- 3" 1}. The absolute difference between ranks of the strongest
and the second strongest participant in the match equals 3"~!. Because of the
symmetry property the absolute difference between ranks of the strongest and the
second strongest participant in the match also equals 3™~1. Thus, we have

TH = UZoli +j371),i = 1,371,

The modified equal gap seeding is defined recursively. For any m from 1 to n,
we have

m,i m-1,i m-1i+4""™" m-14"-i+1-4""" m-14"-i+1)] - =
T4,n = {T4,n 4 T4,n 4 T4,n 4 T4,n L= 1' 4n-m,

Thus, for k = 4 and n = 2,we have

Tt ted equal gap _ (11 5 12,163,{2,6,11,15}, {3,7,10,14}, {4,8,9,13}}.

4,2
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The modified equal gap seeding satisfies equal sums and equal difference
properties, uniting properties of the standard seeding and the equal gap seeding.

Proposition 15. For k = 4, the modified equal gap seeding is an unique seed-
ing that satisfies equal difference, balance properties.

Proof. By the equal difference property in the round m the strongest 4"~
participants play in 4"~™ matches against participants {4™~™ + 1, ...,2 - 4""™},
Because of the symmetry property, the absolute difference between ranks of the

weakest and the second weakest participant in the match also equals 4™ ~™. By the

. 4n—m+1(4n—m+1+1)
balance property the sum of ranks in each match equals — All

strong and weak pairs considered above have different sums of ranks. There is
only one way to define a tournament. For any m from 2 to n, we have

m,i m-1,i »m-1,i+4""" m-14"-i+1-4""" L m-14"-i+1) . _ T an-m
T4,n = {T4,n 4 T4,n 4 T4,n 4 T4,n L= 1' 4n-m,

Proposition 16. For k = 5, there is no seeding that satisfies equal difference,
symmetry, and equal sums properties.

Proof. It is sufficient to consider the case of n = 2 to prove the impossibility
result. It is the last two round of any tournament. By the equal difference proper-
ty, the strongest 5 participants play in 5 matches against participants {6, ...,10}.
Because of the symmetry property the absolute difference between ranks of the
weakest and the second weakest participant in the match also equals 5. The sum
of ranks of these four participants is even. The sum of participants ranks in one
match equals 65. The rank of the middle participant should be odd in all matches,
that is impossible.

For k = 7, there exists a seeding that satisfies equal difference, symmetry,
equal sums, equal partition of losers properties:

{1,8,23,29,35,36,43},{2,9,18,31,34,37,44},{3,10,20,26,33,38,45},
T;2 = {4,11,22,24,28,39,46},{5,14,17,24,30,40,47},
{6,13,16,19,32,41,48},{7,14,15,29,35,42,49}

The fourth match is self-symmetric. The first and the seventh matches, the se-
cond and the sixth matches, the third and the fifth matches generate symmetric
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pairs of matches. For even k > 6, there are many seedings that satisfy equal dif-
ference and balance properties.

Proposition 17. For even k > 6 the number of tournaments that satisfy equal
difference and balance properties equals to

k—k"

(00 e

Proof. By equal difference, balance properties, the strongest k™~ participants
play in different matches with the weakest k™! participants, the second strongest
k™1 participants and the second weakest k™ 1 participants. There are

Nn_gpn—1 n— . ..
(k 42k )! ((0.5k —2)D)~*"" ways to assign all other participants to k™1

matches consistent with the balance property. Thus, we have

(kn—4kn_1)
ED,B __ 2 ) ED,B
#lien = ((0.5k—2)Hk" Then=1- (23)

Having #’H‘fﬁ'B = 1, we obtain the result.
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