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Reversible plastic events during oscillatory deformation of amorphous solids
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The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional
binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by
the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear
deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are
approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine
displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that
become comparable with the system size near the yield strain. Along with reversible displacements there exist
a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements
during one cycle increases, which leads to permanent structural relaxation of the material.

DOI: 10.1103/PhysRevE.93.013001

I. INTRODUCTION

Understanding the structure-property relationship of amor-
phous polymers and metallic glasses is important for many
technological and biomedical applications [1,2]. The mecha-
nism of plastic deformation in amorphous materials involves
an accumulation of highly localized structural rearrangements
of atoms or the so-called shear transformation zones [3–5].
It was recently demonstrated that in sheared glasses a strong
correlation exists between a collective rearrangement of small
groups of atoms and quasilocalized soft modes, or “soft
spots,” which are analogous to dislocations in crystalline
solids [6–10]. Molecular dynamics (MD) simulations suggest
that specific atomic packing configurations with the most
unfavorable local coordination polyhedra are more likely to
participate in soft spots in metallic glasses [10,11]. Further-
more, a local plastic event in sheared amorphous solids induces
long-range deformation that in turn might trigger secondary
events and give rise to avalanches [12]. In related studies, it
was shown that a local reversible shear transformation in a
quiescent system results in cage jumps (discrete events where
particles escape from cages of their neighbors) whose density
is larger in the cases of weakly damped dynamics or slow shear
transformation [13,14].

In recent years, the mechanical response of amorphous
materials to cyclic shear was examined experimentally [15–23]
by means of molecular dynamics simulations [24–31] and con-
tinuum modeling [32]. It was shown that at strain amplitudes
below a critical value, particle trajectories are reversible after
either one or several cycles, and the diffusion is suppressed
[15,21,24–27,29]. In contrast, at larger strain amplitudes, the
number of cage breaking events increases, and the particle
dynamics becomes spatially and temporally heterogeneous
[16,24,25,28,29]. However, the nature of the transition (a sharp
crossover versus a continuous nonequilibrium phase transition
[20,23,30]) and its relation to chaotic behavior [26] remain not
fully understood.

In the previous MD studies of binary [25] and polymeric
[28] glasses under oscillatory shear strain, the structural
relaxation was studied by analyzing the self-overlap order
parameter and the dynamic susceptibility. It was found that

at small strain amplitudes, the system dynamics is nearly
reversible during several thousands of oscillation periods. On
the other hand, at strain amplitudes above the critical value,
the memory of the initial state is lost during several cycles, and
a large fraction of particles undergo irreversible displacements
[25,28]. Remarkably, it was shown that at the critical strain
amplitude that separates slow and fast relaxation dynamics,
the number of particles involved in a correlated motion reaches
maximum [25,28]. Furthermore, the cage-breaking events
were identified from a sequence of particle positions at the
end of each cycle and studied at different strain amplitudes.
In particular, it was demonstrated that dynamic facilitation
of mobile particles by their neighbors becomes increasingly
pronounced at larger strain amplitudes [25,28]. However, the
analysis of particle displacements in the previous studies did
not include plastic rearrangements that occur during a single
oscillation cycle.

In this paper, the structural relaxation process in a binary
glass under cyclic loading is investigated using molecular
dynamics simulations. We find that while the system dynamics
at small strain amplitudes is reversible after each cycle, most
particles undergo nonaffine displacements with amplitudes
that are broadly distributed. Moreover, the results of numerical
simulations indicate that large nonaffine rearrangements are
spatially heterogeneous, with the typical length scale on the
order of the system size near the yield strain.

The rest of the paper is structured as follows. The molecular
dynamics simulation model and the deformation protocol
are described in the next section. The analysis of nonaffine
displacements of particles at different strain amplitudes is
presented in Sec. III. Brief conclusions are provided in the
final section.

II. DETAILS OF MOLECULAR DYNAMICS SIMULATIONS

We perform molecular dynamics simulations of a binary
(80:20) Lennard-Jones (LJ) glass model, which was first
introduced by Kob and Andersen [33]. The three-dimensional
system consists of N = 10 000 particles placed in a peri-
odic box as illustrated in Fig. 1. In this model, any two
particles α,β = A,B interact via the LJ potential, which is
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FIG. 1. A snapshot of an equilibrated binary LJ glass that is

subject to oscillatory shear strain in the xz plane (indicated by solid
arrows). Atoms of type A are denoted by large blue circles and type B

by small red circles. The Lees-Edwards periodic boundary conditions
are applied in the xz plane.

defined as

Vαβ(r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6]
, (1)

where the parameters are set as εAA = 1.0, εAB = 1.5,
εBB = 0.5, σAB = 0.8, σBB = 0.88, and mA = mB [33]. The
cutoff radius is rc,αβ = 2.245σαβ . In what follows, the units of
length, mass, energy, and time are set as σ = σAA, m = mA,
ε = εAA, and τ = σ

√
m/ε, respectively. The simulations were

carried out at a constant density ρ = ρA + ρB = 1.2σ−3 in a
cubic box of linear size L = 20.27σ . Newton’s equations of
motion were solved numerically using the fifth-order Gear
predictor-corrector integration scheme [34] with a time step
�tMD = 0.005τ .

The system was initially equilibrated in the absence of
shear at the temperature 1.1 ε/kB , which is well above
the glass transition temperature Tg ≈ 0.45 ε/kB [33]. Here
kB is the Boltzmann constant. Then, the temperature was
gradually reduced with the rate of 10−5 ε/kBτ to the final
temperature T = 10−2 ε/kB . After additional 5 × 106 MD
steps, the periodic shear strain was applied in the xz plane
according to

γ (t) = γ0sin(ωt), (2)

where ω is the oscillation frequency and γ0 is the strain
amplitude. The simulations were carried out with the oscil-
lation frequency ωτ = 0.001 and, correspondingly, the period
T = 2π/ω = 6283.19τ . In our study, the shear deformation
was implemented using the SLLOD algorithm [35] combined
with the Lees-Edwards periodic boundary conditions in the xz

plane. The constant temperature of the system was maintained
by rescaling the ŷ component of the velocity for each particle.
In addition, periodic boundary conditions were applied along
the ŷ direction (perpendicular to the plane of shear). After
discarding several cycles, the positions of all particles were
saved every T/12 = 523.60τ during fifty oscillation periods.

The data were accumulated in eight independent samples for
each strain amplitude.

III. RESULTS

The local plastic event in sheared amorphous materials
can be detected by computing nonaffine displacements of
particles with respect to its neighbors [4]. We first evaluate
the transformation matrix Ji that best maps all bonds between
a particle i and its nearest neighbors at times t and t + �t .
The nonaffine displacement of the particle i is computed as
follows:

D2(t,�t) = 1

Ni

Ni∑
j=1

{rj (t + �t) − ri(t + �t)

−Ji[rj (t) − ri(t)]}2, (3)

where the sum is taken over the neighboring atoms within the
radius rc = 1.5σ from the position vector ri(t) [10,11]. In our
study, the time lag �t was varied in the range from T/12 to
50T . Note also that the oscillation period was chosen so that
the time interval between consecutive particle configurations,
T/12 = 523.60τ , is much larger than the typical timescale of
irreversible rearrangements of particles [4].

The probability distribution function of the quantity D2 for
different strain amplitudes is presented in Fig. 2. The data
were collected in bins 0.001σ 2 at the time lag �t = T/4
and time t = 0. It can be observed in Fig. 2 that at strain
amplitudes γ0 � 0.07, most of the particles undergo affine
displacements characterized by small values D2 � 0.004σ 2.
At the same time, however, the displacement of some particles
deviates significantly from a linear strain field, and the quantity
D2 becomes relatively large. The tails of the probability
distribution functions are approximately power-law distributed
with a slope of the decay approaching −2 at the strain
amplitude γ0 = 0.07. Thus, the threshold for the local plastic

0.001 0.01 0.1

D2/ σ 2

0.0001

0.001

0.01

0.1

1

P
D

F

ωτ = 0.001

Slope = −2.0 

FIG. 2. The normalized probability distribution function of
D2(t,�t) defined by Eq. (3) for the strain amplitudes γ0 =
0.01,0.02,0.03,0.04,0.05,0.06, and 0.07 (from left to right). The
quantity D2(t,�t) was measured at t = 0 and �t = T/4, where T is
the oscillation period. The straight line with the slope −2 is plotted
for reference.
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FIG. 3. Variation of D2(0,�t) as a function of the time lag �t

for three particles during 50 periods at the strain amplitude γ0 = 0.05
and oscillation frequency ωτ = 0.001. Note that the vertical scale in
panel (c) is different.

deformation is somewhat arbitrary, and in what follows, we
define it to be D2 = 0.01σ 2. Similarly, a small fraction of the
atomic size was chosen as a critical value of D in the previous
MD studies of actively deformed metallic glasses [10,36]. Note
also that the definition of D2 in Eq. (3) involves averaging over
changes in the nearest-neighbor distances, and, therefore, the
threshold D2 = 0.01σ 2 is consistent with the value 0.1σ used
to define cage jumps in the previous studies on oscillatory
shear deformation of binary glasses [13,16,25].

Figure 3 shows the variation of the quantity D2 as a
function of the time lag �t for selected particles at the strain
amplitude γ0 = 0.05. We compare particle configurations
separated by the time interval �t with respect to t = 0. It
can be seen in Fig. 3(a) that the displacement of the particle
can be well described by the affine transformation during the
first half of each cycle, while it undergoes large nonaffine
displacements during the second half of each cycle. Notice that
the function D2(0,�t) is periodic with superimposed noise,
possibly because of the thermal fluctuations. We find, however,
that local nonaffine displacements are not always periodic. For
example, as shown in Fig. 3(b), the particle undergoes large
nonaffine displacements separated by periods with relatively
small amplitudes of nonaffine displacements. We comment
that this behavior is different from completely repetitive limit
cycles observed in athermal quasistatic simulations [26,27].

Furthermore, on rare occasions, we detect particles that
temporarily escape the cage of their neighbors while still
undergoing periodic nonaffine displacements [see Fig. 3(c)].
This behavior is consistent with the observation of reversible
cage jumps during oscillatory shear deformation of a binary
glass, where particle trajectories were analyzed using the cage
detection algorithm [25]. It was also found that irreversible
cage jumps typically occur after 102–103 cycles at the
strain amplitude γ0 = 0.05 and frequency ωτ = 0.02, when
the root mean square displacement of particles becomes
comparable with the cage size [25]. As a reminder, the critical
strain amplitude γ0 = 0.06 marks the transition from a slow
dynamics with a broad subdiffusive plateau to a diffusive
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FIG. 4. The dependence of the quantity D2(0,�t) as a function
of the time lag �t for three different particles at the strain amplitude
γ0 = 0.06 and oscillation frequency ωτ = 0.001.

regime governed by irreversible displacements of particles
[25]. Finally, examples of repetitive nonaffine displacements
at the strain amplitude γ0 = 0.06 are shown in Fig. 4 for three
particles. It can be seen that during 50 oscillation periods,
the displacements are reversible except for the time lags
�t ≈ 42T in Fig. 4(b) and �t ≈ 31T in Fig. 4(c), when
sudden irreversible rearrangements take place.

Typical configurations of particles with large nonaffine
displacements (D2 > 0.01σ 2) after a quarter of a cycle are
presented in Fig. 5 for the strain amplitudes 0.02 � γ0 � 0.05.
It is evident from Fig. 5(a) that even at the small strain
amplitude γ0 = 0.02, these particles form relatively large,
compact clusters as well as a few isolated clusters that consist
only of a few atoms. With increasing strain amplitude, the
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FIG. 5. The positions of particles of type A (large blue circles)
and particles of type B (small red circles) at the shear strain
γ (t = T/4) = γ0 and D2(0,T /4) > 0.01σ 2 for the strain amplitudes
(a) γ0 = 0.02, (b) γ0 = 0.03, (c) γ0 = 0.04, and (d) γ0 = 0.05.
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FIG. 6. The averaged quantity D2(0,�t) as a function of the strain
amplitude γ0 for the time lags �t = T/12 (◦), T/6 (�), T/4 (�), and
T (�), where T is the oscillation period. The shear strain γ (t) at
t = �t is given by Eq. (2).

cluster size increases and becomes comparable with the system
size at γ0 � 0.04. Thus, we identify a dynamical process
that involves a correlated motion of particles and leads to
percolation of nonaffine displacements at sufficiently large
strain amplitudes. Note that snapshots of particles shown in
Figs. 5(a)–5(d) were taken in the same sample, and, therefore,
the clusters at different strain amplitudes appear to be spatially
correlated. We also mention that the cluster size distribution
was not computed in our study because of the limited statistics.
Since only a few large clusters per sample are formed, and these
clusters are nearly reversible over fifty cycles, it is expected that
a reliable cluster size distribution can be obtained by averaging
over a larger number of independent samples (e.g., 103 instead
of 8). Interestingly, a power-law distribution of energy drops
below yield strain was recently reported in a model 2D solid
subject to oscillatory quasistatic shear [31].

The dependence of the quantity D2(0,�t) as a function
of the strain amplitude is plotted in Fig. 6 for different
time lags �t , which determine shear strain according to
Eq. (2). The nonaffine displacements were averaged over all
particles in eight independent samples with respect to t = 0.
It appears that at the smallest strain amplitude γ0 = 0.01, the
difference in D2(0,�t) for various time lags in Fig. 6 is barely
noticeable, because only a small fraction of particles undergo
large nonaffine displacements (see Fig. 2). As expected, the
average of D2(0,�t) increases with increasing shear strain

γ (�t), and it becomes greater than 0.01σ 2 at the maximum
strain γ (T/4) = γ0 = 0.07. Note also that D2(0,T ) after a full
back-and-forth cycle is not zero, which implies that relative
positions of a particle and its nearest neighbors are not exactly
reversible even at small strain amplitudes due to thermal
motion of particles within their cages. This is consistent
with the results shown in Fig. 3. Furthermore, the relatively
large increase of D2(0,T ) at the strain amplitudes γ0 = 0.06
and 0.07 in Fig. 6 reflects the occurrence of irreversible
displacements after a single cycle. These results confirm that
with increasing strain amplitude above γ0 = 0.06, the number
of irreversible cage jumps after one cycle increases, and the
root mean square displacement of particles becomes greater
than the cage size [25]. These conclusions also agree with the
definition of the yielding transition that occurs at the largest
strain amplitude below which the microstructure is reversible
[18].

IV. CONCLUSIONS

In summary, molecular dynamics simulations were con-
ducted to study structural relaxation in a three-dimensional
model glass submitted to periodic shear. We considered the
Kob-Andersen binary mixture at the temperature which is
well below the glass transition. The nonaffine component
of the particle displacement was evaluated during multiple
time intervals with respect to the system configuration at
zero strain. It was found that even at strain amplitudes below
yield, some particles undergo large nonaffine displacements
that are reversible after each cycle. The magnitudes of the
nonaffine displacement, computed after a quarter of a cycle,
are approximately power-law distributed with the slope that
depends on the strain amplitude. During cyclic loading, mobile
particles tend to aggregate into transient clusters which become
larger with increasing strain amplitude. The probability of
irreversible rearrangements after a full cycle also increases,
leading to permanent structural relaxation of the material at
large strain amplitudes.
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