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Abstract.
The canonical technique for Monte Carlo simulations in statistical physics is importance

sampling via a suitably constructed Markov chain. While such approaches are quite successful,
they are not particularly well suited for parallelization as the chain dynamics is sequential,
and if replicated chains are used to increase statistics each of them relaxes into equilibrium
with an intrinsic time constant that cannot be reduced by parallel work. Population annealing
is a sequential Monte Carlo method that simulates an ensemble of system replica under a
cooling protocol. The population element makes it naturally well suited for massively parallel
simulations, and bias can be systematically reduced by increasing the population size. We
present an implementation of population annealing on graphics processing units and discuss its
behavior for different systems undergoing continuous and first-order phase transitions.

1. Introduction
Population annealing (PA) was first suggested in 2001 by Iba [1] and later on discussed in more
detail by Hukushima and Iba [2] as a method to tackle potentially difficult sampling problems,
but with no particular view to a parallel implementation. It belongs to a family of population
methods with examples in quantum Monte Carlo (“diffusion Monte Carlo” [3]), statistical
inference (“particle filter” [4]) and statistical physics (“go with the winners” [5]), among others.
PA considers an ensemble of configurations set up in equilibrium at high temperature. These are
then propagated down to low temperatures by a combination of local updates and a resampling or
population control step that clones or prunes configurations according to their relative statistical
weight. PA is hence not a Markov chain method but belongs to the different realm of sequential
Monte Carlo techniques [6] that are quite commonly used in statistics, but less well known in
physics.

It is mostly due to limitations in power dissipation that the continuous increase in clock
frequencies of commodity processors has come to an end more than 10 years ago. The
computational power of a typical PC or cluster node has continued to increase, however, but
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now fueled by a multiplication of the cores available for computation, i.e., through an increase
in parallelism [7]. As a consequence, high-performance computing clusters can now come with
millions of cores, and an end to this development towards ever more parallel computational
resources is not in sight. The search for algorithms that perform well in such environments is
hence one of the main tasks of computational science today [8]. In Monte Carlo, Markov chain
methods that are so successful in serial and moderately parallel setups are not a perfect fit
for massively parallel computational resources: parallelization there is either through domain
decomposition with the obvious limitations in strong scaling as the domains become too small,
or through the simulation of independent or loosely coupled parallel walkers to increase statistics
[9–11]. In the latter approach the fraction of time spent outside of the equilibration phase shrinks
with the number of parallel threads, leading to asymptotically vanishing efficiency. In PA, on the
other hand, the quality of approximation improves with the population size R, with systematic
deviations (bias) asymptotically decaying proportional to 1/R [12, 13]. As a consequence, this
approach and its variations hold great promise for becoming standard simulation techniques for
the age of massively parallel computing.

The study of systems undergoing phase transitions and, in particular, those with complex
free-energy landscapes has been one of the main application areas and one of the main driving
forces of algorithm development within the realm of computer simulations in statistical physics
[14]. The effect of critical slowing down observed in the vicinity of continuous phase transitions
led to the development of cluster updates [15]. Phase coexistence and the suppression of the
region of mixed states connecting the pure phases for first-order transitions became amenable to
quantitative studies through the multicanonical method and related approaches [16, 17]. On the
other hand, frustrated systems with many metastable states can be simulated (more) efficiently
through the use of parallel tempering [18] and similar techniques. This latter case of systems
with complex free-energy landscapes is where PA has been recently used with some success,
namely for the simulation of spin glasses [13, 19, 20]. A more general understanding of the
performance of PA for simulations of systems undergoing continuous and discontinuous phase
transitions is lacking to date.

In the following we show how the highly parallel resources provided by graphics processing
units (GPUs) can be used to achieve an efficient implementation of PA for the case of the
Potts model. We then study the behavior of the algorithm for simulations of the square-lattice
Potts model, distinguishing the regimes where it undergoes second-order and where it undergoes
first-order phase transitions, respectively.

2. Population annealing
Population annealing as a weighted sequential algorithm was first introduced in Refs. [1, 2]. The
variant which we discuss here follows the scheme proposed more recently by Machta [21]. The
algorithm is defined by the following steps:

(i) Set up an equilibrium ensemble of R0 = R independent replicas of the system at inverse
temperature β0. Often one chooses β0 = 0, where this can be easily achieved.

(ii) To create an approximately equilibrated population at βi > βi−1, resample configurations
j = 1, . . . , Ri−1 with their relative Boltzmann weight τi(Ej) = exp[−(βi − βi−1)Ej ]/Qi,
where

Qi ≡ Q(βi−1, βi) =
1

Ri−1

Ri−1∑
j=1

exp[−(βi − βi−1)Ej ]. (1)

(iii) Update each replica by θ sweeps of a Markov chain Monte Carlo (MCMC) algorithm at
inverse temperature βi.

(iv) Calculate estimates for observable quantities O as population averages
∑Ri

j=1Oj/Ri.
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(v) If the the target temperature βf has not been reached, goto step (ii).

If one starts with an equilibrium sample, for instance by using a set of random configurations
at infinite temperature, one arrives at a valid algorithm even without the additional rounds of
sampling in step (iii). As in each temperature step some of the properly normalized resampling
factors will be smaller than unity, however, this would lead to an exponential decrease in
the number of distinct replicas and hence a vanishing efficiency in representing the target
distribution. A combination with MCMC updates is therefore crucial for the approach, which
hence becomes a hybrid of sequential and Markov chain methods.

The resampling step is very similar to what happens in histogram reweighting [22], i.e., taking
account of the non-unit weight of an equilibrium configuration at inverse temperature β for the
ensemble at temperature β′. As these weights are immediately translated into a resampling of
the population, in the present implementation individual configurations all carry the same weight
[2]. The expected number of copies of each replica at βi−1 to be included in the population at
βi should be τ̂i(Ej) = (R/Ri−1)τi(Ej). Other than fixing the expectation values, there is some

freedom of choice for the actual probability distribution of the number rji of copies of replica j in
the population at inverse temperature βi. The two most common cases are a Poisson distribution
[21],

rji ∼ Pois[τ̂i(Ej)], (2)

or a fixed integer part plus a Bernoulli trial corresponding to the fractional contribution [23, 24],

rji =

{ �τ̂i(Ej)� if r > τ̂i(Ej)− �τ̂i(Ej)�
�τ̂i(Ej)�+ 1 otherwise

. (3)

Here, r is a random number uniformly distributed in [0, 1) drawn for each replica of the
population at βi−1, and �x� denotes the largest integer not exceeding x.

The temperature protocol is not formally restricted in the algorithm as outlined above.
The simplest choice corresponds to a constant inverse temperature step Δβ, βi = βi−1 + Δβ.
More advanced schemes are possible, however, such as an adaptive choice of temperature steps
guaranteeing sufficient overlap of neighboring energy histograms [25]. A particular feature of the
PA algorithm is that it provides a natural estimator of the free energy through a combination
of the resampling factors Qk [21],

−βiF (βi) = lnZβ0 +
i∑

k=1

lnQk. (4)

Here Zβ0 denotes the partition function at the initial temperature point β0 which is required in
order to get absolute free energies. For β0 = 0 it is easily found as it corresponds to the case of
the non-interacting system.

3. Implementation on GPU
As a sufficiently versatile example for the study of phase transitions of first and second order,
we considered the Potts model on the square lattice with Hamiltonian [26]

H = −J
∑
〈i,j〉

δsi,sj , (5)

where si ∈ {1, . . . , q} and J > 0 corresponds to a ferromagnetic coupling (we choose units such
that J = 1). As indicated in the sum in Eq. (5) we restrict interactions to nearest neighbors
only, and we assume periodic boundary conditions. The model has a phase transition at the
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Table 1. Optimal performance of the CPU and GPU codes for PA for the q = 2 model in units
of the time tSF per spin flip. As the best performance is found for large θ, we quote here data
for θ = 500 and use R = 50 000. The speedups for the single-spin coding (SSC) and multi-spin
coding (MSC) GPU programs are relative to the CPU results. GPU performance data are for
the Tesla K80 device. The CPU code was benchmarked on an Intel Xeon E5-2683 v4 CPU
running at 2.1 GHz.

CPU GPU

SSC MSC
L tSF [ns] tSF [ns] speedup tSF [ns] speedup

16 23.1 0.094 246 0.0096 2406
32 22.9 0.092 249 0.0095 2410
64 22.6 0.092 246 0.0098 2306
128 22.6 0.097 233 0.0098 2306
256 22.5 0.098 230 0.0099 2273

self-dual point βt = ln(1 +
√
q) [27, 28] which is of second order for q ≤ 4 and of first order

for q > 4 [29, 30]. The Ising model is equivalent to the special case q = 2 as becomes clear on
making the identification σi = 2si − 3 between Ising spins σi and the Potts spins si.

The PA algorithm outlined above consists of the three repeating steps (ii) population
resampling, (iii) MCMC updates, and (iv) measurement cycle. In typical applications, one
mostly chooses θ � 10, and as a consequence the MCMC updates typically take more than
80% of the time. Hence their efficient implementation is the most significant element [31]. We
chose the Metropolis algorithm to update the spins [14]. This part of the simulation is trivially
parallel due to the need to update all members of the population, and it is hence ideally suited
for the massively parallel hardware provided by GPUs. It is important to take into account that
GPUs have properties of vector machines as well as features of parallel computers [32]. Certain
groups of threads are scheduled for execution on the available multiprocessors simultaneously
and operate in lockstep. Memory transactions for such thread groups are served collectively, and
it is hence crucial to lay out data in memory in a way that ensures that logically neighboring
threads access consecutive locations in GPU memory. It is possible to run the algorithm with
a setup with only one thread per replica which is particularly simple and easily generalized to
different systems. To achieve best performance, however, we used a checkerboard decomposition
[33–35] of the lattice and hence several threads to update parts of each replica in parallel, for
details see Ref. [31]. To achieve good memory coalescence of accesses for this setup, it is crucial
to store spin configurations in a spin-parallel way, i.e., such that neighboring spins in memory
correspond to neighboring lattice sites. Additionally, we store the two sub-lattices separately
which improves the performance further. The total amount of data transferred over the GPU
bus is kept at a minimum by using 8-bit integers for the spin variables and employing the
stateless, counter-based random-number generator (RNG) Philox [36, 37]. To achieve decent
performance on current devices it is vital to use a number of threads that is several times larger
than the available number of actual compute units, as this allows the scheduler to pause thread
groups waiting for data and activate other groups that have already completed memory accesses
instead. The resulting benefit of latency hiding is fully taken advantage of in the present setup
as typical population sizes R are at least 104 while the number of cores of present cards is of
the order of 103.

An implementation of the resampling process on GPU requires several steps. The
normalization constants Qi of Eq. (1) are calculated using a parallel or “butterfly” reduction
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Figure 1. Ratio of variances of the specific heat of the 2D Ising model as estimated from
simple Metropolis simulations of R samples and θ sweeps and of PA simulations with the same
parameters. The inverse temperature steps were Δβ = 0.0067 for L = 32 and Δβ = 0.0033 for
L = 64. The protocols for both types of simulations are identical apart from the fact that for
the Metropolis runs the resampling step was turned off.

method [31]. The resampling factors τ̂i(Ej) are then computed in a separate kernel according
to the prescription in Eq. (3). The resampling itself is done in parallel on GPU too and leads
to a memory requirement that is twice that of the actual population size. (Note that the
population size Ri weakly fluctuates between temperature steps.) Finally, measurements are
again performed in a replica-parallel way for elementary quantities such as the energy and
magnetization and their respective moments, using parallel reductions of the values for different
population members to accumulate the population averages.

The resulting GPU code shows excellent performance as is illustrated by the peak performance
data for the Ising case q = 2 collected for a Tesla K80 GPU and summarized in Table 1. The
speedup of more than 200 times against a serial CPU code is almost independent of system
size. For this specific case of only two states, an additional compression of spin states into
the machine words is possible, leading to a method usually called multi-spin coding (MSC)
[38] that yields additional performance increases against the standard single-spin coded (SSC)
program. In the context of PA, this is most efficiently done by storing spins from the same
lattice sites but different replicas in one word (sometimes called asynchronous multi-spin coding
[35]). A performance bottle-neck in this setup is the generation of random numbers for the
Metropolis updates. We use a linear-congruential generator seeded by the high-quality Philox
RNG and achieve an about 10-fold speedup for MSC with 32 spins per word against the SSC
implementation (see details in Ref. [31]). The corresponding spin-update times and speedups
compared to the serial CPU code are summarized in Table 1.

4. Behavior at continuous transitions
The question of how well PA performs compared to other approaches, and in particular MCMC
algorithms, can be answered quantitatively in terms of the dependence of the systematic errors
(bias) and the statistical errors on the simulation parameters as well as on properties of the
system such as the system size. We have discussed elsewhere the dependence of bias and variances
on R, θ and Δβ for the example of the Ising model corresponding to the Hamiltonian (5) for
q = 2 [25]. Here we focus on the computational efficiency in the vicinity of the critical point.

Figure 1 shows the ratio of estimated variances (squared error bars) for the specific heat of the
2D Ising model from two different algorithms: a Metropolis update and the PA method. Note
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Figure 2. Ratio of variances of the specific heat for PA and parallel tempering (PT) simulations
with the same number of MC steps as a function of inverse temperature β. In contrast to the
data in Fig. 1, spin flips were performed according to a heatbath update rule here [14]. For PA
we chose R = 50 000 and θ = 1 and used the same number of updates for the PT run.

that the Ising model at inverse temperature β corresponds to the q = 2 Potts model at 2β. Given
that statistical errors in both methods decay with the inverse square root of the computational
effort [14, 25] and that the run times (on CPU) of both setups were identical apart from a small
overhead for the resampling steps, this ratio indicates an algorithmic speedup from using PA over
a standard spin-flin only simulation, i.e., it shows how much longer the Metropolis simulation
would need to run to produce error bars of the same size as those of the PA approach. To make
the comparison as fair as possible, the type of Metropolis simulation used here is very similar to
the setup in PA, i.e., a population of R replicas is simulated in parallel starting from β0 = 0 and
decreasing the temperature in steps of Δβ, performing θ Metropolis sweeps (and measurements)
at each temperature. The Metropolis setup is hence identical to the PA algorithm, but only with
the resampling step turned off. As Fig. 1 reveals, the resampling is irrelevant sufficiently far
away from the critical point, resulting in a unit variance ratio. In this regime, the MCMC steps
are sufficient to decorrelate the configurations at each temperature step and hence resampling
cannot decrease statistical errors further. In contrast, in the vicinity of the phase transition
at βc ≈ 0.44068 critical slowing down leads to an imperfect decorrelation of configurations
through the MCMC moves, and in this case the resampling results in an additional relaxation
of configurations. This yields reduced statistical errors for the PA runs there and consequently
a speedup factor that is larger than one. The two panels in Fig. 1 for system sizes L = 32 and
L = 64 show such a speedup, which appears to increase with system size.

Population annealing is similar in spirit to parallel tempering [12] and one might hence
wonder how they compare to each other for simulating a system with a continuous transition.
Figure 2 shows a comparison of the statistical speedup factors defined through the ratio of
variances against the spin-flip only run for the PA simulation (corresponding to the data from
the right panel of Fig. 1 for R = 50 000) and a parallel tempering (PT) simulation using the
same temperature sequence and the same number of spin updates. It is clear that both PT
and PA show comparable speedup factors for this problem, an observation that is in line with
experiences previously reported for spin-glass systems [13, 24]. At the same time, however, it is
clear that PA is much better suited for highly parallel computational environments than PT.
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Figure 3. Hysteresis effect in PA runs for the q-states Potts model. Left: Energy as measured
in cooling runs (right curve of each color) and heating runs (left curve of each color) for q = 3,
q = 6 and q = 10 for L = 32 and R = 10 000 with θ = 10 and Δβ = 0.01. The vertical lines
indicate the asymptotic transition points at βt = ln(1+

√
q). Right: The data points for q = 10

compared to the data for equivalent PA runs with the resampling step turned off.

5. Behavior at first-order transitions
At first-order points it is not the critical slowing down seen for continuous transitions that
impedes the efficient simulation but rather the phenomenon of phase coexistence and the
associated metastability [39]. As a consequence, the system remains in its original phase as
the transition point is crossed and decays to the now stable opposite phase on a time scale
that depends on the cooling or heating rate. This is the well-known effect of hysteresis. An
established way of preventing this effect to occur is the simulation in generalized ensembles
that artificially enhance the suppressed states connecting both phases, for example through the
multicanonical method [16, 40]. It is interesting to see how the ensemble of configurations in
PA behaves in this respect [41].

To clearly reveal any potential hysteresis effect, we added to the standard PA protocol that
cools the population from its initial temperature point at β0 down to βf a heating run, starting
from βf and ending at β0. The algorithm described in Sec. 2 works in the same way for such a
temperature schedule, but now one needs to prepare the population in equilibrium at the inverse
temperature βf instead of at β0 = 0. This is achieved by preparing the population as a uniformly
random sample of the q-fold degenerate ground state of the Hamiltonian (5), corresponding to
an equilibrium sample at T = 0, i.e., at βf = ∞. In practice, it is also an almost perfect
approximation of the equilibrium distribution at the finite βf = 3 used here.

The left panel of Fig. 3 shows the internal energies e = 〈H〉/N estimated from PA runs with
a cooling and runs with a heating schedule, respectively, for various values of q. It is clearly
visible that hysteresis occurs for the first-order cases q = 6 and q = 10 while it is absent for
the second-order model q = 3. This hysteresis effect is found to be more pronounced for large
(inverse) temperature steps Δβ. Thus, PA does not remove the hysteresis observed in a purely
local Metropolis simulation. Nevertheless, it is able to reduce this effect as is apparent from a
comparison of the energy curves for the regular PA simulations to PA runs with the resampling
step turned off, corresponding to pure Metropolis simulations. This is shown in the plot in the
right panel of Fig. 3.

Such hysteresis is also observed in other quantities, for example in estimates of the free energy
deduced from the expression of Eq. (4). This is illustrated in Fig. 4 for the same values of q as
shown in Fig. 3 and the additional case of the Ising model. Recall that in order to get absolute
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Figure 4. Left: Free energy of the Ising model and the q = 3, q = 6 and q = 10 Potts models
as estimated from PA runs with cooling (solid lines) and with heating (dashed lines) schedules.
The system size studied was L = 32 and the PA parameters were chosen to be R = 10 000,
θ = 10 and Δβ = 0.01. Right: Detail of the crossing of the metastable free energies for q = 6
and q = 10. Symbols with error bars are only shown for every fifth actual data point. The
vertical dotted lines indicate the locations of the (exact) asymptotic transition points.

free energies, the expression (4) requires additional input in the form of the reference value Zβ0 .
For the standard cooling schedule the relevant reference point is −βF (β)/N = ln q as β → 0.
For the heating runs, on the other hand, it is easy to see that −βF (β)/N = (ln q)/N − βe0 as
β → ∞, where e0 = E0/N = −2 is the ground-state energy per site [41]. The resulting free-
energy estimates from cooling and from heating runs are perfectly consistent with each other
for the second-order cases q = 2 (Ising) and q = 3, cf. the left panel of Fig. 4. For the first-
order models q = 6 and q = 10, on the other hand, the low-temperature and high-temperature
estimates differ, as expected [40], and both curves intersect close to the transition point, thus
providing a method for determining from the simulations the location of the phase transition
[40, 41].

6. Summary
We have studied population annealing as a promising new technique for the simulation of
systems undergoing phase transitions. Being a hybrid of sequential and Markov chain Monte
Carlo methods, it has the advantage of a theoretically perfect strong scaling behavior. While
on increasing the number of parallel workers pure Markov chain methods eventually spend
most time in the equilibration phase, bias as well as statistical errors in population annealing
are systematically reduced with increasing numbers of parallel threads. Taking advantage of
these excellent scaling properties we presented an efficient GPU implementation of population
annealing for the Potts model. For the Ising case q = 2 we find a more than 200-fold speedup
against a serial CPU code even for small system sizes. This can be further increased by
using multi-spin coding techniques which yield an additional factor of 10 for the Ising model.
Population annealing is found to offer no algorithmic advantage over the underlying Markov
chain technique in terms of a possible reduction of statistical errors from the same computational
effort for the Ising model off criticality. This is where the regular spin flips are sufficient to
decorrelate configurations. In the vicinity of the critical point, on the other hand, an algorithmic
speedup is achieved that potentially grows with system size. For systems with first-order phase
transitions, population annealing is able to reduce, but not to eliminate the effect of hysteresis
caused by metastability close to the transition. The free-energy estimate naturally deduced
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from population annealing runs can be used to estimate the location of the transition point.
A combination of population annealing with generalized-ensemble methods that might be able
to more completely remove the effects of metastability would be an interesting topic for future
research.
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