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Tests based on characterizations, and their
efficiencies: a survey

Ya. Yu. Nikitin

Abstract. A survey of goodness-of-fit and symmetry tests based on
the characterization properties of distributions is presented. This ap-
proach became popular in recent years. In most cases the test statistics
are functionals of U -empirical processes. The limiting distributions and
large deviations of new statistics under the null hypothesis are described.
Their local Bahadur efficiency for various parametric alternatives is cal-
culated and compared with each other as well as with diverse previously
known tests. We also describe new directions of possible research in this
domain.

1. Introduction

This survey is dedicated to the statistical tests based on characteriza-
tions. This is a relatively new idea which manifests growing popularity
in the context of goodness-of-fit and symmetry testing. The idea to build
goodness-of-fit tests using the characterizations of distributions belongs to
Yu. V. Linnik [47]. At the end of this wide-ranging paper he wrote: “. . . one
can raise the issue of the construction of goodness-of-fit tests for testing com-
posite hypotheses based on the equal distribution of the two relevant statistics
g1(x1, . . . , xr) and g2(x1, . . . , xr), and on the reduction of such question to
the homogeneity tests.” This sentence was the guiding star which showed the
researchers the right direction in the new and unexplored domain.

Currently, in the world literature there exist hundreds of various char-
acterizations of probability distributions, see, e.g., [37], [26], [40], and [38].
Many characterizations according to Linnik’s idea imply the corresponding
statistical tests. Such tests are attractive because they reflect some intrinsic
and hidden properties of probability distributions connected with the given
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characterization, and therefore can be more efficient or more robust than
others.

Moreover, one should keep in mind that any hypothesis has to be tested
with several possible criteria. The point of the matter is that with absolute
confidence we can only reject it, while each new test which fails to reject
the null-hypothesis gradually brings the statistician closer to the perception
that this hypothesis is true. We find it pertinent to quote here the famous
assertion by Einstein [23]: “No amount of experimentation can ever prove
me right; a single experiment can prove me wrong.” Hence, we are interested
in building new statistical tests based on novel ideas, specifically using the
characterizations.

But the theory of such tests is intricate, and the study of their asymp-
totic properties including limiting behavior, and especially their asymptotic
efficiency began only after 1990. Before that there existed few exceptions
like the paper [97], of which later Mudholkar and Tian [71] wrote: “Vašicek
(1976) was the first to recognize that the characterization results can be log-
ical starting points for developing goodness-of-fit tests.”

Probably these authors were unfamiliar with the seminal paper by Linnik
cited above who was surely the first to propose the idea under discussion. In
the abstract of the paper [29] published in 1993, Hashimoto and Shirahata
proposed one of the first tests of fit based on characterizations and wrote:
“However, since no test statistics based on characterizations are known, our
test will be worth considered.” This citation shows that in the beginning
of 1990s the tests based on characterizations were unusual and sparse. But
since that time the state of affairs changed significantly. Numerous new tests
based on characterizations were build, and their study gradually acquired the
traits of a theory. We want to trace an outline of this theory and its main
achievements within the last 25 years.

We begin by general constructions explaining the structure of tests used in
this domain. Next we pass to concrete problems like testing of exponentiality,
normality or symmetry, and describe the main developments of the last
period of time. We are mainly interested in the asymptotic efficiency of our
tests though the results of power simulation are also possible and interesting.
At the end of the paper we pose some problems and trace new directions of
research. In most cases, the proofs are omitted, otherwise this survey would
exceed the size of the paper in a journal.

2. U-statistics and U-empirical distributions

Let X1, X2, . . . , Xn be i.i.d. observations with continuous df F . We begin
by testing the composite goodness-of-fit problem

H0 : F ∈ F,
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where F is some family of df’s, against the alternative

H1 : F /∈ F.

Typical examples are testing exponentiality, normality or symmetry of a
sample.

Next exposition will be based on U -statistics and their variants. Cur-
rently U -statistics play an important role in statistics and probability. They
appeared in the middle of 1940s in problems of unbiased estimation, but
after the crucial paper of Hoeffding [32] it became clear that the numerous
valuable statistics are just U -statistics (or von Mises functionals having very
similar asymptotic theory). The most complete exposition of this theory can
be found in the monographs [39] and [42].

We consider U -statistics of the form

Un =

(
n

m

)−1 ∑
16i1<...<im6n

Ψ(Xi1 , . . . , Xim), n > m,

where X1, X2, . . . is a sequence of i.i.d. rv’s with common df F , while the
kernel Ψ : Rm → R1 is a measurable symmetric function of m ≥ 1 variables.
The number m is called the degree of the kernel. We assume that the kernel
Ψ is integrable on Rm and denote

θ(F ) :=

∫
...

∫
Rm

Ψ(x1, . . . , xm)dF (x1)... dF (xm).

In the sequel we need the notations

ψ(x) := EF {Ψ(X1, . . . , Xm)|X1 = x}, ∆2 := EFψ2(X1)− (θ(F ))2.

The function ψ is called the one-dimensional projection of the kernel Ψ
and plays an important role in asymptotic theory. If ∆2 > 0 that specifies
the so-called non-degenerate case, the limiting distribution of
U -statistics is normal as discovered by Hoeffding [32]. He proved that if
EFΨ2(X1, . . . , Xm) < ∞ and ∆2 > 0, then as n → ∞ one has convergence
in distribution √

n

m∆
(Un − θ(F ))

d−→ N(0, 1). (1)

Consider, in conformity with Linnik, the characterization of some proba-
bility law by the identical distribution of two statistics g1(X1, . . . , Xr) and
g2(X1, . . . , Xs). The examples of such characterizations will be given further.

We can build two U -empirical df ’s

L1
n(t) =

(
n

r

)−1 ∑
1≤i1<...<ir≤n

1{g1(Xi1 , . . . , Xir) < t}, t ∈ R1,

L2
n(t) =

(
n

s

)−1 ∑
1≤i1<...<is≤n

1{g2(Xi1 , . . . , Xis) < t}, t ∈ R1.
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The theory of U -empirical df’s was developed in 1980s (see, e.g., [31], [33],
[39]) and is similar to the theory of usual empirical df’s. By the Glivenko–
Cantelli theorem for U -empirical df’s we have (wp 1) as n→∞ :

L1
n(t)⇒ L1(t) := P (g1(X1, . . . , Xr) < t),

L2
n(t)⇒ L2(t) := P (g2(X1, . . . , Xs) < t).

Under H0 for large n we have L1
n(t) ≈ L2

n(t) so that we can use this
closeness for goodness-of-fit testing. Over much of this survey we consider
two types of statistics: the integral one

In =

∫
R1

(
L1
n(t)− L2

n(t)
)
dFn(t),

where Fn(t) is the usual empirical df, and of Kolmogorov type, namely

Dn = sup
t∈R1

| L1
n(t)− L2

n(t) | .

Such statistics can have rather different behavior depending on the type of
characterization and underlying distribution, accordingly the statistical tests
based on them can have distinct limiting properties, power and efficiency.

3. Outline of Bahadur theory

Suppose that we want compare two sequences of statistics In and Dn

by their asymptotic efficiency. Among many types of efficiencies (see [75,
Ch.1]) we select the Bahadur efficiency because, unlike Pitman efficiency, it
can be calculated for statistics with non-normal limiting distribution. This
is the primary reason to use it in the present context as the Kolmogorov
type statistics have non-normal limiting distributions. Hodges–Lehmann
efficiency has other drawbacks, in particular, it does not discriminate two-
sided tests, see, e.g., [75, Ch.1]. In this section we shortly describe main
points of Bahadur theory, see the complete exposition in [12] and [13].

Let s = (X1, X2, . . .) be a sequence of i.i.d. rv’s with the distribution
Pθ, θ ∈ Θ, on (X ,A). We are testing the null-hypothesis

H0 : θ ∈ Θ0 ⊂ Θ ⊂ R1

against the alternative

H1 : θ ∈ Θ1 = Θ \Θ0.

For this problem we use the sequence of test statistics Tn(s) = Tn(X1, . . . ,
Xn). The Bahadur approach prescribes one to fix the power of concurrent
tests and to compare the exponential rates of decrease of their sizes for the
increasing number of observations and fixed alternative. This exponential
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rate for a sequence of statistics {Tn} is usually proportional to some non-
random function cT (θ) depending on the alternative parameter θ ∈ Θ1 which
is called the exact slope of the sequence {Tn}. The Bahadur asymptotic
relative efficiency (ARE) eBV,T (θ) of two sequences of statistics {Vn} and

{Tn} is defined by means of the formula

eBV,T (θ) = cV (θ)
/
cT (θ) .

The exact slope can be found by the fundamental theorem of Bahadur
[12].

Theorem 1. Suppose that the following two conditions hold:

a) Tn
Pθ−→ b(θ), θ > 0,

where −∞ < b(θ) < ∞, and
Pθ−→ denotes convergence in probability

under Pθ.
b) limn→∞ n

−1 lnPH0 (Tn ≥ t) = −h(t)
for any t in an open interval I, on which h is continuous and {b(θ), θ >
0} ⊂ I.

Then cT (θ) = 2 h(b(θ)).

Often the exact Bahadur ARE is uncomputable for any alternative de-
pending on θ, but it is possible to calculate the local Bahadur ARE as
θ ∈ Θ1 approaches the null-hypothesis. Then one speaks about the local
Bahadur efficiency and local Bahadur exact slopes [75].

Let K(θ, θ0) ≡ K(Pθ, Pθ0) be the Kullback–Leibler distance between Pθ
and Pθ0 , see, e.g., [13] or [98]. Put for any θ ∈ Θ1

K(θ,Θ0) := inf{K(θ, θ0) : θ0 ∈ Θ0}.
The Bahadur–Raghavachari inequality (the analog of Cramér–Rao in-

equality in testing), see [12], [75], states that for any θ ∈ Θ1 one has

cT (θ) ≤ 2K(θ,Θ0).

Hence we may define the (absolute) local Bahadur efficiency of the sequence
{Tn} by the formula

effT = lim
θ→∂Θ0

cT (θ)/2K(θ,Θ0).

Only in exceptional cases

cT (θ) = 2K(θ,Θ0), ∀θ ∈ Θ1.

Therefore one can be interested in those F = L(X1) for which

effT = lim
θ→∂Θ0

cT (θ)/2K(θ,Θ0) = 1.

We call this property the local optimality in Bahadur sense. An interesting
question is to describe those alternatives for which the considered tests are
locally optimal in Bahadur sense. The idea ascends to Bahadur [13] but was
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developed by the author, see [74], [75, Ch.6], and subsequent papers, e.g.,
[80]. However, we leave this direction apart as it requires considerable space
to enounce the obtained results.

The first condition of Theorem 1 is a variant of the Law of Large Numbers
and its verification is easy. On the contrary, the second condition of this
theorem describes the rough (logarithmic) large deviation asymptotics of
test statistics under the null-hypothesis and is non-trivial. To verify it, we
often use the following theorem on large deviations of U -statistics by Nikitin
and Ponikarov [81].

Theorem 2. Let Vn be a sequence of U -statistics with centered, bounded
and non-degenerate kernel Ψ. Then

lim
n→∞

n−1 lnP{Vn ≥ a} = −
∞∑
j=2

bja
j , (2)

where the series with numerical coefficients bj converges for sufficiently small
a > 0, and b2 = (2m2∆2)−1, where ∆2 is the variance of the projection of
the kernel Ψ.

Large deviations for the supremum of the family of non-degenerate
U -statistics supt∈T Un(t), where Un(t) for each t ∈ T is a U -statistic with
the non-degenerate kernel Ξ(X,Y ; t) which corresponds to Kolmogorov type
statistics, were studied in [78]. The result is similar to (2) but slightly more
involved.

4. Desu’s characterization and corresponding tests of
exponentiality

One of the most simple characterizations of exponential distribution be-
longs to Desu [21].

Theorem 3. Let X and Y be non-negative i.i.d. rv’s with df differentiable

at zero. Then X
d
= 2 min(X,Y ) if and only if X and Y are exponentially

distributed.

Using this characterization we will show how to build and analyze the
corresponding tests of exponentiality.

Let X1, . . . , Xn be i.i.d. observations with non-degenerate df F, and let Fn
be the corresponding empirical df. We are testing the composite hypothesis

H0 : F (x) is the df of exponential law with the density f(x) = λe−λx, x ≥ 0,

where λ > 0 is some unknown parameter, against the alternative H1 under
which the hypothesis H0 is wrong.
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In this case we need the U -statistical empirical df Hn which is defined as

Hn(t) =

(
n

2

)−1 ∑
1≤i<j≤n

1{2 min(Xi, Xj) < t}, t ≥ 0.

We will study the two statistics

In =

∫ ∞
0

(Fn(t)−Hn(t))dFn(t),

and

Dn = sup
t≥0
|Fn(t)−Hn(t)|.

Clearly their distribution under the null-hypothesis does not depend on λ.
The statistic In is asymptotically equivalent to the U -statistic of degree 3

with the centered kernel

Ψ(X,Y, Z) =
1

2
− 1

3
[1{2 min(X,Y ) < Z}−

− 1{2 min(Y, Z) < X} − 1{2 min(X,Z) < Y }].
The projection of this kernel is

E[Ψ(X,Y, Z)|Z = t] := ψ(s) =
1

3
e−s − 1

18
− 4

9
e−3s,

and the variance of the projection is ∆2 := Eψ2(Z) = 11/3780 ≈ 0.003.
By Hoeffding’s theorem (see [32]) we get the following result.

Theorem 4. Under the hypothesis H0 one has convergence in distribution
√
nIn

d−→ N (0, 9∆2), as n→∞.

As to the large deviations, in our case we get for a > 0

lim
n→∞

n−1 lnP(In > a) = −fI(a),

where the function fI is continuous for sufficiently small a > 0, and, more-
over,

fI(a) =
210

11
a2(1 + o(1)), as a→ 0.

By way of an example, let us calculate the local Bahadur efficiency of In for
the Weibull alternative. This means that the alternative df of observations
is

F (x, θ) = 1− exp(−x1+θ), x ≥ 0, θ ≥ 0.

We find after some simple calculations that, as θ → 0,

cI(θ) ∼ bI(θ)2/(9∆2) ∼ 1.147θ2.

The Kullback–Leibler distance K(θ) between H0 and H1 satisfies

K(θ) ∼ π2θ2/12, θ → 0.
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The local Bahadur ARE of our test is consequently equal to

eff(I) := lim
θ→0

cI(θ)

2K(θ)
≈ 0.697.

Consider now the Kolmogorov-type statistic Dn. The difference Fn(t) −
Hn(t) is a family of U -statistics with the kernels depending on t ≥ 0 :

Ξ(X,Y ; t) =
1

2
(1{X < t}+ 1{Y < t})− 1{2 min(X,Y ) < t}). (3)

The limiting distribution of the sequence Dn is unknown. Critical values
for the statistics Dn can be found via simulation.

In our case the family {Ξ(X,Y ; t), t ≥ 0} from (3) is centered, bounded,
non-degenerate and hence satisfies all the conditions of Theorem 2.4 from
[78] on large deviations of U -empirical Kolmogorov statistics. Therefore, as
a > 0, by [78],

lim
n→∞

n−1 lnP (Dn > a) = −fD(a),

where

fD(a) = 2a2(1 + o(1)), as a→ 0.

Consider again the Weibull alternative. Arguments similar to the case
of integral statistic, see [78], show that the local Bahadur efficiency of the
sequence Dn is equal to 0.158. We see that this efficiency is low and consider-
ably smaller than in the integral case. It is a rule that Kolmogorov–Smirnov
type statistics are less efficient than the integral ones. There exist some
exceptions but they are rare.

5. Tests of exponentiality based on characterizations

There are numerous characterizations of exponential law, probably more
than of any other probability law, see, e.g., [4], [10], [14], and [26]. We con-
sider only few typical examples where the tests of fit are build and studied.

5.1. Lack of memory property and corresponding tests. First, we
mention the celebrated “lack of memory” property which consists in that
only the exponential distribution satisfies the functional equation in df’s

1− F (x+ y)− (1− F (x))(1− F (y)) = 0 ∀x, y ≥ 0.

Replacing F by empirical df Fn, one obtains some empirical field, and the
functionals of it can be used as test statistics for exponentiality, see as ex-
amples of many papers in this direction [1], [41], and [30].

The “lack of memory” property can be simplified. Denote, following
Angus [7], by D1 the class of right-continuous df’s F with F (0−) = 0 and

lim
h→0

F (h)− F (0)

h
= l ∈ [0,∞].
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Let F̄ (x) = 1 − F (x). Angus used the following statement that belongs to
Arnold and Gupta: the functional equation

F̄ (2x) = F̄ 2(x) ∀ x ≥ 0

characterizes the exponential distribution in the class of such distributions
in D1 which are not concentrated at 0. He introduced a Kolmogorov type
test based on this characterization and studied its properties in [7]. Later
its local Bahadur efficiency against standard alternatives was calculated in
[76] and [78]. It turned out to be rather low.

5.2. Characterizations based on order statistics. Another example is
given by Riedel–Rossberg characterization in terms of order statistics, see
[90]. Denote, as usually, by Xk,n the k-th order statistic in the sample of
size n, 1 ≤ k ≤ n. Then the following characterization holds.

Theorem 5. Two statistics X2,3 −X1,3 and min(X1, X2) are identically
distributed if and only if the sample X1, X2, X3 consists of exponential rv’s.

The construction of tests based on this characterization and their asymp-
totic analysis is performed similarly to the case of Desu characterization (see
[99]).

Next consider the Ahsanullah’s characterization. Suppose that the df F
belongs to the class of df’s F1, where the failure rate function f(t)/(1−F (t))
is monotone for t ≥ 0. Ahsanullah [2] proved some characterizations of ex-
ponentiality within the class F1. We consider here only one of his character-
izations.

Theorem 6. Let X and Y be non-negative i.i.d. rv’s from the class

F1. Then |X − Y | d= 2 min(X,Y ) if and only if X and Y are exponentially
distributed.

The corresponding tests were build and analyzed by Nikitin and Volkova
in [104].

5.3. Characterization of Arnold and Villaseñor. Recently Arnold and
Villaseñor [9] expressed in the form of a conjecture the following characteri-
zation of exponentiality:

Let X1, X2, . . . be non-negative i.i.d. rv’s with density f having derivatives
of all orders around zero. Then for any k ≥ 2

max(X1, X2, . . . , Xk)
d
=

k∑
i=1

Xi

i

if and only if f is exponential.
Arnold and Villaseñor were able to prove this conjecture only for k = 2.

Later Yanev and Chakraborty [105] proved that it is true for k = 3, and
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later in [106] proved it for arbitrary k (see also [61]). Tests of exponentiality
based on these characterizations and their efficiencies were studied in [35]
and in [100].

Other tests based on characterizations of exponential distribution in terms
of order statistics were built and studied in [84] and [58]. One can mention
also the characterization of exponential law by the same distribution of X
and |X−Y | whereX,Y are i.i.d. rv’s having absolute continuous distribution
(see [88]). Some steps towards using it for testing were made in [78].

5.4. Table of efficiencies. Now we present a table of local Bahadur effi-
ciencies of the majority of tests of exponentiality described above. We will
compare them with well-known classic scale-free tests of exponentiality based
on Greenwood statistic Rn, Moran statistic Mn, and Gini statistic Gn. We
recall that

Rn = 2− 1

n

n∑
i=1

(
Xi

X

)2

, Mn =
1

n

n∑
i=1

ln

(
Xi

X

)
+ C, Gn =

∑n
i,j=1 |Xi −Xj |
2n(n− 1)X

,

where C denotes the Euler constant. We consider also the famous Lilliefors
[43] statistic which has the form

Lin = sup
x≥0

∣∣1− Fn(x)− e−x/X
∣∣,

and belongs to Kolmogorov type statistics with estimated parameters. On
efficiencies of these statistics, see [83], [82], [94].

We consider the following standard alternatives against exponentiality:

i) Weibull alternative with the density

(1 + θ)xθ exp(−x1+θ), θ ≥ 0, x ≥ 0;

ii) Makeham alternative with the density

(1 + θ(1− e−x)) exp(−x− θ(e−x − 1 + x)),+quadθ ≥ 0, x ≥ 0;

iii) linear failure rate alternative with the density

(1 + θx)e−x−
1
2
θx2 , θ ≥ 0, x ≥ 0.

Now let us compare the values of local Bahadur efficiency for various
statistics. All of them are collected in Table 1 below and were calculated
according to the approach developed above for the tests based on Desu char-
acterization. The superscripts Ross and Ahs denote the statistics based on
Riedel–Rossberg’s or Ahsanullah’s characterization.

We see that our tests based on characterizations are competitive with
respect to other tests of exponentiality, all the more given that the alterna-
tives were taken almost at random. However, the Gini test reaffirms its high
reputation.
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Table 1. Local efficiencies of tests for exponentiality.

Statistic Alternative Alternative Alternative
Weibull Makeham linear failure rate

Integral type statistics

IRossn 0.650 0.450 0.119

IAhsn 0.795 0.692 0.257
Gini 0.876 1 0.750

Moran 0.943 0.694 0.388
Greenwood 0.608 0.750 1

Kolmogorov type statistics

DRoss
n 0.320 0.207 0.047

DAhs
n 0.450 0.470 0.187

Angus 0.158 0.187 0.073
Lilliefors 0.538 0.607 0.356

6. Tests of normality

Characterizations of normality are also numerous and mathematically
content-rich. They have been described in [5], [37], [53], and [19], apart
from many articles. We discuss here only few papers based on selected char-
acterizations.

6.1. Polya characterization. One of first characterizations in the history
of statistics belongs to Polya [87].

Theorem 7. Let X and Y be i.i.d. centered rv’s. Then X
d
= (X+Y )/

√
2

if and only if X and Y have the normal distribution with some positive
variance.

The integral test of normality based on this property was proposed by
Muliere and Nikitin [72]. Their statistic is asymptotically normal with the
variance 9δ2, where

δ2 =
13

108
− 4

9π
(arctan

√
3

5
+

1

2
arctan

1√
7

) ≈ 1.571236 · 10−3 > 0.

The expression for the variance shows the non-trivial character of the calcu-
lations. The efficiency of this test is very high and equals 0.967 for shift and
skew (see [11]) alternatives.

We can generalize these findings by considering a general characterization,
which is a particular case of [37, Theorem 13.7.2].

Theorem 8. Let X and Y be centered i.i.d. rv’s, and let a and b are

such constants that 0 < a, b < 1, a2 + b2 = 1 . Then X
d
= aX + bY if and

only if X,Y ∈ N(0, σ2).
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We can rebuild our statistics using Theorem 8, and the result should
depend on a. The theory of integral statistic in this generalized setting is
developed in [50]. In particular, the local efficiency of integral test for shift
alternative equals to

eff∗(a) =
(
a− 1 +

√
1− a2

)2/
Ω(a),

where

Ω(a) =
(7

3
π − 4 arctan

√
1 + a2

3− a2
− 4 arctan

√
2− a2

2 + a2

− 4 arctan

√
1− a2

3 + a2
− 4 arctan

√
a2

4− a2
+ 4 arctan

√
a2(1− a2)

a4 − a2 + 4

)
.

The maximum of eff∗(a) is 1 but is attained for a = 0 and a = 1, where
the test is inconsistent. The worst case (quite unexpectedly) is just the

Polya case for a =
√

2
2 with the efficiency 0.966. We recommend a = 24

25 , and

b = 7
25 . Then we have a2 + b2 = 1, and the efficiency is 0.990, this is a very

high value.
The Kolmogorov type test based on this characterization was studied in

[51]. The results are similar but the efficiencies are considerably lower.

6.2. Characterization by Shepp property. In 1964 Shepp [91] proved
that if X and Y are i.i.d., X,Y ∈ N(0, τ2), then the rv

k(X,Y ) := 2XY/
√
X2 + Y 2 ∈ N(0, τ2) again.

This statement is usually called the Shepp property.
Later Galambos and Simonelli [25] proved that the Shepp property char-

acterizes the normal law in some class F0 which consists of such df’s F which
satisfy 0 < F (0) < 1 and for which F (x) − F (−x) is changing regularly in
zero with the exponent 1. They proved the following result

Theorem 9. Let X and Y be i.i.d. rv’s with common df F from the

class F0. Then the equality in distribution X
d
= k(X,Y ) holds if and only if

X ∈ N(0, τ2) for some variance τ2 > 0.

Nikitin and Volkova [102] constructed tests of normality based on this
characterization and found the efficiencies of corresponding tests. It turned
out that for shift and skew alternatives the efficiencies coincide and are equal
in case of integral and supremum tests to

effI =
3

π
= 0.955, effD =

2

π
= 0.637.
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7. Tests of fit for other distributions

The reader has probably noticed that the majority of characterizations
used above for testing exponentiality and normality was formulated in terms
of equal distribution of some simple statistics. There arises the question if
such characterizations exists for other probability laws and if it is possible
to build goodness-of-fit tests based on them. The answer is positive, but the
set of corresponding characterizations is more sparse, the calculations are
more involved, and therefore the whole subject is underdeveloped.

7.1. Puri–Rubin characterization. We begin by the characterization of
the power law. We are testing the composite hypothesis

H0 : F is the df of the power law so that F (x) = xµ, x ∈ [0, 1], µ > 0,

against general alternatives. We use the characterization which is given in
the paper by Puri and Rubin [88].

Theorem 10. Let X and Y be i.i.d. non-negative rv’s with df F. Then
the equality

X
d
= min(

X

Y
,
Y

X
)

holds if and only if X and Y have the power distribution.

The tests for the power law based on this characterization were build and
studied by Nikitin and Volkova [103]. The efficiencies of integral test are
between 0.71 and 0.97, the efficiencies of the Kolmogorov test are between
0.47 and 0.63 depending on the alternative under consideration.

7.2. Some other laws. The power law is closely related to the Pareto law,
so Obradovic, Jovanovic, and Miloševic, see [86], were able to use almost the
same characterization (by replacing min by max) when testing for Pareto
law. Volkova [101] introduced and studied some tests of fit for the Pareto
distribution based on another characterization.

Goodness-of-fit test for the Cauchy law was build and studied by Litvinova
[49]. She used the characterization of Ramachandran and Rao [89]. Its
simplified variant is the following.

Theorem 11. Let X and Y be i.i.d. rv’s. Then X and 1
3X−

2
3Y are iden-

tically distributed if and only if X and Y have the Cauchy df with arbitrary
scale factor.

Litvinova in [49] explored the integral test; its local efficiency under the
shift alternative turned out to be 0.665.

Some tests of uniformity based on characterizations were developed in
[22], [29], [64]. In [57] there are interesting efficiency calculations for such
tests.
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We finish this section by briefly mentioning numerous results on testing
goodness-of-fit based on characteristic properties of entropy and Kullback–
Leibler information, see [8], [97], [22], [71], [28], [85], etc. However, there
is almost nothing known on efficiencies of new tests, these tests are mainly
compared on the basis of simulated power.

8. Testing of symmetry

Testing of symmetry based on characterizations has been much less ex-
plored than goodness-of-fit testing. Consider the classical hypothesis

H0 : 1− F (x)− F (−x) = 0, x ∈ R1, (4)

against the alternative H1 under which the equality (4) is violated at least
in one point. The first step in construction of such tests was done in the
crucial paper by Baringhaus and Henze [16].

Suppose that X and Y are i.i.d. rv’s with continuous df F . Baringhaus
and Henze proved that the equidistribution of the rv’s |X| and |max(X,Y )|
is valid iff F is symmetric with respect to zero, that is, (4) holds. They also
proposed suitable Kolmogorov-type and omega-square type tests of symme-
try. Some efficiency calculations for Kolmogorov type test were later per-
formed in [77] (see also [78]). Integral test of symmetry was next proposed
and studied by Litvinova [48].

Another characterization of symmetry with respect to 0 belongs to
Ahsanullah and was published in [3].

Theorem 12. Suppose that X1, . . . , Xk, k ≥ 2, are i.i.d. rv’s with ab-
solutely continuous df F (x). Denote X1,k = min(X1, . . . , Xk) and Xk,k =
max(X1, . . . , Xk). Then

|X1,k|
d
= |Xk,k|

if and only if F is symmetric about zero, i.e.,

1− F (x)− F (−x) = 0, x ∈ R1.

Subsequently we refer to this result as Ahsanullah’s characterization of
order k.

Nikitin and Ahsanullah [79] published a paper on tests of symmetry based
on these characterizations and their efficiencies. It was found that corre-
sponding tests of symmetry for k = 2 and k = 3 are asymptotically equiva-
lent to the test of Litvinova and to the Kolmogorov-type test of Baringhaus
and Henze. In case of location alternative they are competitive and manifest
rather high local Bahadur efficiency in comparison to many other tests of
symmetry. At the same time, higher values of k, k > 3, lead us to different
tests with lower values of efficiencies in the case of common alternatives. It
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would be interesting to calculate the efficiencies of such tests for more real-
istic alternatives, for instance, for skew alternatives (see [11]). First steps in
this direction were undertaken in the recent paper [18].

Similar research based on a certain modification of Ahsanullah’s charac-
terization was done recently by Obradovic and Miloševic [59]. The authors of
[59] were able to build a corresponding integral test and a Kolmogorov-type
test based on their theorem and studied its efficiency.

9. Directions of further research and perspectives

9.1. Tests based on characterizations of stable laws. Only three sta-
ble laws have explicit densities: normal, Cauchy, and Lévy one-sided density
given by the formula

l(x) =
1√

2πx3
exp

(
− 1

2x

)
, x ≥ 0.

The tests for normal and Cauchy law based on characterizations were de-
scribed above. One of the simplest characterizations of the Lévy law obtained
by Ahsanullah and Nevzorov [6] runs as follows.

Theorem 13. Let X,Y , and Z be i.i.d. rv’s. Then the equality in distri-
bution

X
d
=
Y + Z

4
holds if and only if X,Y , and Z have the one-sided Lévy distribution with
arbitrary scale factor.

The tests based on this characterization are unknown. Nothing is known
about testing for general stable distributions using similar characterizations.

9.2. Tests based on characterizations by independence. The char-
acterizations of distributions can be formulated not only in terms of the
equidistribution of statistics as in majority of examples given above but also
in terms of their independence. Consider, as an example, the well-known
classical result obtained independently by Kac [36] and Bernstein [17] long
ago.

Theorem 14. If X and Y are independent rv’s, then X + Y and X − Y
are independent if and only if X and Y are normal.

As far as we know, this approach is unexplored. Further development
of the plot led finally to the famous Skitovich–Darmois theorem (see [19],
[37]) which is also suitable for the construction of tests. We can construct
corresponding U -empirical distributions and test statistics which are more
difficult for analysis. Nobody has studied the corresponding goodness-of-fit
tests.
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Another option consists in the well-known result that the independence
of x̄ and s2 implies normality, which was first proved by Geary in [27]. The
same is true for higher central moments. These characterizations were used
in a number of papers, see [52], [46], [70], and a preprint by Thulin [95] with
power study via simulations. However, there are no calculations of efficiency
and analytic comparison with other tests of normality.

First steps in the calculations of efficiency for tests based on characteriza-
tions by independence were done recently by Miloševic and Obradovic [62].
For instance, they used the following characterization of the exponential law
from [24].

Theorem 15. If X and Y are independent i.i.d. rv’s with an abso-
lutely continuous distribution, and min{X,Y } and |X−Y | are independent,
then both X and Y have exponential distribution with distribution function
F (x) = 1− e−λx, x > 0, λ > 0.

In [62] there are also related results concerning other distributions.

9.3. Use of empirical integral transforms. For certain characteriza-
tions one can build the test statistics based not on U -empirical distributions
but on empirical transforms, e.g., on empirical characteristic functions or
empirical Laplace transforms.

Let fn(t) = n−1
∑n

k=1 exp(itXk) be the empirical characteristic function
of the sample X1, . . . , Xn. Then it is clear that using the Polya characteri-
zation (X ∼ (X + Y )/

√
2) we have

fn(t)− f2
n(t/
√

2) ≈ 0.

Hence the statistics for testing normality of the sample can be

Zn = sup
t
|fn(t)− f2

n(t/
√

2)|

or

Wn =

∫ ∞
−∞
|fn(t)− f2

n(t/
√

2)|2Q(t)dt,

where Q is some appropriate weight function.
The asymptotic properties and efficiencies of empirical integral transforms

are unknown. However, the technique of asymptotic analysis of similar sta-
tistics was substantially developed in recent years, see, e.g., the papers by
Meintanis and Jimenez-Gamero [55], [54], [34], [56], etc.

The use of empirical Laplace transform with interesting calculation of
efficiencies for testing of exponentiality is presented in [60].

9.4. Characterizations based on records. There are many characteri-
zations of distributions based on record statistics, see, e.g., [74], [20], [15],
[92], and many others. Only few of them have been used for construction of
goodness-of-fit tests, mainly in the works of Morris and Szynal (see, e.g., [68],
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[69], [66], [93]), where they essentially used the characterizations based on
moments of record values. However, nothing is known about the efficiencies
of such tests.

9.5. Characterizations based on moments. Some characterizations of
distributions are based on their moments or on moments of corresponding
order statistics, see, e.g., [44], [45], [63], [65], [96]. They can be used for the
construction of goodness-of-fit tests, but their efficiencies are unexplored.

9.6. Multivariate generalizations. It seems that little or nothing is
known about multivariate goodness-of-fit tests and multivariate symmetry
tests. One of the few exceptions is the recent paper [62].
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