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Weight and Time Recursions in Dynamic State
Estimation Problem With Mixed-Norm Cost Function

Pavel Akimov and Alexander Matasov, Member, IEEE

Abstract—The mixed-norm cost functions arise in many applied
optimization problems. As an important example, we consider the
state estimation problem for a linear dynamic system under a
nonclassical assumption that some entries of state vector admit
jumps in their trajectories. The estimation problem is solved
by means of mixed l1/l2-norm approximation. This approach
combines the advantages of the well-known quadratic smoothing
and the robustness of the least absolute deviations method. For
the implementation of the mixed-norm approximation, a dynamic
iterative estimation algorithm is proposed. This algorithm is based
on weight and time recursions and demonstrates the high effi-
ciency. It well identifies the rare jumps in the state vector and
has some advantages over more customary methods in the typical
case of a large amount of measurements. Nonoptimality levels for
current iterations of the algorithm are constructed. Computation
of these levels allows to check the accuracy of iterations.

Index Terms—Estimation, linear systems, optimization, uncer-
tain systems.

I. INTRODUCTION

SOME dynamic systems can admit the jumps of stepwise
type (discontinuities) in their trajectories at certain time-

instants. Such systems arise, e.g., in robotics [1], finance [2],
epidemiology [3], [4], inertial navigation [5]. In discrete sys-
tems that are numerical models of continuous-time processes,
these jumps are manifested in the form of abrupt changes in
the average values of trajectories. We study the state estimation
problem for this type systems. The traditional least squares
estimation method (l2-norm approximation) gives smoothed in
time estimates of the jumps since, figuratively speaking, the l2-
norm approximation “avoids large residuals.” To overcome this
difficulty one can use mixed l1/l2-norm approximation. The
point is that the jumps in trajectories can be interpreted as the
presence of additional abnormal pulses in the right-hand sides
of linear dynamic equations. It is well known that, for static
systems with outliers, the least absolute deviations method
(l1-norm approximation) is an effective estimation algorithm
[6]–[9]. Moreover, in image processing an l1-norm total vari-
ation regularization term, which corresponds to a simplest
dynamic model, allows to preserve the edge location (the analog
of the jump location for multidimensional case) [10]–[12].
Therefore, in the cost function of l2-norm approximation prob-
lem, the summands that can contain abnormal pulses should
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be replaced by l1-norm terms. Thus we obtain the mixed-norm
approximation problem for solving the state estimation problem
for uncertain systems with abnormal input pulses. Such opti-
mization problems also arise, e.g., in the Huber approach [13],
compressive sensing [14] (LASSO method), l1 trend filtering
[15]; see also a brief overview in [16].

The presence of nonsmooth cost functions leads to computa-
tional difficulties, which are especially significant in processing
large measurement data for the state estimation in dynamic
systems. Conventional numerical methods can be divided into
three groups.

The methods of the first group consist in the reduction to
equivalent convex programming problems with smooth cost
functions and inequality type constraints [8]. The disadvantage
of this approach is that it requires large computational resources
under processing the long lasting measurements since, in this
case, the matrix that specifies the inequality constraints has
a large dimension proportional to the amount of nonsmooth
summands in the cost function.

An essential step forward in solving the convex optimization
problems of high dimension is the so-called alternating direc-
tion method of multipliers (ADMM) [17]–[19]. The methods
of this type form the second group. They involve an iterative
search for a minimum of the Lagrange function for the original
problem by parallel solving the problems of smaller dimension.
However, one of the ADMM steps still requires the solution
of an auxiliary quadratic problem, which is comparable to the
original problem in the number of variables [20], [21]. For some
relatively simple cases, this difficulty can be overcome [21].
But for a general case of linear dynamic systems, a direct use
of ADMM does not allow to decompose the original problem
in a required manner.

The third group of methods utilizes a transition to a sequence
of approximating quadratic optimization problems [7], [22]. As
is shown in the present paper, this approach can be modified for
the case of state estimation in dynamic systems. We propose
a numerical solving algorithm that consists of two nested
iteration procedures. The first one is intended for constructing
the auxiliary variational problems; the aim of the second one
is to solve these problems by means of Kalman estimation
methods [23], [24]. The idea for constructing the auxiliary
approximating problems is to replace the absolute values in
the cost function by special approximating quadratic functions.
Such a replacement for the classical l1-norm approximation
(least absolute deviations method) is presented, e.g., in [7], [22],
[25], [26] and is also utilized in [27], [28] for the solution of a
geometric problem. The corresponding algorithm is called the
method of variational-weighted approximation or the Weiszfeld
algorithm. However, in the works mentioned above, this method
is used heuristically, without examining the convergence or
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accuracy analysis. In the authors’ book [29], the nonoptimality
levels were constructed for the iterations of the Weiszfeld
algorithm, which was applied to static estimation problems. In
[5] and [29], we described the application of l1-norm approx-
imation to a dynamic system that arises in inertial navigation
(by a reduction to a static optimization problem).

In the paper, we present new results. They consist in the elab-
oration of a novel iterative algorithm for solving the dynamic
estimation problems with large measurement arrays by means
of mixed-norm approximation and in the construction of nonop-
timality levels for the iterations of estimation algorithm, taking
into account the dynamic structure of the process. In this study,
we employ an approach to the construction of approximating
problems that is somewhat different from the approach in our
previous works; this approach proves to be more efficient.

Let us discuss the link of our paper with some recent works
[20], [30]–[38] devoted to nonsmooth optimization for data
processing and compressive sensing. These articles in one way
or another deal with various l0/l2- or l1/l2-norm optimization
problems. In [38], a hierarchical probabilistic model generates
a Bayesian sequential reweighted scheme. In [32], an l1/l∞-
norm block is used. In the works mentioned above, the sparsity
requirement is imposed primarily on the state vector (in [20],
[33], [35], for both state vector and system noise). In our paper,
the l1-norm regularization term contains only system distur-
bances (as for some modifications in [37], where numerical
methods were not discussed). The article [20] is most close
to our study. It is devoted to robust smoothing of dynamic
processes in the presence of rare outliers. A similar filtering
problem for a special case is considered in [31]. In [20], [31],
other models for system noises are employed by introducing the
additional variables for outliers into the state vector and impos-
ing the sparsity constraints on these outliers. The paper [20] dif-
fers from our investigation by a more detailed cost function and
other numerical methods. In [33], the authors use a Bayesian
approach to acquire a sparse signal; but their algorithm is
based on a combination of the Kalman filter and a sequential
importance sampling with resampling. Thus numerical difficul-
ties are transferred to a complex Monte-Carlo sampling.

An ingenious approach to compressive sensing is presented
in [30]. Instead of the l1-norm (or lp-norm) summand in the
cost function, a fictitious nonlinear (containing absolute values)
measurement is introduced. This can be done because the
sparsity constraint is imposed on state vector. By means of
the equality |x| = x · signx these nonlinear measurements are
iteratively linearized and the solution of the original problem
reduces to the extended Kalman filter type procedures. In our
approach, despite a formal resemblance, we do not linearize
absolute values in the cost function but replace them with
specially weighted quadratic functions; therefore, we can utilize
the exact Kalman smoother. Moreover, for our problem state-
ment the approach from [30] is not applicable since we take
the l1-norm for the system disturbances and hence the corre-
sponding sparsity constraint cannot be interpreted as pseudo-
measurements of the state vector.

Thus, in contrast to [20], [30]–[38], we reduce the l1/l2-
norm problem to a sequence of quadratic (l2-norm) dynamic
problems and, what is most important, we explicitly evaluate a
nonoptimality level of a current solution at each iteration (see
Sections II-C and IV below).

The paper is organized as follows. In Section II, we set the
problem, describe the algorithm of weight and time recursions,
and introduce the nonoptimality levels. In Section III, the dual
problems are considered, which are necessary for construct-
ing the nonoptimality levels. The formulas for the guaranteed
nonoptimality level are derived in Section IV. In Section V,
numerical examples are discussed. They confirm the efficiency
of the proposed algorithm.

II. APPROXIMATION PROBLEMS

A. Mixed l1/l2-Norm Approximation

Consider a linear discrete dynamic uncertain system

x(k + 1) = Fx(k) +Gq(k) + g(k), k = 0, . . . ,K − 1

where x(k) ∈ R
n is an unknown state vector at an instant k,

q(k) = (q1(k), . . . , ql(k))
T ∈ R

l is an unknown input distur-
bance vector, F ∈ R

n×n,G ∈ R
n×l are specified matrices, and

g(k) ∈ R
n is a known vector of system nonhomogeneity.

Suppose q(k), along with ‘regular’ high-frequency distur-
bances, can take abnormal values at certain rare time-instants,
so that noticeable jumps arise in the trajectories {x(k)}. As-
sume for simplicity that the system matrices are constant. All
statements and conclusions are valid for time-varying matrices
as well.

Suppose the measurements are performed

z(k) = Hx(k) + r(k), k = 0, . . . ,K.

Here z(k) ∈ R
m is the measurement vector, H ∈ R

m×n is a
given matrix, r(k) = (r1(k), . . . , rm(k))T ∈ R

m is a measure-
ment noise.

Also assume we have a priori information x̄(0) about the
initial state: x̄(0) = x(0) + r̄, where r̄ = (r̄1, . . . , r̄n)

T ∈ R
n

is an error vector. It is required to estimate the state {x(k)}Kk=0
by measurements.

First consider a stochastic problem statement. Suppose for
a moment that r̄α, rβ(k), and qγ(j) are independent random
variables with zero means and known variances. Moreover, let
r̄α and rβ(k) be Gaussian variables: r̄α ∼ N (0, σ2

Πα), rβ(k) ∼
N (0, σ2

Rβ), and qγ(k) has the Laplace distribution density
function

pγ(y) =
1√
2σQγ

exp

(
−
√
2|y|
σQγ

)

where σΠα, σRβ , and σQγ are standard deviations. Then the
maximum a posteriori (under given measurements) approach
to estimation [24, pp. 389, 393] leads to the mixed l1/l2-
norm approximation problem for estimating the state vector
{x(k)}Kk=0:1

I0 = min
x,q

I(x, q),

I(x, q) =
∥∥Π−1 (x̄(0)− x(0))

∥∥2
2

+

K∑
k=0

∥∥R−1 (z(k)−Hx(k))
∥∥2
2
+

K−1∑
k=0

∥∥Q−1q(k)
∥∥
1

(1)

1Obviously, the conditional probability density function satisfies the relation
p(x(0), q|z) ∝ exp{−(1/2)I(x(x(0), q), q)}.
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subject to

x(k + 1)− Fx(k)−Gq(k)− g(k) = 0, k = 0, . . . ,K − 1.
(2)

The weight matrices

Π =diag(Π1, . . . ,Πn), R = diag(R1, . . . , Rm),
Q =diag(Q1, . . . , Ql)

have the form

Πα = σΠα, Rβ = σRβ , Qγ =
σQγ

2
√
2
. (3)

Hereinafter we use the standard shorthand notation: (x, q) =
{x(0), . . . , x(K), q(0), . . . , q(K − 1)}; ‖y‖1 =

∑
i |yi|,

‖y‖2 = (
∑

i y
2
i )

1/2, ‖y‖∞ = maxi{|yi|}.
The main advantage of stochastic problem setting is that

it provides a rigorous justification for the cost function form.
However, it should be emphasized that the stochastic approach
is based on the implicit assumption that the statistical regularity
holds. By this we mean a tendency of repeated experiments to
result in the convergence of the averages as more and more
trials are made [39, p. 17]. For many real engineering systems,
this statistical regularity cannot be reliably verified; often it is
a matter of faith. It is hard to verify the independence of noise
values or the compliance with Laplace or Gaussian distribution.
A detailed probabilistic model usually well motivates a result-
ing method but narrows its formal applicability.

Therefore, along with stochastic point of view, the noises are
often assumed to be unknown deterministic functions (see, e.g.,
the classical books [8, pp. 292, 331, 334], [24, pp. 101, 387],
[40]). The papers [10]–[12], [37] also exploit a deterministic
framework. Since our main subject of study is convex op-
timization problem (1), (2) (which is the same for both
approaches), the choice of formalization depends on the pref-
erences of the reseacher. So, in the subsequent discussion we
use a less burdensome deterministic framework without losing
the essence and treat the weight coefficients Πα, Rβ , Qγ as
typical magnitudes (scales) of the variables r̄α, rβ(k), and
qγ(j); these weights are chosen by the investigator. In this
simplified and more practically oriented context, the noises
are classified not according to whether they are Laplacian or
Gaussian but according to whether they contain outliers or not
(cf. [20, p. 4530]).

In the cost function, we take squared l2-norm for the mea-
surement residuals, and l1-norm for the residuals in dynamics.
This partition is caused by the assumption that the anomalous
disturbances can arise in system dynamics (i.e., in components
of q(k)) but not in the measurements. We will show in examples
below that such approach is very effective for the identification
of jumps in system dynamics.

Variational problem (1), (2) is similar to the variational
problems with mixed norms that arise in compressive sensing.
In fact, the presence of the term

∑K−1
0 ‖Q−1q(k)‖1 in the

cost function makes the q-component of the solution (x, q)
sparse. This sparsity results in the fact that, according to (2), the
x-component tends to consist of piecewise smooth trajectories
with rare jumps, which is consistent with our initial desire to
track the jumps precisely. From the mathematical point of view,

the problem (1), (2) is a convex optimization problem with a
nonsmooth cost function and linear constraints of equality type.

Usually, the methods for solving the nonsmoth problems
of type (1), (2) are based on the reduction to smooth convex
optimization problems with a large number of equality and
inequality constraints. However this involves the operation with
matrices of the order of Kl × (Kn+ 2Kl) that, for large K (of
the order of several thousands), requires considerable numerical
resources. In many applied problems, including the processing
of navigation data [41], [42], long lasting measurement series
are typical. Therefore it is necessary to develop methods that
exploit a dynamic nature of estimation problem and allow to
avoid the reduction to static problems with high dimension ma-
trices. One such approach for solving the mixed-norm problems
is described in Section II-C.

B. Necessary Results From the Theory of Quadratic Problems

In the subsequent discussion we will essentially exploit the
properties of quadratic smoothing problems (l2-norm approxi-
mations) of the following form [23], [24]:

J0 = min
x,q

(∥∥Π−1 (x̄(0)− x(0))
∥∥2
2

+

K∑
k=0

∥∥R−1 (z(k)−Hx(k))
∥∥2
2
+

K−1∑
k=0

∥∥Q−1q(k)
∥∥2
2

)
(4)

subject to the same constraints (2).
The effective numerical methods for solving the smoothing

problem (4), (2) have long been developed; they are based on
the Kalman estimation theory [24], [43]. Recall the recurrent
relations that determine a solution of (4), (2).

Theorem 1 ([24]): Let (x∗, q∗) be a solution for (4), (2).
Then this solution is described by the following boundary-value
problem:

x∗(k + 1) =Fx∗(k) +GQ2GTλJ(k + 1) + g(k),

q∗(k) =Q2GTλJ(k + 1), k = 0, . . . ,K − 1,

λJ(k) =FTλJ(k + 1) +HTR−2 (z(k)−Hx∗(k)) ,

k = 0, . . . ,K (5)

under the boundary conditions

λJ(K + 1) = 0, x∗(0) = x̄(0) + Π2λJ(0).

Remark 1: Strictly speaking, in the book [24] Theorem 1
was proved for the case when x̄(0) = 0, g(k) = 0. However,
it can be easily verified that this statement directly follows
from [24]. One should proceed to the centered process x̃(k) =
x(k)− x̄(k), where the vectors x̄(k) are described by the
equations

x̄(k + 1) = F x̄(k) + g(k), k = 0, . . . ,K − 1

with specified initial values x̄(0).
Since the boundary values are given at opposite ends, formu-

las (5) are not suitable for direct solving the problem. To over-
come this difficulty we can use the Bryson-Frazier formulas,
which are presented in the following statement.
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Theorem 2 ([24], [44]): The solution (x∗, q∗) of problem
(4), (2) is defined by the formulas

x∗(k) =x−(k) + P−(k)λJ (k), k = 0, . . . ,K

q∗(k) =Q2GTλJ(k + 1), k = K − 1, . . . , 0

where x−(k), P−(k) are the state vector estimate and the
covariance matrix for Kalman filter, respectively

x−(k + 1) =Fx−(k) +Kp(k)
(
z(k)−Hx−(k)

)
+ g(k),

x−(0) = x̄(0),

P−(k + 1) =FP−(k)FT +GQ2GT

−Kp(k)
(
R2 +HP−(k)HT

)
KT

p (k),

P−(0) = Π2,

Kp(k) =FP−(k)HT
(
R2 +HP−(k)HT

)−1
,

k = 0, . . . ,K − 1

the vectors λJ(k) are defined by the backwards-time recursions

λJ(k) = (F −Kp(k)H)T λJ(k + 1)

+HT
(
R2 +HP−(k)HT

)−1 (
z(k)−Hx−(k)

)
,

λJ(K + 1) = 0, k = K, . . . , 0.

The Bryson–Frazier formulas allow to find the solution of
smoothing quadratic problem in two passes. One more impor-
tant aspect of numerical implementation is the application of
the square-root method. The detailed description and analysis
of the square-root method can be found in the books [24], [43].

C. Weight and Time Recursions for Mixed-Norm Problem

1) Approximation for Absolute Deviations: Here we pro-
pose a modification of the Weiszfeld algorithm (the algorithm
of variational-weighted approximations). The application of
this algorithm for the implementation of least absolute devia-
tions method in static systems was described, e.g., in [7], [22],
[25], [29]. The distinctive properties of the present study from
these works are as follows: first, the algorithm is applied to the
mixed norms; second, we use another quadratic approximation
of absolute deviations; third, the auxiliary quadratic problems
are dynamic problems and they are solved by the Bryson-
Frazier formulas.

Describe the main idea of approximation. Let(
x(s), q(s)

)
={x(0, s), . . . , x(K, s), q(0, s), . . . , q(K − 1, s)}

be an approximate solution of (1), (2) at the previous iteration
with a number s. Functional (1) contains the l1-norms of dyna-
mic deviations q(k):

∑K−1
k=0

∑l
i=1 Q

−1
i |qi(k)|. We replace the

absolute deviations |qi(k)| by their quadratic approximations

|qi(k)| ≈
1

2
|qi(k, s)|+

1

2

q2i (k)

|qi(k, s)|
. (6)

It is implicitly assumed that the closer is qi(k, s) to the corre-
spondent optimal component, the more accurate is the approxi-
mation of absolute values. With (6), the following approximate
equality holds: I(x, q) ≈ J (x, q, s) + c(s), where

J (x, q, s) =
∥∥Π−1 (x̄(0)− x(0))

∥∥2
2

+

K∑
k=0

∥∥R−1 (z(k)−Hx(k))
∥∥2
2

+
1

2

K−1∑
k=0

l∑
i=1

Q−1
i

q2i (k)

|qi(k, s)|
,

c(s) =
1

2

K−1∑
k=0

l∑
i=1

Q−1
i |qi(k, s)| . (7)

Thus, instead of the minimization of I(x, q), we should search
a minimum of the approximate quadratic convex function (7).
The last group of summands c(s) does not depend on (x, q)
and, under minimization, can be excluded from the cost
function.

Remark 2: Our reasoning here are not rigorous and are
aimed to clarify the motivation of the proposed algorithm.
Besides, with qi(k, s) = 0 our approximation is not valid;
however, in this case, the regularization is applied [7] (see
below).

Approximation (6) differs from that in the papers [22], [25]
or in the book [29], where a more simple relation is used

|qi(k)| ≈
q2i (k)

|qi(k, s)|
. (8)

A shortcoming of (8) is that, in a neighborhood of (x(s), q(s)),
the derivative of the approximating term differs significantly
from original value. Indeed, let qi(k) 	=0, qi(k, s) 	=0, qi(k) ≈
qi(k, s); then ∂|qi(k)|/∂qi(k) = sign qi(k). It follows from
(6) that

∂

∂qi(k)

(
1

2
|qi(k, s)|+

1

2

q2i (k)

|qi(k, s)|

)
=

qi(k)

|qi(k, s)|
≈ sign qi(k)

and it follows from (8) that:

∂

∂qi(k)

(
q2i (k)

|qi(k, s)|

)
= 2

qi(k)

|qi(k, s)|
≈ 2 sign qi(k).

Therefore, formula (6) allows to approximate not only the
values of absolute deviations but their derivatives as well. As
it will be shown later, this fact substantially influences in the
quality of nonoptimality levels for approximate solutions.

2) Iterative Algorithm: Let the pair(
x(0), q(0)

)
={x(0, 0), . . . , x(K, 0), q(0, 0), . . . , q(K−1, 0)}

be admissible for problem (1), (2); we consider this pair as an
initial approximation of the unknown solution. For example,
as the starting point (x(0), q(0)), one can take the solution of
quadratic problem (4), (2).

In accordance with (7), we consider a sequence of l2-norm
approximation problems

J0(s+ 1) = min
x,q

(∥∥Π−1 (x̄(0)− x(0))
∥∥2
2

+

K∑
k=0

∥∥R−1 (z(k)−Hx(k))
∥∥2
2
+
1

2

K−1∑
k=0

∥∥Q−1
W (k, s)q(k)

∥∥2
2

)

(9)

subject to (2), where s = 0, 1, . . ..
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The matrices Q−1
W (k, s) are defined as follows:

Q−1
W (k, s) =diag

(
Q−1

W1(k, s), . . . , Q
−1
Wl(k, s)

)
,

Q−1
Wi(k, s) =

{(
Q−1

i / |qi(k, s)|
) 1

2 , if |qi(k, s)| > αQi,

Q−1
i /α

1
2 , if |qi(k, s)| ≤ αQi,

i = 1, . . . , l, k = 0, . . . ,K − 1 (10)

where {qi(k, s)} are the entries of the second vector of pair
(x(s), q(s)). The parameter α in the formulas for Q−1

Wi(k, s)
characterizes the smallness of residuals (deviations) and is used
for regularization: if at any iteration the residuals become too
small, i.e., |qi(k, s)| ≤ αQi, then the corresponding weight
coefficient is fixed. Since the residuals can have different scales,
the smallness of each summand is described by the values αQi.

A solution (x(s+1), q(s+1)) of quadratic problem (9), (2) for
next iteration s+ 1 is found by means of the recurrent Bryson-
Frazier formulas (see Theorem 2, which certainly is valid for
nonstationary weight matrices as well) improved by the square-
root method [24]. This recursiveness allows us to deal with vec-
tors and matrices of considerably smaller dimension (of order n
and n× n, respectively) that substantially saves computational
resources and computer memory compared with the reduction
to static case, where we have to operate with an unknown
parameter vector of dimension n+Kl and the corresponding
matrices of order (n+ (K + 1)m+Kl)× (n+Kl).

Hereafter we suppose that the optimal value of the quadratic
problem cost function at each iteration s+ 1 is greater than
zero: J0(s+ 1) > 0. In the opposite case, J0(s+ 1) = 0 and
each summand in the quadratic cost function equals zero and,
therefore, each summand in (1) also equals zero; so, there is no
necessity to continue the calculation since the optimal solution
has been already found. A solution of the quadratic problem
obtained at each iteration is considered as an approximate
solution for the original mixed-norm problem.

Thus we have two nested iteration processes: in the inner
loop (parameterized by k), the solution of a current quadratic
problem is found by means of Theorem 2; in the outer loop
(parameterized by s), the auxiliary quadratic problems are
formed basing on the previous step of this loop.

There is no rigorous result on the convergence of our algo-
rithm. Hence we should find a way to monitor the accuracy
of current iteration. We characterize the accuracy of an ap-
proximate solution of (1), (2) by the nonoptimality level [8],
[29], [45]

Δ
def
= I

(
x(s+1), q(s+1)

)
/I0 (11)

where I0 is the unknown optimal value of cost function (1)
and I(x(s+1), q(s+1)) is the cost function value at the current
iteration with number s+ 1. Evidently, Δ ≥ 1, and the closer
to unity is Δ, the more accurate is the approximate solution.

The nonoptimality level is unknown since the exact solution
of (1), (2) is unknown. A constructive calculation of upper
bounds for these nonoptimality levels will be our major theo-
retical issue in the paper (see Section IV below). Namely, if
Δ ≤ Δ0, where Δ0 can be actually calculated and thus can be
treated as a guaranteed nonoptimality level, and Δ0 is fairly
close to unity, then the iteration process can be halted and the
solution (x(s+1), q(s+1)) at the final iteration can be considered
as the solution of the original mixed l1/l2-norm problem. The

proximity to unity is determined by a specified threshold Δend:
Δ0 ≤ Δend.

The structure of the algorithm is summarized below.

1: Initialization.
Set Π, Q, R, α, Δend.
Then s := −1, QW (k,−1) := Q. Go to 2.

2: Inner forward and backward time recursions in k.
Solve (9), (2) by Bryson-Frazier formulas (Theorem 2
from Section II). Get (x(s+1), q(s+1)). Go to 3.

3: Checking the accuracy.
Calculate Δ0 (Theorem 6 from Section IV).
If Δ0 ≤ Δend, then STOP; otherwise go to 4.

4: Updating.
Set s := s+ 1.
Given {q(s)(k)}K−1

k=0 update {QW (k, s)}K−1
k=0 in accordance

with (10). Then go to 2 (outer weight recursion in s).

Since all conclusions concerning nonoptimality levels are va-
lid for any iteration, we will not indicate the number of iteration
s in the subsequent discussion and will simplify the notation

QW (i)
def
= QW (i, s),

x∗(k)
def
= x(k, s+ 1), q∗(i)

def
= q∗(i, s+ 1),

J0
def
= J0(s+ 1), i = 0, . . . ,K − 1, k = 0, . . . ,K.

III. DUAL PROBLEMS

A. Statement of Dual Problems

In order to construct the nonoptimality levels let us use the
facts from the duality theory of convex variational problems
[46], [47].

First of all, we represent the variational problems (1), (2) and
(4), (2) in another form. Denote the vector of variables for these
variational problems by

w=
(
xT(0), xT(1), . . . , xT(K), qT(0), . . . , qT(K−1)

)T
,

dimw =(K + 1)n+Kl
def
= N.

Let us represent the residuals in functions (1) and (4) in the
form of auxiliary vectors u and v

u0 = x̄(0)−x(0), uz(k)=z(k)−Hx(k), vq(j)=−q(j);

u =
(
uT
0 , u

T
z (0), . . . , u

T
z (K)

)T
,

dimu =n+ (K + 1)m
def
= Mu;

v =
(
vTq (0), . . . , v

T
q (K − 1)

)T
, dim v = Kl

def
= Mv.

Or, in matrix notation(
u
v

)
= a− Φw,

a =
(
x̄T (0), zT (0), zT (1), . . . , zT (K), 0TMv×1

)T
∈ R

Mu+Mv ,

Φ =
(

Φ1 0(n+Km)×Mv
0Mv×(K+1)n EMv×Mv

)
∈ R

(Mu+Mv)×N ,

Φ1 =

⎛
⎜⎜⎜⎝

En×n 0n×n . . . 0n×n
H 0m×n . . . 0m×n

0m×n H . . . 0m×n
...

...
. . .

...
0m×n 0m×n . . . H

⎞
⎟⎟⎟⎠ .



AKIMOV AND MATASOV: WEIGHT AND TIME RECURSIONS IN DYNAMIC STATE ESTIMATION PROBLEM WITH MIXED-NORM COST FUNCTION 1055

Constraints (2) also can be represented in matrix form: b−
Ψw = 0, where

b =
(
gT (0), gT (1), . . . , gT (K − 1)

)T ∈ R
Kn,

Ψ = (Ψ1Ψ2) ∈ R
Kn×N ,

Ψ1 =

⎛
⎜⎝

−F En×n 0n×n . . . 0n×n
0n×n −F En×n . . . 0n×n

...
...

. . .
...

...
0n×n . . . 0n×n −F En×n

⎞
⎟⎠ ,

Ψ2 =

⎛
⎜⎝

−G 0n×l . . . 0n×l
0n×l −G . . . 0n×l

...
...

. . .
...

0n×l 0n×l . . . −G

⎞
⎟⎠ . (13)

At last, introduce the vectors of weight coefficients and corre-
sponding matrices

pu =(Π̃, R̃, . . . , R̃︸ ︷︷ ︸
(K+1)m

)T , pv = (Q̃, . . . , Q̃︸ ︷︷ ︸
Kl

)T ,

Pu =diag (pu), Pv = diag (pv) (14)

where

Π̃ =
(
Π−1

1 , . . . ,Π−1
n

)
, Q̃ =

(
Q−1

1 , . . . , Q−1
l

)
,

R̃ =
(
R−1

1 , . . . , R−1
m

)
.

In new notation, problem (1), (2) can be written as

I0 = inf
u,v,w

(
uTP 2

uu+

Mv∑
i=1

pvi|vi|
)

(15)

subject to

a− Φw −
(
u
v

)
= 0, b−Ψw = 0. (16)

In its turn, problem (4), (2) is equivalent to

J0 = inf
u,v,w

(
uTP 2

uu+ vTP 2
v v
)

(17)

subject to (16).
To these problems assign dual problems [46], [47].
Theorem 3 ([8]): The dual problem to (17), (16) has the form

J0= sup
μu,μv,λ

(
aT
(
μu
μv

)
+bTλ− 1

4

(
μT
uP

−2
u μu + μT

v P
−2
v μv

))
(18)

subject to

ΦT
(
μu
μv

)
+ΨTλ = 0. (19)

Furthermore, the duality relation holds: J0 = J0.
Here, μu ∈ R

Mu , μv ∈ R
Mv , λ ∈ R

Kn are the variables of
dual problems.

Theorem 4: The dual problem to (15), (16) has the form

I0 = sup
μu,μv,λ

(
aT
(
μu
μv

)
+ bTλ− 1

4
μT
uP

−2
u μu

)
(20)

subject to

ΦT
(
μu
μv

)
+ΨTλ = 0, ‖P−1

v μv‖∞ ≤ 1. (21)

Furthermore, the duality relation holds: I0 = I0.

The proof is given in Appendix A.
Let us represent the Lagrange multipliers λ ∈ R

Kn, μu ∈
R

Mu , and μv ∈ R
Mv in block form (this form takes into ac-

count the dynamic structure of the initial problems)

μu =
(
μT
0 , μ

T
z (0), . . . , μ

T
z (K)

)T
,

μv =
(
μT
q (0), . . . , μ

T
q (K − 1)

)T
,

λ =
(
λT (1), . . . , λT (K)

)T
,

μ0 ∈R
n, μz(k) ∈ R

m, μq(j) ∈ R
l, λ(i) ∈ R

n.

Now turn back to initial notation in Theorem 4. Having
written in explicit form the expressions (12)–(14) for matrices
Φ,Ψ, Pu, Pv and vectors a, b, we get that (20), (21) is equiva-
lent to the problem

I0= sup
μu,μv,λ

(
x̄T (0)μ0+

K∑
k=0

zT (k)μz(k)+

K−1∑
k=0

gT(k)λ(k+1)

− 1

4

(
μT
0 Π

2μ0+
K∑

k=0

μT
z (k)R

2μz(k)

))
(22)

subject to the equality type constraints (here we introduce a
fictitious Lagrange multiplier λ(K + 1) = 0)

−FTλ(1) + μ0 +HTμz(0) = 0,

λ(k)− FTλ(k + 1) +HTμz(k) = 0, λ(K + 1) = 0,

−GTλ(k) + μq(k − 1) = 0, k = 1, . . . ,K, (23)

and, in addition, to the inequality type constraint

max
{
‖Qμq(k)‖∞

}K−1

k=0
≤ 1. (24)

Similarly, from Theorem 3 we can obtain that the problem (18),
(19) [dual to the l2-norm approximation (17), (16)] is equivalent
to the problem

J0= sup
μu,μv,λ

(
x̄T (0)μ0+

K∑
k=0

zT (k)μz(k)+
K−1∑
k=0

gT (k)λ(k+1)

− 1

4

(
μT
0 Π

2μ0+

K∑
k=0

μT
z (k)R

2μz(k)+

K−1∑
k=0

μT
q (k)Q

2μq(k)

))
(25)

subject to (23).
Problem (9), (2) differs from (4), (2) by weight coeffi-

cients only (we substitute (1/2)Q−2
W (k) for Q−2). Clearly, all

Theorems 1–4 are valid for nonstationary (time-variant) weight
matrices Q(k) and R(k) as well. The structure of the proofs
remains completely unchanged, only the formulas become even
more cumbersome. Therefore, in accordance to Theorem 3 and
(25), the dual problem to (9), (2) has the form

J 0= sup
μu,μv,λ

(
x̄T (0)μ0+

K∑
k=0

zT(k)μz(k)+

K−1∑
k=0

gT(k)λ(k+1)

− 1

4

(
μT
0 Π

2μ0 +
K∑

k=0

μT
z (k)R

2μz(k)

+ 2

K−1∑
k=0

μT
q (k)Q

2
W (k)μq(k)

))
(26)

subject to (23).
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B. Solving the Quadratic Dual Problem

By applying the standard methods of the theory of convex
variational problems, we can establish the relationship between
the solutions of (26), (23) and (9), (2). In contrast to nonsmooth
problem (22)–(24) the solution of (26), (23) can be found in
explicit form.

Theorem 5: Let (x∗, q∗) be the solution of (9), (2); then the
solution of (26), (23) is defined by the following relations:

μ∗
0 =2Π−2 (x̄(0)− x∗(0)) ,

μ∗
z(k) = 2R−2 (z(k)−Hx∗(k)) , k = 0, . . . ,K,

μ∗
q(k) = −Q−2

W (k)q∗(k),

λ∗(k + 1) = −2λJ (k + 1), k = 0, . . . ,K − 1

where the vectors λJ(k) are found from (5) of Theorem 1

λJ(k) =FTλJ(k + 1) +HTR−2 (z(k)−Hx∗(k)) ,

λJ(K + 1) =0, k = 0, . . . ,K.

The proof is given in Appendix B.

IV. GUARANTEED NONOPTIMALITY LEVEL

In this section, we obtain one of the main results of the paper:
a formula for the guaranteed nonoptimality level of a current
iteration of the algorithm proposed in Section II-C.

Theorem 6: Let (x∗, q∗) be the solution of the l2-norm
approximation problem (9), (2). Suppose the optimal value of
the cost function, J0, does not equal zero; then Δ ≤ Δ0 and
the guaranteed nonoptimality level Δ0 is determined by the
formula

Δ0 = I(x∗, q∗) ·
(

− θ2 min

{
J0

θ2
,
1

θ∞

}2

+2J0 min

{
J0

θ2
,
1

θ∞

})−1

where the values I(x∗, q∗), J0, θ2, and θ∞ are defined by the
equalities

I(x∗, q∗) =
∥∥Π−1 (x̄(0)− x∗(0))

∥∥2
2

+
K∑

k=0

∥∥R−1 (z(k)−Hx∗(k))
∥∥2
2

+
K−1∑
k=0

∥∥Q−1q∗(k)
∥∥
1
,

J0 =
∥∥Π−1 (x̄(0)− x∗(0))

∥∥2
2

+
K∑

k=0

∥∥R−1 (z(k)−Hx∗(k))
∥∥2
2

+
1

2

K−1∑
k=0

∥∥Q−1
W (k)q∗(k)

∥∥2
2
,

θ2 =
∥∥Π−1 (x̄(0)− x∗(0))

∥∥2
2

+
K∑

k=0

∥∥R−1 (z(k)−Hx∗(k))
∥∥2
2
,

θ∞ = max
{∥∥QQ−2

W (k)q∗(k)
∥∥
∞
}K−1

k=0
.

Proof of Theorem 6: Consider a current iteration over s of
the algorithm of weight and time recursions. Let the solution
of (9), (2) at this iteration be (x∗, q∗). In order to evaluate
the nonoptimality level (see (11) from Section II-C2) from
above, let us construct an estimate for the unknown optimal
value I0 from below. By virtue of Theorem 4, I0 = I0, and
if I0 is the maximal value of function (22), then, for any set
λ′(k), μ′

0, μ
′
z(k), μ

′
q(k) that satisfies constraints (23) and (24),

the following inequality holds:

I0 = I0 ≥ x̄T (0)μ′
0 +

K∑
k=0

zT (k)μ′
z(k) +

K−1∑
k=0

gT (k)λ′(k + 1)

− 1

4

(
μ′T
0 Π2μ′

0 +

K∑
k=0

μ′T
z (k)R2μ′

z(k)

)
.

Note that the original nonsmooth problem (1), (2) and its
approximating quadratic problem (9), (2) are related by con-
struction. So, one might expect that the dual problems (22)–(24)
and (26), (23) are also related. Indeed, the equality constraints
for both dual problems are identical; the cost functions coincide
up to the terms with μq(k), which entries are bounded either
implicitly [by cost function (26)], or explicitly [by constraint
(24)]. Therefore we apply the following approach [8], [29],
[45]. We estimate I0 from below on a lesser [than in problem
(22)–(24)] one-dimensional set. Namely, we search a maximal
value of the cost function along the direction defined by the
solution of (26), (23)

λ′(i+ 1) =σλ∗(i+ 1),

μ′
0 =σμ∗

0, μ′
q(i) = σμ∗

q(i), i = 0, . . . ,K − 1,

μ′
z(k) =σμ∗

z(k), k = 0, . . . ,K

where a scalar parameter σ can vary and the vectors λ∗(i+
1), μ∗

0, μ∗
z(k), μ

∗
q(i) define the solution of (26), (23) (they are

presented by Theorem 5). Then we obtain an estimate for I0

from below

I0≥max
σ

(
σ

(
x̄T (0)μ∗

0+

K∑
k=0

zT (k)μ∗
z(k)+

K−1∑
k=0

gT (k)λ∗(k+1)

)

− σ2

4

(
μ∗T
0 Π2μ∗

0 +

K∑
k=0

μ∗T
z (k)R2μ∗

z(k)

))
(27)

where the σ is restricted by the inequality

|σ| ·max
{∥∥Qμ∗

q(k)
∥∥
∞

}K−1

k=0
≤ 1. (28)

(Obviously, constraints (23) hold.)
By virtue of the duality relation, J0 = J 0. Since {μ∗

0,
μ∗
z(0), . . . , μ

∗
z(K), μ∗

q(0), . . . , μ
∗
q(K − 1)} is (a part of) the

solution of (26), (23), we have

J0=J 0= x̄T (0)μ∗
0+

K∑
k=0

zT (k)μ∗
z(k)+

K−1∑
k=0

gT (k)λ∗(k+1)−U
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where

U =
1

4

(
μ∗T
0 Π2μ∗

0 +
K∑

k=0

μ∗T
z (k)R2μ∗

z(k)

+ 2

K−1∑
k=0

μ∗T
q (k)Q2

W (k)μ∗
q(k)

)
.

The substitution of μ∗
0, μ∗

z(k), μ
∗
q(i) from Theorem 5 into U

yields

U = (x̄(0)− x∗(0))T Π−2 (x̄(0)− x∗(0))

+
1

2

K−1∑
k=0

q∗T (k)Q−2
W (k)q∗(k)

+

K∑
k=0

(z(k)−Hx∗(k))T R−2 (z(k)−Hx∗(k)) = J0.

Consequently

x̄T (0)μ∗
0 +

K∑
k=0

zT (k)μ∗
z(k) +

K−1∑
k=0

gT (k)λ∗(k + 1) = 2J0.

Similarly

1

4

(
μ∗T
0 Π2μ∗

0 +

K∑
k=0

μ∗T
z (k)R2μ∗

z(k)

)

= (x̄(0)− x∗(0))T Π−2 (x̄(0)− x∗(0))

+

K∑
k=0

(z(k)−Hx∗(k))T R−2 (z(k)−Hx∗(k))
def
= θ2.

When substituting the expression for μ∗
q(k) into (28), this

inequality takes the form

|σ| ≤ 1

θ∞
, θ∞ = max

{∥∥QQ−2
W (k)q∗(k)

∥∥
∞
}K−1

k=0
. (29)

Thus inequality (27) can be rewritten in the form

I0 ≥ max
σ

(
−θ2σ

2 + 2J0σ
)

(30)

subject to (29).
Obviously, the quadratic function −θ2σ

2 + 2J0σ under con-
straint (29) attains its maximal value at σ = min{J0

θ2
, 1
θ∞

} and
consequently, due to the duality relation

I0=I0≥−θ2 min

{
J0

θ2
,
1

θ∞

}2
+2J0 min

{
J0

θ2
,
1

θ∞

}
. (31)

Note that θ2 and θ∞ are not both zero; otherwise all residuals
equal zero and, hence, J0 = 0, which contradicts the second
condition of Theorem 6. Therefore, with the convention 1/0 =
∞ and min{1,∞} = 1, the expression min{J0

θ2
, 1
θ∞

} is well-
defined even for the exotic cases θ2 = 0 or θ∞ = 0.

Finally, Theorem 6 follows from the definition of nonopti-
mality level (11) and inequality (31).

It should be emphasized that the expected similarity of the
solutions for (22)–(24) and (26), (23) is not necessary for
the validity of Theorem 6. This expectance only motivates
the choice of the successful direction in one-dimensional prob-
lem. The proposed choice proves to be useful in practice: the
nonoptimality levels are estimated quite accurately. �

Theorem 6 extends the range of applicability of nonoptimal-
ity levels to dynamic problems with mixed norms. Therein lies
an important distinction from the authors’ book [29], where the
nonoptimality levels were constructed for static least absolute
deviations problems. Most of our arguments are valid for a
similar situation when the cost function contains the absolute
values of measurement residuals and the squares of dynamic
disturbances q(k).

V. NUMERICAL EXPERIMENTS

In this section, we consider the results of numerical exper-
iments. Note that our approach, which was described above,
can also be applied to the simpler l1-norm approximation
problem. A brief (and without proofs) sketch of this application
is presented in the authors’ report [48]. In this compendious
report, only the l1-norm approximation was studied with simple
approximation (8). Below we will also compare l1/l2-norm ap-
proximation and l1-norm approximation. Besides, we will show
that (6) in the mixed-norm problem is much more successful
than (8) for the construction of nonoptimality levels.

A. Numerical Examples

Consider a simple dynamic system of the form

x(k + 1) =

(
1 0.04
0 δ

)
x(k) +

(
1 0
0 1

)
q(k),

δ =1, k = 0, . . . ,K − 1. (32)

Here, x(k), q(k) ∈ R
2, g(k) = 0. We set the state estimation

problem for the vectors x(k) by the measurements z(k) and by
the prior information x̄(0) about the initial state, where

z(k) = x1(k) + r(k), k = 0, . . . ,K (33)

and

0 = x̄(0) = x(0) + r̄.

In the numerical experiments, an additional anomalous pulse in
q2(k) (which is equal to −2.5) was modeled. So, a jump in
the average values of x2(k) was generated. The arrays of
x(k) and z(k) were formed in accordance with (32) and (33).
The amount of discrete time-instances K in this example is
equal to 3600. The error r̄, the measurement noise r(k), and
the high-frequency components of q(k) (without regard for the
additional pulse) were simulated by means of Gaussian random
number generator. In our experiments

σr̄1 = σr̄2 = 1, σr = 3, σq1 = 0.2, σq2 = 0.6.

We search the estimates of x(k) as a solution of (1), (2),
where the weight coefficients and the regularization parameter
are chosen as follows:

Π1 = Π2 = 1, R = 3, Q1 = 0.2, Q2 = 0.6, α = 10−3.
(34)

Here n = l = 2, m = 1 and the amount of unknown quan-
tities equals (K + 1)n+Kl = 14402; the amount of residual
entries [summands in the function (1)] equals n+ (K + 1)m+
Kl = 10803.
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Fig. 1. Estimates of the jump in x2(k).

In what follows, we focus on such qualitative features of x(k)
as jumps.2 The high-frequency components of x(k) represent
less interest. Moreover, it is clear that any reasonable estima-
tion algorithm will average the high-frequency components of
x(k); so, our attention will be centred on estimating the low-
frequency components of x(k).

Consider four methods for estimating the state vector (see
Fig. 1): the l1-norm approximation, i.e., the least absolute
deviations method [48] (dashed line in the graphs below); the
l2-norm approximation, i.e., the standard least squares method
(4), (2) (dotted line); the mixed-norm approximation from
Section II-C (bold solid line); the standard l2-norm approxi-
mation (4), (2) with a twentyfold increase of weight coeffi-
cient R (dash-dot line). For the graph of the original signal
not to overlap with the other curves in Fig. 1, the graphs
for estimates of x2(k) are artificially shifted up by 3.0 (the
same is true for other figures with the original signal). All
quadratic problems are solved by the Bryson-Frazier formulas;
the mixed-norm problem and the l1-norm problem are solved
by the weight and time recursions algorithm described above
(with the corresponding modification for l1-norm presented in
[48]). At each iteration over s the guaranteed nonoptimality
level was calculated; the threshold Δend for stopping criterion
Δ0 ≤ Δend was chosen equal to 1 + 10−3.

First let us discuss the estimates obtained by means of the
traditional quadratic smoothing problem (dotted and dash-dot
lines). We see from Fig. 1 that, with the initial value of R
[cf. (34)], the estimate of the jump is slightly blurred (in time)
and contains noticeable inadequate fluctuations, which corre-
spond neither to the average values of x2(k) nor to the high-
frequency component of x2(k). With a twentyfold increase of
R (which is practically equivalent to a twentyfold decrease of
Q), the estimate of the jump is more stable but it becomes too
distorted and, therefore, the instant of jump is determined quite
inaccurately. Besides, the estimates are very sensitive to the
choice of weight coefficients. So, the traditional least squares
algorithm cannot be well adjusted for estimating the jumps.

It follows from Fig. 1 that the l1-norm approximation and
the l1/l2-norm approximation are much more preferable for

2The discrete systems of equations are supposed to be discrete models of
continuous-time processes; so, it is clear what is meant by “jump”.

Fig. 2. Normalized guaranteed nonoptimality levels Δ0 − 1.

Fig. 3. Estimate of the disturbance q2(k).

the identification of jumps. Moreover, they are quite close.
Additional numerical experiments indicate that the l1-norm
and l1/l2-norm approximations are considerably less sensitive
to the variation of weight coefficients than l2-norm approxi-
mation. The difference between l1-norm and l1/l2-norm ap-
proximations manifests itself in evaluating the efficiency of
computational procedures. Let us examine this question in
detail.

The guaranteed nonoptimality level as a function of s is
presented in Fig. 2. With l1-norm and l1/l2-norm approxi-
mations, the solution is found in 508 and in 123 iterations
over s, respectively. The computational process takes 358 s in
the first case, and 74 s in the second case (for the classical
l2-norm approximation, 0.5 s). It should be emphasized that,
for the amount of variables mentioned above, the reduction to
static problems with inequality/equality constraints does not
solve the nonsmooth problems at all because of the lack of
computational resources. At the same time, the algorithm of
weight and time recursions solves the mixed-norm problem in
case of large measurement arrays.

The estimate for the disturbance q2(k) is shown in Fig. 3. As
expected, the sparsity of this estimate is distinctly visible. In
enlarged scale, the graph in Fig. 3 in fact contains a series of
unidirectional pulses; the total sum of these pulses is equal to
−2.5, which is the true value of the pulse in q2(k).
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Fig. 4. Estimates of gyro drift.

We could also consider other examples with different values
of δ in (32) when the average values of x2(k) in system
(32) are not exactly stepwise as before. All mentioned above
conclusions hold true.

The regularities that are observed for these simplest cases
are valid for more nontrivial issues with several jumps. In par-
ticular, our approach also was applied for the identification of
rare stepwise jumps in the sensors (accelerometers and gyros)
of a strapdown inertial navigation system (SDINS) under bench
testing. This problem was set to us by engineers [5], [29], [48].
Here, the system consists of the error equations for SDINS sup-
plemented with the measurements of velocity. The dimensions
of state vector, measurements, and disturbances are equal to
n = 8, m = 2, and l = 4, respectively. The amount of unknown
variables is of order 20 000, and the number of summands in the
cost function is of order 10 000. In contrast to the previous ex-
ample, the jumps in state vector less obviously affect the output
signal z(k). Nevertheless, the use of mixed norms in this case
is also noteworthy: the estimates of the jumps are crisp and the
accuracy of estimates for the jumps is the same as for l1-norm
approximation [48]; moreover, the duration of computation is
3–6 times less. This is a typical feature for other examples:
the computational burden for problem (1), (2) is several (3–6)
times smaller than for the pure l1-norm approximation. In nav-
igation problem, the advantage of l1/l2-norm approximation
over l2-norm approximation in the accuracy of identification
of jumps is much more remarkable: the l2-norm estimates are
very smoothed and it is impossible to identify the instants of
the jumps (see Fig. 4). Furthermore, in multi-variable systems,
the l2-norm approximation can give a nearly constant estimate
for the original signal with a significant jump (as in [48]).

B. Comparison of Two Approximation Methods for
Absolute Values

Recall that, in this paper, we have modified the method
for smooth approximation of absolute values, viz., instead of
(8) from earlier works [22], [25], we use more complicated
approximation (6). Obviously, with (8), the structure of all
formulas for the solutions of primal and dual problems remains
the same. The only difference is that we substitute Q−2

W (k) for
(1/2)Q−2

W (k). In particular, the solution of the dual problem
(λa, μa

0 , μ
a
z , μ

a
q ) is defined by Theorem 5 with the replacements

Fig. 5. Estimates of x2(k) for two approximation methods.

Q−2
W (k) by 2Q−2

W (k) and (x∗(k), q∗(k)) by (xa(k), qa(k)),
where (xa(k), qa(k)) is the solution of the approximating
quadratic problem with the trivial approximation (8). However,
this difference has a significant impact on the calculation of the
guaranteed nonoptimality level.

Indeed, the main idea of the proof of Theorem 6 is that,
in order to estimate I0 from below, a maximum of (22) is
searched along the direction that is given by the solution of
another problem (26), (23). It is supposed that the estimate
will be successful if the solutions of (22)–(24) and (26), (23)
are close. This is usually achieved in later iterations when the
entries qi(k, s) vary insignificantly from iteration to iteration

|qi(k, s+ 1)| / |qi(k, s)| ≈ 1. (35)

In accordance with the rule for setting the Q−2
W from

Section II-C2, formula (35) gives that the components μa
qi and

μ∗
qi are estimated (in order of magnitude) as follows:∣∣μa

qi(k)
∣∣ = ∣∣2Q−2

W (k)qa(k)
∣∣ ≈ 2Q−1

i ,∣∣μ∗
qi(k)

∣∣ = ∣∣Q−2
W (k)q∗(k)

∣∣ ≈ Q−1
i

i.e., at later iterations, |μa
qi(k)| is approximately two times

greater than |μ∗
qi(k)|. Hence, μ∗

qi(k) is more consistent with
constraint (24): |Qiμqi(k)| ≤ 1. In addition, numerical exper-
iments show that the solution components μa

0i(k), μ
∗
0i(k) and

μa
zi(k), μ

∗
zi(k) are sufficiently close. Hence, in the compound

vector (μa
0 , μ

a
z , μ

a
q ), the first two subvectors are close to “cor-

rect” subvectors but the third subvector is twice greater (in
absolute value) than it is required: |Qiμ

a
qi(k)| ∼ 2. As a result,

we get that the direction given by (λ∗, μ∗) is more preferable
than the direction given by (λa, μa).

The calculation of the guaranteed nonoptimality levels con-
firms this claim: our approximation (6) allows to estimate
nonoptimality levels much more accurately than the simplest
approximation (8). Consider the same system (32), (33) and
make an additional numerical experiment. The estimates of
x2(k) obtained by two different methods are depicted in Fig. 5:
the dotted line corresponds to the simplest approximation (8),
the bold solid line (as earlier) corresponds to our basic case (6).
It follows from Fig. 5 that both estimates are close, however
the approximation (6) gives slightly better result. But for the
guaranteed nonoptimality levels the results are very different,
see Fig. 6. With our choice (6), the required threshold value
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Fig. 6. Normalized guaranteed levels Δ0 − 1 for two approximation
methods.

Δend = 1 + 10−3 is obtained in 149 steps; with the simplest
version (8), the desired value is not reached at all within the
foreseeable time.

The analogous comparison of two approximation methods
also can be made for l1-norm approximation; recall that in [48]
the choice (8) was used. However, since the l1-cost function
is homogeneous, the modified version (6) results in the ap-
pearance of the common factor 1/2 in all summands of the
approximating l2-cost functions; so, the use of (6) in this case
is to no avail.

VI. CONCLUSION

In the paper, the algorithm of weight and time recursions is
proposed for solving the l1/l2-norm approximation problem
in linear dynamic systems. The application of mixed-norm
approximation allows us to effectively estimate the state vec-
tor with possible rare jumps. The use of variational-weighted
approximations reduces the solution of the original nonsmooth
problem to the solution of a sequence of quadratic problems.
The recursive methods in dynamic quadratic smoothing prob-
lems enable to avoid the operations with vectors and matrices of
high dimension. The simple structure of the algorithm results in
savings in computation and allows to process the large amounts
of measurement data. The guaranteed nonoptimality levels of
current iterations characterize the accuracy of approximate so-
lutions and give a criterion for stopping the calculation process.
The numerical experiments show that by means of l1/l2-norm
approximation the jumps can be identified more clearly than by
the traditional l2-norm approximation. Moreover, the mixed-
norm approximation outperforms l1-norm approximation in
computation time.

APPENDIX A

Proof of Theorem 4: Let us follow a standard approach
for constructing the dual problems [46], [47]. The Lagrange
function for (15), (16) is defined by the relation

L(u, v, w, μu, μv, λ) = uTP 2
uu+

Mv∑
i=1

pvi|vi|+ λT (b−Ψw)

+
(
μT
u , μ

T
v

)(
a− Φw −

(
u

v

))
.

Then the dual problem to the convex optimization problem (15),
(16) has the form

I0 = sup
μu,μv,λ

(
inf

u,v,w
L(u, v, w, μu, μv, λ)

)
. (36)

For the calculation of infu,v,w L with fixed Lagrange multipli-
ers μu, μv, λ we consider two cases.

1) Let λTΨ+ (μT
u , μ

T
v )Φ 	= 0. Then L is linear in w and

infu,v,w L(u, v, w, μu, μv, λ) = −∞.
2) Let λTΨ+ (μT

u , μ
T
v )Φ = 0. Then L does not depend on

w and

inf
u,v,w

L(u, v, w, μu, μv, λ) = inf
u

(
uTP 2

uu− μT
uu
)

+ inf
v

(
Mv∑
i=1

pvi|vi| −
Mv∑
i=1

μvivi

)
+ λT b+

(
μT
u , μ

T
v

)
a.

Obviously

inf
u

(
uTP 2

uu− μT
uu
)
= −1

4
μT
uP

−2
u μu.

Now let us find the second infimum. The following relations
hold:

Mv∑
i=1

pvi|vi| −
Mv∑
i=1

μvivi ≥
Mv∑
i=1

pvi|vi| −
Mv∑
i=1

|μvi||vi|

=

Mv∑
i=1

pvi|vi| −
Mv∑
i=1

p−1
vi |μvi|pvi|vi|

≥
Mv∑
i=1

pvi|vi| − max
i=1,...,Mv

{∣∣p−1
vi μvi

∣∣} ·
(

Mv∑
i=1

pvi|vi|
)

=
(
1−
∥∥P−1

v μv

∥∥
∞
)
·
(

Mv∑
i=1

pvi|vi|
)

where, with notation (14), maxi=1,...,Mv
{|p−1

vi μvi|} =
‖P−1

v μv‖∞. Consequently, if ‖P−1
v μv‖∞ ≤ 1, then

inf
v

(
Mv∑
i=1

pvi|vi| −
Mv∑
i=1

μvivi

)
= 0.

Consider the opposite case: ‖P−1
v μv‖∞ > 1. Hence there

exists a j such that p−1
vj |μvj | > 1. Take v in the form: vi =

0, i 	= j and vj 	= 0; then

Mv∑
i=1

pvi|vi| −
Mv∑
i=1

μvivi = pvj |vj | − μvjvj

= vjpvj
(
sign vj − p−1

vj μvj

)
.

Clearly, if μvj > 0, then vjpvj (sign vj−p−1
vj μvj)→−∞ as

vj→+∞. Similarly, if μvj < 0, then vj pvj (sign vj −
p−1
vj μvj) → −∞ as vj → −∞. Thus, with ‖P−1

v μv‖∞ > 1,
our function is unbounded from below

inf
v

(
Mv∑
i=1

pvi|vi| −
Mv∑
i=1

μvivi

)
= −∞.
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By combining the obtained results, we finally get

inf
u,v,w

L(u, v, w, μu, μv, λ)

=

⎧⎨
⎩

− 1
4μ

T
uP

−2
u μu + λT b+

(
μT
u , μ

T
v

)
a

if λTΨ+
(
μT
u , μ

T
v

)
Φ=0,

∥∥P−1
v μv

∥∥
∞≤1,

−∞ otherwise.

Then it follows from (36) that the problem dual to (15), (16)
has the form (20), (21). The equality I0 = I0 follows from the
duality theorem for convex variational problems [46], [47]. �

APPENDIX B

Proof of Theorem 5: First let us find a solution of (25),
(23) (the dual problem to the classical l2-norm approximation
problem). Write out the Lagrange function for (25), (23)

L̃(μu, μv, λ, β)

= β0

(
x̄T (0)μ0 +

K∑
k=0

zT (k)μz(k)+

K−1∑
k=0

gT (k)λ(k + 1)

− 1

4

(
μT
0 Π

2μ0 +
K∑

k=0

μT
z (k)R

2μz(k)

+

K−1∑
k=0

μT
q (k)Q

2μq(k)

))
+ βT

z (0)
(
−FTλ(1) + μ0 +HTμz(0)

)
+

K∑
k=1

βT
z (k)

(
λ(k)− FTλ(k + 1) +HTμz(k)

)

+

K∑
k=1

βT
q (k − 1)

(
−GTλ(k) + μq(k − 1)

)
where

β =
(
β0, β

T
z (0), . . . , β

T
z (K), βT

q (0), . . . , β
T
q (K − 1)

)T
is the vector of Lagrange multipliers, β0 ∈ R+, βz(k) ∈ R

n,
βq(j) ∈ R

l, k = 0, . . . ,K, j = 0, . . . ,K − 1.
Apply the Lagrange principle for smooth convex prob-

lems with equality type constraints [46], [47]. Suppose {μ∗
0,

μ∗
z(0), . . . , μ

∗
z(K), μ∗

q(0), . . . , μ
∗
q(K − 1),λ∗(1), . . . , λ∗(K)}

is a solution of (25), (23); then there exist Lagrange multipliers
β0, βz(0), . . . , βz(K), βq(0), . . . , βq(K − 1) (not all zero)
such that the stationarity condition holds

∂L̃

∂μu
(μ∗

u, μ
∗
v, λ

∗, β) = 0,
∂L̃

∂μv
(μ∗

u, μ
∗
v, λ

∗, β) = 0,

∂L̃

∂λ
(μ∗

u, μ
∗
v, λ

∗, β) = 0.

Consider two cases.
1) Suppose β0 = 0; then L̃(μu, μv, λ, β) is a linear function

in λ, μu, μv and we get from the stationarity condition
that

βz(0) = 0, Hβz(k) = 0, k = 0, . . . ,K,

βq(j) = 0, j = 0, . . . ,K − 1,

βz(k)− Fβz(k − 1)−Gβq(k − 1) = 0, k = 1, . . . ,K.

Since βz(0) = 0, βq(k) = 0, we have

βz(k) = Fβz(k − 1) = F kβz(0) = 0.

Hence all β0, βz(0), . . . , βz(K), βq(0), . . . , βq(K − 1)
are equal to zero, which comes into conflict with the
Lagrange principle.

2) Suppose β0 > 0; then without loss of generality we
may put β0 = 1. Then we obtain from the stationarity
condition

μ∗
0 =2Π−2 (x̄(0) + βz(0)) ,

μ∗
z(k) = 2R−2 (z(k) +Hβz(k)) , k = 0, . . . ,K,

μ∗
q(j) = 2Q−2βq(j), j = 0, . . . ,K − 1.

−βz(k) = −Fβz(k − 1)−Gβq(k − 1) + g(k − 1),

k = 1, . . . ,K. (37)

Since μ∗
0, μ

∗
z(k), μ

∗
q(k) is a solution of (25), (23), the equal-

ities (23) also hold. If we introduce a fictitious Lagrange mul-

tiplier λ∗(0)
def
= FTλ∗(1)−HTμ∗

z(0), then from (37) and (23)
we get the following recurrent relations for βz(k) and λ∗(k):

−βz(k + 1) = −Fβz(k)−
1

2
GQ2GTλ∗(k + 1) + g(k),

λ∗(k) =FTλ∗(k + 1)− 2HTR−2 (z(k) +Hβz(k)) ,

k = 0, . . . ,K (38)

under the boundary conditions

λ∗(K + 1) = 0, βz(0) = −x̄(0) +
1

2
Π2λ∗(0).

The boundary-value problem from Theorem 1 (except for the
second equation of (5)) and the boundary-value problem (38)
are identical up to the replacement βz(k) by −x∗(k) and λ∗(k)
by −2λJ(k). It is well known that the boundary-value problem
defined by (5) has a unique solution (see, e.g., [24]). Therefore

βz(k) = −x∗(k), λ∗(k) = −2λJ(k), k = 0, . . . ,K,

βq(i) = −q∗(i), i = 0, . . . ,K − 1.

By virtue of (37), this fact establishes a link between the
solutions of primal and dual problems

μ∗
0 =2Π−2 (x̄(0)− x∗(0)) ,

μ∗
z(k) = 2R−2 (z(k)−Hx∗(k)) , k = 0, . . . ,K,

μ∗
q(i) = −2Q−2q∗(i), i = 0, . . . ,K − 1. (39)

Problem (9), (2) differs from (4), (2) by weight coefficients
only. Recall that all considerations are valid for time-varying
weight matrices as well. Hence, the substitution of 1

2Q
−2
W (k)

for Q−2 into (39), where now (x∗, q∗) is the solution of (9), (2),
completes the proof. �
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