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Abstract
Multiple group confirmatory factor analysis has become the most common technique for 
assessing measurement invariance. However, higher-order factor modeling is less fre-
quently discussed in this context. In particular, the literature provides only very general 
guidelines for testing measurement invariance of second-order factor models, which is a 
prerequisite for conducting meaningful comparative research using higher-order factors. 
The current paper attempts to fill this gap. First, we explicate the constraints required for 
identification of the invariance levels in a multiple group second-order factor model. Sec-
ond, in addition to the conventional interpretation of the results of this assessment, we sug-
gest an alternative view on the invariance properties of a second-order factor as evidence of 
structural rather than measurement invariance. Third, we present an empirical application 
of the test which builds on Seeman’s alienation scale and utilizes data from eight countries 
collected in 2008-2009. We found empirical support for metric invariance of both the first- 
and second-order factors, but no support for scalar invariance of the first- and second-order 
factors. However, we find pairs of countries where scalar invariance for both the first- and 
second-order factors is supported by the data. We finalize with a discussion of the results 
and their interpretation.
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* This article is dedicated to Melvin Seeman of UCLA, the pioneer of theoretically driv-
en empirical alienation research, in honor of his 100 birthday on February 5, 2018! 
He is still going strong in his work on the topic and is now focusing on alienation and 
health.
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Introduction*

Measurement invariance is the degree to which the measurement model of a latent 
variable is the same across groups involved in the analysis. It is considered to be 
one important indicator of population homogeneity. In recent years, various studies 
have emphasized that the assessment of measurement invariance is necessary in 
studies involving latent variables and multiple samples, especially in cross-national 
survey research (Davidov, Meuleman, Cieciuch, Schmidt, & Billiet, 2014; Davi-
dov, Schmidt, & Billiet, 2011). There are several approaches to assess measure-
ment invariance of latent variables; these include lenient ones such as multidimen-
sional scaling and exploratory factor analysis, and stricter ones such as multiple 
group confirmatory factor analysis (MGCFA: Jöreskog, 1971) or multiple group 
latent class analysis (McCutcheon, 1987). Since its introduction for the assessment 
of measurement invariance (Meredith, 1993), MGCFA has become very popular 
(Davidov et al., 2014) as demonstrated by its inclusion in numerous textbooks and 
statistical guides, with hundreds of published papers demonstrating its applicability 
for invariance testing. 

Different extensions of the basic MGCFA model have also been discussed 
in the literature. However, one variant of the MGCFA model, namely, its appli-
cation to second-order and higher-order factor models, has received considerably 
less attention. A second-order factor model implies an ordinary factor model in 
which covariances of latent variables (i.e. first-order factors) are determined by one 
or more higher-order latent variables (i.e. second-order factors, see Figure 1). In 
cases of three or more second-order factors, third-order factor models are possible, 
although such models are rarely used (for an exception, see e.g., Cieciuch, Davidov, 
Vecchione, & Schwartz, 2014). 

mailto:mrudnev@hse.ru
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Measurement models with second-order factors are good representations of 
second-order concepts (Rindskopf & Rose, 1988). For example, the popular Big 
Five personality traits structure (Costa & McCrae, 1990) was modeled as a set of 
second-order factors of Cattell’s 16 first-order factors (John & Srivastava, 1999). 
A general intelligence, or Spearman’s g-factor, can similarly be seen as a second-
order factor where verbal, mathematical, and other kinds of intellectual abilities act 
as first-order factors (Jensen, 1998). Basic human values are structured hierarchi-
cally as well: There are specific values and higher-order values (Schwartz et al., 
2012). Finally, alienation can be expressed as a higher-order concept for powerless-
ness, meaninglessness, and isolation (Seeman, 1991). We will go into more detail 
about this concept below in the empirical part of the study.

A second-order factor model mimics the logic of the first-order factor mod-
els. First-order factor models represent the reflective relations between observed 
indicators and an underlying factor (latent variable) (Boorsbom, Mellenbergh, & 
van Heerden, 2003; Costner, 1969; Hempel, 1973). Similarly, second-order factor 
models represent the reflective relations between first-order factors and an underly-
ing second-order factor (which is also a latent variable). However, when it comes to 
testing the measurement invariance of second-order factors in multiple groups, var-
ious complications occur. Despite the growing number of substantive papers (over 
500)1 addressing second-order factor measurement invariance, very few of these 
attempted to describe the strategies and complications of this method. Chen, Sousa, 
and West (2005) provided general guidelines for testing measurement invariance of 
second-order factor models. Dimitrov (2010) followed their approach and presented 
an empirical example using the software package Mplus (Muthén & Muthén, 
1998-2016). Strasheim (2011) explicated this approach using matrix notation and 
supplemented it with a technical description of the possible levels of measurement 
invariance for second-order factors, including the ones that are rarely used (e.g., 
invariance of residuals).

The purpose of the current paper is twofold. First, we provide a simple, non-
technical yet comprehensive description of procedures involved in the assessment 
of measurement invariance of second-order factor models, embedding these into 
the context of cross-country surveys. Second, we demonstrate the procedure on real 
data and test for measurement invariance of a second-order factor. This second-
order factor represents alienation, an important concept in sociological literature 
(Seeman, 1983). We test its measurement invariance properties across eight coun-
tries. Thus, rather than presenting a novel procedure, the added value of the paper 
focuses on guiding the reader through the process of assessing measurement invari-
ance of second-order factors, providing a step-by-step description of the procedure, 
implementing the method on data across a number of countries, and presenting the 

1 This is the number of papers citing Chen et al. (2005) paper in Google Scholar as of 
February 25, 2017, most of which test second-order factor invariance in some form.
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example codes. Furthermore, we suggest an alternative interpretation of second-
order factors across groups as a manifestation of structural rather than measure-
ment parameters. 

In the next section, we first describe different hierarchical levels of measure-
ment invariance tests and how they apply to second-order factor models. Next, we 
discuss identification issues and different possible interpretations of the hierarchi-
cal factor structure. Finally, we present a cross-national measurement invariance 
test of alienation in a second-order multigroup factor model.

Assessment of Measurement Invariance 
Measurement Invariance of First-Order Factor Models

A common way to assess measurement invariance is to specify an MGCFA model 
across groups, such as countries, cultures, language groups, or any other nominal 
variable (Davidov et al., 2014). MGCFA models are fitted to the data using differ-
ent sets of specific constraints that correspond to the specific level of measurement 
invariance. Researchers typically differentiate between three levels of measure-
ment invariance that are sufficient for conducting most comparative survey data 
analyses: configural, metric, and scalar invariance (Vandenberg & Lance, 2000; 
but see, e.g., Meredith, 1993, for additional levels of invariance).

Configural invariance means that approximately the same concept is mea-
sured across groups. It does not guarantee that a construct is measured on the 
same scale with the same zero point, but it indicates whether higher factor values 
correspond to higher levels of a concept measured in several groups. Support for 
configural invariance allows meaningful between-group comparison of signs of 
correlations or regression coefficients, which describe association of the latent vari-
able with exogenous (i.e., external to the measurement model) variables. Config-
ural invariance is met when the general factor structure is the same across groups, 
including the number of factors and the general pattern of factor loadings. Testing 
for configural invariance does not involve any parameter constraints across groups 
except those required for model identification (discussed below). Therefore, con-
figural invariance may also be assessed with “lenient” methods, including multi-
dimensional scaling (e.g., Schwartz & Bilsky, 1990) or exploratory factor analysis 
(Horn & McArdle, 1992; Lorenzo-Seva & Ten Berge, 2006). These methods pro-
vide statistical criteria on the degree of similarity between factor loadings across 
groups but are not methods considered to be strict tests. Testing for higher levels of 
measurement invariance is strict albeit necessary when researchers are interested 
in comparisons of latent variables’ degree of association or means across groups.
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Metric invariance represents a second and higher level of measurement invari-
ance. It means that the constructs are measured by the same measurement units 
across groups. Nevertheless, it does not guarantee that the zero point of the scales 
is the same across groups. Metric invariance implies that any difference in one 
unit of a latent variable results in the same differences of the observed indicator 
variables in all groups. It follows that when metric invariance is present, covari-
ances and unstandardized regression coefficients involving latent variables can be 
meaningfully compared across groups. Metric invariance is met when the factor 
loadings are the same across groups. It is assessed by fixing factor loadings to be 
equal across groups and checking whether the model fit significantly decreases in 
comparison to the configural model.

Scalar invariance represents the third level of measurement invariance and 
means that the latent variables’ scales are measured with the same units and have 
the same zero point for all the groups included in the analysis. It implies that the 
levels of the latent variables correspond to the same levels of the manifest variables 
across groups. Therefore, in addition to covariances and unstandardized regres-
sion coefficients, the means of the latent variables (the latent means) may be mean-
ingfully compared across groups. Scalar invariance is met when intercepts of the 
observed indicator variables (in addition to the factor loadings) are the same across 
groups. Consequently, it is assessed by constraining the intercepts of the same 
items across different groups to equality.

One may rely on partial metric or partial scalar invariance in situations where 
not all the factor loadings and/or intercepts are the same across groups. Partial 
invariance would require at least two items with equal factor loadings (for par-
tial metric invariance) and at least two items with equal factor loadings and inter-
cepts per factor (for partial scalar invariance) to be invariant (Byrne, Shavelson, 
& Muthén, 1989). Partial metric or scalar invariance has the same implications as 
the corresponding full metric or full scalar invariance (but for criticisms on this 
approach, see, e.g., Steinmetz, 2011). Similarly, partial invariance may be appli-
cable also for higher-order factors as discussed below.

Measurement Invariance of Second-Order Factor Models

Assessment of measurement invariance of second-order factor models follows basi-
cally the same logic as  the assessment of measurement invariance of first-order 
models but with minor differences. 

Before testing for measurement invariance of a second-order factor, it is nec-
essary to establish invariance of the first-order factors. Metric invariance of the 
first-order factors is a prerequisite for the assessment of configural and metric 
invariance of the second-order factor. Scalar invariance of the first-order factors 
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is a prerequisite to assess scalar invariance of the second-order factor. This deter-
mines the sequence of the models when assessing measurement invariance.

The metric invariance model of the first-order factors serves as the model 
where configural invariance of the second-order factor is tested for the following 
reason: If metric invariance of the first-order factors is supported by the data, it 
implies that covariances between the first-order factors are comparable. Therefore, 
the loadings of the second-order factors can be meaningfully compared across 
groups. Researchers can then examine the second-order factor loadings to deter-
mine whether their structure is also similar across countries. This can be done by 
fixing the second-order loadings to equality across groups. 

The model parameter constraints used to test for second-order scalar invari-
ance are similar to those applied in testing for scalar invariance of first-order fac-
tors (see Table 1) with slight differences. To test for scalar invariance of the second-
order factor, scalar invariance of the first-order factors is necessary. It will imply 
that the means of the first-order factors are comparable and one may meaningfully 
test if they can be constrained to equality across groups. 

Partial invariance of a second-order factor model may also be tested if full 
metric or scalar invariance is not supported by the data for the second-order factor. 
Following Byrne et al.’s (1989) suggestions for assessing partial invariance of first-
order factors, a similar logic may be applied to second-order factors. According to 
this logic, two invariant first-order factors (with equal loadings on the second-order 
factor and equal intercepts) may be sufficient for guaranteeing partial invariance 
of the second-order factor. As this suggestion of implementing the idea of par-
tial invariance on second-order factors is rather new, it requires further exploration 
using simulation studies that do not only focus on first-order factors (e.g., de Beuck-
elaer & Swinnen, 2011) but also on partial invariance of second-order factors. 

A point worth mentioning is that measurement invariance of higher-order 
(e.g., of third- or fourth-order) factors follows a similar logic as the one for testing 
measurement invariance of second-order factors, because factors are continuous 
on all levels. While metric invariance is a prerequisite for configural and metric 
invariance on the higher factor level, and scalar invariance is a prerequisite for 
scalar invariance on the next higher  factor level, it may make sense to consider 
testing first for metric invariance on all factor levels before assessing scalar invari-
ance. By doing so, a differentiation between covariance and mean structures can be 
achieved.2

2 We would also like to indicate that this paper does not consider invariance of errors 
(the so-called strict invariance) for two reasons. First, this test is rarely conducted in 
cross-national applied research (see, e.g., Steinmetz, Schmidt, Tina-Booh, Wieczorek, 
& Schwartz, 2009). Second, equal errors across groups imply equal variances of their 
corresponding indicators or factors, a situation which is highly unlikely to occur. 
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Model Identification

Identification of a variance-covariance structure of the first-order factors may be 
achieved in three interchangeable ways (Little, Slegers, & Card, 2006): fixing the 
factor variances to 1, fixing the sum of the factor loadings to 1 (“effect coding”), 
or fixing one factor loading per factor to 1 (“marker indicator”). Likewise, models 
with a mean structure can be identified either by fixing one intercept per factor to 0, 
the latent mean in one group to 0, or the sum of the intercepts to 0.

These identification methods differ in their suitability for measurement invari-
ance testing. There is no reason to assume that variances of latent variables should 
be equal across groups when testing for configural, metric, or scalar invariance. 
Therefore, it may be problematic to fix factor variances to 1 in all groups. Con-
straining the sum of factor loadings to be equal across groups makes it difficult to 
detect model misspecifications, especially when some factor loadings differ across 
groups. Therefore, constraining one factor loading per factor to 1 is a preferred 
way of identification of the covariance part of first-order factors. A disadvantage 
of this approach is that, in the context of modeling multiple groups, this constraint 
implies equality of the corresponding parameter across groups; thus, a factor load-
ing fixed to 1 is assumed to be invariant across groups a priori, even in the uncon-
strained configural model. If the fixed loading is in fact not invariant, other truly 
invariant loadings might be represented by noninvariant factor loading estimates 
to compensate for the misspecified model. Therefore, special attention should be 
paid to the selection of the indicator whose loading is fixed to 1. For example, one 
should try different marker indicators for identifying the model and examine the 
patterns of loading differences across groups. Researchers are recommended to 
choose the most reliable and invariant item to serve as a marker. Ideally, this item 
would also be conceptually closest to the latent variable underlying the different 
items. An improper selection of a marker variable may lead to incorrect detection 
of the invariance level when only partial invariance is given in the data (Johnson, 
Meade, & DuVernet, 2009; Jung & Yoon, 2017). A proper selection of the marker 
indicator would enable researchers to meaningfully interpret both factor loadings 
and latent means.

When testing for scalar invariance, the mean structure is easy to identify by 
constraining the first-order factor means in one reference group to 0. Another tech-
nique requires constraining the intercept of a reference indicator to 0 (the “marker 
indicator method”). We do not apply the former method, because the first-order 
factor means serve as (latent) intercepts for the second-order factors. When testing 
for scalar invariance of second-order factors, latent intercepts are constrained to be 
equal across groups, and being constrained to 0 in one group implies constraining 
them to zero in all the groups. It leads to the test of latent intercepts' being zero 
instead of desired test of their equality across groups. Therefore, when testing for 
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scalar invariance of second-order factors, we find it more appropriate to use the 
“marker method” by fixing one indicator intercept per first-order factor to 0. This 
allows first-order factor means to be freely estimated in all groups, and it is neces-
sary for testing them for equality when assessing second- order factor scalar invari-
ance.

When the latter method (i.e., the marker method) is used, an intercept fixed to 
0 is assumed to be invariant across groups a priori, even in the unconstrained con-
figural model, without empirically testing it. Just like with factor loadings, special 
attention should be paid to the selection of the indicator whose intercept is fixed to 
0. For example, one may examine the modification indices to find out how the fit 
of the model would change if the marker indicator’s intercept was not assumed to 
be invariant.  

The identification of the second-order part of the model follows a similar ratio-
nale. For the variance-covariance structure one could either fix the second-order 
factor variance(s) or one of the second-order factor loading(s) to 1. Alternatively, 
one may fix the sum of the second-order factor loadings to 1 (“effect coding”). 
Also, in the context of group comparisons of second-order factors, it is not plau-
sible to assume a cross-group equality of second-order factor variances. Therefore, 
a common way to identify the second-order part of the model is to choose one 
first-order factor to serve as an anchor and provide the metric for the second-order 
factor. Its loading to the second-order factor is constrained to 1. Again, attention 
should be paid to the selection of the metric, that is, the first-order factor, whose 
loading is fixed. 

The means structure of the second-order factor may be identified by constrain-
ing the second-order factors’ means in one group to 0. Alternatively, one may con-
strain the intercept of one reference (“marker”) first-order factor to 0. We believe 
that identifying the second-order factor’s mean by constraining it in one group to 0 
is preferable and more convenient to implement, because its “indicators” (i.e., the 
first-order factors) are latent variables themselves whose means may be of interest 
for researchers. Consequently, it is reasonable to try to avoid constraining the inter-
cept of one of them to 0 across groups.3

Testing Procedure

There are two strategies for testing these sequences of constraints. The top-down 
strategy requires first testing the most restrictive model, and then constraints are 

3 When items are considered ordinal rather than continuous, in addition to factor load-
ings and intercepts one has to consider also a new type of parameters – thresholds (see, 
e.g., Davidov, Datler, Schmidt, & Schwartz, 2011). The issue of measurement invari-
ance in the case of ordinal responses has not been fully clarified yet (see, e.g. Millsap, 
2011, p. 129; Wu & Estabrook, 2016) and is beyond the scope of the current paper.
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relaxed until an appropriate fit is achieved (Horn & McArdle, 1992). The bottom-up 
approach first tests the least restrictive models (i.e., configural invariance), and then 
factor loadings and intercepts are constrained in a stepwise manner. When working 
with second-order factor models, it is easier (and therefore preferable) to use the 
bottom-up strategy, because second-order factor models are complex and, in this 
way, it becomes easier to detect misspecifications (Brown, 2015, p. 290). 

The sequence and specific sets of the constraints tested during the test for 
measurement invariance of the second-order factor models are listed in Table 1 and 
summarized below. First, configural invariance of the first-order factors is tested, 
followed by tests of first-order and second-order metric invariance. These are nec-
essary preconditions to finally test for first- and second-order scalar invariance. 
Whereas tests of metric invariance on both levels require only information about 
the variance and covariance structure of the data, tests of scalar invariance on both 
levels require additional information on the mean structure of the data. Thus, one 
begins by testing for both first- and second-order metric invariance, and afterwards 
proceeds with testing for both types of scalar invariance. Such a sequence is rea-
sonable because it allows differentiating in the invariance test between the covari-
ance and the mean structures. Metric invariance on the second level is not a neces-
sary requirement for scalar invariance on the first level. However, logically it makes 
sense to first examine whether metric invariance holds on both levels, and then 
expand the test using also information on the means and test for scalar invariance 
on both levels. As a general guideline, the logic of comparisons is not necessarily to 
choose the best-fitting model, but to select the most parsimonious one (i.e., the most 
constrained, with a highest possible level of invariance) which is still well-fitting 
(Brown, 2015). Such a model will allow more types of cross-group comparisons (as 
discussed previously). To achieve this, one can begin by comparing the fit of more 
constrained models with the less constrained ones. If the fit decreases consider-
ably, we have to reject the model with a higher level of invariance, and if there is 
no considerable decrease in model fit, we can accept the model with a higher level 
of invariance. 

What is a considerable decrease in model fit? The chi-square (χ2) difference 
test (also known as the likelihood ratio test) is often applied to compare adjacent 
pairs of nested models, but it is known to reject models even when violations are 
minor, particularly when the sample size is large (Chen, 2007). Therefore, Chen 
(2007) and Cheung and Rensvold (2002) proposed to complement it with alterna-
tive criteria. They suggest that if the sample size is large, (>300), a comparative fit 
index (CFI) difference not larger than 0.01 across models implies that the model fit 
does not deteriorate considerably. In addition, one could use the sample-adjusted 
Bayesian information criterion (SABIC), whose values do not supply a significance 
level but are sensitive to measurement noninvariance; usually the most parsimo-
nious yet well-fitting model has a lower SABIC (Van de Schoot, Lugtig, & Hox, 
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Table 1 Testing for Measurement Invariance and Possible Parameter Con-
straints in Multiple Group Confirmatory Factor Analysis with a  
Second-Order Factor

First-order factors Second-order factor

Factor  
loadings

Item  
intercepts

Latent means/
intercepts 

Factor  
loadings

Latent 
means

1.  Configural Free, but one 
per factor is 
fixed to 1

Free, but one 
per factor is 
fixed to 0

Free Free, but one 
per factor is 
fixed to 1

Fixed to 0

2.  First-order 
metric

Set equal 
across groups 
and one per 
factor is fixed 
to 1

Free, but one 
per factor is 
fixed to 0

Free Free, but one 
per factor is 
fixed to 1

Fixed to 0

3.  First- and 
second- 
order metric

Set equal 
across groups 
and one per 
factor is fixed 
to 1

Free, but one 
per factor is 
fixed to 0

Free Set equal 
across 
groups and 
one per fac-
tor is fixed 
to 1

Fixed to 0

4.  First-order 
scalar

Set equal 
across groups 
and one per 
factor is fixed 
to 1

Set equal 
across groups 
and one per 
factor is fixed 
to 0

Free Set equal 
across 
groups and 
one per fac-
tor is fixed 
to 1

Fixed to 0

5.  First- and 
second- 
order scalar

Set equal 
across groups 
and one per 
factor is fixed 
to 1

Set equal 
across groups 
and one per 
factor is fixed 
to 0

Set equal 
across groups 

Set equal 
across 
groups and 
one per fac-
tor is fixed 
to 1

Free, but 
fixed to 
0 in one 
group

Note. The variances of all factors and residuals are freely estimated in all models. The 
models are based on the marker indicator approach (Little et al., 2006).

2012). Note that beside these criteria, the fit of each model should be acceptable on 
its own, that is, every model should fit the data well (but to a different degree). We 
consider a model fit as acceptable when the CFI value is at least as high as 0.90 (soft 
criterion) or 0.95 (very good fit), and the root mean square error of approximation 
(RMSEA) is not larger than 0.08 with the upper bound of its confidence interval 
not higher than 0.10 (but see, e.g., Hu & Bentler, 1999; Marsh, Hau, & Wen, 2004, 
or West, Taylor, & Wu, 2012, for a vivid discussion on this topic). Thus, and given 
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that χ2 testing leads too often to significant falsification, one may accept a model 
with a higher level of invariance if the model deterioration (e.g., in terms of CFI and 
RMSEA) is not too large and within the recommended criteria.

Interpreting Second-Order Factor Models in a Multiple 
Group Comparison

We suggest viewing measurement invariance of second-order factors using differ-
ent perspectives. These perspectives rely on the two differing approaches on how 
to view second-order factors in the context of multiple group comparisons. The 
deductive and most popular approach assumes that the logic applied to first-order 
factor models (Costner, 1969; Hempel, 1973) should be transferred also to second-
order factors (Chen et al., 2005; Dimitrov, 2010; Strasheim, 2011). From this point 
of view, scalar invariance for the second-order factor is necessary to compare its 
means across groups meaningfully.

The second interpretation originates from the realization of the fact that first-
order factors are not observed variables; hence, they should not be treated in the 
same manner as indicators. Second-order factors might be treated as compensa-
tory, that is, any combination of the invariant first-order factors is indicative of 
the general higher-order latent variable. The logic behind this view suggests that 
second-order factors based on invariant first-order factors reflect structural rela-
tions between the second- and the first-order factors rather than measurement 
relations. In other words, the relative importance of first-order factors may vary 
across societies or over time without changing the nature of the second-order fac-
tor. Thus, even if the structure (the relations between the first- and the second-order 
factors) slightly varies across groups, second-order factors may still be functionally 
equivalent across groups and could be compared (Hui & Triandis, 1985; Van de 
Vijver & Leung, 1997). Indeed, this view may be regarded as problematic, because 
strictly speaking, if measurement invariance of a second-order factor is not given, 
its means may be noncomparable. However, we believe it is worthwhile to consider 
the fact that the measurement structure of second-order factors may vary slightly 
across societies and over time even when they in fact tap into the very same general 
concept. One could take this into account by examining approximate (rather than 
exact) measurement invariance (Van de Schoot et al., 2013).4  

4 An interesting alternative to the model with the single second-order factor is a bifactor 
model, which has a single factor loading on all of the items and has zero correlations 
with the other factors (Chen, West, & Sousa, 2006). Such a general factor might repre-
sent a method effect (e.g., response style) and can be easily confused with the second-
order factor structure, especially in cross-national surveys. One can test the difference 
in fit of the second-order factor model and bifactor model, as they are nested, to deter-
mine which one represents the data better (Yung, Thissen, & McLeod, 1999). 
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This distinction corresponds to the difference between the etic and emic 
approaches in cross-cultural studies (Van de Vijver & Leung, 1997). Etic means 
that one postulates general statements which should hold in any culture, whereas 
the emic position assumes that relationships always vary depending on culture. 
Thus, etic corresponds to our first interpretation and emic to our second one. One 
should note, however, that this argument may also be used for interpreting the rela-
tion between items and first-order factors. 

It may be of great interest to determine whether a higher-order construct has 
similar subdimensions with equal loadings across cultures or over time. This may 
be considered a major issue of investigation in comparative sociology for different 
types of concepts. Thus, when first-order factors display measurement invariance 
but second-order factors do not, it may not necessarily imply that the measurement 
of the items and their operationalization are problematic or that they are inadequate 
for comparative research. Instead, noninvariance of a second-order factor may 
imply that it has a different content across groups. Such an implication can be of 
great interest for theoreticians. In the following empirical example, we demonstrate 
how invariance of the second-order factor model is tested and interpreted.

Empirical Illustration
For the empirical illustration we use data measuring the concept of alienation, 
which is a concept of major importance in sociology. Initially defined by Karl Marx 
as “the surrender of control over work and its products, and the worker’s disengage-
ment from both work and fellow workers” (Seeman, 1991, p. 291), it denotes an 
individual’s isolation, estrangement, and sense of being lost within the society (e.g., 
Seeman, 1959, 1991; see also Dean, 1961). The most stringent and also popular 
theoretical models of alienation were developed by Seeman (1959) who considered 
alienation as a combination of five subdimensions: feeling of powerlessness, mean-
inglessness, normlessness, isolation, and self-estrangement. A series of scales were 
developed based upon his model. Studies applying these scales connected the five 
subdimensions with the value-expectancy theory (see Robinson, 1973; Schmidt, 
1990; Seeman, 1991) and applied them in several contexts (e.g., Dean, 1961; 
Huschka & Mau, 2006; McClosky & Schaar, 1965; Middleton, 1963). However, 
the validity and cross-national reliability of these scales have not been assessed 
yet (for an exception, see a German-American comparison of some of the items of 
the scales by Krebs & Schuessler, 1989). In addition, alienation was never speci-
fied and tested as a second-order factor model, although the underlying theoretical 
conceptualization would require this (Schmidt, 1990). Due to data constraints (see 
the next section), we employ and test the measurement of only three of the five sub-
dimensions of alienation in the analysis. The definitions of the three subdimensions 
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are presented in Table 2. In the following section, we will test for measurement 
invariance of alienation using a shortened version of McClosky and Schaar’s (1965) 
alienation scale across several European countries. 

Data and Measures

We employ data from the project “Group-Focused Enmity” carried out in 2008/2009 
by the Institute for Interdisciplinary Research on Conflict and Violence (Bielefeld 
University, Germany) with its European partners5 in eight countries: France, Ger-
many, Great Britain (England, Scotland, Wales, but not Northern Ireland), Hun-
gary, Italy, the Netherlands, Poland, and Portugal. These countries were chosen 
because they represent old and new EU member states and different geographical 
regions in Europe (Küpper et al., 2010; Zick et al., 2011). The countries differ in 
various characteristics such as the level of economic prosperity, level of inequality, 
history of democracy, or their citizens’ well-being. These features may contribute 
not only to different levels of alienation, but also to a different measurement struc-
ture of alienation. We expect countries with a longer history of democracy, longer 
EU membership, a stronger economy, and a higher level of democratic participation 
of citizens to have lower levels of alienation.

Data were collected via computer-assisted telephone interviews with a 
representative sample of about 1,000 respondents aged 16 years and above in each 
country. A representative random sample was drawn from the national telephone 
master samples (stratified according to a regional allocation of the population). 
After choosing a household, the target person was selected by either picking the 
household member whose birthday was next or last, or by the Kish grid method 
where a table of preassigned random numbers is used to choose a respondent (Kish, 
1949). Response rates were rather low and varied across countries, ranging between 
4.5% in Italy to 33% in Germany. In the final sample, 48% of respondents were male 
and 52% were female, and the mean age was 47 years. In each country sample, 
about 1,000 respondents were interviewed, but only about half of them were asked 
all the questions included in the scale. Thus, the actual sample size in each country 
used in our study was approximately 500 (see Appendix A). These samples do not 
differ systematically from the full samples in their sociodemographic characteris-
tics such as age and gender. Missing values were handled with the full information 
maximum likelihood algorithm during model estimation (Arbuckle, 1996).

The alienation scale in the data included six indicators which measured three 
first-order concepts: powerlessness, meaninglessness, and social isolation. The 

5 The project was financially supported by the Compagnia di San Paolo, the Freudenberg 
Stiftung, the Groeben Stiftung, the Volkswagen Stiftung, and two other private founda-
tions. For further details on data collection and documentation, see Zick, Küpper, and 
Hövermann (2011) and Küpper, Wolf, and Zick (2010).
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items represented a short version of the McClosky and Schaar (1965) scales, and 
their question wording is presented in Table 2. No measures for normlessness and 
self-estrangement were included in the data. However, we consider these three sub-
dimensions of alienation, that is, powerlessness, meaninglessness, and social isola-
tion, to be the very core of alienation (Dean, 1961, p. 754; Seeman, 1959, p. 787; 
Seeman, 1991, p. 339). All items were measured on an agree-disagree scale ranging 
from 1 to 4 and then recoded so that 1 indicated “strongly disagree” and 4 indicated 
“strongly agree.” Alienation was modeled in each country sample as a second-order 
factor reflecting the three subdimensions, which were in turn measured by two 
items each (see Figure 1). The replication data are listed in Appendix E.

In the following section, we will explore whether scalar invariance of the alien-
ation measurement model is given in the data. However, there are various potential 
sources for an eventual lack of measurement invariance. Such sources threatening 
the invariance of the scale may result, for example, from suboptimal translations, a 
different understanding of various question items, or cultural variations in response 
style. We present the results of the invariance test below.

Alienation

Powerless-
ness

Meaningless-
ness

Isolation

powerlessness1

powerlessness2

meaninglessness1

meaninglessness2

isolation1

isolation2

1

1.12

1

1.02

1

0.95

1

1.37

1.28

Figure 1 The second-order factor measurement model of alienation. The num-
bers are invariant unstandardized factor loadings as estimated in a 
second-order metric invariance model (corresponding to Model 3 in 
Table 3).
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Table 2  Indicators of Alienation Used in the “Group-Focused Enmity” 
Survey

Second-order 
concept

First-order  
concept

Definition  
(Seeman, 1959)

Questionnaire items, each with 
four response options: 
1 – “Strongly agree”
2 – “Somewhat agree”
3 – “Somewhat disagree”
4 – “Strongly disagree”

Alienation Powerlessness individual’s sense of 
influence over socio-
political events

1)  Politicians do not care what 
people like me think

2)  People like me do not have 
any say about what the 
government does

Meaninglessness when the individual  
is unclear on what  
s/he ought to believe – 
when the individual’s 
standards for clarity  
in decision making are 
not met

1)  Nowadays things are so con-
fusing that you sometimes do 
not know where you stand

2)  Nowadays things are so 
complex that you sometimes 
do not know what is going on

Social Isolation alienation from reign-
ing goals and stan-
dards

1)  Finding real friends is beco-
ming more and more difficult 
nowadays

2)  Relationships are getting 
more and more unstable

Method

To check whether we can compare the alienation scale across countries, we first 
specified a second-order confirmatory factor analysis model. It is depicted in Fig-
ure 1.

One loading of each first- and the second-order factor was fixed to 1 in order 
to identify the covariance structure part of the model (applying the marker item 
method). As we do not assess partial measurement invariance, the selection of 
marker indicators did not require any additional test of the adequacy of the cho-
sen item. However, during the analysis we paid special attention to whether the 
modification indices suggest that the marker item’s parameters are not equal across 
groups. As markers we selected the indicator “Politicians do not care what people 
like me think” for the powerlessness factor, the indicator “Nowadays things are so 
confusing that you sometimes do not know where you stand” for the meaningless-
ness factor, and the indicator “Finding real friends is becoming more and more dif-
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ficult nowadays” for the social isolation factor. For the second-order factor, power-
lessness was chosen to be the marker of the alienation factor because this first-order 
factor was treated as the very core of alienation in a number of studies (e.g., Geis 
& Ross, 1998; Neal & Seeman, 1964). Of all subdimensions, this one has been the 
most extensively studied (Seeman, 1975, p. 94). Moreover, Seeman (1959, p. 784) 
linked this concept to the original formulation of the alienation concept by Marx. 
Since our indicators had only four response options, the parameters were estimated 
using the maximum likelihood robust (MLR) estimator. In order to simplify the 
description, we treated these indicators as continuous.6 All the models were tested 
using the software Mplus 7.3 (Muthén & Muthén, 1998-2016). The syntax codes are 
provided in Appendix D.

We began by fitting the CFA model in each country separately (not reported).7 
The model demonstrated an acceptable fit in all countries with the exception of 
Portugal. Consequently, we decided to exclude Portugal from further analysis. We 
checked invariance in five steps (as described in previous sections) according to the 
constraints listed in Table 1. 

Results

Table 3 displays the fit measures of the five models we tested. Model 1, which 
included no cross-groups constraints, displayed a very good fit. Thus, we could 
conclude that each construct was measured by the same items in each of the coun-
tries included in the analysis. Also Model 2, which tested for metric invariance 
of the first-order factors, demonstrates a good fit. The χ2 difference test suggested 
that there is no significant deterioration in the model fit compared to Model 1. In 
addition, the difference in CFI did not exceed 0.01. This indicates that the first-
order factor loadings could be considered invariant across countries. Similarly, also 
Model 3, where we tested for metric invariance of the second-order factor, demon-
strated a good fit. A comparison with Model 2 revealed no significant deterioration 
in the χ2 value or in the CFI value. Therefore, we could conclude that the second-
order factor loadings are invariant across countries as well. This finding implies the 
equal meaning of alienation across countries. 

6 An examination of the item distributions did not detect any severe nonnormalities. In 
order to check the robustness of the results, we reanalyzed the model while accounting 
for the ordinal nature of the observed items using the WLSMV estimator in Mplus (see, 
e.g., Davidov et al., 2011). The model was identified using the constraints suggested by 
Millsap and Yun-Tein (2004), the second-order scalar invariance model was identified 
by constraining the latent intercepts to 0 in all groups and the second-order factor’s 
mean to 0 in one group. The model fit indices are listed in Appendix B and demonstrate 
that our conclusions remain essentially the same.

7 The output may be obtained from the first author upon request.
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Models 4 and 5 tested for full scalar invariance of the first- and second-order 
factors in the model. Imposed scalar invariance of the first-order factors in Model 4 
showed a substantial deterioration in model fit both in terms of the χ2 and the CFI. 
This finding implies that there is no first-order scalar invariance across all coun-
tries and, consequently, no second-order scalar invariance. However, for illustrative 
purposes, we also fitted a model testing for scalar invariance of the second-order 
factor in Model 5. As expected, this model showed a poor fit to the data. Thus, the 
best model in this sequence was Model 3, which demonstrated both first- and sec-
ond-order metric invariance. Supporting these conclusions, the SABIC displayed 
the smallest value in this model as well. 

As scalar invariance was not evidenced for both the first- and second-order 
factors in the model, means of the three first-order factors of alienation as well as 
the mean of the second-order factor of alienation may not be compared with con-
fidence across countries. Since we only had two items measuring each first-order 
factor, and as partial scalar invariance requires that at least two items per factor 
display equal factor loadings and intercepts, it was not possible for us to test for 
partial scalar invariance.

Lack of evidence of scalar measurement invariance does not necessarily imply 
that no comparisons can be performed. It could well be the case that although the 
first- and second-order factors of alienation may not be comparable across all eight 
countries, there are pairs or triads of countries where they are comparable and 
where scalar invariance can be supported by the data. For example, we found full 
scalar invariance of this model between Italy and Germany (the fit indices are listed 
in Appendix C). The mean alienation in Italy was 0.344 and significant, whereas 
in Germany the mean was fixed to 0. Thus, the level of alienation was significantly 
higher in Italy than in Germany. Furthermore, we found empirical support for par-
tial scalar invariance across Poland and France. In this model, the latent intercept 
of the first-order factor of meaninglessness was freed, whereas the intercepts of the 
first-order factors powerlessness and isolation were constrained to equality. The 
mean alienation in Poland was 0.471 and significant, whereas in France the mean 
was fixed to 0. In line with our expectations, the level of alienation is significantly 
higher in Poland than in France. Likewise, we found partial scalar invariance for 
Germany and the United Kingdom. In the model for these two countries we had to 
relax intercepts of the observed indicator of the first-order factor isolation, as well 
as the latent intercept of isolation itself. In the United Kingdom the latent mean of 
alienation was fixed to 0, whereas in Germany it was estimated as -0.160 and highly 
significant, indicating that the level of alienation was higher in the United King-
dom. Researchers interested in studying specific countries in these data would need 
to conduct the analysis we presented for these particular countries to determine 
whether they exhibit full or partial invariance.
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Table 3  Results of Invariance Tests of a Second-Order Factor Model of 
Alienation

χ2(df) Scaled  χ2  

difference CFI CFI  
difference RMSEA SRMR SABIC

1)  Configural inva-
riance 49.5 (42) 0.998 0.019 a 0.014 51295

2)  Metric invariance 
of the first-order 
factors

71 (60) 21.6 0.997 0.001 0.019 a 0.025 51231

3)  Metric invariance 
of the first and 
second-order 
factors

79.8 (72) 8.6 0.997 0.001 0.015 a 0.029 51181

4)  Scalar invariance 
of the first-order 
factors

417.2 (90)* 337.4* 0.917 0.080 0.085 0.063 51483

5)  Scalar invariance 
of the first- and 
second-order 
factors

691.9 (102)* 274.2* 0.850 0.063 0.107 0.094 51740

Note. df – degrees of freedom; scaled χ2 difference is a difference between -2log-likelihood 
corrected with a scaling factor applied with maximum likelihood robust estimator; CFI 
– comparative fit index; delta CFI – difference in CFI from the previous model in the se-
quence; RMSEA – root mean square error of approximation, SABIC – sample-adjusted 
Bayesian information criterion, SRMR – standardized root mean square residual.

* significant at p < 0.01.
a – RMSEA is equal or lower than 0.05 at p < 0.05 level of significance.

Summary and Conclusions
Measurement invariance is a necessary condition to allow meaningful compari-
sons across groups. The last two decades have witnessed a significant increase 
in the number of cross-cultural studies which tested for measurement invariance 
across groups such as cultures, countries, or language groups (Davidov et al., 2014). 
MGCFA is currently one of the most common techniques used for assessing mea-
surement invariance. However, higher-order factor modeling was only seldom dis-
cussed. In particular, the literature has provided only very general guidelines for 
testing measurement invariance of second-order factor models (and of higher-order 
factors in general). This is unfortunate, because measurement invariance is also 
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a prerequisite for conducting meaningful comparative research when second- (or 
higher-) order factors are included in a study. In an attempt to fill this gap, the cur-
rent paper first presents a nontechnical explanation of the constraints required for 
the identification of models and the different steps that are taken when testing for 
measurement invariance of second-order factors in a multiple-group model. Sec-
ond, it provides a practical application of how to test for measurement invariance of 
a second-order factor using data drawn from eight European countries. It measures 
the second-order concept of alienation with its three first-order dimensions: power-
lessness, meaninglessness, and social isolation.

The empirical example was performed using the concept of alienation as a 
second-order factor, where meaninglessness, powerlessness, and isolation served as 
first-order factors, each measured by two indicators. We found support for first- and 
second-order metric invariance among seven countries (excluding Portugal), but no 
support for scalar invariance across countries. Does it imply that alienation may not 
be compared across all countries? Strictly speaking, at least partial scalar invari-
ance for the first- and second-order factors is necessary to guarantee that mean 
comparisons of alienation across countries are meaningful. However, we suggest 
that differences in the structural parameters for the second-order factors (e.g., dif-
ferences in the intercepts of the first-order factors across countries) may reveal that 
the concept of alienation bears somewhat different connotations and content across 
countries. This could be a useful starting point for substantive researchers to exam-
ine reasons for the revealed parameter differences across countries. 

The criteria described in this paper to test for measurement invariance require 
exact equality of factor loadings and intercepts. In recent times, however, this 
approach has often been regarded as too strict. For this reason, novel and more 
lenient forms of measurement invariance methods such as approximate Bayesian 
invariance (Muthén & Asparouhov, 2013) or alignment (Asparouhov & Muthén, 
2014) are gaining popularity. Although these new methods are very promising, they 
are beyond the scope of the current paper. These newer procedures may suggest 
that scales are (approximately and sufficiently) invariant even when exact measure-
ment invariance tests fail to do so. Such approximate invariance tests can also take 
into account parameters differences across countries in a more flexible way than 
our approach does. As we are not aware of any studies that have applied these pro-
cedures on second- or higher-order factors, a task for future studies is to do so and 
to provide illustrations of how to assess approximate measurement invariance for 
higher-order factors. 

The study has several limitations related both to our measurements and the 
criteria used to assess measurement invariance. Measures were only available for 
three of the five subdimensions of our second-order factor of alienation. Thus, we 
could test its measurement invariance properties while only reflecting a part of 
its subdimensions. In addition, each first-order factor was measured by only two 
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items. Thus, it was not possible for us to test whether partial (rather than full) sca-
lar invariance was given in the data for the first-order factors. A test of partial 
invariance requires having at least three indicators to measure each first-order fac-
tor. However, the data we used also offered several advantages. In particular, the 
data represent a realistic and common situation in survey research in which we 
have only two items to measure each latent variable (see, e.g., the case of the value 
measurements in the European Social Survey). Second, the simplicity of the data 
allows for a clearer illustration of the procedure. Third, the illustration presented 
here uses data on an important concept in sociological and social psychological 
literature. Fourth, the data allow for testing a second-order factor across a large 
number of countries. An additional limitation we would like to acknowledge is 
that it is not clear whether the criteria we used to determine whether measurement 
invariance models are supported by the data, such as exploring differences in CFI 
across models (Chen, 2007; see also Cheung & Rensvold, 2002), apply also for 
models testing for measurement invariance of second-order factors. These crite-
ria were developed originally for models with first-order factors. Future simulation 
studies may assess whether these criteria also apply for the test of measurement 
invariance of second-order factors. In spite of these limitations, we believe that 
testing for measurement invariance of a second-order factor is essential when using 
data from multiple samples and comparing these latent variables across countries. 
We hope that the nontechnical presentation of this method reported in this article 
will help researchers in their endeavor to study second- (or higher-) order factors 
from a cross-cultural perspective. 
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Appendix A

Sample Characteristics

Country Response rate, % Sample size Percentage females Average age

France 10.2 531 53.4 46.0

Great Britain 24.6 519 50.6 46.8

Germany 33.0 495 50.2 47.9

Hungary 8.8 477 50.9 46.9

Italy 4.5 499 50.6 49.9

Netherlands 11.8 513 49.4 46.9

Portugal 7.3 483 52.9 45.4

Poland 15.5 501 52.3 43.1

Appendix B

Fit Indices of a Measurement Invariance Test of the Second-Order Factor of 
Alienation while Accounting for Ordinality of the Items (Using the WLSMV 
Estimator)

χ2(df) χ2  

difference CFI CFI  
difference RMSEA 

RMSEA 
upper 

boundary

1)  Configural invariance 63.1 (42) 0.999 0.032 0.047

2)  Metric invariance of the 
first-order factors 138.1 (60) 62.4* 0.993 0.007 0.051 0.062

3)  Metric invariance of the 
first- and second-order 
factors 149.1 (72) 19.0 0.994 0.001 0.046 0.057

4)  Scalar invariance of the 
first-order factors 634.5 (126) 519.1* 0.978 0.016 0.090 0.097

5)  Scalar invariance of the 
first- and second-order 
factors 1122.4 (138) 309.2* 0.949 0.031 0.119 0.126

Note. * significant at p < 0.01 as estimated by DIFFTEST procedure in Mplus.
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Appendix C

Fit Indices of the Second-Order Factor Models of Alienation in Italy and  
Germany

χ2(df) Scaled χ2  

difference CFI
CFI  

differ-
ence

RMSEA SRMR SABIC

1)  Configural invariance 15.0 (12) 0.997 0.023 0.015 14370
2)  Metric invariance of the 

first-order factors 21.7 (15) 6.62 0.996 0.001 0.024 0.027 14367
3)  Metric invariance of the 

first- and second-order 
factors 22.0 (17) 0.37 0.994 0.002 0.030 0.027 14360

4)  Scalar invariance of the 
first-order factors 29.6 (20) 7.59 0.992 0.002 0.031 0.031 14357

5)  Scalar invariance of the 
first- and second-order 
factors 35.2 (22) 5.62* 0.989 0.003 0.035 0.034 14356

* significant at p < 0.01.
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Appendix D

Mplus Codes

1. Configural invariance model
DATA:
  FILE IS alienation7countries.dat;

VARIABLE:
  NAMES ARE country power1 power2 meaning1 meaning2 isolat1 isolat2;
  MISSING IS power1 power2 meaning1 meaning2 isolat1 isolat2 (5);
  GROUPING IS country (1=GB 2=GE 3=HU 4=IT 5=NE 7=PL 8=FR);

ANALYSIS:
  ESTIMATOR = MLR;

MODEL:
  POWER   BY power1@1 power2;
  ISOLAT  BY isolat1@1 isolat2;
  MEANING BY meaning1@1 meaning2;
  ALIENAT BY POWER@1 ISOLAT MEANING;

MODEL GB: !This block is repeated for each country
  POWER   BY power2;
  ISOLAT  BY isolat2;
  MEANING BY meaning2;

  [power1@0 power2 isolat1@0 isolat2 meaning1@0 meaning2];

  ALIENAT BY ISOLAT MEANING;
  [POWER ISOLAT MEANING];
  [ALIENAT@0];

2. Metric invariance of the  first-order factors. Data, variable, and analysis blocks 
are the same as in the configural model). Hereafter, the additions to the code of 
the preceding model are in bold.

MODEL GB: !This block is repeated for each country
  POWER   BY power2  (load1);
  ISOLAT  BY isolat2 (load2);
  MEANING BY meaning2(load3);

  [power1@0 power2 isolat1@0 isolat2 meaning1@0 meaning2];

  ALIENAT BY ISOLAT MEANING;
  [POWER ISOLAT MEANING];
  [ALIENAT@0];
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3. Metric invariance of the first- and second-order factors

MODEL GB: !This block is repeated for each country
  POWER   BY power2  (load1);
  ISOLAT  BY isolat2 (load2);
  MEANING BY meaning2(load3);

  [power1@0 power2 isolat1@0 isolat2 meaning1@0 meaning2];

  ALIENAT BY ISOLAT MEANING (load4 load5);
  [POWER ISOLAT MEANING];
  [ALIENAT@0];

4. Scalar invariance of the first-order factors 

MODEL GB: !This block is repeated for each country
  POWER   BY power2  (load1);
  ISOLAT  BY isolat2 (load2);
  MEANING BY meaning2(load3);

  [power1@0 power2 isolat1@0 
  isolat2 meaning1@0 meaning2] (intcpt1-intcpt6);

  ALIENAT BY ISOLAT MEANING (load4 load5);
  [POWER ISOLAT MEANING];
  [ALIENAT@0];

5. Scalar invariance of the first- and second-order factors. 

MODEL GB: !This block is repeated for each country 
  POWER   BY power2  (load1);
  ISOLAT  BY isolat2 (load2);
  MEANING BY meaning2(load3);

  [power1@0 power2 isolat1@0 
  isolat2 meaning1@0 meaning2](intcpt1-intcpt6);

  ALIENAT BY ISOLAT MEANING (load4 load5);
  [POWER ISOLAT MEANING](intcpt7-intcpt9);
  [ALIENAT@0]; ! This line should be [ALIENAT*] in all the other 
groups, i.e. latent mean is freely estimated except for one group. 
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Appendix E

Replication data. Variances and covariance matrices and means for the manifest 
variables in each country.

POWER1 POWER2 MEANING1 MEANING2 ISOLAT1 ISOLAT2

Great Britain
POWER1 0.88
POWER2 0.58 0.99
MEANING1 0.25 0.31 0.92
MEANING2 0.19 0.25 0.62 0.87
ISOLAT1 0.22 0.24 0.27 0.27 1.12
ISOLAT2 0.20 0.18 0.29 0.22 0.35 0.81
Means 2.86 2.84 2.90 2.95 2.26 2.91

Germany
POWER1 0.91
POWER2 0.54 0.97
MEANING1 0.30 0.29 0.86
MEANING2 0.29 0.31 0.67 0.88
ISOLAT1 0.30 0.30 0.37 0.43 1.01
ISOLAT2 0.20 0.24 0.27 0.31 0.40 0.75
Means 2.87 2.77 2.60 2.64 2.67 2.84

Hungary
POWER1 0.80
POWER2 0.25 1.31
MEANING1 0.24 0.31 1.04
MEANING2 0.28 0.25 0.65 0.94
ISOLAT1 0.21 0.16 0.31 0.29 0.98
ISOLAT2 0.19 0.16 0.37 0.34 0.55 0.91
Means 3.27 2.43 2.97 3.08 3.17 3.21

Italy
POWER1 0.72
POWER2 0.36 0.77
MEANING1 0.24 0.21 1.02
MEANING2 0.20 0.22 0.63 0.83
ISOLAT1 0.13 0.26 0.28 0.25 1.00
ISOLAT2 0.18 0.24 0.26 0.23 0.54 0.79
Means 3.19 3.32 3.06 3.13 3.08 3.13
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POWER1 POWER2 MEANING1 MEANING2 ISOLAT1 ISOLAT2

Netherlands
POWER1 0.84
POWER2 0.57 0.88
MEANING1 0.15 0.17 0.78
MEANING2 0.15 0.20 0.50 0.74
ISOLAT1 0.17 0.21 0.25 0.20 0.88
ISOLAT2 0.18 0.21 0.20 0.22 0.42 0.79
Means 2.19 2.36 2.67 2.71 2.14 2.62

Poland
POWER1 0.68
POWER2 0.38 0.80
MEANING1 0.12 0.15 0.64
MEANING2 0.15 0.14 0.46 0.70
ISOLAT1 0.12 0.17 0.21 0.25 0.83
ISOLAT2 0.15 0.14 0.18 0.19 0.29 0.55
Means 3.36 3.31 3.28 3.13 3.12 3.34

France
POWER1 0.96
POWER2 0.58 1.18
MEANING1 0.26 0.27 0.79
MEANING2 0.30 0.36 0.54 0.79
ISOLAT1 0.28 0.29 0.32 0.34 1.21
ISOLAT2 0.31 0.32 0.34 0.33 0.86 1.15
Means 2.91 2.69 3.18 3.08 2.52 2.77


