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Control of accuracy in the Wang-Landau algorithm
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The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis
of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition
matrix in the energy space from unity can be used to control the accuracy of estimating the density of states.
Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The
proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising
models and also the two-dimensional Potts model.
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I. INTRODUCTION

The Wang-Landau (WL) algorithm [1,2] has been shown to
be a very powerful tool for directly determining the density of
states (DOS) and is also quite widely applicable. It overcomes
some difficulties existing in other Monte Carlo algorithms
(such as critical slowing down) and allows calculating ther-
modynamic observables, including free energy, over a wide
temperature range in a single simulation.

A number of papers investigated statistical errors of the
DOS estimation, and it was found in [3] that errors reach an
asymptotic value beyond which additional calculations fail to
improve the accuracy of the results. Yet it was established
in [4,5] that the statistical error scales as the square root of
the logarithm of the modification factor, if the factor is kept
constant.

It follows from the results in [3] that there is a systematic
error of DOS estimation by the WL algorithm [6]. It was also
confirmed in the case of the two-dimensional Ising model that
the deviation of the DOS obtained with the WL algorithm
from the exact DOS does not tend to zero [7,8]. Several
improvements of the behavior of the modification factor in
the algorithm, which were shown to overcome the problem of
systematic error in selected applications, have been suggested
[7–11].

There are about 1500 papers that apply the WL algorithm
and its improvements to particular problems (e.g., to the
statistics of polymers [12,13] and to the diluted systems
[14,15], among many others).

In this paper, we address the question of the accuracy of the
DOS estimation. We report a method for obtaining information
on both the convergence of simulations and the accuracy of the
DOS estimation. We numerically apply our algorithm to the
one-dimensional and the two-dimensional Ising models, where
the exact DOS is known [16], and to the two-dimensional
eight-state Potts model, which undergoes a first-order phase
transition. We also present analytic expressions for the tran-
sition matrix in the energy spectrum for the one-dimensional
Ising model.

Our approach is based on introducing the transition matrix
in the energy space (TMES), whose elements show the
frequency of transitions between energy levels during the WL
random walk in the energy space. Its elements are influenced

by both the random process of choosing a new configurational
state and the WL probability of accepting the new state.

We consider a chain of random updates (e.g., flips of
randomly chosen spins for the Ising model) of a system
configuration. Each of the updates is accepted with unitary
probability. This random walk in the configurational space
is a Markov chain. Its invariant distribution is uniform, i.e.,
the probabilities of all states of the physical system are equal
to each other. For any pair �A and �B of configurations,
the probability of an update from �A to �B is equal to the
probability of an update from �B to �A. Hence, the detailed
balance condition is satisfied. Therefore,

g(Ek)P (Ek,Em) = g(Em)P (Em,Ek), (1)

where g(E) is the true DOS and P (Ek,Em) is a probability
of one step of the random walk to move from a configuration
with the energy Ek to any configuration with the energy Em.
We introduce the notation

T (Ek,Em) = min

(
1,

g(Ek)

g(Em)

)
P (Ek,Em), (2)

which represents nondiagonal elements of the TMES of the
WL random walk on the true DOS. Relation (1) can be
rewritten as T (Ek,Em) = T (Em,Ek). Therefore, the TMES of
the WL random walk on the true DOS is a symmetric matrix.
Because the matrix is both symmetric and right stochastic, it
is also left stochastic. This means that the rates of visiting of
all energy levels are equal to each other.

In simulations with a reasonable modification of the WL
algorithm, the systematic error of determining the DOS
can be made arbitrarily small. In this case, we find that
the computed TMES approaches a stochastic matrix as the
computed DOS approaches the true value. There are several
interesting conclusions. First, this explains the criterion of
histogram flatness, which is one of the main features of the
original WL algorithm [1]. Because the histogram elements
are equal to sums of columns in the TMES, histogram flatness
is related to the closeness of the TMES to a stochastic matrix.
Second, it gives a criterion for the proximity of the simulated
DOS to the true value. We introduce the difference of the
largest eigenvalue of the calculated TMES from unity as a
parameter. We show that the parameter is closely connected
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with the deviation of the DOS from the true value. We confirm
numerically that the deviation of the DOS from the true value
decays in time in the same manner as our parameter decays.

We are not aware of any other method for determining the
accuracy of a WL simulation without knowing the exact value
of the DOS.

The paper is organized as follows. In Sec. II we describe
the variants of the WL algorithm. In Sec. III we intro-
duce the TMES and, in particular, we describe the behavior of
the TMES for the one-dimensional Ising model. In Sec. IV we
present our main results and discussion, including discussion
of properties of the TMES, description of the method, and nu-
merical results for the one-dimensional and two-dimensional
Ising models and for the two-dimensional Potts model.

II. THE ALGORITHMS

Directly estimating the DOS with the WL algorithm allows
calculating the free energy as the logarithm of the partition
function

Z =
NE∑
k=1

g(Ek)e−Ek/kBT , (3)

where g(Ek) is the number of states (density of states) with
the energy Ek , NE is the number of energy levels, kB is the
Boltzmann constant, and T is the temperature.

The main idea of the WL algorithm is to organize a random
walk in the energy space. We take a configuration of the system
with the energy Ek , randomly choose an update to a new
configuration with the energy Em, and accept this configuration
with the WL probability min[1,g̃(Ek)/g̃(Em)], where g̃(E)
is the DOS approximation. The approximation is obtained
recursively by multiplying g̃(Em) by a factor f at each step
of the random walk in the energy space [17]. Each time that
the auxiliary histogram H (E) becomes sufficiently flat, the
parameter f is modified by taking the square root, f := √

f .
Each histogram value H (Em) contains the number of moves
to the energy level Em. The histogram is filled with zeros
after each modification of the refinement parameter f . It is
convenient to work with the logarithms of the values S(Ek) :=
ln g̃(Ek) and F := ln f (to fit the large numbers into double
precision variables) and to replace the multiplication g̃(Em) :=
f g̃(Em) with the addition S(Em) := S(Em) + F .

At the end of the simulation, the algorithm provides only a
relative DOS. Either the total number of states or the number
of ground states can be used to determine the normalized DOS.

It is natural to ask the following three questions:
(Q1) Which condition for the flatness check is optimal?
(Q2) How does the histogram flatness influence the conver-

gence of the DOS estimation?
(Q3) Is the choice of the square root rule to modify the

parameter f optimal?
A practical answer to question Q1 was given in the

original algorithm [1]: keep the flatness within the accuracy
of about 20%. Choosing an accuracy between 1% and 20% is
sometimes useful [18] but can result in a substantial increase of
the simulation time [2]. An answer to question Q3 was obtained
in two independent works [7] and [9], which introduced
modifications of the WL algorithm, the WL-1/t algorithm and

the stochastic approximation Monte Carlo (SAMC) algorithm,
respectively.

There are two phases of the WL-1/t algorithm [7]. The
first phase is similar to the WL algorithm except that every
test of the histogram flatness is replaced with a simpler check:
Is H (E) �= 0 for all E? The algorithm enters its second phase
if F � NE/t , where t is the simulation time measured as the
number of attempted spin flips. For t > ts , the histogram is no
longer checked and F is updated as F = NE/t at each step.
Here ts is the simulation time when the WL-1/t algorithm
enters the second phase.

Both modified WL algorithms exhibit the same long-range
behavior of the refinement parameter F proportional to 1/t

for long simulation times [9,10]. This is natural due to the
following conditions of the convergence:

∑∞
t=1 F (t) = ∞ and∑∞

t=1 F (t)ζ < ∞ for some ζ ∈ (1,2) [9,10]. The SAMC algo-
rithm has an additional parameter t0, which is the simulation
time when the algorithm enters its second phase. Obtaining
the appropriate value of t0 can be quite cumbersome because
the rule of thumb for choosing t0 given in [9] is violated even
by the 128 × 128 Ising model [19]. The WL-1/t algorithm
and its further improvements [20–22] seem to perform more
reliably. Here, we use the WL-1/t algorithm, although the
main obtained results are qualitatively independent of the
modification choice.

III. TRANSITION MATRIX IN THE ENERGY SPACE

We calculate the TMES for the WL random walk as follows.
The elements of the TMES T̃ (Ek,Em) are probabilities for the
WL random walk to move from a configuration with the energy
Ek to a configuration with the energy Em. For simplicity, we
consider the case of the Ising model with periodic boundary
conditions and the energy E = −∑

〈i,j〉 σiσj , where the sum
ranges pairs of neighboring spins and σi = ±1. The number
of energy levels accessible for the WL random walk is NE =
L/2 + 1 for d = 1 and NE = L2 − 1 for d = 2, where the
even integer L is the linear size of the hypercubic lattice and d

is the lattice dimension. A WL random move cannot increase
or decrease the energy of the configuration by more than d

energy levels, and every column and every row of the TMES
therefore contains no more than 1+2d nonzero elements. The
nondiagonal elements of T̃ (Ek,Em) can be represented as

T̃ (Ek,Em) = min

(
1,

g̃(Ek)

g̃(Em)

)
P (Ek,Em), (4)

where k �= m. In general, the structure of the probability
P (Ek,Em) depends on both the system dimension and the
local lattice properties and is rather complicated.

In the case of the one-dimensional Ising chain of L spins
with periodic boundary conditions, the probability to change
energy from Ek to Em in a WL random move is

T (Ek,Em) = min

(
1,

g(Ek)

g(Em)

) 2k∑
i=0

NiQ
Ek→Em

i

g(Ek)
, (5)

where k �= m. Here k is the number of couples of domain
walls in the configuration, which determines the energy level
Ek = −∑L

j=1 σjσj+1 = −L + 4k, Ni(k,L) is the number of
configurations where i domains consist of only one spin and
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2k−i domains consist of more than one spin, and Q
Ek→Em

i (L)
is the probability that a single spin flip moves the system to
the energy Em from such configurations. Occupations of the
energy levels of the chain are expressed in terms of binomial
coefficients as g(Ek) = 2C2k

L because there are exactly C2k
L

ways to arrange the 2k domain walls. Therefore, partition
function (3) is

ZL = 2
L/2∑
k=0

C2k
L e(L−4k)/(kBT ). (6)

The detailed analytic expressions for Ni and Qi are
presented in Appendix B. It follows that

T (Ek,Ek+1) = T (Ek+1,Ek) = C2k
L−2

max
(
C2k

L ,C2k+2
L

) . (7)

Equation (7) can be understood as follows. The probability
of the system to change energy from Ek to Ek+1 due to a spin
flip is equal to the probability that there are no domain walls
adjacent to the spin. Therefore, P (Ek,Ek+1) = C2k

L−2/C2k
L .

Similarly, P (Ek+1,Ek) = C2k
L−2/C2k+2

L . We hence obtain (7).

IV. RESULTS AND DISCUSSION

A. TMES and the accuracy of the DOS estimation

The convergence of the WL-1/t algorithm follows from the
arguments presented in [20]. Therefore, there is a final stage of
each simulation, where the normalized DOS remains almost
the same and is close to the limiting one.

We note that the condition that F (t) is much smaller than
1 in itself does not guarantee that the algorithm is already in
its final stage, because it follows from

∑∞
t=1 F (t) = ∞ that

a substantial cumulative change of the DOS due to a long
simulation time is possible. At the same time, a large value of
F (t), resulting in a rapid increase of the calculated DOS, does
not guarantee a rapid increase of the normalized DOS.

The normalized DOS remains almost the same during a
long simulation time of the final stage. Therefore, the rate of
increase of the logarithm of the non-normalized DOS is nearly
the same for all energies. The behavior of the algorithm is close
to a Markov chain in the final stage, and the TMES remains

almost the same. The invariant distribution of the Markov chain
has the property that all energy levels are almost equiprobable,
while different configurations having the same energy may
have different probabilities. Therefore, the TMES is close to a
stochastic matrix in the final simulation stage. The following
proposition also holds: if the TMES is close to a stochastic
matrix, then the obtained normalized DOS is close to the true
DOS (see details in Appendix A).

The first phase of the WL-1/t algorithm aims to obtain the
first crude approximation for the DOS, while the aim of the
second phase (in which the factor F is updated as F (t) = NE/t

at each step) is to converge to the true DOS. Both the histogram
flatness test in the original WL algorithm and the test whether
all energies have been visited in the WL-1/t modification are
quickly passed in the final stage of the calculation because
all energies are almost equally probable. A much longer
simulation time is required to satisfy these tests in the early
calculation stage, when the probabilities of energy levels differ
substantially.

B. The control parameter

The largest eigenvalue of any stochastic matrix is equal to
1, and we therefore propose to use the difference of the largest
eigenvalue of the TMES from unity computed during the final
stage of the WL simulation as a criterion for the proximity of
the DOS to the true value.

We estimate the elements of the TMES in simulations
as follows. The auxiliary matrix U (Ek,Em) is initially filled
with zeros. The element U (Ek,Em) is increased by unity after
every WL move from a configuration with the energy Ek to a
configuration with the energy Em. During the simulations, we
compute the normalized matrix T̃ (Ek,Em) = U (Ek,Em)/H̃ ,
where H̃ = ∑

k,m U (Ek,Em)/NE . The obtained matrix T̃

approaches the stochastic matrix T in the final stage of
calculation. The difference of the largest eigenvalue λ1 of T̃

from unity gives the control parameter δ = |1 − λ1|.
There are many algorithms for computing the largest

eigenvalue of a matrix, and almost all are suitable for
calculating δ. We used the power method, also known as power
iteration or von Mises iteration [23]. The algorithm does not
compute a matrix decomposition, so it is quite efficient for

(a) (b)

FIG. 1. Dependence of δ (solid line) and � (dotted line) on the Monte Carlo time t for the WL-1/t algorithm applied to the one-dimensional
Ising model with L = 128 (left panel) and to the two-dimensional Ising model on the square lattice of linear size L = 16 (right panel) and with
periodic boundary conditions. The vertical dashed line marks the average value of ts .
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(a) (b)

FIG. 2. Relative standard deviations σ (δ)/δ (solid line) and σ (�)/� (dotted line) as functions of t for the simulations described in Fig. 1:
σ (δ) and σ (�) are standard deviations of the averaged values δ and � obtained using 60 independent runs of the algorithm. Insets: σ (δ) (solid
line) and σ (�) (dotted line) as functions of t .

large sparse matrices. It is terminated when a desired accuracy
of the eigenvector approximation is achieved; the eigenvalue
estimate is then found by applying the Rayleigh quotient
to the resulting eigenvector. The method can be used if λ1

is the eigenvalue of largest absolute value and |λ1/λ2| �= 1,
where λ1, . . . ,λNE

is the list of the matrix eigenvalues ordered
so that |λ1| � |λ2| � |λ3| � · · · � |λNE

|. The absolute value
of any eigenvalue of any stochastic matrix is less than or
equal to unity, therefore, the power method is applicable for
estimating δ in the final stage of the WL-1/t algorithm. It
is known that |λ(k) − λ1| = O(|λ2/λ1|2k), where λ(k) is the
approximation for λ1 obtained after k iterations [24], so the
error asymptotically decreases by a factor of |λ1/λ2|2 at each
iteration.

The TMES is typically a sparse matrix, and its storage
usually requires only O(NE) of memory. The matrix-vector
multiplications are performed very efficiently if the matrix is
sparse, so each iteration of the power method requires only
O(NE) operations in this case. Software libraries such as
VIENNACL [25] contain the implementation of the power
method for sparse matrices. The power method may require
many iterations if |λ1/λ2| ≈ 1. However, we note that the
eigenvalue needs to be calculated only occasionally. For
example, in our simulations, we calculate δ only once for each
integer n, where n � 100 log t < n + 1. Such a simulation ap-
plies the power method only several thousands of times during
a WL-1/t calculation with 1013 spin flips, so the computing
time used for the eigenvalue calculation is negligible.

C. The histogram flatness

We can calculate the normalized histogram H =
H (Em)/

∑
m H (Em) as H = ∑

k T̃ (Ek,Em). Hence, the his-
togram flatness condition is equivalent to the property that the
matrix T̃ is close to stochastic. Thus, the histogram flatness is
closely connected at the final simulation stage of the WL-1/t

algorithm with the proximity to the true DOS.
For the original WL algorithm, there is no guarantee that the

rate of increase of the logarithm of the non-normalized DOS
is the same for all energies in the final stage of the calculation
because the parameter modification rule F := F/2 results in a
rapid decay of F , and the algorithm hence converges because

the value of F is negligible. The histogram flatness check is
performed with a finite accuracy such as several percent, which
results in a finite accuracy of the calculated DOS. The choice
of high accuracy in the flatness criterion can result in a slow
convergence and a very long simulation time [2].

D. Normalizing the DOS

Normalizing the DOS only at the end of the simulation was
suggested in the original papers [1,7,9]. We note that this can
limit the accuracy of the estimated DOS. For example, we con-
sider the one-dimensional Ising model with L = 512, where
the transition to the second phase of the WL-1/t algorithm
occurs at t ∼ ts = 2 × 1010, where S(E,ts) ∼ 107. After only
several hours of the calculation, we have t = 5 × 1011 and
F = NE/t = 5 × 10−10. The operation S(E) := S(E) + F is
then beyond the capabilities of double-precision floating-point
variables because there is already a 17 orders of magnitude
difference between S(E) and F . Hence, the operation is in
fact not performed and the DOS is not updated after that.
Therefore, we recommend normalizing the calculated DOS

FIG. 3. Dependence of δ (solid line) and �̃ (dotted line) on the
Monte Carlo time t for the WL-1/t algorithm applied to the two-
dimensional Potts model with q=8 spin states and with periodic
boundary conditions. The lattice size is L = 32 and M = 40. Here,
�̃ = 1/NE

∑
E |[S̃(E,t) − S0(E)]/S0(E)|, where S0(E) = 〈S(E,t =

2.6 × 1012)〉. The vertical dashed line marks the average value of ts .
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(a) (b)

FIG. 4. Dependence of δ (solid line) and � (dotted line) on the Monte Carlo time t for the WL-1/t algorithm applied to the one-dimensional
Ising model with L = 256 (left panel) and L = 1024 (right panel) and with periodic boundary conditions. The vertical dashed line marks the
average value of ts .

more frequently during the simulation. For the simulation
corresponding to Fig. 1, the calculated DOS is normalized
every time the values of δ and � are calculated.

E. Behavior of the control parameter for the WL-1/t algorithm

The parameter

� = 1

NE

∑
E

∣∣∣∣ S̃(E,t) − Sexact(E)

Sexact(E)

∣∣∣∣ (8)

estimates the deviation of the computed DOS g̃(Ek) from the
exact DOS g(Ek). Figure 1 shows the behavior of � and δ as a
function of simulation time t . The overline means that the data
were obtained by averaging over M independent runs of the
algorithm to reduce statistical noise, where M = 60 in Fig. 1.

We note that S̃(E,t) in Eq. (8) corresponds to the normalized
DOS. Here, we use the normalization S̃(E,t) = S(E,t) − �S,
where �S = S(Ej ,t) − Sexact(Ej ) and j is chosen such that
S(Ej ) = maxk S(Ek). Both the above-mentioned normaliza-
tion to the total number of states and the normalization to the
number of ground states turn out to give values of � close to
those presented in Fig. 1. The vertical dashed line marks the
average value of ts .

Figure 1 demonstrates the monotonic power-law decrease
of both the parameters δ and � during the second phase of
the WL-1/t algorithm. We use the logarithmic scale in both
axes. A stable power-law decay of the parameter δ reveals the
convergence of T̃ to a stochastic matrix and can be used as
a criterion for the convergence of the simulated DOS to the
exact DOS.

The fluctuations of the parameters δ and � are shown in
Fig. 2 for the simulations described in Fig. 1. Figure 2 shows
σ (δ)/δ and σ (�)/� as functions of t . The relative standard
deviations were obtained using 60 independent runs of the
algorithm. Therefore, the values in Fig. 2 represent the relative
magnitudes of the error bars in Fig. 1. It follows from Fig. 2
that σ (δ) = √

Mσ (δ) and σ (�) = √
Mσ (�) are of the order

of δ and �, respectively.
The condition δ(t2) � δ(t1) observed during the second

algorithm phase should result in satisfying the condition
�(t2) � �(t1), which allows approximating the value of �(t1)
as the deviation between the DOS computed at t = t1 and
t = t2. This allows estimating the simulation accuracy in the
case where the DOS of the simulated system is not known
exactly. In Fig. 3, as an example of such a case, we present
the results of simulating the two-dimensional Potts model with
q=8 spin states. The dependence of the parameters δ and �̃ on t

(a) (b)

FIG. 5. Dependence of δ (solid line) and � (dotted line) on the Monte Carlo time t for the WL-1/t algorithm applied to the two-dimensional
Ising model with L = 32 (left panel) and L = 64 (right panel) and with periodic boundary conditions. The vertical dashed line marks the
average value of ts .
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(a) (b)

FIG. 6. Dependence of δ (solid line) and � (dotted line) on the Monte Carlo time t for the original WL algorithm applied to the
one-dimensional Ising model with L = 32 (left panel) and the two-dimensional Ising model with L = 32 (right panel) and with periodic
boundary conditions. We use M = 40 in the left panel and M = 1 in the right panel.

are qualitatively similar to those calculated for the Ising model
(Fig. 1). Because we do not have an analytic expression for
the DOS in this case, we calculate the deviation of g̃(E) using
the expression �̃ = 1/NE

∑
E |[S̃(E,t) − S0(E)]/S0(E)| and

taking S0(E) = S̃(E,tf ) for a large value of tf (tf = 2.6 ×
1012 in Fig. 3). The control parameter δ can thus be used to
estimate the accuracy of the obtained DOS.

Very similar results to those shown in Fig. 1 were obtained
for various values of the lattice size. The calculations were
performed with L up to 1024 for the one-dimensional Ising
model and up to 64 for the two-dimensional Ising model.
Figures 4 and 5 show δ(t) and �(t) for several different values
of the Ising model lattice size L, where M = 40. Figures 1,
4, and 5 also demonstrate different values of ts , which grows
with the system size.

F. Behavior of the control parameter for
the original WL algorithm

Figure 6 shows δ(t) and �(t) for the original WL algorithm
described in [1]. The algorithm was applied to the one-
dimensional and two-dimensional Ising models with L = 32.
The data in the left panel were obtained by applying the WL
algorithm to the one-dimensional Ising model and averaging
over 40 independent runs. The right panel corresponds to a
single run of the WL algorithm applied to the two-dimensional
Ising model.

Therefore, both � and δ saturate for the original WL
algorithm (see also Sec. IV C). Using the control parameter δ

thus confirms the systematic error of the original WL algorithm
previously reported in [3,6–8].

V. CONCLUSION

We have analyzed properties of the algorithms and of
the TMES. The TMES of the WL random walk on the
true DOS is stochastic and symmetric. We present analytic
expressions for the TMES in the case of the one-dimensional
Ising model. We improve the WL algorithm based on the
WL-1/t modification of the original algorithm [7] and propose
a method for examining the convergence of simulations to

the true DOS and for controlling the accuracy of the DOS
calculation. The monotonic power-law decrease of the control
parameter δ during the second phase of the algorithm reveals
the convergence of the algorithm, and the values of the control
parameter can be used to estimate the accuracy of the DOS
calculations.

This approach can be generalized to systems with an inti-
tially unknown discrete spectrum, where the general procedure
can be applied for the dynamic change of the TMES. It would
be interesting to check its applicability to systems with a
continuous energy spectrum.
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APPENDIX A: CONVERGENCE OF THE WL-1/ t
ALGORITHM TO THE TRUE DOS

We have shown that the TMES T of the WL random walk
on the true DOS is stochastic, and also that the TMES T̃ is
close to a stochastic matrix in the final stage of the WL-1/t

algorithm.
Here we demonstrate that the obtained normalized DOS is

close to the true DOS if the TMES T̃ is a stochastic matrix.
It follows from (4) that

T̃ (Ek,Em)

T̃ (Em,Ek)
= g̃(Ek)

g̃(Em)

P (Ek,Em)

P (Em,Ek)
, (A1)

where g̃(E) is the obtained normalized DOS. Using (1), we
hence obtain

T̃ (Ek,Em)

T̃ (Em,Ek)
= ηm

ηk

, (A2)

where ηi = g(Ei)/g̃(Ei) and g(E) is the true DOS. It follows
from (A2) and the stochasticity of T̃ that

ηm = ηm

∑
k

T̃ (Em,Ek) =
∑

k

T̃ (Ek,Em)ηk. (A3)
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Because the TMES is a stochastic matrix, the rates of visiting
all energy levels are equal to each other. The values of g̃(E)
therefore remain almost the same, and the behavior of the
algorithm is close to a Markov chain. Moreover, the invariant
distribution of the Markov chain has the property that all energy
levels are equiprobable. It follows from (A3) that the values
ηi/

∑
k ηk represent the invariant distribution of the Markov

chain. Therefore, ηi is independent of i, and the obtained
normalized DOS is hence close to the true DOS.

APPENDIX B: EXPRESSIONS FOR Ni AND Qi

We have the relations

Ni = L

k
Ci

2kC
2k−i−1
L−2k−1, i = 0,1, . . . ,2k − 1,

N2k = 2δL,2k, (B1)

Q
Ek→Ek−1
i = i

L
, Q

Ek→Ek

i = 4k − 2i

L
,

Q
Ek→Ek+1
i = L − 4k + i

L
, (B2)

where δL,2k is the Kronecker delta.
Expression (B1) is derived as follows. We consider the

circular chain of L−2k spins. We place the first domain wall
in front of the first spin. We add another 2k−i−1 domain walls
in the remaining space between the spins; there are C2k−i−1

L−2k−1
ways to do this. Therefore, we have L−2k spins and 2k−i

domain walls, where the first spin of the first domain is the
first spin of the chain.

We then add one more spin in every domain. We also add
i domains consisting of only one spin. There are exactly Ci

2k

ways to choose i domains among the 2k domains. Each of
these choices unambiguously defines how to add i domains,
each consisting of only one spin, to the available 2k−i domains
of the chain.

We have thus calculated the number of configurations of
the circular chain of L spins containing 2k domains such that
i domains consist of only one spin, 2k−i domains consist of
more than one spin, and there is a domain wall in front of the
first spin. This number is Mi = 2Ci

2kC
2k−i−1
L−2k−1.

When 2k domain walls are placed among the L spins, the
probability that there is a domain wall in front of the first spin is
equal to p = 2k/L. Hence, Ni = Mi/p, i.e., we have obtained
Eq. (B1).

The justification of Eqs. (B2) is as follows. We have 2k

domains, where i domains consist of only one spin and 2k−i

domains consist of more than one spin. To remove a couple
of domains with just a single spin flip, we must choose one
of the i spins from the domains consisting of only one spin.
Therefore, Q

Ek→Ek−1
i = i/L.

To add a couple of domains with just a single spin flip, we
must choose a spin that is not a boundary spin of a domain.
There are L−4k+i spins satisfying this condition because
there are 2k spins located to the right of a domain wall, 2k

spins located to the left of a domain wall, and i spins which
are located with a domain wall on both the right and the left.
Therefore, Q

Ek→Ek+1
i = (L − 4k + i)/L. Finally, Q

Ek→Ek

i =
1 − Q

Ek→Ek−1
i − Q

Ek→Ek+1
i = (4k − 2i)/L.
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