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1. INTRODUCTION

While performing the mathematical modeling of control systems in terms of physical variables,
one may obtain models combining differential and algebraic equations. Such systems, known as
descriptor systems, found its applications in different fields of science and technology [1–3].

Despite the obvious ease of mathematical modeling, the analysis and synthesis methods for such
systems substantially differ from the classical counterparts, being rather complex for implementa-
tion. The methods developed for the ordinary systems are difficult to generalize to this class of
systems due to the existing algebraic constraint equations that assign fundamentally new proper-
ties to the descriptor systems. Among such properties, we mention the system’s unsolvability with
respect to the derivative, the need to use sufficiently smooth signals as the system inputs, as well
as noncausal (in the discrete case) or impulsive (in the continuous case) behavior.

Some problems solved for the ordinary systems are still urgent for the descriptor systems. A prob-
lem of this group is solved in the current paper, namely, the design of a suboptimal anisotropy-based
controller for a descriptor system based on linear matrix inequalities (LMIs).

Anisotropy-based theory dates back to the pioneering papers [4, 5]. This approach proceeds from
the information-theoretical representation of random signals. Anisotropy-based theory studies the
response of a system of the signal with respect to “colored noises” affecting it. Here “color” is
considered as the Kullback–Leibler divergence from the Gaussian white noise [4]. In this case,
the performance criterion is the anisotropic norm of the system. The anisotropy-based analysis
problem for the ordinary systems was solved in [6] using linear matrix inequalities. This result was
generalized to the descriptor systems in [7]. However, the conditions derived in [7] are nonstrict
and, moreover, nonconvex due to the existing singular matrices in the constraints. In addition,
the solution of the control design problem using the conditions from [7] yields nonlinear matrix
inequalities, which makes the obtaining of numerical results more complicated. The present paper
formulates a new bounded real lemma in terms of linear matrix inequalities, leading to a numerically
effective algorithm for the analysis of the descriptor systems. The analysis algorithm is then applied
to design a suboptimal anisotropy-based controller.

In the sequel, we adopt the following notation: Ir as the identity matrix of dimensions (r × r),
‖P‖ as the norm of a transfer function P (z), σmax(·) as the maximal singular value of a transfer
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matrix, and ρ(E,A) = max |λ|λ∈{z| det(zE−A)=0} as the generalized spectral radius of the matrix
pair (E,A).

This work has the following structure. Section 2 gives some preliminary background on
anisotropy-based analysis and basics of discrete descriptor systems theory. Next, Section 3 es-
tablishes the new anisotropy-based bounded real lemma in terms of linear matrix inequalities for
the ordinary and descriptor systems. In Section 4 the suboptimal anisotropy-based control design
problem based on the proved bounded real lemma is stated and solved. And finally, numerical
examples are given.

2. THEORETIC BACKGROUND

2.1. Descriptor Systems

The state-space dynamics of a discrete descriptor system has the form

Ex(k + 1) = Ax(k) +Bf(k),

y(k) = Cx(k) +Df(k),
(1)

where x(k) ∈ R
n denotes the state vector, f(k) ∈ R

m and y(k) ∈ R
p are the input and output

vectors, respectively. In addition, E, A, B, C, and D specify constant matrices of appropriate
dimensions, E ∈ R

n×n being singular (rankE = r < n).

In theory of descriptor systems, a key notion is the regularity of system (1), which coincides with
the regularity of the matrix pencil (λE −A) where λ indicates an arbitrary scalar. The regularity
of the system stands for the existence of a unique solution under fixed initial conditions [3].

Definition 1. System (1) is called regular if ∃λ �= 0 : det(λE −A) �= 0.

Throughout the paper, it is assumed that the systems under consideration are regular. Here are
some definitions required for further exposition.

Definition 2. The transfer function of system (1) is described by

P (z) = C(zE −A)−1B +D, z ∈ C. (2)

With this definition, the H2- and H∞-norms of the descriptor system have the form

‖P‖2 =
⎛
⎝ 1

2π

2π∫

0

Trace
(
P ∗(eiω)P (eiω)

)
dω

⎞
⎠

1
2

=

⎛
⎝ 1

2π

2π∫

0

‖P (eiω)‖dω
⎞
⎠

1
2

,

‖P‖∞ = sup
ω∈[0,2π]

σmax

(
P (eiω)

)
.

Definition 3. The descriptor system (1) is called admissible if it is regular, causal (deg det(zE−
A) = rankE) and stable (ρ(E,A) < 1). For details, see [1, 8].

For the regular system (1), there exist two nonsingular matrices W and V such that WEV =
diag(Ir, 0), see [1].

Consider the coordinate transformation

V
−1

x(k) =

[
x1(k)

x2(k)

]
, (3)

where x1(k) ∈ R
r and x2(k) ∈ R

n−r.
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Then, premultiplying the state equation of system (1) by the matrix W and using transforma-
tion (3), we rewrite system (1) in the form

x1(k + 1) = A11x1(k) +A12x2(k) +B1f(k),

0 = A21x1(k) +A22x2(k) +B2f(k),

y(k) = C1x1(k) +C2x2(k) +Df(k),

(4)

where

WAV =

[
A11 A12

A21 A22

]
, WB =

[
B1

B2

]
, CV =

[
C1 C2

]
. (5)

Again, the details can be found in [1].

The matrices W and V are calculated from the singular value decomposition

E = Udiag(S, 0)Y �,

where U and Y are real orthogonal matrices, and S is diagonal matrix of order r induced by the
nonzero singular values of the matrix E, i.e.,

W = diag(S−1, In−r)U
�, V = Y.

Form (4) is known as the SVD canonical form [1]. In addition, it should be noted that the
system is causal if det(A22) �= 0, and stable if ρ(A11 −A12A

−1
22 A21) < 1 [8].

While solving control problems for the descriptor systems, one has to guarantee the stabil-
ity of a dynamic subsystem, moreover, eliminating the undesired noncausal behavior. Therefore,
for the descriptor systems, causal controllability and stabilizability. Consider them in detail are
differentiated.

Choose the state-feedback control law

f(k) = Fcx(k) + h(k), (6)

where Fc ∈ R
m×n is a constant matrix and h(k) acts as a new input. Then the closed-loop system

takes the form

Ex(k + 1) = (A+BFc)x(k) +Bh(k). (7)

Definition 4. System (1) is called causally controllable if there exist the state-feedback control (6)
making the closed-loop system (7) causal.

The causal controllability can be verified using the following rank criterion [1].

Theorem 1. System (1) is causally controllable if

rank

[
E 0 0

A E B

]
= rank (E) + n.

Stabilizabitily of descriptor system is a possibility to control unstable modes in dynamical sub-
system.

Definition 5. System (1) is called stabilizable if there exists a state-feedback control law of the
form f(k) = Fstx(k) such that ρ(E,A+BFst) < 1.
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2.2. Mean Anisotropy of the Sequence and Anisotropic Norm of the System

Let W = {w(k)}k∈Z represent a stationary sequence of square summable random m-dimensional
vectors. The sequence W can be generated from the Gaussian white noise (further denoted by
V = {v(k)}k∈Z) with the zero mean and the identity covariance matrix using an admissible shaping
filter with the transfer function G(z) = CG(zEG −AG)

−1BG +DG. The mean anisotropy of the
sequence is the Kullback–Leibler divergence of the signal’s probability density function from the
probability density function of the Gaussian white noise.

The mean anisotropy of the sequence can be defined via the shaping filter parameters, i.e.,

A(W ) = − 1

4π

π∫

−π

ln det
mS(ω)

‖G‖22
dω,

where

S(ω) = Ĝ(ω)Ĝ∗(ω) (−π � ω � π), Ĝ(ω) = lim
l→1

G(leiω)

gives the boundary value of the function G(z).

Remark 1. The random sequence W is completely described by the shaping filter G, which
makes the notations A(G) and A(W ) equivalent.

The mean anisotropy characterizes the “color” of the random signal, i.e., the difference between
given the signal and the Gaussian white noise. If the mean anisotropy of the signal is A(W ) = 0,
then it represents the Gaussian white noise; in the case of A(W ) → ∞, the sequence defines a
deterministic signal. For details, see [4, 9].

Denote by Y = PW the output of a linear discrete-time system P ∈ Hp×m∞ whose transfer func-
tion P (z) is analytical in the open unit circle |z| < 1, having a finite H∞-norm.

Definition 6. Given a � 0, the a-anisotropic norm of the system P is defined by

|||P |||a = sup {‖PG‖2/‖G‖2 : G ∈ Ga} , (8)

i.e., as the maximum gain of the system with respect to the class of shaping filters

Ga =
{
G ∈ Hm×m

2 : A(G) � a
}
.

Thus, the a-anisotropic norm |||P |||a describes the stochastic gain of the system P with respect
to the input sequence W .

Remark 2. If the mean anisotropy of the signal is A(W ) = 0, then |||P |||a = ‖P‖2√
m

; in the case of

A(W ) → ∞, we have |||P |||a = ‖P‖∞ [4, 9].

Fig. 1. Computation of a-anisotropic norm.
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3. NEW ANISOTROPY-BASED BOUNDED REAL LEMMA AND COMPUTATION
OF A-ANISOTROPIC NORM OF THE SYSTEM

3.1. New Anisotropy-Based Bounded Real Lemma for Ordinary Systems

Problem statement

Consider an ordinary discrete-time system written in the form

x(k + 1) = Ax(k) +Bw(k),

y(k) = Cx(k) +Dw(k),
(9)

where x(k) ∈ R
n denotes the state vector, w(k) ∈ R

m is a random stationary sequence with a given
mean anisotropy A(W ) = a, and y(k) ∈ R

p is output. Here A,B,C, and D are constant matrices
of appropriate dimensions. The transfer function of the system (9) is defined as

T (z) = C(zI −A)−1B +D.

Assume that the system (9) is stable and the scalars a � 0 and γ > 0 are given. It is necessary
to to check if the following inequality is satisfied

|||T |||a < γ.

The following lemma provides the answer, see [6].

Lemma 1. Let system (9) with the transfer function T (z) ∈ Hp×m∞ be stable. For given scalars
a � 0 and γ > 0, the a-anisotropic norm of the system is bounded above by γ, i.e.,

|||T |||a < γ,

if there exist a scalar η > γ2 and a n× n matrix Φ = Φ� > 0 satisfying the inequalities

η −
(
e−2a det(ηIm −B�ΦB −D�D)

)1/m
< γ2, (10)

[
A�ΦA− Φ+ C�C A�ΦB + C�D

B�ΦA+D�C B�ΦB +D�D − ηIm

]
< 0. (11)

Now, we formulate a theorem determining new boundedness conditions for the a-anisotropic norm
of the ordinary system.

Theorem 2. Let system (9) with the transfer function T (z) ∈ Hp×m∞ be stable. If for given scalars
a � 0 and γ > 0 there exist a scalar η > γ2, a matrix Φ = Φ� > 0 of dimensions n× n and an
arbitrary matrix Y of dimensions n× n satisfying the inequalities

η −
(
e−2a det(ηIm −B�ΦB −D�D)

)1/m
< γ2, (12)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

2
Y − 1

2
Y � Y A Y B Φ� − Y � − 1

2
Y 0

A�Y � −Φ 0 A�Y � C�

B�Y � 0 −ηIm B�Y � D�

Φ− Y − 1

2
Y � Y A Y B −Y − Y � 0

0 C D 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (13)
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then the a-anisotropic norm of the system is bounded above by γ, i.e.,

|||T |||a < γ.

The proof of this result is given in to the Appendix.

Remark 3. To eliminate the product D�D from inequality (12), introduce a new variable Ψ
such that

Ψ < ηIm −B�ΦB −D�D. (14)

Using Schur’s complement lemma, transform (14) in the following way:

Ψ− ηIm +B�ΦB −D� (−Ip)D < 0,

⎡
⎣Ψ− ηIm +B�ΦB D�

D −Ip

⎤
⎦ < 0.

Therefore, inequality (12) can be rewritten as the system of two inequalities

η −
(
e−2a det(Ψ)

)1/m
< γ2

and ⎡
⎣Ψ− ηIm +B�ΦB D�

D −Ip

⎤
⎦ < 0.

3.2. New Anisotropy-Based Bounded Real Lemma for Descriptor Systems

Problem statement

Problem 1. Consider a descriptor system in the state-space representation

Ex(k + 1) = Ax(k) +Bw(k),

y(k) = Cx(k) +Dw(k),
(15)

where x(k) ∈ R
n is the state vector, w(k) ∈ R

m forms a random stationary sequence with a known
mean anisotropy A(W ) = a, and y(k) ∈ R

p denotes the observable output. Here E, A, B, C, andD
are known constant matrices of appropriate dimensions, rankE = r < n. The transfer function P (z)
of the system is defined by

P (z) = C(zE −A)−1B +D.

The system (15) is assumed to be and the scalars a � 0 and γ > 0 are specified. It is necessary
to to check if the following inequality is satisfied

|||P |||a < γ.

The system is regular, and hence there exist two matrices W and V transforming system (15)
to the equivalent form (4). Introduce the following notation:

Ed = WEV , Ad = WAV , Bd = WB, Cd = CV , Dd = D.

To proceed, we state the anisotropy-based bounded real lemma for the descriptor system (15).

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 10 2016
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Theorem 3. Let system (15) with the transfer function P (z) ∈ Hp×m∞ be admissible. In addition,
assume that rankE = rank [E B]. For given scalars a � 0 and γ > 0, the a-anisotropic norm of
the system is bounded above by γ, i.e.,

|||P |||a < γ,

if there exist matrices L ∈ R
r×r, L > 0, Q ∈ R

r×r, R ∈ R
r×(n−r), S ∈ R

(n−r)×(n−r), and
Ψ ∈ R

m×m, as well as scalars η > γ2 and α > 0 satisfying the inequalities

η −
(
e−2a det(Ψ)

)1/m
< γ2, (16)

⎡
⎣Ψ− ηIm +B�

d ΘBd D�
d

Dd −Ip

⎤
⎦ < 0, (17)

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

2
Q− 1

2
Q� ΓAd ΓBd L�−Q�− 1

2
Q 0

A�
d Γ

� ΠAd+A�
d Π

�−Θ ΠBd A�
d Γ

� C�
d +αA�

d Π
�C�

d

B�
d Γ

� B�
d Π

� −ηIm B�
d Γ

� D�
d +αB�

d Π
�C�

d

L−Q− 1

2
Q� ΓAd ΓBd −Q−Q� 0

0 Cd+αCdΠAd Dd+αCdΠBd 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (18)

where

Θ =

[
L 0
0 0

]
, Π =

[
0 0
0 S

]
, Γ =

[
Q R

]
.

The proof of this theorem is given in the Appendix.

Set ξ = γ2. To calculate the a-anisotropic norm of the descriptor system, it is necessary to
solve the following optimization problem: find ξ∗ = inf ξ on the collection {L, Q, R, S, Ψ, η, ξ}
that satisfies inequalities (16), (17), and (18). If the minimum value ξ∗ is obtained, then the
a-anisotropic norm of the system P can be approximately calculated by the formula

|||P |||a ≈ √
ξ∗.

Here α is a predetermined quantity.

Example 1. Choose the system matrices

E =

⎡
⎢⎢⎢⎣

3 0 2 −5
0 3 −2 2
2 2 0 −2
2 −4 4 −6

⎤
⎥⎥⎥⎦, A =

⎡
⎢⎢⎢⎣

0.7 −3.25 −0.7 0
1.8 0.4 −6.4 2.6
1.0 −1.9 −5.4 2.4

−0.6 −2.7 5.4 −2.8

⎤
⎥⎥⎥⎦,

B =

⎡
⎢⎢⎢⎣

3.2 −3.5
2.5 −7.9
3.8 −7.6

−1.2 8.2

⎤
⎥⎥⎥⎦, C =

[
0.2 0.4 0.45 0.6

]
,

D =
[
0.2 1.0

]
, rank (E) = 2.
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Fig. 2. The a-anisotropic norm of the descriptor system.

As easily verified, the system is causal and stable. Figure 2a illustrates the a-anisotropic norm
calculated using the bounded real lemma. And Fig. 2b shows the absolute error of the calculated
anisotropic norm with respect to its counterpart yielded by the Riccati approach [11].

4. SUBOPTIMAL ANISOTROPY-BASED CONTROL DESIGN
FOR DESCRIPTOR SYSTEMS

Problem statement

Problem 2. Consider a discrete-time descriptor system of the form

Ex(k + 1) = Ax(k) +B1w(k) +B2u(k),

z(k) = Cx(k) +D1w(k),
(19)

where x(k)∈R
n is the state vector, w(k)∈R

m1 represents a random stationary sequence with a
given mean anisotropy A(W ) = a� 0, z(k) ∈ R

q denotes the controllable output, and u(k) ∈ R
m2

indicates the control vector. In addition, E, A, B1, B2, C, and D1 are known constant matrices of
appropriate dimensions.

Assume that

1) the state vector is completely observable;

2) system (19) is causally controllable;

3) system (19) is stabilizable;

4) the scalar γ > 0 has a given value.

The problem is to find a state-feedback control law u(k) = Fx(k) making the closed-loop sys-
tem Pcl (19)

1) causal;

2) stable;

3) satisfying the inequality |||Pcl|||a < γ.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 10 2016
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The system is regular, and hence there exist two matrices W and V transforming system (19) to
the equivalent form (4). Introduce the following notation: Ed = WEV , Ad = WAV , B1d = WB1,
B2d = WB2, Cd = CV , D1d = D1.

Theorem 4. Let the rank conditions rankE = rank [E B1] and rankE� = rank
[
E� C�

]
hold.

For the given scalar γ > 0 and mean anisotropy a � 0, Problem 2 is solvable if there exist matrices
L ∈ R

r×r, L > 0, Q ∈ R
r×r, R ∈ R

r×(n−r), S ∈ R
(n−r)×(n−r), Z ∈ R

n×m1 , and Ψ ∈ R
m1×m1 , as

well as a scalar η > γ2 and a sufficiently large scalar α > 0 satisfying the inequalities
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ11 Λ�
21 Λ�

31 Λ�
41 0

Λ21 Λ22 Λ�
32 Λ21 Λ�

52

Λ31 Λ32 −ηIq Λ31 Λ�
53

Λ41 Λ�
21 Λ�

31 −(Q+Q�) 0

0 Λ52 Λ53 0 −Im1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (20)

η −
(
e−2a det(Ψ)

)1/m1
< γ2, (21)

[
Ψ− ηIm1 +B�

1dΘB1d D�
1d

D1d −Iq

]
< 0, (22)

where

Λ11 = −1

2
Q− 1

2
Q�, Λ21 = AdΓ

� +B1dZ
�Ω�, Λ31 = CdΓ

�, Λ41 = L−Q− 1

2
Q�,

Λ22 = LA�
d +AdL

� +ΦZB1d +B1dZ
�Φ� −Θ, Λ32 = CdΠ

�,

Λ52 = B�
1d + αB�

1dΠA
�
d + αB�

1dΦ
�ZB�

2d, Λ53 = D1d + αB�
1dΠC

�
d .

In addition,

Θ =

[
L 0
0 0

]
, Π =

[
0 0
0 S

]
, Φ =

[
0 0
0 In−r

]
,

Ω =
[
Ir 0

]
, Γ =

[
Q R

]
.

The feedback gain is calculated from the expression

F2 = Z�
⎡
⎣ Q−� 0

−S−�R�Q−� S−�

⎤
⎦V

−1
. (23)

The proof of this theorem can be found in the Appendix.

Remark 4. To construct the γ-optimal control, it is required to solve the following problem:
find ξ∗ = inf ξ on the set {L,Q,R, S, Z,Ψ, η, ξ} satisfying inequalities (20)–(22). Here ξ = γ2, and
α > 0 is a given scalar.

Consider some examples illustrating the performance of the algorithm.

Example 2. The system has the following parameters:

E =

[
1 2
0 0

]
, A =

[
4.5 0.1
1.7 0.8

]
, B1 =

[
2
0

]
, B2 =

[
0.3
0

]
,

C =
[
1 2

]
, D1 = 0.05.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 10 2016
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Table 1. Controller design for the system from Example 2

A(W ) 0 0.05 5

|||Pcl|||a 0.3048 0.3075 0.3081

ρ(E,A) 0.0141 0.100 0.1623

F
[ −2.257 −0.064

] [ −2.300 −0.150
] [ −2.331 −0.212

]

Table 2. Controller design for the system from Example 3

A(W ) 0 0.1 0.2 0.5 1 2 4.5

|||Pcl|||a 0.2739 0.3266 0.3430 0.3662 0.3796 0.3855 0.3866

ρ(E,A) 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

This system is causal yet instable (ρ(E,A) = 1.3192). Table 1 combines the results yielded by the
algorithm in the case α = 100.

Also the proposed algorithm is numerically effective for a large-scale systems.

Example 3. The system parameters are

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.3 0.5 0.1 0 0.5

0.7 0.8 3.3 0 0.6

0.6 0.8 0.3 0 0.8

0.7 0.5 0.9 0 1

0.6 0.7 0.3 0 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.3 0.5001 0.1002 0.0005 0.5006

0.7 0.7941 3.2909 0.0006 0.6002

0.6 0.8 0.2999 0.0008 0.8004

0.7 0.4989 0.8978 0.001 1.0003

0.6 0.7 0.2998 0.0004 0.4013

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0003 −0.0002

−0.0058 0.0019

0.0002 −0.0013

−0.0013 −0.0015

0.0001 0.0017

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B2 = 10−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.1 −0.125

0.2333 0.2

0.2 0.2

0.2333 0.125

0.2 0.175

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

C =

[
1 1 0 0 0

0 2 0 0 0

]
, D1 =

[
0.1 0.2

0.1 0.3

]
.

This system is noncausal (deg det(zE −A) = 3, rankE = 4) lying on the stability boundary
(ρ(E,A) = 1.000).

The results are presented by Table 2.

5. CONCLUSION

The paper has established the boundedness conditions for the a-anisotropic norm of a descriptor
system in terms of linear matrix inequalities. These conditions are strict, and the system analy-
sis method based on them is numerically effective. Relied on these conditions, anisotropy-based
suboptimal state-space control problem for descriptor systems is solved. The performance of the
proposed algorithm has been illustrated by two numerical examples. Also note that the developed
method generalizes the suboptimal control design suggested in [12] for a → ∞ and D �= 0.
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APPENDIX

Proof of Theorem 2. Assume that inequalities (12) and (13) hold. Rewrite (13) as

Ξ + Υ�Y �Δ+Δ�YΥ < 0, (A.1)

where Δ =
[
In 0 0 In

]
, Υ =

[
−1

2In A B −In
]
, while a symmetrical matrix Ξ has the form

Ξ =

⎡
⎢⎢⎢⎢⎣

0 0 0 Φ

0 C�C − Φ C�D 0

0 D�C D�D − ηIm 0

Φ 0 0 0

⎤
⎥⎥⎥⎥⎦
.

By the projection lemma [10], the matrix inequality (A.1) is solvable for the matrix Y of dimensions
n× n if and only if

M�ΞM < 0 and N�ΞN < 0.

Here

M� =

⎡
⎢⎣

0 In 0 0
0 0 Im 0

−In 0 0 In

⎤
⎥⎦ and N� =

⎡
⎢⎢⎣
In 0 0 −1

2In

0 In 0 A�

0 0 Im B�

⎤
⎥⎥⎦ .

Moreover, the columns of the matrix N form the basis of the null space of the matrix Υ, while the
columns of the matrix M the basis of the null space of the matrix Δ. Note that

M�ΞM =

⎡
⎢⎢⎣
C�C − Φ C�D 0

D�C D�D − ηIm 0

0 0 −2Φ

⎤
⎥⎥⎦ < 0, (A.2)

N�ΞN =

⎡
⎢⎢⎣

−Φ ΦA ΦB

A�Φ C�C C�D

B�Φ D�C D�D

⎤
⎥⎥⎦ < 0. (A.3)

Since Φ = Φ� > 0, using Schur’s complement lemma, inequality (A.3) can be transformed in the
following way: [

C�C C�D

D�C D�D

]
−

[
A�

B�

]
Φ(−Φ)−1Φ

[
A B

]
< 0,

which directly gives

[
A�ΦA− Φ+ C�C A�ΦB + C�D

B�ΦA+D�C B�ΦB +D�D − ηIm

]
< 0.

Hence, the conditions of the theorem are reduced to those of Lemma 1 stated and proved in [6].

The proof of Theorem 2 is finished.
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Proof of Theorem 3. Assume that inequalities (16)–(18) hold. Using the equivalent form (4) of
system (15), rewrite inequality (18) as

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11 z12 z13 z14 z15 0

z�12 −L z23 0 z25 z26

z�13 z�23 z33 z34 z35 z36

z�14 0 z�34 −ηIm z45 z46

z�15 z�25 z�35 z�45 z55 0

0 z�26 z�36 z�46 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

where

z11 = −1

2
Q− 1

2
Q�, z12 = QA11 +RA21,

z13 = QA12 +RA22, z14 = QB1 +RB2,

z15 = L� −Q� − 1

2
Q, z23 = A�

21S
�,

z25 = A�
11Q

� +A�
21R

�, z26 = C�
1 + αA�

21S
�C�

2 ,

z33 = SA22 +A�
22S

�, z34 = SB2,

z35 = A�
12Q

� +A�
22R

�, z36 = C�
2 + αA�

22S
�C�

2 ,

z45 = B�
1 Q

� +B�
2 R

�, z46 = D� + αB�
2 S

�C�
2 ,

z55 = −Q−Q�.

As Z < 0, it appears that KZK� < 0 for a nonsingular matrix K. Choose

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0 0 0 0 0

0 Ir 0 0 0 0

0 0 0 Im 0 0

0 0 0 0 Ir 0

0 0 0 0 0 Ip

0 0 In−r 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then

KZK� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11 z12 z14 z15 0 z13

z�12 −L 0 z25 z26 z23

z�14 0 −ηIm z45 z46 z�34

z�15 z�25 z�45 z55 0 z�35

0 z�26 z�46 0 −Ip z�36

z�13 z�23 z34 z35 z36 z33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 10 2016



ANISOTROPY-BASED SUBOPTIMAL STATE-FEEDBACK CONTROL 1753

Consider the equality KZK� = W +W�, which implies that

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w11 0 0 0 0 0

w21 w22 0 w24 w25 w26

w31 0 w33 w34 w35 w36

w41 0 0 w44 0 0

0 0 0 0 w55 0

w61 0 0 w64 w65 w66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

w11 = −1

2
Q, w21 = w24 = A�

11Q
� +A�

21R
�,

w22 = −1

2
L, w25 = C�

1 + αA�
21S

�C�
2 ,

w26 = A�
21S

�, w31 = w34 = B�
1 Q

� +B�
2 R

�,

w33 = −η

2
Im, w35 = D� + αB�

2 S
�C�

2 ,

w36 = B�
2 S

�, w41 = L−Q− 1

2
Q�,

w44 = −Q, w55 = −1

2
Ip, w65 = C�

2 + αA�
22S

�C�
2 ,

w61 = w64 = A�
12Q

� +A�
22R

�, w66 = A�
22S

�.

Due to the accepted notation, we have the inequality

W +W� < 0. (A.4)

Since z33 = A�
22S

� + SA22 < 0 in the matrix Z < 0, both matrices A22 and S are nonsingular.
System (15) is causal, and hence its input-output operator can be reduced to the equivalent input-
output operator in the form of an ordinary system T̂ with the representation

x̂(k + 1) = Âx̂(k) + B̂w(k),

ŷ(k) = Ĉx̂(k) + D̂w(k),

where x(k) ∈ R
r,

Â = A11 −A12A
−1
22 A21, B̂ = B1 −A12A

−1
22 B2,

Ĉ = C1 − C2A
−1
22 A21, D̂ = D − C2A

−1
22 B2.

Now, we demonstrate that Â is a Schur matrix and |||T̂ |||a < γ. The blocks SA22 and A�
22S

�

represent invertible matrices with the properties A�
22S

� < 0 and SA22 < 0. Application of Schur’s
complement lemma to (A.4) yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

2
Q− 1

2
Q� QÂ QB̂ L� −Q� − 1

2
Q 0

Â�Q� −L 0 Â�Q� Ĉ�

B̂�Q� 0 −ηIm B̂�Q� D̂�

L−Q− 1

2
Q� QÂ QB̂ −Q−Q� 0

0 Ĉ D̂ 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.
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By Theorem 2 for the ordinary systems, we have ρ(Â) < 1 and |||T̂ |||a < γ.

The proof of Theorem 3 is finished.

Proof of Theorem 4. Show that the controller resolving the design problem for the transformed
system does so for the original one. Really, the transfer function of the closed-loop system can be
rewritten in the form

Pcl(z) = CV V
−1

(zE −A−B2F2)
−1W

−1
WB1 +D1

= CV (zWEV −WAV −WB2F2V )−1WB1 +D1

= Cd(zEd −Ad −B2dFd)
−1B1d +D1d,

where Fd = F2V .

Suppose that inequalities (20)–(22) hold. Then it follows from block (1,1) that the matrix Q
is invertible. In addition, let the matrix S be invertible. (Otherwise, one can choose ε ∈ (0, 1) so
that inequality (20) remains in force for the variable S̄ = S + εIn−r. In this case, S is obviously
substituted by S̄.)

Replacing the variable Z with

[
Q R
0 S

]
F�
d in (20), we obtain the conditions of Theorem 3 for

the system dual to (19). Therefore, the closed-loop system (19) appears admissible, and the a-
anisotropic norm of the transfer function is bounded by γ.

If the control design problem is solvable, then the closed-loop system (19) satisfies the conditions
of Theorem 3. This is also applied to the dual system. Using the linear change of variables[
Q R
0 S

]
F�
d = Z, which yields

[
Q R

]
F�
d =

[
Ir 0

]
Z and

[
0 0
0 S

]
F�
d =

[
0 0
0 In−r

]
Z, we obtain

inequality (20).

It was mentioned earlier, that the variables Q and S are invertible. Then the feedback gain for
the closed-loop system (19) takes the form

Fd = Z�
[

Q−� 0

−S−�R�Q−� S−�

]
.

Performing the inverse transformation of coordinates, we get the gain F2 from (23).

The proof of Theorem 4 is finished.
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