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1. INTRODUCTION

Descriptor systems describe a natural representation of
physical systems and contain not only dynamical modes
but also algebraic constraints on their variables. Being
a general case of state-space systems (also referred to
as normal systems), descriptor systems arise in control
problems of constrained mechanical systems, in electrical
circuit simulation and others (see (Dai, 1989; Duan, 2010)
and references therein).

In recent years, robust control has become one of the
most popular research areas in control theory. Consider-
able attention is paid to problems of robust stabilization
and robust performance analysis of uncertain systems in
both continuous and discrete-time cases. H2- and H∞ -
norms are the most popular criteria in robust performance
analysis and control of linear systems. In discrete-time
H∞ -approach, the input signal is assumed to be square
summable, i.e. it has to be with limited power. The squared
H2-norm of a linear time-invariant system can be inter-
preted as the trace of its steady-state output covariance
matrix under the assumption that the system is driven
by the Gaussian white noise with an identity covariance
matrix. So, H2-norm is a useful measure of performance
when the system is affected by the Gaussian white noise.

Interest in stability analysis and control of descriptor
systems with parametric uncertainties has grown recently
due to their frequent presence in dynamical systems.
Uncertainties in such systems are often causes of instability
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and bad performance. It is known that control of uncertain
descriptor systems is much more complicated than that of
the normal ones. Robust H∞ control problem for discrete-
time descriptor systems with parametric uncertainties is
investigated in (Ji et al., 2007; Xu & Lam, 2006; Chadli &
Darouach, 2014; Coutinho et al., 2014).

In anisotropy-based control theory, the input disturbance
is assumed to be a stationary random sequence with a
known mean-anisotropy level (Vladimirov et al., 1995,
2006). In this case, anisotropic norm of the system defines
its performance in presence of the input signal. The feature
of anisotropy-based approach is that anisotropic norm of
the system lies between the scaled H2-norm and H∞ -
norm. Hence, the solution of robust control problem for
anisotropy-based case automatically solves H2- and H∞ -
control problems as special limiting cases.

Problems of anisotropy-based performance analysis and
suboptimal control design for descriptor systems with
certain parameters are studied in (Belov & Andrianova,
2016). The obtained result provides numerically effective
method of control design for descriptor systems.

The aim of this paper is to provide conditions of
anisotropic norm boundedness for descriptor systems with
norm-bounded parametric uncertainties and to develop
methods of control design which make the closed-loop
uncertain system admissible with prescribed anisotropy-
based performance. The paper is organized as follows. In
Section 2, basics of linear discrete-time descriptor systems
and anisotropy-based control theory are given. In Sec-
tion 3, problem statements and main results are discussed.
A numerical example is introduced in Section 4.
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In this paper, the following denotations are used: Z∗ is
the Hermitian conjugate of the matrix Z = [zij ] ∈ Cm×n:
Z∗ = [z∗ji] ∈ Cn×m; σ(A) stands for the maximal singular

value of the matrix A: σ(A) =
√

ρ(A∗A); sym (A) stands
for symmetrization of the matrix A: sym (A) = A+AT.

2. PRELIMINARIES

In this section, main definitions, concepts, and theorems
from the theories of descriptor systems (Dai, 1989; Xu &
Lam, 2006) and anisotropy-based control (Diamond et al.,
2001; Vladimirov et al., 1996) are given.

2.1 LDTI descriptor systems

A state-space representation of discrete-time descriptor
systems is

Ex(k + 1) =Ax(k) +Bw(k), (1)

y(k) =Cx(k) +Dw(k) (2)

where x(k) ∈ Rn is the state, w(k) ∈ Rq and y(k) ∈ Rp are
the input and output signals, respectively, E, A, B, C and
D are constant real matrices of appropriate dimensions.
The matrix E ∈ Rn×n is singular, i.e. rank (E) = r < n.

Definition 1. System (1) is called regular if ∃λ �= 0 :
det(λE −A) �= 0.

Regularity stands for existence and uniqueness of the
solution for consistent initial conditions (Dai, 1989).

Hereinafter, we suppose that the considered systems are
regular. Now we give some definitions, necessary for fur-
ther understanding.

Definition 2. System (1) is called admissible if it is regular,
causal (deg det(zE −A) = rankE), and stable (ρ(E,A) =
max |λ|λ∈{z| det(zE−A)=0} < 1). For more information,

see (Dai, 1989; Xu & Lam, 2006).

Definition 3. The transfer function of system (1)–(2) is
defined by the expression

P (z) = C(zE −A)−1B +D, z ∈ C. (3)

H2- and H∞ -norms of the transfer function P (z) are
defined as follows

‖P‖2 =

(
1

2π

∫ 2π

0

tr
(
P ∗(eiω)P (eiω)

)
dω

) 1
2

,

‖P‖∞ = sup
ω∈[0,2π]

σ
(
P (eiω)

)
.

For regular system (1)–(2) there exist two nonsingular
matricesW and V such thatWEV = diag(Ir, 0) (see (Dai,
1989)).

Consider the following change of variables

V
−1

x(k) =

[
x1(k)
x2(k)

]
(4)

where x1(k) ∈ Rr and x2(k) ∈ Rn−r.

By left multiplying system (1)–(2) on the matrix W and
using change of variables (4), one can rewrite system (1)–
(2) in the form

x1(k + 1) =A11x1(k) +A12x2(k) +B1w(k), (5)

0 =A21x1(k) +A22x2(k) +B2w(k), (6)

y(k) =C1x1(k) + C2x2(k) +Ddw(k). (7)

The following denotation will be used below

Ad = WAV =

[
A11 A12

A21 A22

]
, Bd = WB =

[
B1

B2

]
,

Cd = CV = [C1 C2 ] , Dd = D. (8)

Matrices W and V are found from the singular value
decomposition (SVD) of the matrix E (see (Belov &
Andrianova, 2016)).

2.2 Mean anisotropy and a-anisotropic norm

Anisotropy of the random vector is Kullback-Leibler infor-
mation divergence from the probability density function
(p.d.f.) of the vector to p.d.f. of the Gaussian white noise
sequence (Vladimirov et al., 1995). Mean anisotropy of the
sequence stands for anisotropy averaged on discrete time.

Introduce denotations, necessary for mean anisotropy com-
putation. The input signal w(k) is assumed to be a ran-
dom colored noise. Let W = {w(k)}k∈Z be a stationary
sequence of square-summable random m-dimensional vec-
tors. The sequence W can be generated from the Gaussian
white noise sequence V = {v(k)}k∈Z with zero mean and
identity covariance matrix by an admissible shaping filter
with a transfer function G(z).

Mean anisotropy of the sequence can be computed by the
filter’s parameters, using the expression

A(W ) = − 1

4π

∫ π

−π

ln det
mS(ω)

‖G‖22
dω

where S(ω) = Ĝ(ω)Ĝ∗(ω), (−π � ω � π), Ĝ(ω) =

liml→1 G(leiω) is a boundary value of the transfer function
G(z).

Remark 1. Mean anisotropy of the random sequence W ,
generated by shaping filter G(z), is fully defined by its pa-
rameters, so the notations A(G) andA(W ) are equivalent.

Mean anisotropy of the signal characterizes its “spectral
color”, i.e. the difference between the signal and the Gaus-
sian white noise sequence. If A(W ) = 0, then the signal
is the Gaussian white noise sequence. If A(W ) → ∞, the
signal is a determinate sequence. For more information,
see (Vladimirov et al., 1995, 2006).

Let Y = PW be an output of the linear discrete-time
(normal or descriptor) system P ∈ H∞

p×q with a transfer
function P (z), which is analytic in the identity circle
|z| < 1, P (z) has a finite H∞ -norm.

Definition 4. For a given constant value a � 0 a-
anisotropic norm of the system P is defined as

|||P |||a = sup {‖PG‖2/‖G‖2 : G ∈ Ga} , (9)

i.e. the maximum value of the system’s gain with respect
to the class of shaping filters

Ga =
{
G ∈ H2

q×q : A(G) � a
}
.

So, a-anisotropic norm |||P (z)|||a describes the stochastic
gain of the system P (z) with respect to the input sequence
W . The problem of anisotropy-based performance analysis
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of the admissible system (1)–(2) is to check the condition
|||P (z)|||a < γ for a given scalar γ > 0 and a known mean
anisotropy level of the input disturbance a � 0.

Theorem 1. (Belov & Andrianova, 2016) Let the sys-
tem (1)–(2) with a transfer function P (z) ∈ H∞

p×q be
admissible. Suppose that

rank [E B ] = rankE. (10)

For given scalar values a � 0 and γ > 0 a-anisotropic norm
of the system is bounded by γ, i.e.

|||P (z)|||a < γ

if there exist matrices L ∈ Rr×r, L > 0, Q ∈ Rr×r,
R ∈ Rr×(n−r), S ∈ R(n−r)×(n−r),Ψ ∈ Rq×q, scalar values
η > γ2 and α > 0, for which the following inequalities hold
true

η − (e−2a det(Ψ))1/q < γ2, (11)[
Ψ− ηIq +BT

d ΘBd DT
d

Dd −Ip

]
< 0, (12)

and (13),

where

Θ =

[
L 0
0 0

]
, Π =

[
0 0
0 S

]
, Γ = [Q R ] .

The following results are used for matrix inequalities
transformations below.

Lemma 2. (Petersen, 1987)
Let matrices M ∈ Rn×p and N ∈ Rq×n be nonzero, and
G = GT ∈ Rn×n. The inequality

G+M∆N +NT∆TMT � 0 (14)

is true for all ∆ ∈ Rp×q: ‖∆‖2 � 1 if and only if there
exists a scalar value ε > 0 such that

G+ εMMT +
1

ε
NTN � 0. (15)

Lemma 3. (Schur lemma introduced in (Boyd et al.,
1994))
Let

X =

[
X11 X12

XT
12 X22

]

where X11 and X22 are square matrices.

If X11 > 0, then X > 0 if and only if

X22 −XT
12X

−1
11 X12 > 0. (16)

If X22 > 0, then X > 0 if and only if

X11 −X12X
−1
22 XT

12 > 0. (17)

3. PROBLEM STATEMENTS AND MAIN RESULTS

Consider the following discrete-time descriptor system:

Ex(k + 1) =A∆x(k) +B∆ww(k) +Buu(k), (18)

y(k) =C∆x(k) +D∆ww(k) (19)

where x(k) ∈ Rn is the state, w(k) ∈ Rq is a random
stationary sequence with bounded mean anisotropy level
A(W ) � a, y(k) ∈ Rp is the output, u(k) ∈ Rm is the
control input. The matrix E is singular, i.e. rankE =
r < n. A∆ = A + MA∆NA, B∆w = Bw + MB∆NB ,
C∆ = C +MC∆NC , D∆w = Dw +MD∆ND.

The matrix ∆ ∈ Rs×s is unknown norm-bounded, i.e.
‖∆‖2 � 1 (or Frobenius norm-bounded matrix as ‖∆‖2 �
‖∆‖F ). Note that ‖∆‖2 := σ(∆) � 1 iff ∆T∆ � Is.

Introduce denotations

Md
B = WMB =

[
Md

B1

Md
B2

]
, Nd

B = NB , M
d
A = WMA,

Nd
A = NAV , Md

C = MC , N
d
C = NCV =

[
Nd

C1 Nd
C2

]
,

Bwd = WBw =

[
B1

B2

]
, Bud = WBu, Dwd = Dw.

Other denotations are taken from Section 2.

Suppose that

rankET = rank
[
ET, CT, NT

C

]
, (20)

rankE = rank [E,Bw,MB ] . (21)

In this paper we consider two problems:

• anisotropy-based analysis of system (18)–(19). This
problem is investigated in subsection 3.1;

• state-feedback anisotropy-based control design for
(18)–(19). The solution of this problem is given in
subsection 3.2.

3.1 Anisotropy-based analysis for uncertain descriptor
systems

In anisotropy-based analysis problem the control input
is assumed to be zero, i.e. Bu = 0. The output y(k)
is considered as a measurable output. System (18)–(19)
is supposed to be admissible for all ∆ from the given
set. Its transfer function is given by P∆(z) = C∆(zE −
A∆)

−1B∆w +D∆w.

For known values a � 0 and γ > 0 the problem is to find
the conditions, which allow to check that the inequality

|||P∆(z)|||a < γ

holds true.

Theorem 4. (Andrianova & Belov, 2016) For given scalars
a � 0 and γ > 0 system (18)–(19) is admissible and its
a-anisotropic norm |||P∆(z)|||a < γ, if there exist scalars
η > γ2, ε1 > 0, ε2 > 0 and matrices Q ∈ Rr×r,
R ∈ Rr×(n−r), S ∈ R(n−r)×(n−r),Ψ ∈ Rq×q, L ∈ Rr×r,
L > 0, Υ ∈ Rr×r, Υ > 0 : ΥL = Ir, such that

η − (e−2a det(Ψ))1/q < γ2, (22)[
�+ ε1N

T
1 N1 M1

MT
1 −ε1I

]
< 0, (23)

[
Σ+ ε2N

T
2 N2 M2

MT
2 −ε2I

]
< 0. (24)

Here

� =


Ψ− ηIm DT

wd BT
1

Dwd −Ip 0
B1 0 −Υ


 ,

M1 =




0 0
MD 0
0 Md

B1


 , N1 =

[
ND 0 0
Nd

B 0 0

]
,
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In this paper, the following denotations are used: Z∗ is
the Hermitian conjugate of the matrix Z = [zij ] ∈ Cm×n:
Z∗ = [z∗ji] ∈ Cn×m; σ(A) stands for the maximal singular

value of the matrix A: σ(A) =
√
ρ(A∗A); sym (A) stands

for symmetrization of the matrix A: sym (A) = A+AT.

2. PRELIMINARIES

In this section, main definitions, concepts, and theorems
from the theories of descriptor systems (Dai, 1989; Xu &
Lam, 2006) and anisotropy-based control (Diamond et al.,
2001; Vladimirov et al., 1996) are given.

2.1 LDTI descriptor systems

A state-space representation of discrete-time descriptor
systems is

Ex(k + 1) =Ax(k) +Bw(k), (1)

y(k) =Cx(k) +Dw(k) (2)

where x(k) ∈ Rn is the state, w(k) ∈ Rq and y(k) ∈ Rp are
the input and output signals, respectively, E, A, B, C and
D are constant real matrices of appropriate dimensions.
The matrix E ∈ Rn×n is singular, i.e. rank (E) = r < n.

Definition 1. System (1) is called regular if ∃λ �= 0 :
det(λE −A) �= 0.

Regularity stands for existence and uniqueness of the
solution for consistent initial conditions (Dai, 1989).

Hereinafter, we suppose that the considered systems are
regular. Now we give some definitions, necessary for fur-
ther understanding.

Definition 2. System (1) is called admissible if it is regular,
causal (deg det(zE −A) = rankE), and stable (ρ(E,A) =
max |λ|λ∈{z| det(zE−A)=0} < 1). For more information,

see (Dai, 1989; Xu & Lam, 2006).

Definition 3. The transfer function of system (1)–(2) is
defined by the expression

P (z) = C(zE −A)−1B +D, z ∈ C. (3)

H2- and H∞ -norms of the transfer function P (z) are
defined as follows

‖P‖2 =

(
1

2π

∫ 2π

0

tr
(
P ∗(eiω)P (eiω)

)
dω

) 1
2

,

‖P‖∞ = sup
ω∈[0,2π]

σ
(
P (eiω)

)
.

For regular system (1)–(2) there exist two nonsingular
matricesW and V such thatWEV = diag(Ir, 0) (see (Dai,
1989)).

Consider the following change of variables

V
−1

x(k) =

[
x1(k)
x2(k)

]
(4)

where x1(k) ∈ Rr and x2(k) ∈ Rn−r.

By left multiplying system (1)–(2) on the matrix W and
using change of variables (4), one can rewrite system (1)–
(2) in the form

x1(k + 1) =A11x1(k) +A12x2(k) +B1w(k), (5)

0 =A21x1(k) +A22x2(k) +B2w(k), (6)

y(k) =C1x1(k) + C2x2(k) +Ddw(k). (7)

The following denotation will be used below

Ad = WAV =

[
A11 A12

A21 A22

]
, Bd = WB =

[
B1

B2

]
,

Cd = CV = [C1 C2 ] , Dd = D. (8)

Matrices W and V are found from the singular value
decomposition (SVD) of the matrix E (see (Belov &
Andrianova, 2016)).

2.2 Mean anisotropy and a-anisotropic norm

Anisotropy of the random vector is Kullback-Leibler infor-
mation divergence from the probability density function
(p.d.f.) of the vector to p.d.f. of the Gaussian white noise
sequence (Vladimirov et al., 1995). Mean anisotropy of the
sequence stands for anisotropy averaged on discrete time.

Introduce denotations, necessary for mean anisotropy com-
putation. The input signal w(k) is assumed to be a ran-
dom colored noise. Let W = {w(k)}k∈Z be a stationary
sequence of square-summable random m-dimensional vec-
tors. The sequence W can be generated from the Gaussian
white noise sequence V = {v(k)}k∈Z with zero mean and
identity covariance matrix by an admissible shaping filter
with a transfer function G(z).

Mean anisotropy of the sequence can be computed by the
filter’s parameters, using the expression

A(W ) = − 1

4π

∫ π

−π

ln det
mS(ω)

‖G‖22
dω

where S(ω) = Ĝ(ω)Ĝ∗(ω), (−π � ω � π), Ĝ(ω) =

liml→1 G(leiω) is a boundary value of the transfer function
G(z).

Remark 1. Mean anisotropy of the random sequence W ,
generated by shaping filter G(z), is fully defined by its pa-
rameters, so the notationsA(G) andA(W ) are equivalent.

Mean anisotropy of the signal characterizes its “spectral
color”, i.e. the difference between the signal and the Gaus-
sian white noise sequence. If A(W ) = 0, then the signal
is the Gaussian white noise sequence. If A(W ) → ∞, the
signal is a determinate sequence. For more information,
see (Vladimirov et al., 1995, 2006).

Let Y = PW be an output of the linear discrete-time
(normal or descriptor) system P ∈ H∞

p×q with a transfer
function P (z), which is analytic in the identity circle
|z| < 1, P (z) has a finite H∞ -norm.

Definition 4. For a given constant value a � 0 a-
anisotropic norm of the system P is defined as

|||P |||a = sup {‖PG‖2/‖G‖2 : G ∈ Ga} , (9)

i.e. the maximum value of the system’s gain with respect
to the class of shaping filters

Ga =
{
G ∈ H2

q×q : A(G) � a
}
.

So, a-anisotropic norm |||P (z)|||a describes the stochastic
gain of the system P (z) with respect to the input sequence
W . The problem of anisotropy-based performance analysis
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


− 1
2Q− 1

2Q
T ΓAd ΓBd LT −QT − 1

2Q 0
AT

d Γ
T ΠAd +AT

dΠ
T −Θ ΠBd AT

d Γ
T CT

d + αAT
dΠ

TCT
d

BT
d Γ

T BT
d Π

T −ηIq BT
d Γ

T DT
d + αBT

d Π
TCT

d

L−Q− 1
2Q

T ΓAd ΓBd −Q−QT 0
0 Cd + αCdΠAd Dd + αCdΠBd 0 −Ip


 < 0 (13)

Σ =




− 1
2Q− 1

2Q
T ΓAd ΓBwd LT −QT − 1

2Q 0
AT

d Γ
T ΠAd +AT

dΠ
T −Θ ΠBwd AT

d Γ
T CT

d

BT
wdΓ

T BT
wdΠ

T −ηIq BT
wdΓ

T DT
wd

L−Q− 1
2Q

T ΓAd ΓBwd −Q−QT 0
0 Cd Dwd 0 −Ip


 (25)

M2 =




ΓMd
A ΓMd

B 0 0
ΠMd

A ΠMd
B 0 0

0 0 0 0
ΓMd

A ΓMd
B 0 0

0 0 Md
C MD


, N2 =



0 Nd

A 0 0 0
0 0 Nd

B 0 0
0 Nd

C 0 0 0
0 0 ND 0 0


,

Θ =

[
L 0
0 0

]
, Π =

[
0 0
0 S

]
, Γ = [Q R ] .

The matrix Σ is defined by (25).

Proof. Under the assumptions (20) and (21) B2 = 0 and
C2 = 0. It’s easy to check that in (13) αCdΠAd = 0
and αCdΠBwd = 0. Consider the inequality (12) from
Theorem 1. Taking into account B2 = 0, transform

the expression BT
wdΘBwd =

[
BT

1 0
] [L 0

0 0

] [
B1

0

]
=

BT
1 LB1 > 0. So the inequality (12) is equal to[

Ψ− ηIq +BT
1 LB1 DT

wd
Dwd −Ip

]
< 0,

using Schur complement and denoting Υ = L−1, we have
Ψ− ηIq DT

wd BT
1

Dwd −Ip 0
B1 0 −Υ


 < 0. (26)

Now we write the inequality of the form (26) for the
system (18)–(19) with norm-bounded uncertainties:[

Ψ− ηIq (Dwd +MD∆ND)T (B1 +Md
B1∆Nd

B)T

Dwd +MD∆ND −Ip 0
B1 +Md

B1∆Nd
B 0 −Υ

]
< 0

(27)

or
�+ sym (M1∆N1) < 0. (28)

Using the conditions of Lemmas 2 and 3, we can rewrite
inequality (28) as (23). Now we transform expression (13)
for system (18)–(19)

Σ + sym (M2∆N2) < 0. (29)

Applying Lemmas 2 and 3 to inequality (29), we get

Σ +
1

ε2
M2M

T
2 + ε2N

T
2 N2 < 0,

Σ+ ε2N
T
2 N2 −M2(−ε2I)

−1MT
2 < 0,[

Σ+ ε2N
T
2 N2 M2

MT
2 −ε2I

]
< 0.

The last inequality coincides with (24). Expression (22)
is equal to (11). Consequently, the conditions of Theo-
rem 1 hold true for system (18)–(19), it means that its

anisotropic norm is bounded by a positive scalar value,
i.e. |||P∆(z)|||a < γ.

The mutual inverse matrices search procedure can be
found in (Balandin & Kogan, 2005).

Remark 2. If MB = 0 and NB = 0, then the conditions of
Theorem 4 become simpler:

η − (e−2a det(Ψ))1/q < γ2,[
�+ ε1N

T
1 N1 M1

MT
1 −ε1I

]
< 0,

[
Σ+ ε2N

T
2 N2 M2

MT
2 −ε2I

]
< 0.

Here

� =

[
Ψ− ηIq +BT

1 LB1 DT
wd

Dwd −Ip

]
,

M1 =

[
0

MD

]
, N1 = [ND 0 ] .

In this case, the algorithm of mutually inverse matrices
computation in order to find Υ is no longer required.

3.2 State-space anisotropy-based robust control design for
uncertain descriptor systems

In state-space anisotropy-based robust control design
problem the system is supposed to be noncausal and un-
stable, y(k) stands for controllable output. The problem
is to find a feedback gain u(k) = Fx(k) such that the
closed-loop system with a transfer function

P cl
∆ (z) = C∆(zE − (A∆ +BuF ))−1B∆w +D∆w

is admissible and
|||P cl

∆ (z)|||a < γ

for all ∆ from the given set.

Assume that

(1) system (18) is causally controllable;
(2) system (18) is stabilizable;
(3) a mean anisotropy of the input disturbance is

bounded: A(W ) � a (a is a known value);
(4) a scalar value γ > 0 is given;
(5) p � q.

The definitions of causal controllability and stabilizability
can be found in (Dai, 1989) and (Xu & Lam, 2006).

The following theorem defines the control design proce-
dure.
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Theorem 5. For a given scalar γ > 0 and a known mean
anisotropy level a (A(W ) � a) the control design problem
is solvable if there exist scalars η > γ2, ε1 > 0, ε2 > 0 and
matrices Q ∈ Rr×r, R ∈ Rr×(n−r), S ∈ R(n−r)×(n−r),Ψ ∈
Rp×p, L ∈ Rr×r, L > 0, Υ ∈ Rr×r, Υ > 0, and Z ∈ Rn×m

such that
ΥL = Ir (30)

η − (e−2a det(Ψ))1/p < γ2, (31)[
�+ ε1M

T
1 M1 N1

NT
1 −ε1I2s

]
< 0, (32)

[
Λ + ε2M

T
2 M2 N2

NT
2 −ε2I4s

]
< 0 (33)

where

� =



Ψ− ηIp Dwd C1

DT
wd −Iq 0

CT
1 0 −Υ


 ,

M1 =

[
(MD)T 0 0(
Md

C

)T
0 0

]
, N1 =




0 0
(ND)T 0

0
(
Nd

C1

)T


 ,

M2 =



0 (Md

A)
T 0 0 0

0 0 (Md
C)

T 0 0
0 (Md

B)
T 0 0 0

0 0 (MD)T 0 0


 , (34)

N2 =




Γ(Nd
A)

T Γ(Nd
C)

T 0 0
Π(Nd

A)
T Π(Nd

C)
T 0 0

0 0 0 0
Γ(Nd

A)
T Γ(Nd

C)
T 0 0

0 0 (Nd
B)

T (ND)T


 , (35)

Λ=




Λ11 ΛT
21 ΛT

31 ΛT
41 0

Λ21 Λ22 ΛT
32 Λ21 ΛT

52

Λ31 Λ32 −ηIp Λ31 ΛT
53

Λ41 ΛT
21 ΛT

31 −(Q+QT) 0
0 Λ52 Λ53 0 −Iq


 , (36)

where
Λ11 = − 1

2Q− 1
2Q

T, Λ21 = AdΓ
T +BudZ

TΩT,

Λ31 = CdΓ
T, Λ41 = L−Q− 1

2Q
T,

Λ22 = ΠAT
d +AdΠ

T +ΦZBT
ud +BudZ

TΦT −Θ,
Λ32 = CdΠ

T, Λ52 = BT
wd, Λ53 = DT

wd.

Θ =

[
L 0
0 0

]
, Π =

[
0 0
0 S

]
, Φ =

[
0 0
0 In−r

]
,

Ω = [ Ir 0 ] , Γ = [Q R ] .

The gain matrix can be obtained as

F = ZT

[
Q−T 0

−S−TRTQ−T S−T

]
V

−1
. (37)

Proof. Show that controller (37) is a solution of anisotropy-
based control problem for initial system (18)–(19). Indeed,

Pcl(z) = CV V
−1

(zE −A−BuF )−1W
−1

WBw +Dw =

= CV (zWEV −WAV −WBuFV )−1WBw +Dw =

= Cd(zEd −Ad −BudFd)
−1Bwd +Dwd,

where Fd = FV .

Introduce the following linear change of variables[
Q R
0 S

]
FT
d = Z.

It implies that [Q R ]FT
d = [ Ir 0 ]Z and

[
0 0
0 S

]
FT
d =

[
0 0
0 In−r

]
Z. Substituting it into (25) we get Λ21 and Λ22

entries from (36), which coincide with the conditions of
Theorem 4 for the system, dual to the system (18)–(19).
So, according to Theorem 4, the closed-loop system (18)–
(19) is admissible, and a-anisotropic norm of its transfer
function is bounded by the given scalar γ.

As the inequality (33) holds, then the (1,1) entry implies
matrix Q is invertible. We also suppose, that the matrix
S is invertible. If it does not hold, there exists a scalar
ε ∈ (0, 1), such that the inequality (33) holds true for
matrix S̄ = S + εIn−r. So, we can use S̄ instead of S.

As pointed out before, Q and S are invertible. So the
feedback gain Fd for the closed-loop system is defined as

Fd = ZT

[
Q−T 0

−S−TRTQ−T S−T

]
. Note that Fd = FV . By

the inverse change of variables we get F from (37).

The theorem is proved.

4. NUMERICAL EXAMPLE

Consider the following system:

E =

[
1 0 0
0 0 0
2 0 1

]
, A =

[−0.25 0 0
−0.5 0.2 2
0.75 −1 −1.5

]
, Bu =

[
0
0
1

]
,

Bw =

[
0 0
0 0

0.1 0.4

]
, C =

[
3 0 0
0 0 1

]
, Dw =

[
0.1 −0.5
0 0.2

]
.

The matrix A is assumed to be uncertain with ∆ ∈ [−1; 1]
and

MA = [ 0.1 −0.5 0.05 ]
T
, NA = [ 0 0.1 0.1 ].

The system is causal but not stable. The generalized
spectral radius of the nominal system is ρ(E,A) = 2.5.

The design objective is to find min γ for such conditions
of the theorem 5 hold.

For the case a = 0 we have a suboptimal H2 controller.
The minimization of γ gives γmin = 0.4859, the lower and
upper bounds of |||P cl

∆ (z)|||a are γ = 0.4848 and γ = 0.4859
respectively. The controller parameters are

F = [ 0.2704 1.0014 1.5014 ] .

For the case a = 1.5 we have γmin = 0.7026, th boundary
values of |||P cl

∆ (z)|||a are γ = 0.7009 and γ = 0.6913. The
controller parameters are

F = [ 2.7227 1.0377 1.2985 ] .

5. CONCLUSION

The paper deals with the state-feedback control design
problem for discrete-time descriptor systems with norm-
bounded uncertainties in presence of colored noise. It
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


− 1
2Q− 1

2Q
T ΓAd ΓBd LT −QT − 1

2Q 0
AT

d Γ
T ΠAd +AT

dΠ
T −Θ ΠBd AT

d Γ
T CT

d + αAT
dΠ

TCT
d

BT
d Γ

T BT
d Π

T −ηIq BT
d Γ

T DT
d + αBT

d Π
TCT

d

L−Q− 1
2Q

T ΓAd ΓBd −Q−QT 0
0 Cd + αCdΠAd Dd + αCdΠBd 0 −Ip


 < 0 (13)

Σ =




− 1
2Q− 1

2Q
T ΓAd ΓBwd LT −QT − 1

2Q 0
AT

d Γ
T ΠAd +AT

dΠ
T −Θ ΠBwd AT

d Γ
T CT

d

BT
wdΓ

T BT
wdΠ

T −ηIq BT
wdΓ

T DT
wd

L−Q− 1
2Q

T ΓAd ΓBwd −Q−QT 0
0 Cd Dwd 0 −Ip


 (25)

M2 =




ΓMd
A ΓMd

B 0 0
ΠMd

A ΠMd
B 0 0

0 0 0 0
ΓMd

A ΓMd
B 0 0

0 0 Md
C MD


, N2 =



0 Nd

A 0 0 0
0 0 Nd

B 0 0
0 Nd

C 0 0 0
0 0 ND 0 0


,

Θ =

[
L 0
0 0

]
, Π =

[
0 0
0 S

]
, Γ = [Q R ] .

The matrix Σ is defined by (25).

Proof. Under the assumptions (20) and (21) B2 = 0 and
C2 = 0. It’s easy to check that in (13) αCdΠAd = 0
and αCdΠBwd = 0. Consider the inequality (12) from
Theorem 1. Taking into account B2 = 0, transform

the expression BT
wdΘBwd =

[
BT

1 0
] [L 0

0 0

] [
B1

0

]
=

BT
1 LB1 > 0. So the inequality (12) is equal to[

Ψ− ηIq +BT
1 LB1 DT

wd
Dwd −Ip

]
< 0,

using Schur complement and denoting Υ = L−1, we have
Ψ− ηIq DT

wd BT
1

Dwd −Ip 0
B1 0 −Υ


 < 0. (26)

Now we write the inequality of the form (26) for the
system (18)–(19) with norm-bounded uncertainties:[

Ψ− ηIq (Dwd +MD∆ND)T (B1 +Md
B1∆Nd

B)T

Dwd +MD∆ND −Ip 0
B1 +Md

B1∆Nd
B 0 −Υ

]
< 0

(27)

or
�+ sym (M1∆N1) < 0. (28)

Using the conditions of Lemmas 2 and 3, we can rewrite
inequality (28) as (23). Now we transform expression (13)
for system (18)–(19)

Σ + sym (M2∆N2) < 0. (29)

Applying Lemmas 2 and 3 to inequality (29), we get

Σ +
1

ε2
M2M

T
2 + ε2N

T
2 N2 < 0,

Σ+ ε2N
T
2 N2 −M2(−ε2I)

−1MT
2 < 0,[

Σ+ ε2N
T
2 N2 M2

MT
2 −ε2I

]
< 0.

The last inequality coincides with (24). Expression (22)
is equal to (11). Consequently, the conditions of Theo-
rem 1 hold true for system (18)–(19), it means that its

anisotropic norm is bounded by a positive scalar value,
i.e. |||P∆(z)|||a < γ.

The mutual inverse matrices search procedure can be
found in (Balandin & Kogan, 2005).

Remark 2. If MB = 0 and NB = 0, then the conditions of
Theorem 4 become simpler:

η − (e−2a det(Ψ))1/q < γ2,[
�+ ε1N

T
1 N1 M1

MT
1 −ε1I

]
< 0,

[
Σ+ ε2N

T
2 N2 M2

MT
2 −ε2I

]
< 0.

Here

� =

[
Ψ− ηIq +BT

1 LB1 DT
wd

Dwd −Ip

]
,

M1 =

[
0

MD

]
, N1 = [ND 0 ] .

In this case, the algorithm of mutually inverse matrices
computation in order to find Υ is no longer required.

3.2 State-space anisotropy-based robust control design for
uncertain descriptor systems

In state-space anisotropy-based robust control design
problem the system is supposed to be noncausal and un-
stable, y(k) stands for controllable output. The problem
is to find a feedback gain u(k) = Fx(k) such that the
closed-loop system with a transfer function

P cl
∆ (z) = C∆(zE − (A∆ +BuF ))−1B∆w +D∆w

is admissible and
|||P cl

∆ (z)|||a < γ

for all ∆ from the given set.

Assume that

(1) system (18) is causally controllable;
(2) system (18) is stabilizable;
(3) a mean anisotropy of the input disturbance is

bounded: A(W ) � a (a is a known value);
(4) a scalar value γ > 0 is given;
(5) p � q.

The definitions of causal controllability and stabilizability
can be found in (Dai, 1989) and (Xu & Lam, 2006).

The following theorem defines the control design proce-
dure.
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has been shown that the above problem can be solved
via matrix inequality approach involving no parameter
uncertainties. Thus, the derived result can be applied
to design anisotropy-based controllers with guaranteed
robust performance for descriptor systems.
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