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INTRODUCTION

Physical control systems are affected by external random disturbances. The problem of disturbance
attenuation is one of the fundamental control problems. The Linear Quadratic Gaussian (LQG) control
theory deals with Gaussian white noise sequence as an input disturbance. However, noises, affecting the
real control systems, are “colored”, that’s why LQG�controllers, designed on the assumption the input
signal is the white noise sequence, can not reach desirable performance. On the other hand, �control
theory (  means the norm of complex�valued matrix functions with index ), which gives the ability
to solve disturbance attenuation problem, assumes that the input disturbance is a square integrable (sum�
mable) sequence. The disadvantage of �control theory is that the systems, closed by �controllers,
are too conservative (they require a lot of control energy) if the input disturbance is uncorrelated or weakly
correlated random signal.

The concept of mean anisotropy of random sequences [1, 2] made it possible to introduce a class of
random “colored” noises, limited by some numerical parameter, called the mean anisotropy level. This
allowed to develop methods for analysis and synthesis of stochastic control systems, that have robust per�
formance with respect to the stochastic nature of input signals. In this case, the performance criterion is
connected with anisotropic norm. The problems of optimal and suboptimal (minimizing anisotropic
norm of the closed�loop system) control for ordinary linear discrete�time systems were solved in [3, 4].
Anisotropy�based suboptimal control is more flexible than optimal control as it is not necessary to design
control law, which minimizes anisotropic norm of the closed�loop system. So, in case of optimal control
problem the solution is the control law, that minimizes the performance criterion. In case of suboptimal
control it is possible to choose the control law, which satisfies some designer’s requirements. Evidently,
there is an infinite set of such controllers. It allows to limit oneself to designer’s requirements and to apply
some additional criteria. But mathematical models of control systems cannot always be described only by
ordinary differential or difference equations. Control systems, which mathematical models are described
in physical state variables, may contain algebraic equations as constraints between state variables. Such
systems are called descriptor systems. Descriptor systems found their application in modeling of aircraft
dynamics [5], circuit engineering [6, 7], technical systems [8], economic systems [9], and electrical power
engineering [10, 11]. That is why the descriptor systems have been widely studied in the last two decades.
Because of the algebraic constraints between state variables, the system gets a specific behaviour, different
from ordinary systems, that’s why it is necessary to generalize mathematical methods, developed for ordi�
nary systems. Evidently, the generalization of anisotropy�based analysis methods developed for ordinary
systems [12] on descriptor systems will allow to consider a wider set of control objects, and it is an actual

H
∞

H
∞

p = ∞

H
∞

H
∞

CONTROL IN STOCHASTIC SYSTEMS 
AND UNDER UNCERTAINTY CONDITIONS

Conditions of Anisotropic Norm Boundedness
for Descriptor Systems1

O. G. Andrianova, A. A. Belov, and A. P. Kurdyukov
Moscow Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

e�mail: karsettt@yandex.ru
Received April 8, 2013; in final form May 19, 2014

Abstract—A class of systems, described by algebraic�difference equations, is under consideration.
Such systems are called descriptor (singular). For these systems the conditions of anisotropic norm
boundedness are obtained. Anisotropic norm describes the root�mean�square gain of the system with
respect to random Gaussian stationary disturbances, which are characterized by mean anisotropy. The
conditions are formulated in the form of the theorem, detailed proof is given. Numerical example,
illustrating anisotropic norm computation method for descriptor systems based of the proven theorem,
is considered.

DOI: 10.1134/S1064230714060021

1 The article was translated by the authors.



28

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 54  No. 1  2015

ANDRIANOVA et al.

problem. This paper is devoted to some conditions (in terms of generalized Riccati equations), under
which anisotropic norm is bounded by a given scalar value.

1. BASICS OF DESCRIPTOR SYSTEMS THEORY AND ANISOTROPY�BASED ANALYSIS

In this section, some necessary definitions and important results on descriptor systems and anisotropy�
based theory are represented.

1.1. Descriptor Systems

Before stating and solving the problem we consider how descriptor models of dynamical systems
appear, and define basic concepts of discrete�time descriptor systems theory, such as regularity, causality,
stability, and admissibility. More information about descriptor systems theory can be found in [13, 14].

A state�space representation of discrete�time descriptor systems is given by the following equations

(1.1)

where  is the state,  is the control input,  is the output signal, k = 0, 1, 2, … is

the discrete time. The matrix  may be singular, ,  are sys�
tem’s parameters.

We assume that for the system (1.1) the condition  holds. Such systems are called sin�
gular or descriptor. Now we consider some basic definitions of discrete�time descriptor systems theory,
that will be important for further explanation [14].

D e f i n i t i o n  1. The pair  is said to be regular if there exists a scalar λ such that .
Regularity of the pair  is a necessary and sufficient condition of existence and uniqueness of the

system’s (1.1) solution. The following lemma [14] provides necessary and sufficient conditions of regular�
ity for the system (1.1).

L e m m a  1. The pair  is regular if and only if there exist invertible matrices  and  such that

(1.2)

where  is a known matrix,  are identity matrices, and N  is
a nilpotent matrix.

According to Lemma 1, the system in a state�space representation (1.1) may be rewritten in the follow�
ing form:

(1.3)

where .

D e f i n i t i o n  2. The matrix N is called a nilpotent matrix of index h if , and , .
D e f i n i t i o n  3. The index of the system (1.1) in the equivalent form (1.3) is called the index of nilpo�

tency of the matrix N.
D e f i n i t i o n  4. The system (1.3) is called the Weierstrass canonical form of (1.1) [14].
Descriptor systems don’t have solutions for any initial conditions.
D e f i n i t i o n  5. Initial conditions , for which a regular system has solutions, are called consis�

tent. Consistent initial conditions satisfy the following equality:

(1.4)

D e f i n i t i o n  6. The system (1.1) is called causal if its solution  depends only on  and
 for any consistent initial conditions. It is true if the index of the nilpotency of the matrix

N is equal to 1.
Now we introduce the concepts of stability and admissibility for the descriptor system [15].
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D e f i n i t i o n  7. The generalized spectral radius for the system (1.1) or for the pair  is

(1.5)

Besides, for simplicity we’ll use the following notation  which is used to denote the nor�
mal spectral radius of the matrix.

D e f i n i t i o n  8. The system (1.1) is called stable if .

D e f i n i t i o n  9. The system (1.1) is called admissible if the pair  is regular, and the system is
causal and stable.

D e f i n i t i o n  10. The transfer function of the system (1.1) is given by the complex�valued function,
defined by the following expression:

. (1.6)

D e f i n i t i o n  11. Let  (where  is a unit circle on the complex plane) be the Hilbert space of

matrix�valued functions  that have bounded �norm

(1.7)

Here  is a conjugate system.

A subspace of  which consists of all rational transfer functions that have no poles in the exterior

of the closed unit disk is denoted by .

D e f i n i t i o n  12. �norm of the transfer function   is defined by the expression

If  is strictly proper, and the system (1.1) is stable ( ), then G(z) = C(zE – A)–1B ∈ .

On the other hand, if  , then  is strictly proper, but not necessarily stable.

D e f i n i t i o n  13. Let  be a space of matrix�valued functions  that are (strongly)

bounded on . The subspace of  denoted by  consists of all rational transfer functions that are

analytic in the exterior of the closed unit disk. Then the �norm of the transfer function   is
defined by 

where  is a maximal singular value.

Evidently, �norm of the transfer function  is finite only if  is proper.

1.2. Mean Anisotropy of the Sequence and Anisotropic Norm of the System

In this section, basic concepts of anisotropy�based analysis are given. In [2, 16], mean anisotropy of a
random sequence and anisotropic norm of a linear system are defined. Mean anisotropy and anisotropic
norm are fully described in [2].

Let  be a stationary sequence of square integrable �dimensional random vectors which is
interpreted as a discrete�time random signal. Assembling the elements of W, associated with the interval

, into a random vector

(1.8)

We assume that  is absolutely continuously distributed for every N > 0.
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D e f i n i t i o n  14. The anisotropy  is defined by:

where  is mathematical expectation,  is differential entropy

,

where  is the probability density function of the �valued vector , and .
D e f i n i t i o n  15. Mean anisotropy of the sequence W is defined by the expression

(1.9)

It is shown in [2], that

(1.10)

where  is the Shannon mutual information [17] between  and the past

history  of the sequence W.

Now we assume that W is a discrete�time stationary Gaussian sequence, then

(1.11)

where

(1.12)

is the error of mean�square optimal prediction of W0 by the past history , provided by the condi�
tional expectation.

Let W be generated by the shaping filter with a transfer function G(z) and the impulse response

 from a discrete�time Gaussian white noise sequence V with zero mean  and identity

covariance matrix , i.e.

 

G is supposed to denote a linear operator of the shaping filter with the transfer function G(z), and 
stands for the norm of this operator.

The transfer function of the filter

is supposed to belong to the Hardy space , analytic in the unit disc  on the complex plane, and
has finite �norm:

(1.13)
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The covariance matrix of the prediction error (1.12) and the spectral density S(ω) are related by the
Szegö�Kolmogorov formula:

(1.14)

By using (1.10)–(1.12), the Szegö limit theorem [18], and (1.14), the mean anisotropy (1.9) of the sta�
tionary Gaussian random sequence  may be computed in terms of the spectral density  and

�norm of the shaping filter G as

(1.15)

Mean anisotropy characterizes the spectral color of the signal, which is its divergence from the Gaus�
sian white noise sequence. In case of W is the white noise sequence, mean anisotropy is equal to zero, if
the signal is deterministic, its anisotropy equals to infinity. According to (1.15),  is completely deter�
mined by parameters of the shaping filter G, so we’ll use  instead of  in what follows (see details
in [1, 2]).

Let  be an output of the linear system , its transfer function  is analytic in the
disc  and has a finite �norm.

D e f i n i t i o n  16. For a given  the �anisotropic norm of the system  is defined by

(1.16)

which is interpreted as the maximum gain (the ratio of power norms of the output  and the input W)
against the class of shaping filters

The shaping filter , for which the supremum from (1.16) is reached, is called the worst�case shaping
filter, and the disturbance W, generated by this filter, is the worst�case input disturbance of the system F.

So, a�anisotropic norm  characterizes the robustness of the system F against the random distur�
bance W, uncertainty of its statistical properties is described by the parameter a.

2. PROBLEM STATEMENT. ANISOTROPY�BASED BOUNDED REAL LEMMA

Proceed to anisotropy�based analysis problem statement for descriptor systems. The system is given by
the following equations:
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mean and an identity covariance matrix by an unknown shaping filter G which belongs to the set

The problem is to check the condition  for the given system P, mean anisotropy level of the
input disturbance  and the scalar value .

Before formulating bounded real lemma for descriptor systems, we consider the following theorem.

Let a linear discrete�time stationary system  with �dimensional state vector , �dimen�
sional input signal  and �dimensional output  be given by

(2.3)

where , , ,  are known real matrices of appropriate dimensions, the matrix A is stable .

T h e o r e m  1 [12]. Let  be the system with a state�space representation (2.3) where ;
�anisotropic norm of the system F is strictly bounded by a given value , i.e.

if and only if there exists , such that the inequality

is true for the matrix , which is defined by stabilizing solution   of the following
Riccati equation:

 

To proof the main result it’s necessary to give the following theoretical results.
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 (2.5)

 (2.6)

such that

where  satisfies the inequality

(2.7)

P r o o f. The power norm ratio  on the right�hand side of (1.16) and the mean anisotropy

 in (1.15) are both invariant with respect to the shaping filter G. For the system P they are completely
specified by the normalized spectral density [12]:

(2.8)

then

 (2.9)

 (2.10)

where the function , defined by the Eq. (2.8) on the interval , takes values in the set of positive
defined Hermitian matrices of the order m and satisfies the condition

,

and the function  is given by the expression

(2.11)

Note that the squared functional  is linear on . The strict convexity of  follows from the
strict concavity of  considered on a convex cone of positive defined matrices [19]. The strict con�
vexity of  can also be obtained directly from the positive definiteness of its second variation

(2.12)

where  is the variation of , and  denotes the Frobenius norm of a matrix. In
the Eq. (2.12) we use the formula for computation of the first variation of the inverse nonsingular matrix

T Tˆ( ),L B RA qD C= Σ +

T T 1ˆ( ) ,mI B RB qD D −

Σ = − −

T ˆ 0,E RE ≥

22[0,min( , ))q P −−

∞

∈ γ

21 ln det((1 ) ) .
2

q a− − γ Σ ≥

/
2 2

PG G
( )GA

tr

2

2

( ) 2 ( )
( ) ,

( )

mS mS

G
S d

π

−π

ω π ω
Π ω = =

ν ν∫

1( ) ( ) ln det ( ) ,
4

G d

π

−π

= α Π = − Π ω ω

π
∫A

tr

1/2

2

2

1( ) ( ( ) ( ))
2

PG
d

G m

π

−π

⎛ ⎞
⎜ ⎟= ν Π = Λ ωΠ ω ω
⎜ ⎟π
⎝ ⎠

∫

( )Π ω [ , )−π π

tr ( ) 2d m

π

−π

Π ω ω = π∫

( )Λ ω

*ˆ ˆ( ) ( ) ( ).P PΛ ω = ω ω

2( )ν Π ( )Π ω ( )α Π

ln det( )⋅
( )α Π

tr2 1 1

21/2 1/2

1( ) ( ( ) ( ) ( ) ( ))
4

1 ( ) ( ) ( )
4

d

d

π

− −

−π

π

− −

−π

δ α Π = Π ω δΠ ωΠ ω δΠ ω ω
π

= Π ω δΠ ωΠ ω ω
π

∫

∫

( )δΠ ω ( )Π ω tr *1/2( )M M M=



34

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 54  No. 1  2015

ANDRIANOVA et al.

 and the property of matrix trace . The minimum value of the mean
anisotropy of the disturbance W should achieve the given level  for the power norm ratio

. (2.13)

By using the method of Lagrange multipliers, the first minimum in (2.13) is shown to be achieved at a
spectral density which is proportional to
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the function  is that it achieves its maximum with respect to  at the point  where, in view
of (2.19), it coincides with the function :

(2.21)

1 1 1( ) ( )− − −

δ Ξ = −Ξ δΞ Ξ trln det (ln )Ξ = Ξ

0γ >

2 2( ) ( )

1( ) ln det ( )maxmin
4

d

π

ν Π ≥ γ ν Π ≥ γ
−π

α Π = − Π ω ω

π
∫

1( ) ( ( )) ,q mS I q −

ω = − Λ ω

q 20 <q P −

∞

≤

( ) ( ), ( ) ( )q qq q= α Π = ν Π� �

( )α Π ( )ν Π

tr

2 ( )
( ) ,

( )

q
q

q

mS

S d

π

−π

π ω
Π ω =

ν ν∫

Λ

( )q� ( )q� q
1( ( ))−

γ� � 1( )−

γ�

( )q�
a

P ≤ γ
1( ( )) a−

γ ≥� �

/1( ) ( ( ) )m qI S q−

Λ ω = − ω

( )tr tr1 1 1( ) ( ) ( ) 1 ,
2 2

q qS d S d
m q m

π π

−π −π

⎛ ⎞
⎜ ⎟Λ ω ω ω = ω ω −
⎜ ⎟π π
⎝ ⎠

∫ ∫

( )q�

tr
2

1 1( ) .
2 1 ( )

qS d
m q q

π

−π

ω ω =

π −
∫ �

( )q�

( )( ) , ( ) ,q q q=� � �

21( , ) ln det ( ) ln(1 ).
4 2

q
mq S d q

π

−π

γ = − ω ω − − γ
π
∫�

2ln(1 )q− − γ /[0;1 )qγ ∈ ( , )q γ�

( , )q γ� q 1( )q −

= γ�
( )q�

1 1

20

( , ) ( ( ), ) ( ( )).max
q P

q − −

−
≤ <

∞

γ = γ γ = γ� � � �N



JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 54  No. 1  2015

CONDITIONS OF ANISOTROPIC NORM BOUNDEDNESS 35

The significance of this property for establishing a criterion for the inequality  is explained by

that (2.21) implies the equivalence between  and the existence of the parameter

, satisfying . Therefore,  if  for some .

The property (2.21) is verified by differentiating the function  from (2.20) with respect to its first
argument:

(2.22)

The function  is strictly monotonic, the representation (2.21) implies that  is positive

for  and negative for . It now remains to represent the inequality  for the
function (2.20) in the state space representation of the system P. We denote that (2.14) describes the para�
metric set of the worst�case spectral densities of the input disturbance W for the admissible values of .
Since the subsidiary variable  is fixed for the rest of the proof, we use the notation

(2.23)

where 

We will obtain a state�space representation of the worst�case disturbance  with a spectral density .
In view of (2.11), the Eq. (2.23) is equivalent to

 (2.24)

 (2.25)

Here  is the worst�case shaping filter. The Eq. (2.24) means, that the system  is the all�pass system.

Let  be a positive defined symmetric matrix, and the matrix  is such that the pair
 is admissible. We consider the input disturbance , which can be generated as

(2.26)

Find such matrices  and , for which the input disturbance  is the worst�case. The state�space rep�
resentation of the shaping filter  is

(2.27)

Since  is invertible, its inverse is described by
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The state�space realization of the closed�loop system  is

(2.29)

According to Lemma 2, there exists a matrix , satisfying the condition  such that

 (2.30)

 (2.31)

 (2.32)

As  is a positive defined symmetric matrix, from (2.30) and (2.31) we get

 (2.33)

 (2.34)

These equations coincide with the Eqs. (2.5) and (2.6).
The expression (2.32) may be brought to (2.4) if it is rewritten in the form

(2.35)

Since the worst�case input disturbance is described by (2.26), where  is a white noise sequence with

the identity covariance matrix and zero mean, the prediction error (1.12) takes the form 
and, hence, . Therefore, in combination with the Szegö�Kolmogorov formula (1.14), we
find

By substituting this equation in (2.20), we obtain

Hence, the condition  is equivalent to the inequality (2.7) for the matrix , associated with
generalized Riccati Eqs. (2.4)–(2.6). This completes the proof.

3. NUMERICAL EXAMPLE

Consider the system (2.1) with the following parameters
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The system is admissible,  the second rank condition holds. �norm  of the
transfer function is equal to 6.8364.

To satisfy the conditions of Theorem 2 the value of parameter  should lie in interval

 for the given mean anisotropy level a and parameter , where , and

the inequality  should be true for the matrix .

Consider numerical experiments for different values of .

For a = 0.1 the following results are obtained (see table). The exact value of anisotropic norm is

As we can see, the conditions of theorem 2 are satisfied for . For  the conditions get

broken not only on , but also on .

Therefore, the conditions of the theorem 2 can be used for anisotropic norm computation with any set
accuracy.

CONCLUSIONS

Anisotropy�based bounded real lemma for descriptor systems defines the conditions on anisotropic
norm boundedness for admissible descriptor systems. These conditions consist of solvability of general�
ized Riccati equation under the inequality constraint. Note that obtained conditions are equivalent to the
conditions from [12] for ordinary systems when . The anisotropy�based bounded real lemma for
descriptor systems can be useful for the anisotropic norm computation with given accuracy and for solving
suboptimal control design problem.
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