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Abstract.  We study the asymptotic behavior of the number of paths of length 
N on several classes of infinite graphs with a single special vertex. This vertex 
can work as an ‘entropic trap’ for the path, i.e. under certain conditions the 
dominant part of long paths becomes localized in the vicinity of the special point 
instead of spreading to infinity. We study the conditions for such localization 
on decorated star graphs, regular trees and regular hyperbolic graphs as a 
function of the functionality of the special vertex. In all cases the localization 
occurs for large enough functionality. The particular value of the transition 
point depends on the large-scale topology of the graph. The emergence of 
localization is supported by analysis of the spectra of the adjacency matrices of 
corresponding finite graphs.
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1.  Introduction

In this paper we study the asymptotic behavior of the total number of paths of length 
N on several classes of regular graphs. We call this a ‘path counting’ (PC) problem, as 
opposed to the more usual ‘random walk’ (RW) problem, which studies the distribu-
tion of the end points of symmetric random walks on graphs. The dierence between 
PC and RW problems lies in the dierent normalizations of the elementary step: for the 
former all steps enter in the partition function with the weight one, while for symmetric 
RW problems, the step probability depends on the vertex degree, p: the probability to 
move along each graph bond equals p−1. For graphs with a fixed vertex degree, the PC 
partition function and the RW probability distribution only dier by the global nor-
malization constant, and the corresponding averages are indistinguishable. However, 
for inhomogeneous graphs the distinction between PC and RW problems is crucial: in 
the former ‘entropic’ localization of the paths may occur, while it never happens for 
the latter. The distinction between PC and RW problems, and the entropic localization 
phenomenon were first reported for self-similar structures in [1] and later were redis-
covered for star graphs in [2]. More recently, this phenomenon was studied for regular 
lattices with defects in [3], where the authors introduced the notion of the ‘maximal 
entropy random walk’, which is essentially identical to our PC problem.

Following [2], we begin with star-like discrete graphs, G, i.e. a union of p discrete 
half-lines joined together in one point (the root), see figure 1(a). This model was dis-
cussed in [2]. Regard all N-step discrete trajectories on G, and define ZN(x), the total 
number of trajectories starting from the root of the graph and ending at distance x  =  0, 
1, 2,... from the root (regardless of which branch the path ends at). One can consider 
ZN(x) as the partition function of an ideal polymer chain with N links and one end fixed 
in the root of the graph G and the other end anywhere. Given the partition function 
ZN(x), one can define the corresponding averages:
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〈
x2(N | p)

〉
=

∞∑
x=0

x2ZN(x| p)
∞∑
x=0

ZN(x| p)
.� (1)

Straightforward computations [2] show that the asymptotic behavior of 〈x2(N | p)〉 at 
N → ∞ for large N depends drastically on the number of branches, p, in the star-like 
graph G. Indeed,

〈
x2(N | p)

〉
N→∞ → f( p)×

{
O(N), p = 1, 2;

O(1), p = 3, 4, ...� (2)

where f( p ) is some positive function that depends solely on p and does not depend on 
N. In other words, for p  =  1, 2 (the half-line and the full line) the trajectories on aver-
age diverge from the origin with a typical distance that is proportional to 

√
N , as one 

would naturally expect for a regular RW. Further, for p  >  2 the trajectories on average 
stay localized in the vicinity of the junction point.

To understand this behavior qualitatively, note that the recursion relation connect-
ing ZN(x| p) with ZN+1(x| p) depends crucially on whether x is the root point (x  =  0). 
Indeed, for each trajectory of length N ending at a point x � 1 there are exactly two 
possible ways to add the (N  +  1)th step, and thus each such path ‘gives birth’ to two 
paths of length (N  +  1). In contrast to that, for each N-step path which ends at x  =  0, 
there are p dierent ways of adding a new step. Therefore, p  >  2 passing to x  =  0 
becomes entropically favorable, and the root point plays the role of an eective ‘entro-
pic trap’ for trajectories.

Let us emphasize that this peculiar behavior of the partition function (as a function 
of p) is specific to the path-counting problem, and manifests itself in the equilibrium 
(combinatoric) computations of ideal polymer conformational statistics. In contrast to 
this, one can think of a closely related non-equilibrium problem, namely the calculation 
of a probability distribution, PN(x| p), for the end-to-end distance of an N-step RW 
on the star graph of p branches. In this case, the probability distribution, due to the 
normalization condition, should be integrated into 1 on each step, which leads to the 
obvious normalization of PN(x ,p):

Figure 1.  Star-like graph with p  =  3 branches. In panel (a) we enumerate the 
trajectories and each step carries a weight 1. In panel (b) the local transition 
probabilities satisfy the conservation condition in each vertex.

https://doi.org/10.1088/1742-5468/aa680a
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∞∑
x=0

PN(x| p) = 1 for any N.� (3)

Therefore, the entropic advantage of staying at the origin is compensated by the fact 
that the possible steps from the origin have probability p−1 instead of 1/2. In other 
words, if in the PC problem all trajectories have equal weights 1, in the RW problem 
the trajectories have weights 2−(N−n)p−n, where n is the number of returns to the point 
x  =  0, varying from path to path. It is easy to see that in the RW problem

lim
N→∞

〈x2(N | p)〉
N

= lim
N→∞

1

N

∞∑
x=0

x2PN(x| p) = const > 0,� (4)

regardless of the value of p.
Qualitative arguments supported by exact computations for specific models demon-

strate that entropic localization occurs in PC in inhomogeneous systems with broken 
translational invariance. On uniform trees there are no entropically favorable vertices 
and PC does not exhibit any localization transitions [4]. However, as we shall see below, 
localization is a topology-dependent phenomenon and occurs in decorated graphs.

This paper is organized as follows. In section 2 we consider finite tree-like regular 
graphs with a special vertex (entropic trap) at the origin, and compute the asymptot-
ics of the partition function based on the spectral properties of the graph adjacency 
matrix. We show, however, that this approach has some limitations: even if we increase 
the size of the tree to infinity we cannot capture a non-localized solution properly. This 
is not surprising: a finite tree of any size has a non-vanishing fraction of nodes with the 
degree ‘1’ (terminal ‘leaves’). In turn, an infinitely large tree does not have such verti-
ces, and therefore not all of its properties can be recovered by studying the sequence of 
increasing finite graphs. To resolve this problem, in section 3 (which plays the central 
role in this paper) we study infinite tree-like graphs with a special vertex, and show 
that, depending on the functionality of the vertex, a transition between the localized 
and delocalized states does indeed exist. In section 4, we generalize the results for two 
other families of graphs with a special entropically attractive point (we call these two 
families ‘decorated star graphs’ and ‘regular hyperbolic graphs’). In the final section we 
summarize and discuss the obtained results and formulate some open questions.

2. Path counting on finite tree-like graphs

Consider an arbitrary graph G with the adjacency matrix BG. It is easy to see that the 
partition function ZN described above can easily be expressed in terms of BG. Indeed, 

the matrix elements of BN
G〈

i|BN
G | j

〉
� (5)

enumerate walks of length N starting in vertex j and ending in vertex i. Therefore, e.g., 
the total number of paths starting at the ith vertex and ending at a distance x from it, 

Z
(i)
N (x), equals the sum of the matrix elements over all j with a given distance x from i

https://doi.org/10.1088/1742-5468/aa680a
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Z
(i)
N (x) =

∑
j:dist (i,j)=x

〈
i|BN

G | j
〉
.

� (6)

Clearly, this means that the asymptotic behavior of ZN is controlled by the largest 
eigenvalue of BG, λmax (G). More precisely, in the large N limit

logZN(x) ≈ N log λmax (G) + o(N).� (7)

Note that for bimodal graphs there is always a symmetrical pair of the largest eigen-
values ±λmax (G), and as a result ZN(x) alternates between the value prescribed by (7) 
for even (N  +  x) and 0 for odd (N  +  x). In what follows this trivial alternating behavior 
will appear recurrently and will not be mentioned specifically.

As a particular example of G, consider a regular branching tree-like graph with 
p0 branches coming out of the origin, and p branches coming out of any other ver-
tex (as we are interested in a possible localization at the origin, we suppose p0 � p). 
The maximum number of generations is n. The number of vertices in such a graph 
grows exponentially with n, so direct analysis of its spectrum might seem challenging. 
However, it turns out that one can simplify the problem drastically by exploiting the 
symmetries of G. Indeed, according to [5, 6] the set of eigenvalues of BG coincides with 

the set of eigenvalues of a tri-diagonal symmetric matrix An with elements a
(n)
ij , which 

are defined as follows:



a
(n)
i,i = 0

a
(n)
n,n−1 = a

(n)
n−1,n =

√
p0

a
(n)
i,i−1 = a

(n)
i−1,i =

√
p− 1; (i = 2, ..., n− 1).

� (8)

The eigenvalues of j × j submatrices correspond to multiply degenerated eigenvalues of 
BG (the multiplicity of eigenvalues equals the number of vertices at the generation n  −  j 
of the tree from the root point). The corresponding eigenvectors are localized on the 
outer branches, vanishing exactly at the lowest n  −  j generations, and take alternating 
values at the adjacent outer sub-branches. The eigenvalues of the whole matrix An are 
non-degenerate and their eigenvectors span the whole tree. It follows immediately that 
the largest eigenvalue of BG, which is of crucial importance for estimating the asymp-
totics of ZN, is an eigenvalue of the matrix An itself: indeed, its eigenvector should be 
positively defined. Thus, studying the spectrum of an exponentially large matrix BG is 
reduced to studying a similar small and simple matrix An, which can easily be treated 
both numerically (see figure 3) and analytically.

The characteristic polynomial Pn( p0, p) for the matrix An satisfies the recursion 
relation [7]:



Pn( p0, p) = λPn−1( p0, p)− ( p− 1)Pn−2( p0, p);

P0( p0, p) =
p0
p−1

;

P1( p0, p) = λ.
� (9)

This system is easy to solve if one looks for Pn( p0, p) in the form

Pn( p0, p) = C+µ
n
+ + C−µ

n
−,� (10)

giving

https://doi.org/10.1088/1742-5468/aa680a
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µ± =
λ±

√
λ2 − 4( p− 1)

2
,� (11)

and

C± =
p0

2( p− 1)
∓ λ( p0 − 2( p− 1))

2( p− 1)
√

λ2 − 4( p− 1)
.� (12)

It is easy to see that the resulting equation Pn( p0, p) = 0 is even with respect to λ. 
To solve it, define a new variable φ by

λ = ±2
√

p− 1 coshφ,� (13)

where |λ| � 2
√
p− 1 corresponds to real φ and λ < 2

√
p− 1—to purely imaginary φ. 

Then

µ± =
√

p− 1e±φ,

C± =
p0

2( p− 1)
± p0 − 2( p− 1)

2( p− 1) tanhφ
,

�
(14)

and the equation Pn( p0, p) = 0 becomes

tanhnφ =
p0

p0 − 2( p− 1)
tanhφ,� (15)

which for any n has many imaginary solutions and a single real one, which corresponds 

to λ
(n)
max. The limit of this solution for n → ∞ is

λmax = lim
n→∞

λ(n)
max =

p0√
p0 − p+ 1

.� (16)

Therefore, we conclude that on any large but finite tree the number of trajectories 
in the N → ∞ limit behaves asymptotically as (see equation (7))

ZN(x, p, p0, n) ∼ (λmax)
N =

(
p0√

p0 − p+ 1

)N

.� (17)

This result, however, looks a bit strange after close examination: for a partition func-
tion on an infinite tree there is (for p0 � p) a lower bound

ZN(x, p, p0, n = ∞) � pN .� (18)

Indeed, at each step there are at least p dierent directions to go in, which seems to 
contradict (17) for p < p0 < p̄0 = p2 − p. This apparent discrepancy is, of course, due 
to the order of taking limits n → ∞ and N → ∞. In a system with large but finite n 
there is always a finite fraction of terminal nodes (‘leaves’ of the tree) with degree ‘1’, 
violating the reasoning behind (18). In turn, in a system with infinite n, as we show in 
the next section, there exists an additional eigenvalue of the adjacency matrix equal to 
p, corresponding to a density wave spreading with finite velocity from the root point to 
infinity. Depending on which of the two eigenvalues—the one given by (16), or this new 
one, λ = p—is maximal, the partition function of the infinitely large system is either 
localized or delocalized, respectively.

https://doi.org/10.1088/1742-5468/aa680a
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3. Localization of trajectories on an infinite tree with a ‘heavy’ root

Consider the same graph G that is defined above (see figure 2), but with an infinitely 
large number of generations n. We begin by writing the explicit recursion relation for 
the partition function, ZN(x), enumerating all N-step paths on G, starting at the origin 
and ending at some distance x from it:



ZN+1(x) = ( p− 1)ZN(x− 1) + ZN(x+ 1), x � 2

ZN+1(x) = p0ZN(x− 1) + ZN(x+ 1), x = 1

ZN+1(x) = ZN(x+ 1), x = 0

ZN(x) = 0, x � −1

ZN=0(x) = δx,0,

� (19)

where x is the distance from the root of the Cayley graph G, measured in the number 
of generations of the tree.

In order to solve this set of equations [8, 9] we make a shift x → x+ 1, and substitute

ZN(x) = ANBxWN(x).� (20)

with A = B =
√
p− 1. This substitution allows us to symmetrize the original equation, 

which in terms of W now takes the form



WN+1(x) = WN(x− 1) +WN(x+ 1) + p0−p+1
p−1

δx,2 WN(x− 1), x � 1

WN(x) = 0, x = 0

WN=0(x) = δx,1√
p−1

.

�

(21)

Note that this equation can be written in matrix form,

WN+1 = T WN ; W0 = (( p− 1)−1/2, 0, . . . )ᵀ,� (22)

where the transfer matrix T is an infinite tri-diagonal matrix

Figure 2.  Image of a regular p-branching Cayley tree with p0 branches at the 
origin x  =  0. The particular case of a tree with p  =  3,n  =  3 is shown.

https://doi.org/10.1088/1742-5468/aa680a
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T =




0 1 0 0 . . .
p0
p−1

0 1 0 . . .

0 1 0 1 . . .

0 0 1 0 . . .




,� (23)

whose nth main minors are almost equal to 
√
p− 1An.

Introducing the generating function

W(s, x) =
∞∑

N=0

WN(x)s
N

(
WN(x) =

1

2πi

∮
W(s, x)s−N−1 ds

)
� (24)

and its sine Fourier transform

W̃(s, q) =
∞∑
x=0

W(s, x) sin qx

(
W(s, x) =

2

π

∫ π

0

W̃(s, q) sin qx dq

)
,� (25)

one obtains from (21)

W̃(s, q)

s
− sin q

s
√
p− 1

= 2 cos q W̃(s, q) +
2

π

p0 − p+ 1

p− 1
sin 2q

∫ π

0

W̃(s, q) sin q dq.

�

(26)

Rewriting (26) as

W̃(s, q) =
1√
p− 1

sin q

1− 2s cos q
+

2s( p0 − p+ 1)

π( p− 1)

sin 2q

1− 2s cos q

∫ π

0

W̃(s, q) sin q dq,

�

(27)

and multiplying both sides of (27) by sin q and integrating over q, q ∈ [0, π] , one arrives 
at an algebraic equation for

I(s) =

∫ π

0

W̃(s, q) sin q dq,� (28)

namely

I(s) =
1√
p− 1

∫ π

0

sin2 q

1− 2s cos q
dq + I(s)

2s( p0 − p+ 1)

π( p− 1)

∫ π

0

sin q sin 2q

1− 2s cos q
dq.

�

(29)

The solution of this equation reads

I(s) =

1√
p−1

∫ π

0
sin2 q

1−2s cos q
dq

1− 2s( p0−p+1)
π( p−1)

∫ π

0
sin q sin 2q
1−2s cos q

dq
=

π
√
p− 1

(
1−

√
1− 4s2

)

4s2( p− 1)− ( p0 − p+ 1)
(
1−

√
1− 4s2

)2 .

�

(30)

Substituting I(s) into (27), and performing the inverse Fourier transform, we arrive at 
the following explicit expression for the generating function W(s, x):

W(s, x) =
2

π

∫ π

0

W̃(s, q) sin qx dq

=
1

s
√
p− 1

(
1−

√
1− 4s2

2s

)x
(
1 +

2( p0 − p+ 1)
(
1−

√
1− 4s2

)

4s2( p− 1)− ( p0 − p+ 1)
(
1−

√
1− 4s2

)2
)
.

� (31)

https://doi.org/10.1088/1742-5468/aa680a
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Since, by definition, ZN(x) = ANBxWN(x) (see (20)), we can write down the relation 
between the generating functions of ZN(x) and of WN(x):

Z(σ, x) =
∞∑

N=0

ZN(x)σ
N =

∞∑
N=0

ANBxWN(x)σ
N = BxW(σA, x).� (32)

Thus,

Z(σ, x| p, p0) = ( p− 1)x/2W(σ
√

p− 1, x),� (33)

where W(σ
√
p− 1, x) is given by (31), where we should substitute σ

√
p− 1 for s. Thus, 

the grand partition function, Z(σ, x| p, p0), of the initial PC problem reads

Z(σ, x| p, p0) =
2p0σ

(
1−
√

1−4σ2( p−1)

2σ

)x

2σ2p0( p− 1)− ( p0 − p+ 1)
(
1−

√
1− 4σ2( p− 1)

) .� (34)

The partition function, Z̄(N | p, p0), of all paths starting at the origin, can be obtained 
by the summation over x:

Z̄(σ| p, p0) =
∞∑
x=0

Z(σ, x| p, p0).� (35)

Straightforward computations lead us to the following result

Z̄(σ| p, p0) =
4p0σ

2
(
1−

√
1− 4σ2( p− 1)

)
[
2σ − 1 +

√
1− 4σ2( p− 1)

] [
2σ2p0( p− 1)− ( p0 − p+ 1)

(
1−

√
1− 4σ2( p− 1)

)] .

� (36)To extract the asymptotic behavior of the partition function

Z̄N( p, p0) =
1

2πi

∮
Z̄(σ| p, p0)σ−N−1dσ� (37)

as a function of N, one should analyze the behavior of Z̄(σ| p, p0) (see equation (36)) at 
its singularities. There are three of them, namely

σ1 =
1

2
√
p− 1� (38)

for a branching point of the square root, and

σ2 =
1

p
, σ3 =

√
p0 − p+ 1

p0
� (39)

for zeroes of the first and second factors in the denominator of (36), respectively. The 
asymptotic behavior is governed by the dominant singularity, i.e. the one with the 
smallest absolute value. It is instrumental to compare these singularities with the 
eigenvalues of the corresponding finite-size problem discussed in the previous section. 
Indeed, σ3 is nothing but the λ−1

max given by equation (16), while σ1 corresponds to the 
border of the quasi-continuous spectrum shown in figure 3, and σ2 is, as discussed at 

https://doi.org/10.1088/1742-5468/aa680a
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the end of the previous section, the solution that runs away from the origin, and is 
therefore unavailable in the finite-system case.

Since σ1 > σ2 for any p � 3 regardless of the value of p0, the square-root singularity 
never dominates. In turn, σ3 equals σ2 at the critical value p0 defined by the equation:

p̄0 = p2 − p.� (40)
For p0 < p̄0 the singularity at σ2 gives the dominant contribution to the partition func-
tion and in the large N limit the total number of paths scales as

Z̄(N | p, p0)
∣∣
N�1

≈ σ−N
2 = c( p, p0) p

N ,� (41)

where c(p,p0) is N-independent. The behavior of Z̄(N � 1| p, p0) in equation (41) should 
be compared to that for p0  =  p, where Z̄(N | p, p0 = p) = pN for any N (for p0  =  p there 
are always exactly p dierent ways to add an Nth step to any (N  −  1)-step trajectory). 
We see that in this regime the root essentially has no influence on the asymptotics of a 

partition function, and any typical N-step trajectory ends at a distance x̄ = p−2
p
N  from 

the origin. Since there are always more possibilities to go away from the origin than 
to go back to it, there is a finite drift, with Gaussian fluctuations of order ∆x ∼

√
N  

around the mean value of x̄. We refer the reader to [4], where the statistics of the tra-
jectories on regular Cayley trees are discussed in detail.

In contrast to this, for p0 > p̄0 the large-N scaling of the number of paths depends 
significantly on p0:

Z̄(N | p, p0) ≈ σ−N
3 ∼

(
p0√

p0 − p+ 1

)N

,� (42)

which is a signature of localization. Indeed, the very fact that the partition function 
depends on p0 for any N indicates that typical trajectories return to the origin for any 
N. To obtain a better understanding of the typical behavior of trajectories, we insert 
the critical value σ3 into (34), which results in the following x-dependence of the parti-
tion function

Z(N, x| p, p0) ≈ σ−N
3 ∼

(
p0√

p0 − p+ 1

)N (
p− 1√
p0 − p

)x

.� (43)

Figure 3.  Spectral density of the matrix A1000 (a) the localization transition, (b) 
at the transition point and (c) in the localized phase. The red line indicates λ = p.
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Equation (43) indicates the exponential decay of Z(N, x| p, p0) as a function of x. That 
behavior (as well as equation (40)) is confirmed by direct iterations of equation (19) for 
p  =  5 and p0  =  17 (below the localization transition point), and p0  =  20 (at the trans
ition point) and p0  =  22 (in the localized phase), see figure 4. Note that exactly at the 
transition point p0 = p̄0 the distribution of the the trajectory endpoint is approximated 
nicely by the Fermi–Dirac distribution.

4. Path counting on decorated star graphs and regular hyperbolic graphs

Here we aim to generalize the above results for two classes of more general graphs. One 
class, called a ‘decorated star graph’, is shown in figure 5(a), it consists of p0 bundles, 
such that each bundle has an overall linear topology, but all vertices in the bundle 
have functionality p. The second class is a class of ‘regular hyperbolic graphs’ with a 
special point at the origin (see figure 5(b)). Here, once again, p0 bonds originate from 
the root and each vertex except the root has functionality p. However, among p bonds 
originating from a node at distance x from the root, one bond is going ‘down’ to a 
point at distance (x  −  1), (p  −  b  −  1) are going ‘up’ to points at distance (x  +  1) and b 
‘horizontal’ bonds connect the node with others at the same distance x from the origin.

Figure 4.  The distribution of the the trajectory endpoint ρ(ZN(x)) =

Z(N, x|p, p0)
[
Z̄(N |p, p0)

]−1
 as a function of x (a) below the localization transition, 

(b) at the transition point (inset: the numerical results are fitted by the Fermi–
Dirac distribution with the Fermi energy eF = x̄ = p−2

p
N ) and (c) in the localized 

phase (inset: in the logarithmic scale).

Figure 5.  Decorated star graphs. (a) Simplest decorated star graph with p0  =  p  =  3. 
(b) Generic decorated graph with p0  =  10, p  =  5 and b  =  2.
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Clearly, the star graphs considered in the introduction are decorated stars with 
p  =  2, while the regular trees with heavy roots considered in sections 2 and 3 are regu-
lar hyperbolic graphs with b  =  0. In this section we aim to understand how the addi-
tional parameters—p in the first case and b in the second one—influence the position 
of the localization transition. Since the mathematical structure of these two problems 
is extremely similar, we discuss them in parallel.

First consider a decorated star graph. For such a graph, the partition function, 
ZN(x), of all N-step paths starting at the origin and ending at some distance x from the 
root (regardless of which branch it is on), satisfies the recursion (compare with (19)):




ZN+1(x) = ZN(x− 1) + ( p− 1)ZN(x+ 1), x = 2k + 1 (k � 1)

ZN+1(x) = ( p− 1)ZN(x− 1) + ZN(x+ 1), x = 2k (k � 1)

ZN+1(x) = p0ZN(x− 1) + ( p− 1)ZN(x+ 1), x = 1

ZN+1(x) = ZN(x+ 1), x = 0

ZN(x) = 0, x � −1

ZN=0(x) = δx,0.

�
(44)

The results of the direct iterations of (44) presented in figure 6 show that, depending on 
the values of the vertex degrees, p and p0, localization of the trajectories may or may 
not exist: one clearly sees a dierent behavior of Z(N, x| p, p0) as a function of x for a 
few values of p0 above and below the transition point, p̄0 = p.

As previously discussed in section 2, half of the values of the partition function 
ZN(x) (those corresponding to odd values of (N  +  x)) equal zero. Therefore, without loss 
of information, one can replace ZN(x) by VN( y ), defined as follows:

{
VN(y) = ZN(2y − 1) + ZN(2y), k � 1

VN(0) = ZN(0).
� (45)

This new partition function VN(k) satisfies



VN+1(k) = VN(k − 1) + ( p− 2)VN(k) + VN(k + 1), k > 1

VN+1(k) = p0VN(k − 1) + ( p− 2)VN(k) + VN(k − 1), k = 1

VN+1(k) = VN(k + 1), k = 0

VN(k) = 0, k � −1

VN=0(k) = δk,0.

� (46)

Figure 6.  The distribution of the the trajectory endpoint ρ(ZN(x)) = 

Z(N, x| p, p0)
[
Z̄(N | p, p0)

]−1
 as a function of x (a) below the localization transition, 

(b) at the transition point and (c) in the localized phase (inset: in the logarithmic 
scale).
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It turns out that this set of equations is nothing but the set of equations describing the 
PC problem on regular hyperbolic graphs, as defined above for the particular case of 
b  =  p  −  2.

Indeed, writing the recursion relation for a regular hyperbolic graph explicitly, one 
obtains:



ZN+1(x) = ( p− b− 1)ZN(x− 1) + bZN(x) + ZN(x+ 1), x > 1

ZN+1(x) = p0ZN(x− 1) + bZN(x) + ZN(x− 1), x = 1

ZN+1(x) = ZN(x+ 1), x = 0

ZN(x) = 0, x � −1

ZN=0(x) = δx,0.

�

(47)

In what follows we solve the more general case of equation (47), and then obtain the 
result for decorated star graphs when substituting b  =  p  −  2 in the final expression. The 
solution below is completely analogous to what is presented above in section 3. Making 
a shift x → x+ 1 and symmetrizing (47) by substitution:

ZN(x) = ( p− b− 1)N/2( p− b− 1)x/2WN(x)� (48)

results in


WN+1(x) = WN(x− 1) +WN(x+ 1) b√
p−b−1

WN(x)

+ p0−( p−b−1)
p−b−1

δx,2 WN(x− 1)− b√
p−b−1

δx,1 WN(x), x � 1

WN(x) = 0, x = 0

WN=0(x) = δx,1√
p−b−1

.

�

(49)

Performing the sine Fourier transform for the generating function (similarly to (24) and 
(25)), we obtain an integral equation

W̃(s, q)

s
− sin q

s
√
p− b− 1

= (2 cos q + B) W̃(s, q) +
2

π
[A sin 2q − B sin q]

∫ π

0

W̃(s, q), sin q dq

� (50)
where

W̃(s, q) =
∞∑
x=0

W(s, x) sin qx, W(s, x) =
∞∑

N=0

WN(x)s
N

� (51)

and

A =
p0 − ( p− b− 1)

p− b− 1
, B =

b√
p− b− 1

.� (52)

Expressing W̃ from (50) and integrating over q, q ∈ [0, π] with the weight sin q, we 
obtain

I(s) =

∫ π

0

W̃(s, q) sin q dq =
1√

p− b− 1

∫ π

0

sin2 q

1− 2s cos q − Bs
dq

+
2s

π
I(s)

[
A

∫ π

0

sin q sin 2q

1− 2s cos q − Bs
dq − B

∫ π

0

sin2 q

1− 2s cos q − Bs
dq

]
.

�

(53)
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The solution of (53) reads

I(s) =
π
√
p− b− 1

(
1− Bs−

√
(1− Bs)2 − 4s2

)

4s2 − A
(
1− Bs−

√
(1− Bs)2 − 4s2

)2

+ 2Bs
(
1− Bs−

√
(1− Bs)2 − 4s2

) .

� (54)
Performing the inverse Fourier transform, one obtains an explicit expression for the 
generating function W(s, x):

W(s, x) =
2

π

∫ π

0

W̃(s, q) sin qx dq

=
1

s2
√
p− b− 1

(
1− Bs−

√
(1− Bs)2 − 4s2

2s

)x [
1 +

2

π

√
p− b− 1 I(s)(2A− Bs)

]
.

� (55)
Finally, continuing in a way that is analogous to the procedure in section 3, we 

obtain an explicit expression for the generating function Z(σ| p, p0) of all paths of 
length N:

Z̄(σ| p, p0) ≡
∞∑
x=0

( p− b− 1)x/2W(σ
√
p− b− 1, x)

=
1

σ( p− b− 1)

1

2σ − 1 + bσ +
√
(1− bσ)2 − 4σ2( p− b− 1)

×
[
1 +

2

π
I(σ

√
p− b− 1)

(
2
p0 − ( p− b− 1)

p− b− 1
− b

)]
.

�

(56)

This function once again has three singularities: the branching point of the square 
root (56):

σ1 =
1

b+ 2
√
p− b− 1

,� (57)

corresponding to the border of the continuous spectrum, the zero of the denominator 
of (56)

σ2 =
1

p
,� (58)

corresponding to the spreading wave solution, and the third singularity, σ3, corre
sponding to the zero of the denominator of I(σ

√
p− b− 1) (see (54)), which corresponds 

to the localized solution. Substituting σ2 into equation for σ3 provides the condition 
for a critical value of p0 that separates the localized and delocalized regimes for regular 
hyperbolic graphs, which is

p̄0 = p( p− b− 1)� (59)
for decorated star graphs b  =  p  −  2, and this condition reduces to a simple p̄0 = p, in 
full agreement with the numerical simulations presented above, while for a tree-like 
graph (G) with b  =  0, (59) reduces to (40).
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It seems interesting to compare the statistics for the trajectories on the simplest 
star-like graph, G, shown in the figure 1(a) with those for the trajectories on the deco-
rated one, Gd, depicted in the figure 5(a). The mean-square displacement of the end 
of the N-step path on a single branch of G and of Gd scales as 

√
N  in both cases (with 

dierent numeric coecients). Further, the trajectories on the graph G are localized for 
p0 � 3, and on the decorated graph Gd the localization occurs at p0 � 4 (for p0  =  3 the 
paths on Gd are delocalized).

5. Discussion

In this paper we study the localization properties for a PC problem for several classes 
of regular graphs with a single special vertex (trees with a ‘heavy’ root, decorated stars 
and regular hyperbolic graphs). Generalizing the argument of [2], we show that in all 
these cases a special vertex with a functionality that is larger than that of the regular 
ones works as an entropic trap for the paths on the graph, and may lead, if the trap is 
strong enough, to path localization.

We use two dierent techniques, studying the spectral properties of the graph 
adjacency matrix for finite graphs and the singularities of the grand canonical parti-
tion function for infinite graphs. In our opinion, parallel consideration of these two 
approaches has significant methodological value in itself, allowing the reader to see the 
similarity of these methods, and the ways in which the same values can be interpreted 
in two dierent languages.

To the best of our knowledge, the results presented in this paper add some new 
flavor to path localization on inhomogeneous graphs and networks, and they are cer-
tainly an addition to the long-standing theory of localization in disordered systems, 
whose development goes all the way back to the works of I M Lifhsitz [10, 11].

There are a variety of problems in the physics of disordered systems and inho-
mogeneous media whose solutions (e.g. the solutions of corresponding hyperbolic or 
parabolic equations, or the leading eigenvectors of corresponding operators, etc) are 
localized in the vicinity of some spatial regions. Similar localization problems are often 
studied in polymer physics, where they correspond to a polymer chain being adsorbed 
at some specific location in space, e.g. point-like defects of texture within some par
ticular region of space, or in the vicinity of interfaces. Most commonly, the reason for 
such localization is energetic: it is due to some attractive force between a localized 
particle or polymer chain and the absorbing substrate.

The situation described in this paper belongs to a class of problems for which the 
origin of localization is purely entropic, with its cause being exclusively geometric. 
Among similar problems discussed in the literature are, first of all, the localization of 
ideal polymer chains on regular lattices with defects, as discussed in [3], and the trap-
ping of RWs in inhomogenious media [12, 13]. Similar situations are also widely dis-
cussed in spectral geometry, where the solutions of Laplace or Helmholtz equations in 
regions of complex shape (e.g. obtained by gluing together several simple shapes) are 
studied. The principal question there involves determining the conditions on the local-
ization of wavefunctions in these complex regions [14].
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Although it has a slightly dierent probabilistic setting, the phase transition on reg-
ular graphs was discussed recently in [15], where the authors described the exit bound-
ary of RWs on homogeneous trees exhaustively. They showed that the model exhibits 
a phase transition, manifested in the loss of ergodicity of a family of Markov measures, 
as a function of the parameter, which controls the local transition probabilities on the 
tree. We plan to analyze whether the transition found in [15] has a direct relation to 
the transition described in our paper.

We would like to make one last remark concerning the results obtained above. 
It can be seen from our results that the conditions for localization to occur depend 
significantly on the overall geometry of the graph. Indeed, on decorated star graphs it 
is sucient to have p0  >  p to obtain localization, while on tree-like graphs one needs 
p0 > p( p− 1) ∼ p2 in order for trajectories to be localized. Accordingly, it remains 
unclear whether it is possible to push the transition value p̄0 below p by changing the 
graph geometry, so that localization will even occur on a graph where all the vertices 
have the same degree, p. One possible candidate for such a localization might be a 
regular random graph (i.e. a random graph whose vertices all have the same degree, 
p); by chance, on such graphs there is a small (order one) number of short cycles. In 
principle, it is conceivable that these cycles work as entropic traps in a similar way to 
that discussed here. The localization on a family of specially prepared random regular 
graphs with an enriched fraction of short loops was recently studied in [16, 17].
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