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ITISE 2017 Preface

Preface

We are proud to present the set of final accepted papers for the fourth edition of the ITISE
2017 conference ”International work-conference on Time Series” held in Granada (Spain) during
September, 18-20, 2017.

The ITISE 2017 (International work-conference on Time Series) seeks to provide a discussion
forum for scientists, engineers, educators and students about the latest ideas and realizations in
the foundations, theory, models and applications for interdisciplinary and multidisciplinary re-
search encompassing disciplines of computer science, mathematics, statistics, forecaster, econo-
metric, etc, in the field of time series analysis and forecasting.

The aims of ITISE 2017 is to create a friendly environment that could lead to the establish-
ment or strengthening of scientific collaborations and exchanges among attendees, and therefore,
ITISE 2017 solicits high-quality original research papers (including significant work-in-progress)
on any aspect time series analysis and forecasting, in order to motivating the generation, and
use of knowledge and new computational techniques and methods on forecasting in a wide range
of fields.

The list of topics in the successive Call for Papers has also evolved, resulting in the following
list for the present edition:

1. Time Series Analysis and Forecasting.

• Nonparametric and functional methods

• Vector processes

• Probabilistic Approach to Modeling Macroeconomic Uncertainties

• Uncertainties in forecasting processes

• Nonstationarity

• Forecasting with Many Models. Model integration

• Forecasting theory and adjustment

• Ensemble forecasting

• Forecasting performance evaluation

• Interval forecasting

• Econometric models

• Econometric Forecasting

• Data preprocessing methods: Data decomposition, Seasonal adjustment, Singular
spectrum analysis, Detrending methods, etc.

2. Advanced method and on-Line Learning in time series.

• Adaptivity for stochastic models

• On-line machine learning for forecasting

• Aggregation of predictors

• Hierarchical forecasting

• Forecasting with Computational Intelligence

• Time series analysis with computational intelligence
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• Integration of system dynamics and forecasting models

3. High Dimension and Complex/Big Data.

• Local Vs Global forecast

• Techniques for dimension reduction

• Multiscaling

• Forecasting Complex/Big data

4. Forecasting in real problem.

• Health forecasting

• Telecommunication forecasting

• Modelling and forecasting in power markets

• Energy forecasting

• Financial forecasting and risk analysis

• Forecasting electricity load and prices

• Forecasting and planning systems

• Real time macroeconomic monitoring and forecasting

• Applications in: energy, finance, transportation, networks, meteorology, health, re-
search and environment, etc.

After a careful peer review and evaluation process (each submission was reviewed by at
least 2, and on the average 2.9, program committee members or additional reviewer), 121
contributions are presenting in this proceedings (accepted for oral, poster or virtual presenta-
tion,according to the recommendations of reviewers and the authors’ preferences.

In this edition of ITISE, we are honored to have the following invited speaker:

1. Prof. Dr. Fredj Jawadi , Associate Professor of Economics (MCF-HDR) at the University
of Evry, France.

2. Prof. Dr. Joerg Breitung, Professor in the Center of Econometrics and Statistics, Uni-
versity of Cologne, Germany

3. Dr. Travis J. Berge, Senior Economist. Board of Governors of the Federal Reserve System,
USA.

4. Dr. Anna Korzeniewska, Faculty, Department of Neurology at Johns Hopkins University
School of Medicine, Baltimore MD, USA

5. Dr. Joan Paredes, Senior Scientist, Dr. Joan Paredes, European Central Bank, Frankfurt
am Main, Germany.

6. Dr. Pekka Koponen, Senior Scientist, D.Sc.Tech, VTT Technical Research Centre of
Finland, Energy Systems, P.O. Box 1000, FI-02044 VTT, Finland
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During ITISE 2017 several Special Sessions will be carried out. Special Sessions will be a
very useful tool in order to complement the regular program with new and emerging topics of
particular interest for the participating community. Special Sessions that emphasize on multi-
disciplinary and transversal aspects, as well as cutting-edge topics are especially encouraged
and welcome.

This fourth edition of ITISE was organized at the Universidad de Granada, with the help
of the Spanish Chapter of the IEEE Computational Intelligence Society and Spanish Network
Time Series (RESET). We wish to thank to our main sponsor the institutions Faculty of Science,
Dept. Computer Architecture & Computer Technology and CITIC-UGR from the University
of Granada for their support. We wish also to thank to the Dr. Veronika Rosteck and Dr.
Eva Hiripi, Springer, Associate Editor, for their interest in the future editing a book series of
Springer from the best papers of ITISE 2017.

We would also like to express our gratitude to the members of the different committees and
to the reviewer for their support, collaboration and good work.

September, 2017
Granada

ITISE Editors and Chairs
Olga Valenzuela
Fernando Rojas
Hector Pomares

Ignacio Rojas
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Generalized nonparametric method for analyzing economic data inconsistent with the
model of single rational representative consumer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Nikolay Klemashev and Alexander Shananin

Geomagnetic Storms, Earthquakes and their Influence on GNSS Coordinate Time Series . . 122

Inese Varna, Janis Balodis and Diana Haritonova

vii



ITISE 2017 Conference Program

Forecasting Power Output of Photovoltaic Systems Using Linear, Non-Linear and
Enhanced Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Georgia Xanthopoulou, Athanasios Salamanis, Dionysios Kehagias, Ioannis Antoniou,
Charalampos Bratsas and Dimitrios Tzovaras

Extreme value analysis of geomagnetic activity based on the data from Canadian
geomagnetic observatories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Lidia Nikitina, Larisa Trichtchenko, David Boteler and Callum Heggart

Estimation of the crustal velocity field in Baza and Galera faults from GPS position
time series in 2009-2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Antonio J. Gil, et.al.

Advanced Symbolic Time Series Analysis in Cyber Physical Systems . . . . . . . . . . . . . . . . . . . . . 155

Roland Ritt, Paul O’Leary, Christopher Josef Rothschedl and Matthew Harker

A Non-stationary Index-flood Model With Local Likelihood Smoothing for Drought
Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Filip Strnad, Martin Hanel, Vojtěch Moravec and Adam Vizina
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Econometric models

Change Point Detection in Autoregression Without Variability Estimation . . . . . . . . . . . . . . . . 674

Barbora Pestova and Michal Pesta

xi



ITISE 2017 Conference Program

Distance Between VAR Models and its Application to Spatial Differences Analysis in
the Relationship GDP - Unemployment Growth Rate in Europe . . . . . . . . . . . . . . . . . . . . . . . . . . 686

Francesca di Iorio and Umberto Triacca

A least-squares approach to estimate the impulse-response function of a general linear
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

Miguel Jerez and Alfredo Garcia-Hiernaux

Recovering the background noise of a Levy-driven CARMA process using an SDDE
approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

Mikkel Slot Nielsen and Victor Rohde

Energy Forecasting

Fuel Consumption Estimation for Climbing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

Jingjie Chen and Yongping Zhang

Energy Prediction of Access Points in Wi-Fi Networks Using Time Series Modeling . . . . . . . 730
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Higor Cotta, Valdério Reisen and Pascal Bondon

Event Related Causality analysis of electrocorticographic (ECoG) time series as
diagnostic tool for epileptic surgery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1075

Anna Korzeniewska, Piotr Franaszczuk and Nathan Crone

Sieves Estimators and Predictors for Functional Autoregressive Processes . . . . . . . . . . . . . . . . . 1083

Tahar Mourid and Nesrine Kara-Terki

Modeling of p-order persistent time series by the modified Langevin equation . . . . . . . . . . . . . 1089

Zbigniew Czechowski

Bootstrap confidence intervals for conditional density function in Markov processes . . . . . . . 1094

Inés Barbeito Cal, Ricardo Cao and Dimitris Politis

Forecasting with functional Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098

Fatiha Messaci and Sara Leulmi

Time Series predictor based on deterministic and stochastic assumptions . . . . . . . . . . . . . . . . . 1108

Pedro Cadahia, José Manuel Bravo Caro, Manuel Emilio Gegundez-Arias and
Antonio Golpe

xiv



ITISE 2017 Conference Program

Functional Data Classification by Discriminative Interpolation with Features . . . . . . . . . . . . . 1120

Rana Haber, Anand Rangarajan, Nenad Mijatovic, Anthony O. Smith and Adrian M.
Peter

Nonstationarity Analysis in Time Series

A Modified EM Algorithm for Parameter Estimation in Linear Models with
Time-Dependent Autoregressive and t-Distributed Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132

Boris Kargoll, Mohammad Omidalizarandi, Hamza Alkhatib and Wolf-Dieter Schuh

Copulas for Modeling the Relationship between the Inflation and the Exchange Rates . . . . 1146

Laila Ait Hassou, Fadoua Badaoui, Cyrille Okou Guei, Amine Amar, Abdelhak Zoglat
and Elhadj Ezzahid

Fractal analysis applied to light curves of pulsating stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157

Sebastiano de Franciscis, Javier Pascual Granado, Juan Carlos Suárez and Rafael
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Gonçalves

Structural Time Series Models

Nonlinear Dynamical Analysis of Twitter Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219

Andrey V. Dmitriev, Vitaly Silchev, Victor Dmitriev and Svetlana Maltseva

Interpolation of ARMA processes with infinitely divisible white noise . . . . . . . . . . . . . . . . . . . . . 1231

Argimiro Arratia, Alejandra Cabaña and Enrique Cabaña

Analysis of time series of earthquake occurrence in Caucasus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240

T. Matcharashvili, N. Zhukova, E. Mepharidze, A. Sborshikov

xv



 



1

Untangling the inefficiency of hotel industry: the Portuguese Teixeira 
Duarte Hotel chain analysis

Abstract. In this study the technical efficiency was analyzed for four hotels of the Teixeira Duarte 
Group - a Portuguese hotel chain. An efficiency ranking was established for these four Portuguese 
hotels units using Stochastic Frontier Analysis. This methodology allowed discriminating between 
measurement error and systematic inefficiencies, enabling the identification of the main inefficiency 
causes. The results showed that distance to the airport and the higher price of accommodations promote 
efficiency. Additionally, hotels with many standard rooms and sea views are likely to achieve higher 
levels of efficiency.

Keywords: Hotel industry; Efficiency; Stochastic Frontier Analysis (SFA)

1 Introduction

The industry of tourism has great strategic significance for the Portuguese economy due to its capability to 
generate wealth and to create employment opportunities (World Tourism Organization, 2011). In fact, this
is an economic sector where Portugal has clear competitive advantages, due to the existing high-quality 
infrastructures, highly qualified human resources, and to natural diversity and pristine environments. Por-
tugal has exceptional resources in terms of geographic location, temperate climate, security, historical and 
cultural heritage, high-quality beaches, natural diversity (of species and environments), and a competitive 
high quality coastal touristic development.

Concerning the Portuguese hotel sector studies and according to the Atlas Hospitality (2005), the tour-
istic Portuguese market is highly segmented, with hotel groups owning 63.8% of integrated housing units,
while the remaining 36.2% belong to independent entrepreneurs.

The hotel sector is an important component of the tourism industry, challenged by a competitive atmos-
phere managed by different pressure factors and driven by supply and demand (International Labour Office 
- GDFHTS/2010, 2010).

Teixeira Duarte (TD), a renowned Portuguese hotel chain, was founded in 1921 as a family company,
and today is one of the Portuguese largest economic groups. Teixeira Duarte has a successful trajectory 
established through the sustainable growth in the civil construction sector. The expansion of the hotel in-
dustry in Portuguese-speaking countries were decisive factors to consolidate its privileged economic situa-
tion. In fact, outside Portugal, there are TD Hotels in the main cities of Angola and Mozambique, whereas 
in Portugal its main hotels are located in the southern region of the Algarve region, although several units 
can also be found on the coast of Alentejo (Southwest coast) and in the centre area of the country.

(see Teixeira Duarte in the World in the homepage of Teixeira Duarte, 2016).
Despite the competitiveness and excellence displayed by the Group, it is essential to guarantee that levels 

of performance are improved or, at least, maintained. In fact, for management purposes, maintaining effi-
ciency implicates the use of scarcer inputs, and the production of additional outputs. It also means perform-
ing the assigned roles and preventing possible inaccuracies that can impede the progress of an industry.

In this context, the aim of this study is to analyze the efficiency of the four TD Group hotel units based 
in Portugal, namely: The Lagoas Park Hotel, the Sinerama Aparthotel, the Eva Hotel and the Oriental Hotel, 
in order to identify factors affecting efficiency, and analyze what must be altered to promote better perfor-
mances. 

This paper is organized as follows: section 2 presents the Teixeira Duarte Group; section 3 briefly re-
views the literature; section 4 outlines the main steps in the chosen methodology; section 5 contains the
experimental results; section 6 reviews the main conclusions and the limitations of the paper and suggests 
further work.
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Teixeira Duarte (TD) Group.

The Teixeira Duarte Group currently employs more than 13,000 workers, and operates in 16 countries in 
seven different sectors such as construction, concessions and services, Real Estate, hotel services, distribu-
tion, energy, and automobile.

Business Indicators (Teixeira Duarte Group) 2010 2011 2012 2013 2014
Average number of workers 13036 11182 10853 12011 13261
Turnover 1380 1200 1383 1581 1680
Operating income 1445 1263 1440 1630 1716
Net debt 1067 927 990 1176 1293
Total equity 562 333 326 361 485
Total net assets 2721 2753 2767 2779 2954

Year

Table 1. - The main indicators of Teixeira Duarte Group's business (the book values are expressed in million euros. 
Total Equity includes non-controlled interests).

In non-consolidated terms, and in order to provide an overall view of the total activity of the TD Group 
during 2014, we disclose that its operating income in the construction sector reached the total value of 
1,027,221€, reflecting an overall slight decrease of 0.7% regarding 2013 (source: TD Annual Reports 
(2012, 2013, 2014)).

Disregarding new contracts that may arise, the Group has already assured business levels in the con-
struction sector for the foreign markets which, in spite of the current adverse circumstances of the domestic 
market, achieve 904,808€ for 2015. In this context the Hotel Service Business represents 4.7% of the entire 
Group’s income (TD homepage, 2016).

After the first experience in 1974 in the Algarve, the Teixeira Duarte Group resumed its activity in the 
Hotel Services sector in the 1990's in Sines, and currently operates 10 hotels, four of which are located in 
Portugal, three in Angola and three in Mozambique, covering a total of 2,908 beds and 1,465 rooms. Ac-
cording to TD Group, their services are based on Tradition, Quality, Comfort and Kindness (see hotel ser-
vices from TD homepage, 2016).

Hotels in Africa Hotels in Portugal
Angola Mozambique
Hotel Alvalade, Luanda Hotel Avenida, Maputo Hotel Eva, Faro
Hotel Baía, Luanda Hotel Tivoli Maputo, Maputo Hotel Oriental, Portimão
Hotel Trópico, Luanda Tivoli Hotel Beira, Beira Lagoas Park Hotel, Oeiras

Sinerana, Sines

Table 2. – Location (city and country) of the hotels of the Teixeira Duarte (TD) Group.

Eva Hotel (4-star hotel) is acknowledged as a benchmark of quality in Faro, both for leisure or business 
stays. The hotel was recently renovated in order to be architectonically integrated into the historical and 
commercial downtown area of Faro. The Oriental Hotel (4-star hotel), with a characteristic oriental style, 
is situated in one of the most popular sun and sea Portuguese touristic destination. The Lagoas Park Hotel 
(4-star hotel) is located in one of the largest business centres of the country, providing all conditions needed 
for business meetings and for leisure, given its congress centre and its privileged location, fairly close to 
the beaches of Cascais, to Sintra, as well as to several other interesting touristic sites. Sinerama Hotel (3-
star hotel) is located in Bay of Sines, in the vicinities of the Castle of Sines, and of the Vasco da Gama 
Museum. The hotel provides a family and quiet environment (www.tdhotels.com/pt).
 

2 Literature review

The efficiency analysis within the touristic hotel sector has been widely studied over the years. Among 
available literature on this subject, the Stochastic Frontier Analysis (SFA) methodology must be 
emphasised as a frequent approach. In fact, authors such as Anderson et al. (1999a) analysed the estimation 
of the managerial efficiency of 48 hotels in the USA during 1994. In a subsequent paper, Anderson et al.
(1999b) applied both Data Envelopment Analysis (DEA) and SFA to estimate the efficiency of 31 corporate 
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travel management departments. Also, Wang et al. (2007) used a one-stage SFA approach to analyze tech-
nical efficiency of 66 international hotels in Taiwan from 1992 to 2002, and also incorporated the 
Malmquist productivity index in the results. Likewise, Chen (2007) examined the cost efficiency of 55 
international hotels in Taiwan using an SFA model. 

In fact, the use of the SFA approach can be found in many other studies, and often combined with other 
methodologies (e.g. Wang et al., 2007; Pérez-Rodriguez & Acosta-González, 2007; Assaf et al., 2010 and 
Hu et al., 2010).

The approaches to hotel industry efficiency analysis can be driven by different perspectives, for example, 
Narayan & Sharma (2013) analyzed different tourist markets and the relationship between hotel industry 
and its macroeconomic contribution (e.g. Kreishan, 2010; Assaf & Josiassen, 2012; Assaf & Barros, 2011; 
Hathroubi et al., 2014 and Jarboui et al., 2015). Concerning the Portuguese hotel industry, the efficiency 
analysis has been addressing by different approaches mostly by Barros (e.g. Barros, 2004; Barros & Alves, 
2004; Barros & Santos, 2004; Barros, 2005a,b; Barros & Mascarenhas, 2004,2006; Barros & Santos, 2006; 
Barros et al., 2010; Barros & Machado, 2010; Barros et al., 2011; Oliveira & Pedro, 2013, 2014; and 
Oliveira et al., 2013).

The issues approached vary between the economic efficiency analysis and the determinants that contrib-
ute to the economic efficiency. For instance, Barros et al. (2011) used a DEA model to estimate the effi-
ciency determinants of Portuguese hotel groups from 1998 to 2005. Barros et al. (2010) analysed the length 
of stay off golf tourists in the Algarve whereas Barros and Machado (2010) contributed to the relevant 
literature by analysing the determinants of the length of stay, in this instance, of foreign tourists in Madeira 
Island. 

Concerning the Oliveira & Pedro (2013, 2014) work, the authors studied a sample of 28 prestige hotels 
in the Algarve (Portugal) to compare both DEA and SFA approaches in order to measure cost, allocative 
and technical efficiencies. Oliveira et al. (2013) use DEA to investigate and compare the efficiency of 
Portuguese hotels in Algarve in terms of the influence of star ratings, golf courses and location on hotel 
efficiency. Therefore, both methods are widely applied to this economic sector, supporting the methodology 
choice for the present study.  
 

3 Methods and materials

Dataset

For the stochastic frontier analysis, the data collected from Teixeira Duarte Group database comprises data 
from 01/01/2011 to 30/06/2015 (Table 1), and relates only to the Portuguese Hotels, to incorporate hotels 
facing similar seasonality patterns and having common operational periods and homogenous quality of 
services. A total of 216 observations was gathered, corresponding to the 54 months (since January 2011 to 
June 2015) per hotel. The chosen output variable was the Operating profits. Table 3 defines the remaining 
inputs and exogenous variables.

Output
Operating profits (euros)

Inputs
Operating costs (euros)
Employees (number)

Exogenous variables
Lodging price-range (euros)
Standard rooms (number)
Sea view (0=no; 1=yes)
Airport distance (Kms)

TD Hotels SFA model

Table 3. - Output, Inputs and Exogenous variables used in the stochastic frontier model. 
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Data analysis

Using a stochastic frontier model, where each Decision Maker Unit (DMU) is denoted by i, the individual 
operating profit is obtained using the following production function (Battese & Coelli, 1995):

ln(��) =  ��� + (�� − ��) (1)

where i = 1, 2,…, N; yi measures the operating profits of the ith hotel; xi is a 1 x K vector corresponding 
to the inputs (operating costs and employees); and β is a 1 x K vector of unknown scalar parameters to be 
estimated. For this model, the traditional error term ε is composed of two distinct terms (vi-ui) for each 
DMU where the error term vi, similarly to traditional regression models, is assumed to be independent and 
identically distributed as �(0, 	


�). Random variation in output caused by factors beyond DMUs control,
such as measurement errors in dependent variables or explanatory variables eventually omitted, is captured 
by the vi error term. The error term ui is a non-negative random variable, accounting for the existence of 
technical inefficiency in production following a half-normal ui ~ |N(0,σ2)| distribution.

According to Battese & Coelli (1995), the inefficiency distribution parameter can also be specified as 
the inefficiency model:

�� =  � + ��� + ��  (2)

where δ represents a vector of parameters to be estimated, zi is a vector of DMU specific effects (lodging 
price range, standard room, the existence of sea view and airport distance), that determine technical ineffi-
ciency, and ωi is distributed following �(0, 	�

� ). All observations either lie on, or are beneath, the stochastic 
production frontier, and this is assured by ui ≥ 0 in Equation (2). The variance terms are parameterized by 
replacing σv2 and σu2 with 	� = 	


� + 	�
� and � =

��
�

(��
����

�)
according to Battese & Coelli (1995). The value 

of γ ranges between 0 and 1, where 1 indicates that all of the deviation from the frontier is entirely due to 
technical inefficiency (Coelli et al., 1998). The technical efficiency (TE) of each DMU is expressed as 
follows:

��� =
�(��|��,��)

�(��|���,��)
= �!�� (3)

where E is the expectation operator; thus, the measure of technical efficiency is based on a conditional 
expectation given by Equation (3), considering that the value of vi – ui evaluated at the maximum value of 
Yi is conditional on ui = 0 (Battese & Coelli, 1995).

The parameters of the stochastic frontier model (1) and the technical inefficiency model (2) were esti-
mated using the FRONTIER version 4.1 software (Coelli, 1996).  

4 Results

The SFA model results confirms that the inclusion of the inefficiency effects is highly significant (at the 
1% significance level) in the analysis of Operating Profits (the estimate for the variance is close to one – γ
= 0.999 in Table 5), indicating that 99.9% of the random variation in Operating Profit is due to inefficiency.

The mean efficiency of the four hotel units is presented in Table 4, and indicates that the Lagoas Park 
Hotel is the most efficient hotel unit, contrasting with the Oriental Hotel (the least efficient one).

Analyzing the yearly evolution, Eva and Lagoas Park recorded an increase in efficiency. Nevertheless, 
for the last one the efficiency level has decreased slightly during the analyzed 6 months of 2015.  

Hotel 2011 2012 2013 2014 2015
mean efficiency 

per  hotel
Eva 0.542 0.545 0.558 0.602 0.625 0.569
Lagoas 0.597 0.633 0.643 0.669 0.650 0.637
Oriental 0.414 0.411 0.465 0.502 0.485 0.453
Sinerama 0.662 0.632 0.524 0.570 0.418 0.577
TD hotels' mean efficiency per year 0.556 0.559 0.547 0.586 0.545 0.560

Table 4. – Mean efficiency scores per hotel unit and per year (from 2011 to 2015) of the Portuguese 
hotels of Teixeira Duarte (TD) Group.
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The SFA and the inefficiency models results are presented in Table 5.

Variable Coef. Std. Error

Stochastic frontier model
constant 2.790 ** 0.116

ln(operating costs) 0.841 ** 0.278
ln(employees) -0.343 ** 0.126

Inefficiency model
constant -0.125 ** 0.014

Lodging price-range -0.042 ** 0.010
Standard rooms -0.024 ** 0.008

Sea view -0.034 ** 0.008
Airport distance 10.953 ** 1.603

Variance parameter
������ 0.999 ** 0.000

** significant at 1%.

Table 5. - The results of the SFA and of the inefficiency models from 2011 to 2015 for the Portuguese hotels of Teixeira 
Duarte (TD) Group.

Moreover, it must be emphasized that the Sinerama Hotel has been losing efficiency since 2011, whereas 
the Oriental Hotel did not indicate any pattern regarding the variation in the efficiency levels from 2011 to 
2015. In both models all variables are statistically significant at the 1% significance level. The SFA results 
indicate that the hotels with higher “operating costs” and less “employees” are the ones that achieved higher 
operating profits. This could seem contradictory but in fact, a hotel unit with high operating costs could 
mean that have plenty of services (or just services with high quality) to their customers rather than just a
high inefficient operation. In the case of the studied hotels, “Oriental” is by far the best hotel unit of the 
group, praised frequently by guests who refer the five-star’s service quality. Additionally, the number of 
employees if variable along the year. Some of them are fixed through the twelve months to ensure the 
quality services with their experience whereas some others are recruited only in the high seasons (Carnival, 
Easter, Summer and Christmas festivities). In this scenario wins the hotel unit with the smallest but better-
trained team that will coach the seasonal teams and overall, be able to ensure the best service along the 
entire year. Concerning the Inefficiency model, the “airport distance” is the most important factor that 
contributes to inefficiency (highlighted by the positive coefficient). This is not a surprising result since the 
proximity of the airport affects the transportation’s cost to the hotel unit. The shorter the distance the small-
est the cost (with plenty of transport facilities alternatives). In this context, “Sinerana” is definitely in dis-
advantage however, the site in which this hotel is inserted is very particular (Natural Park of South-West 
Alentejo and the Costa Vicentina), meaning that their customers are determined to go there despite the 
distance. Notwithstanding, in comparison with the remaining, this unit is underprivileged by airport’s dis-
tance. The authors of Pedro and Marques (2013) in their study of Portuguese hotels in Algarve analyzed
the influence of star ratings, golf courses and location on hotel efficiency. Their conclusions pointed that 
star rating is not a significant determinant of efficiency but the location and the existence of golf courses 
may have some relevance. In this case, those hotels that do not possess golf courses are the more efficient, 
confirming that frequently guests chose hotel units for specific purposes (such location) and not only by 
quality services or transportation facilities. In a previous study of Barros and Santos (2006) the economic 
efficiency of the biggest Portuguese hotel chains (15 hotels observed from 1998 to 2002) was analyzed
concluding that scale is the main factor in explaining hotel efficiency and did not found any specific re-
gional or property characteristics affecting the results. These contradictory studies reveal that this sector is 
very sensitive to changes being supported by the guests’ opinion and preferences rather than facilities, price 
ranges or location.

Concerning the present study and the price range, the “lodging price range” revealed a negative coeffi-
cient (a positive impact), meaning that more high prices contribute positively to efficiency.  

Similarly, a hotel with many “standard rooms” and “sea view” also achieves higher levels of efficiency.
In one of the more recent works, Barros et al. (2010) addressed to Algarve’s golf hotel units concluded 

that elderly golfers might stay for an extended period and the type of hotel in which the golf tourists are 
accommodated can also increase the length of stay. In this case the proximity and quality of beaches were 
not of relevance to this type of tourist. 
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Therefore, a plausible general conclusion is that revenue efficiency determinants can change from one 
hotel unit to another. What seems to be important and relevant to some guests can be irrelevant to others. 
This legitimises our junction of different hotel unit type, considering the main purpose of assessing the TD 
Group hotel chain efficiency.

5 Conclusions and Final Remarks

The aim of the present research was to evaluate the efficiency of the Teixeira Duarte hotel chain in Portu-
guese mainland. The use of SFA allowed to assess the level of efficiency of each DMU (hotel unit), and 
simultaneously to highlight the factors that significantly affect the performance of the hotel units.

The achieved results showed that an efficient hotel should be placed in a location in the vicinity of an 
airport, and be equipped with standard rooms and – preferentially – sea view. High lodging price range 
revealed not to be a problem to efficiency levels, since high prices favour efficiency improvement.

However, as it was also presented, different authors concluded different determinants for efficiency. 
Additionally, the authors of the present study are aware of its limitations. Firstly, and more important, the 
small time-window (yet the available one) secondly, the limited number of hotel units (but again, there 
were included all the TD Group hotel units in Portugal mainland). Besides this limitation we observed also 
that the number of hotels included in this study has different dimensions, production characteristics, and 
locations turning possible biased comparisons. Finally, the reduced number of covered factors or determi-
nants. Indeed, it would be an asset to this analysis to add some additional factors regarding tourist experi-
ence valuation, such as satisfaction and length of stay (Assaf & Josiassen, 2012); (Barros & Machado, 
2010).

Despite these limitations we think that the present study could highlight some interesting results con-
cerning this particular Portuguese hotel chain. Notwithstanding, results should be carefully considered in 
the management strategies adopted by the TD Hotel Group. 
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Macroeconomic indicators are a good source of information for short-term forecasting due to 
several reasons: the cover different areas of the economy and provide faster modes of 
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1. Introduction 
 
Forecasting of revenues is an issue of crucial relevance to governments in ensuring stability in 
tax and expenditure policies. Just as demand analysis and forecasting in the private sector is of 
critical importance because sales sustain the financial health of business, adequate and 
predictable tax and non-tax revenues underpin the financial sustainability and stability of 
government.  
 
The importance of revenue forecasting in public budgeting has increased with governments 
shifting from annual cash-based budgets to medium-term budgeting as fiscal policy design and 
implementation have paid more attention to medium term constraints and the importance of 
budgeting for multiyear financial commitments. To address these goals, many countries have   
built a Medium-Term Budgetary Framework (MTBF)1, a system of projections tailored to obtain 
values of revenues and expenditures in future periods. 
 
These MTBF also serve as meaningful tools that provide a starting point in addressing 
compliance problems and supporting evasion deters. The main drawback of these prediction 
systems is that their construction involves the use of techniques related to time series theory, 
transfer function models and multivariate analysis.  

In particular, regarding to Value-Added Tax models, there are several approaches in the 
literature that either calculate or forecast the VAT revenue.  
 
Most of the models that compute tax revenue of VAT are focused on estimating the VAT base. 
Prominent examples of such strategy are the models based on the National Accounts 
approach, used by the U.S. Department of the Treasury and by the International Monetary 
Fund2 for numerous countries, the models based on the Sectoral Approach, and the Input-
Output  Models approach that is also used for simulation3. 
 
If we focus on VAT revenue forecasting, we often find in the literature methodologies 
grounded on the GDP based tax forecasting models. As a first step, the models require the 
construction of data series for tax revenues and their bases for each tax. All these tax bases are 
assumed to be predetermined and are obtained from macroeconomic variables derived from 
national accounts and balance of payments aggregates. These historical data series of tax 
revenues have embedded in them the effects of increases in national income or expenditures, 
as well as discretionary changes made in the tax system over time.  For the VAT revenue model 
we present in this paper, this changes brought about by discretionary changes are introduced 
by dummy variables. 
                                                           
1 See the IMF working paper “Medium-Term Budgetary Frameworks - Lessons for Austria from 
International Experience” by Erik J. Lundback  
2 See  e.g. H.H. Zee and J.P.Boding “Aspects of introducing a Value-Added Tax in Sri Lanka “ paper 
prepared for  the International Monetary Fund, Fiscal Affairs Department, (August 1992 
3 See “Tax Analysis and Revenue Forecasting-Issues and Techniques” – by Glenn P. Jenkins , Chu-Yan Kuo 
and Gangadhar P. Shukla, , Harvard Institute for International Development, Harvard University, for a 
detailed description of these models. 
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The next step for setting up the GDP based forecasting models is to establish an exact 
relationship between the tax revenue and the economic variables (ie proxy base). In order to 
do this, it is necessary to determine the correct base for each tax using the National Accounts. 
Subsequently, it is necessary to find out which component of the National Account 
corresponds most closely to the base for a particular tax. 
 
In the case of Value-Added Tax, tax revenues are linked with Total Consumption Expenditure 
on Goods and Services4. This could be written as a transfer function and a regression analysis is 
carried out to forecast future revenue collections.  
 
Obviously the predictive ability of this type of models is limited and error margins are large. 
This is partly because tax revenues are highly sensitive to a wide variety of economic variables 
and specifically to the economic cycle, and our ability to forecast the path of the economy 
using only one explanatory variable in a transfer function is restricted. 
 
In order to address this problem, we could explore the possibility of introducing additional 
variables covering different areas of the economy (Domestic Demand, Labour Market and 
Activity Indicators, among others), but the high degree of linear dependency among this 
indicators would cause multicollinearity in the model.  
 
Therefore, we propose principal component analysis applied to the entire set of numerical 
independent variables, to provide orthogonal regressors for the transfer function, ensuring the 
lack of multicollinearity with little information loss and increasing the forecasting accuracy. 
 
This approach has the advantage of considering the behavioral responses of certain economic 
sectors (such as Tourism Industry or Construction) to the introduction of changes in the 
existing tax laws, and reciprocally, it is able to capture the influence of a decrease in one 
specific sector on the VAT revenue.   
 
This paper is organized as follows. Section II outlines the derivation of the model employed 
and describes the estimation technique and the empirical framework. Section III presents the 
data set. Section IV shows the estimation results. The last section provides the main 
conclusions of this study. 

2- Estimation Strategy.  
 
Starting from a set of indicators relative to different areas of the economy (Construction and 
Services Activity Indicators, Private Consumption variables, Labour Market Indicators and 
External Trade Indicators) we propose a principal component analysis as a dimension reduction 
technique for the set of independent variables. The next step is to use the first and second 
principal components as inputs to the transfer function to estimate the VAT revenue.   

                                                           
4 The  Institute for Fiscal Studies’s  public finance forecasting model, which was used to produce 
forecasts in Britain in each Green Budget up to 2013  , was based on the assumption that VAT revenues 
grew in line with nominal consumer spending. For further information see “Forecasting the PSBR 
Outside Government: The IFS Perspective”  by Christopher Giles and John Hall,  Fiscal Studies Volume 
19, Issue 1 (February,1998) 
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The ultimate goal in principal components analysis is to find the minimum number of 
dimensions that are able to explain the largest variance contained in the initial set of 
indicators. We intend to simplify the information which gives us the correlation matrix to make 
it easier to interpret. 

Principal component analysis was originated by Pearson (1901) and later developed by 
Hotelling (1933). The application of principal components is discussed by Rao (1964), Cooley 
and Lohnes (1971), and Gnanadesikan (1977). Exceptional statistical treatments of principal 
components are found in Kshirsagar (1972), Morrison (1976), and Mardia, Kent, and Bibby 
(1979). 
 
Given a data set with p numeric variables, we can compute up to p principal components. Each 
principal component is a linear combination of the original variables, with coefficients equal to 
the eigenvectors of the correlation or covariance matrix. The eigenvectors are customarily 
taken with unit length. The principal components are sorted by descending order of the 
eigenvalues, which are equal to the variances of the components. 
 
The principal components meet the following properties (Rao 1964; Kshirsagar 1972): 

 
� The eigenvectors are orthogonal, so the principal components represent jointly 

perpendicular directions through the space of the original variables. 
� The principal component scores are jointly uncorrelated. This property ensures the 

lack of multicollinearity when we use then as input variables in a regression model. 
� The first principal component has the largest variance of any unit-length linear 

combination of the observed variables. The jth principal component has the largest 
variance of any unit-length linear combination orthogonal to the first j-1 principal 
components. The last principal component has the smallest variance of any linear 
combination of the original variables. 

� The scores on the first j principal components have the highest possible generalized  
Variance of any set of unit-length linear combinations of the original variables. 

� The first j principal components provide a least squares solution to the model: 
 

Y=XB+E 
                 Where: 
 

 Y is an nxp matrix of the centered observed variables;  
               X is the nxj matrix of scores on the first j principal components;  
               B is the jxp matrix of eigenvectors;  
               E is an nxp matrix of residuals; 
 
Our goal is to minimize the trace of E’E. That means that the  first j principal components are 
the best linear predictors of the original variables among all possible sets of j variables, 
although any nonsingular linear transformation of the first j principal components would 
provide an equally good prediction.  
 
In geometric terms, the j-dimensional linear subspace spanned by the first j principal 
components provides the best possible fit to the data points as measured by the sum of 
squared perpendicular distances from each data point to the subspace. This is in contrast to 
the geometric interpretation of least squares regression, which minimizes the sum of squared 
vertical distances.  
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3- The data set 
 
Our starting point was an extensive collection of time series data comprised of quarterly 
indicators on a wide range of economic areas valued at current prices (raw data) covering the 
period from 1995 onwards. 
 
We next selected a subset of indicators, taking into account various attributes: high correlation 
to the VAT revenue at current prices and quarterly variation rate, speed of publication, 
operability (easy access), coverage, cyclical sensitivity and frequency.  
 
 

 
 

 
FIGURE 1: Pearson Correlation Coefficients and associated p-values  for VAT tax revenue and 
the resulting  ten partial indicators5. 

The next step in the process was to identify the underlying cyclical pattern of the indicators. 
This goal required the removal of two factors: long term trends and high frequency noise. We 
decided to remove these factors in a single step using a Fixed length Symmetric Band-Pass 
Filter (Baxter-King ).  

                                                           
5 The correlation coefficients of Cement Apparent Consumption and Passenger Car Registrations are low 
compared to the rest of the indicators. We considered this two reference series as useful indicators 
because of their cycle pattern (Figures 2-4), their relatively short publication lags, and because they 
belong to economic areas which are sensitive to policy changes. 
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FIGURE 2: Cyclical patterns of VAT revenue and selected partial indicators obtained by a 
Baxter-King filter.  

If the cyclical profiles are highly correlated6, the indicator would provide a signal, not only to 
approaching turning points, but also to developments over the whole cycle. The cross 
correlation function between the cyclical component of the partial indicators and the cyclical 
component of the VAT revenue, provides invaluable information on cyclical conformity. The 
location of the peak of the cross-correlation function is a good indicator of average lead time. 

 

 

 

                                                           
6 The methodology guideline “OECD System of Composite Leading Indicators”  prepared by Gyorgy 
Gyomai and Emmanuelle Guidetti in April 2012, specifies this approach to select the reference series 
based on cyclical profiles.  
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FIGURE  3:  Cross  Correlograms of the  cyclical component of VAT revenue and the cyclical 
components of the selected partial indicators obtained by a Baxter-King filter.  

The cross-correlation analysis of the two cyclical components shows that the cyclical 
component of Cement Apparent Consumption is highly correlated to the cyclical component of 
VAT revenue at lag=0 (Rho=0.7379). A leading relationship (lag=1,Rho=0.7313) could be 
rationalised on the basis that construction is probably the sector which reacts most quickly to 
changes in financial conditions.   

Figures 3 feature similar results for the cyclical component of Passenger Car Registrations; the 
cross-correlation analysis of the two cyclical components shows that the cyclical component of 
Passenger Car Registrations is highly correlated to the cyclical component of VAT revenue al 
lag=0 (Rho=0.5278) but the maximum occurs at lag=2 (Rho=0.7699). That result reveals a 
lagging relationship between these two variables. 
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Similar cyclical pattern analysis of the rest of the candidate reference series are shown in 
Figure 3. Specifically, for  selected partial indicators, Fixed Capital Formation in Construction, 
Goods and Services Imports, Compensation per Employee and Foreign Tourists Arrivals display 
movements that precede those of the VAT revenue  ( average lead  times are  two, one, four 
and two quarters, respectively).  Large Store Sales Index, Large Firm Sales (Consumption), 
Cement Apparent Consumption, Electric Power Consumption and Registered Contracts are 
more significant in providing contemporaneous information. Passenger Car Registrations and 
performs as lagging indicator. 

Note that whereas the correlation value of the peak provides a measure of how well the 
cyclical profiles of the indicators match, the size of the correlations cannot be the only 
indicators used for component selection. 

Higher correlations in quarterly variation rate maintain a similar structure and  correspond to 
general indicators (Electric Power Consumption), consumption indicators (Large Firm Sales in 
Consumption Goods and Services ), construction indicators (Gross Fixed Capital Formation in 
Construction ) and services indicators (Foreign Tourists Arrivals). 

 
We fitted the model using a training data set from t=1 (first quarter of 1995) to t=T (last 
quarter of 2014) and then we tested its performance computing  one-step ahead forecasts on 
a test data set (first, second and third quarter of 2015) . Once we have checked the predictive 
ability of the model, and since the lastest update of the VAT revenue released by the Spanish 
Tax Agency corresponds to the third quarter of 2016, we provide forecasts for the last quarter 
of 2016 and the four quarters of 2017. The latest predictions are obtained by extending the 
partial indicators using seasonal ARIMA models. 
 
The following sections provide a more detailed description of the various steps highlighted 
above. 
 
4-Estimation results 
 
4.1. Finding the two orthogonal regressors. 
 
As indicated before, the purpose of the principal component analysis is to compute two 
variables that best summarize all ten partial indicators.  
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TABLE 1:  Eigenvalues of the Correlation Matrix  

Results of the principal component analysis are displayed on Table 1. We compute principal 
components from the correlation matrix. The set of partial indicators show a high correlation 
between the variables, validating the relevance of prior principal component analysis to avoid 
problems of multicollinearity. 
 
 

 
 
FIGURE 4:  Scree Plot and Variance Explained Plot. 
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The Scree Plot on the left in Figure 4 shows that the eigenvalue of the first component is 
approximately 5,8 and the eigenvalue of the second component is largely decreased to 2,5. 
The Variance Explained Plot on the right in Figure 4 shows that the first two principal 
components account for nearly 82% of the total  standardized variance, which indicates that 
two components provide a good summary of the data. 
 
 

 
 
TABLE 3:  Factor Pattern of the two principal components. 

 
The factor pattern (Table 3) shows that the first component (labeled " Ivafactor1") has large 
positive loadings for all ten variables. The second component is basically a contrast of Large 
Store Sales Index (0,428), Passenger Car Registrations (0,797), and the two construction 
indicators (Gross Fixed Capital Formation in Construction and Cement Apparent Consumption) 
against the rest. 
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FIGURE  5: Unrotated  Factor Pattern Plot of the two Principal Components. 

 
The unrotated factor pattern (Figure 5) reveals three clusters of variables, with the variables 
Cement Apparent Consumption and Passenger Car Registrations at the positive end of Factor2 
axis, and Compensation per Employee, Goods and Services Imports and Electric Power 
Consumption at the negative side. The rest of the variables remain between these two 
clusters.  
 
The results of the Varimax rotation are shown in Table 4 and Figure 6.  
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TABLE 4: Standardized  Factor Scoring Coefficients 
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FIGURE  6: Graphical Plot of the VARIMAX Rotated Factor Loadings. 

 
The graphical plot of the Varimax-rotated factor loadings clearly features that Cement 
Apparent Consumption and Passenger Car Registrations cluster together on  Factor 2 axis, 
while Compensation Per Employee, Goods and Services Imports, Electric Power Consumption, 
Foreign Tourists Arrivals, Registered Contracts, Large Firm Sales (Consumption) cluster 
together on the Factor 1 axis. The standardized scoring coefficients of Gross Fixed Capital 
Formation (Construction) and Large Store Sales Index are larger in factor 2 than in factor 1. 
 
4.2-Determining the transfer function. 
 
The second part of the methodology makes use of these factors as input variables for a 
transfer function: 
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FIGURE 7: Correlation analysis panel for VAT revenue. Sample Autocorrelation Function plot  
(ACF), Partial Autocorrelation Function plot (PACF) and Sample Inverse Autocorrelation 
Function plot (IACF) of VAT revenue. 
 
We introduce in the model two level shifts corresponding to the second quarter of 2010 and 
the third quarter of 2012 (VAT reform). The parameter estimates table and goodness-of-fit 
statistics for this model are shown in the conditional Least Squares Estimation table (Table 5). 
 

 
 
TABLE 5: Table of parameter estimates. Method : Conditional Least Squares. 
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As shown in table 5, all parameters are statistically significant, although the moving average 
parameter MA1,1 is close to the 5% significance level. 
 

 
TABLE 6: Check for White Noise Residuals. 

The autocorrelations checks on the residuals  (Table 6) features there is no autocorrelation of 
residuals at any lag. Test statistics fail to reject the no-autocorrelation hypothesis at a high 
level of significance (p = 0.3790 for the first six lags). This result seems fairly robust to changes 
in the number of lags. 
 
 The probability of white noise is clearly high (Figure 10). 
 

 
 

FIGURE  8: Correlation analysis panel for residuals.  ACF, PACF and IACF plots of the residuals. 
White Noise Probability plot.  
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FIGURE  9: Residual Normality Diagnostics. 
 
As showed in Figure 9 residuals of the model follow a Normal distribution. 
 
4.3-Out of sample forecasts. 
 

1. For the first quarter of 2015, the observed VAT revenue at current prices in Millions 
Euros was: 16997,655. Table 7 shows the predicted values for VAT revenue by the 
model.  

 
 

 
 

TABLE 7:  Forecast and Confidence Limits of VAT revenue.  Out of Sample estimations. First 
quarter of 2015. Million Euros. 

 
2. For the second quarter of 2015, the observed VAT revenue at current prices in Millions 

Euros was: 13032,929. Table 8 shows the predicted values for VAT revenue by the 
model. 

 

 
 

TABLE 8:  Forecast and Confidence Limits of VAT revenue.  Out of Sample estimations. Second 
quarter of 2015. Million Euros. 
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3. For the third quarter of 2015, the observed VAT revenue at current prices in Millions 
Euros was: 14976,823. Table 9 shows the predicted values for VAT revenue by the 
model. 

 

 
 

TABLE 9:  Forecast and Confidence Limits of VAT revenue.  Out of Sample estimations. Third 
quarter of 2015. Million Euros. 

Once we have checked the predictive ability of the model, and since the lastest update of the 
VAT revenue released by the Spanish Tax Agency corresponds to the third quarter of 2016, we  
extended the partial indicators using seasonal ARIMA models to provide forecast for the last 
quarter of 2016 and the four quarters of 2017. 
 

 
 
FIGURE 10: Extended partial indicators. Four quarters of 2017.  
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4.5-Forecasts from extended partial indicators. 
 
We also provide forecasts for the last quarter of 2016 and the four quarters of 2017 obtained 
from the extended partial indicators.  

 
 

 
 
 

Table 10:  Forecasts and Confidence Limits of VAT revenue.  Last quarter of 2016. Four quarters 
of 2017. Million Euros. 
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FIGURE 11: VAT revenue and forecasts. Four quarters of 2017.  
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5-Conclusions: 
 
As mentioned in the introduction, the final aim of this paper is to propose a methodology that 
successfully combines principal components analysis and transfer function theory to forecast 
VAT revenue. This approach offers advantages to Value-Added Tax forecasting models based 
on the National Accounts approach, and specifically, to those using Total Consumption 
Expenditure on Goods and Services as the only input explanatory variable. The pre-selection of 
the reference series and the dimension reduction technique enables to incorporate in advance 
changes in specific fields of the economy that may affect tax revenues.  
 
The analysis of which partial indicators contain useful leading or lagging information about the 
dependent variable and the filtering process aimed to identify underlying cyclical pattern of 
the candidate component series was not simple.  The approach taken does not in any sense 
attempt to construct an optimal set of partial indicators, but has the more limited aim of 
assessing which indicators contain information that is useful for VAT revenue short-term 
forecasting.  Among other criteria, we selected those variables that exhibited a cyclical profile 
highly correlated to the cyclical pattern of VAT revenue. Fixed Capital Formation in 
Construction, Goods and Services Imports, and Foreign Tourists Arrivals were found to add   
significant leading information to the model. The usefulness of the rest of indicators arises 
from the contemporaneous relationships between the variables, and their inclusion in the 
model found some support in less sophisticated methods such as correlation analysis. 
Consumption indicators selected have also the advantage of having shorter publications lags 
than the National Accounts. 
 
The output factors obtained from the dimension reduction technique were highly significant as 
explanatory variables in the transfer function. Thus, their influence has been crucial for 
achieving such high predictive power of the model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 635



21 
 

6-References: 
 
Arnold, J. Brys, B. Heady, C., Johansson, A. Schwellnus, C. and Vartia,L. (2011). 
Tax policy for economic recovery and growth, The Economic Journal, 121, 59-80.

Artola, C., and Galán, E. (2012). Tracking the future on the Web: construction of 
leading indicators using internet searches. Banco de España. Documentos Ocasionales 
N.º 1203. 

Bandholz, Harm (2005) New Composite Leading Indicators for Hungary and Poland.
Ifo Working Paper, No. 3. 
Avalilable at http://www.econstor.eu/handle/10419/73832. 

Central Bank of Spain (2015) Quarterly Report on the Spanish Economy. Economic 
Bulletin, December 2015. Available at 
http://www.bde.es/f/webbde/SES/Secciones/Publicaciones/InformesBoletinesRevistas/
BoletinEconomico/descargar/15/Dic/Files/be1512-coye.pdf 

Danninger, S. (2005). Revenue forecasts as performance targets. 

Duncan, G., Gorr, W., & Szczypula, J. (1993). Bayesian forecasting for seemingly 
unrelated time series: Application to local government revenue forecasting. 
Management Science, 39(3), 275-293.

European Commission.(2016) Country Report Spain 2016. Including an In-Depth 
Review on the prevention and correction of macroeconomic imbalances:. (February 26, 
2016). Commission staff working document.  
Available at http://ec.europa.eu/europe2020/pdf/csr2016/cr2016_spain_en.pdf 

European Commission (2015), VAT Rates Applied in the Member States of the 
European Union. Situation at 1st September 2015– Taxud.c.1(2015) - EN
Available at 
http://ec.europa.eu/taxation_customs/resources/documents/taxation/vat/how_vat_works/
rates/vat_rates_en.pdf. 

Glenn P. J., Chu-Yan K. and Gangadhar P. S. (2000) Tax Analysis and Revenue 
Forecasting-Issues and Techniques. Harvard Institute for International Development, 
Harvard University. 

Giles, C. and Hall, J. (1998)  “Forecasting the PSBR Outside Government: The IFS 

Perspective” Fiscal Studies Volume 19, Issue 1. 

Golosov, M. (2002). Tax revenue forecasts in IMF-supported programs. 

Gyomai, G.and E. Guidetti (2012) OECD system of composite leading indicators.
Avalilable at http://www.oecd.org/std/leading-indicators/41629509.pdf 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 636



22 
 

Jenkins, G. P., Kuo, C. Y., & Shukla, G. (2000). Tax analysis and revenue 
forecasting. Cambridge, Massachusetts: Harvard Institute for International 
Development, Harvard University. 

Labeaga, J. M. and A. López (1994), Estimation of the welfare efects of indirect tax 
changes on Spanish households: an analysis of the 1992 VAT reform", Investigaciones 
Económicas, Vol. XVIII(2), May, pp.289-311. 

Leal, T., Pérez, J. J., Tujula, M., & Vidal, J. P. (2008). Fiscal forecasting: lessons 
from the literature and challenges. Fiscal Studies, 29(3), 347-386.
 
Le Minh, T. (2007). Estimating the VAT base: method and application. Tax Notes 
International, 46, 42.

Legeida, N., & Sologoub, D. (2003). Modeling value added tax (VAT) revenues in a 
transition economy: Case of Ukraine. Institute for economic research and policy 
consulting working paper, (22), 1-21.

Lundback, E.J. (2008). Medium-Term Budgetary Frameworks - Lessons for Austria 
from International Experience. IMF working paper WP/08/163 
Avalilable at https://www.imf.org/external/pubs/ft/wp/2008/wp08163.pdf. 

Michael Keen (2013) The Anatomy of the VAT. IMF Working Paper. Fiscal Affairs 
Department. WP/13/111. Avalilable at 
https://www.imf.org/external/pubs/ft/wp/2013/wp13111.pdf. 

Pavlik, M. (2008). The Usage Of the Dummy Variable for VAT Forecasting of the Tax 
Administration in the Slovak Republic. Prace Naukowe Universitetu Ekonomicznego we 
Wrocławiu, Ekonometria, 21, 40-54.

Pérez, C. (2006) Econometría de las series temporales. Prentice Hall. 

Pérez, C. (2007) Econometría básica. Prentice Hall. 

Pérez, C. (2008) Econometría avanzada. Técnicas y herramientas.. Prentice Hall. 

Pérez, C. (2010) El Sistema Estadístico SAS. Garceta Grupo Editorial  

Pérez, C. (2013) Análisis multivariante de datos. Garceta Grupo Editorial 

Pike, T., & Savage, D. (1998). Forecasting the public finances in the Treasury. Fiscal 
Studies, 19(1), 49-62.

Sancak, C., Velloso, R., & Xing, J. (2010). Tax revenue response to the business cycle.

Slobodnitsky, T., & Drucker, L. (2008). VAT Revenue Forecasting in Israel. Ministry 
of Finance, State Revenue Administration, The Maurice Falk Institute for Economic 
Research in Israel Ltd. 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 637



23 
 

Sung, M. J. (1999). Estimation of Tax Evasion in Global Income Tax and VAT for 
Enhancing the Accuracy of Revenue Forecasting. , Korea Institute of Public Finance, 
Séoul. 

Ţitan, E., Boboc, C., Ghita, S., Todose, D (2011) Econometric Analysis of the 
Correlations between the Social Security Budget and the Main Macroeconomic 
Aggregates in Romania. Theoretical and Applied EconomicsVolume XVIII (2011), No. 
2(555), pp. 117-126. 

Wawire, N. H. W. (2011). Determinants of value added tax revenue in Kenya. 

Zee, H.H. and Boding, J.P (1992) Aspects of introducing a Value-Added Tax in Sri 
Lanka. Paper prepared for  the International Monetary Fund, Fiscal Affairs Department. 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 638



Combining forecasts to capture realized volatility
dynamics
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Abstract. In this work we provide the findings of a forecast combination
analysis carried out on the realized volatility series of three market in-
dexes (DAX, CAC, AEX). Two volatility types (5 minutes, kernel) have
been considered. The results suggest that forecasts computed through
combining models are generally more accurate than those provided by
single models. However, the choice of the latter can affect significantly
the goodness of the results.

Keywords: Realized volatility, forecast combinations, loss functions.

1 Introduction

Volatility is a central parameter for many financial decisions including the pricing
and hedging of derivative products as well as the development of efficient risk
management methods. Most of the volatility models presented in the literature
are based on the empirical detection that volatility is time-varying and that
periods of high volatility tend to cluster (Ané 2006). The forecasting process of
such an important measure represents a major issue.

In literature there exists a wide variety of models that are able to estimate
volatility forecasts, but they are, almost by definition, simple and incomplete
(Raviv 2016). An improvement in the forecasts accuracy can be achieved com-
bining forecasts originated from different types of models. Forecast combinations
have been used successfully in empirical work in diverse areas such as forecast-
ing Gross National Product, currency market volatility, inflation, money supply,
stock prices, meteorological data, city populations, outcomes of football games,
wilderness area use, check volume and political risks (Timmermann 2006).

The aim of this paper is to forecast the daily realized volatility one-step-ahead
for a one-year period with both single and combining models. Thereafter we will
compare the predicted values with the actual data by means of a number of loss
functions. To carry out our analysis we have used data on realized volatility from
01/01/2008 to 31/12/2016 of three market indexes (DAX, CAC, AEX)

The remainder of the paper is organized as follows. Section 2 describes the
data, the models adopted and the loss functions used for evaluating the different
forecasts. Section 3 presents the results of the analysis while Section 4 concludes.
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2 Data and Methodology

This study focuses on the realized volatility of three European market indexes:

- DAX 30 (Deutsche Aktienindex 30 ) is a blue chip stock market index con-
sisting of the 30 major German companies trading on the Frankfurt Stock
Exchange;

- CAC 40 (Cotation Assistée en Continu) represents a capitalization-weighted
measure of the 40 most significant values among the 100 highest market caps
on the Euronext Paris;

- AEX (Amsterdam Exchange Index ) is a stock market index composed of
Dutch companies that trade on Euronext Amsterdam, composed of a maxi-
mum of 25 of the most frequently traded securities on the exchange.

The time series of the indexes are provided by the Oxford-Man Institute
of Quantitative Finance by means of its own website (Oxford-Man Institute of
Quantitative Finance Realized Library 2017). For each asset, the dataset contains
the realized volatility collected every 5 minutes, the realized kernel volatility and
the daily returns, covering the period from 01/01/2008 to 31/12/2016.

Three different models have been chosen to create the single forecasts:

1. Asymmetric Multiplicative Error Model (AMEM) (Engle 2002; Engle and
Gallo 2006), which for a basic (1,1) order has the following structure:

rvt = µtξt

µt = ω + α1rvt−1 + β1µt−1 + γDt−1rvt−1 (1)

with ω > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1. Dt is a dummy variable that takes
the value of 1 if the return at time t is negative and 0 otherwise;

2. Asymmetric Power Multiplicative Error Model (APMEM), which for the
usual (1,1) order is given by:

rvt = µtξt

µδt = ω + α1rv
δ
t−1 + β1µ

δ
t−1 + γDt−1rv

δ
t−1 (2)

with ω > 0, α1 ≥ 0, β1 ≥ 0, α1+β1 < 1, δ > 0. This model is a generalization
of the basic MEM and follows the APGARCH philosophy (Ding, Granger,
and Engle 1993);

3. Asymmetric Heterogeneous AutoRegressive Model (AHAR), that is the HAR
model (Corsi 2009) with a leverage effect term:

rvt = c+ β(d)rvt−1 + β(w)rv
(w)
t−1 + β(m)rv

(m)
t−1 + ε

(d)
t (3)

where:
(d) stands for the time horizons of one day;

rv
(w)
t−1 is the weekly realized volatility which at time t is given by the average

rv
(w)
t =

1

5

(
rv

(d)
t + rv

(d)
t−1d + . . .+ rv

(d)
t−4d

)
(4)
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rv
(m)
t−1 is the monthly realized volatility which at time t is given by the average

rv
(m)
t =

1

22

(
rv

(d)
t + rv

(d)
t−1d + . . .+ rv

(d)
t−21d

)
(5)

As a preliminary analysis, in Fig. (1) we compare the forecasts obtained
using the three models above-mentioned for the year 2016 (coloured lines) with
the actual values of the volatility (dashed black line) for the DAX 5-minutes
series. The chart shows that all models react satisfactorily to positive peaks of
volatility, whereas they are not able to achieve a suitable degree of accuracy
when volatility reaches a local minimum. This issue, which is common also to
the other observed time series, can be overcome by combining the forecasts of
two models, as we will see thereinafter.

The combining methods are based on the following two combination models:

- comb1 model, based on a simple unconstrained Ordinary Least Squares es-
timates of the weights. The one-step-ahead forecast is given by

rvT (1) = α+ β1f
(1)
T (1) + β2f

(2)
T (1) (6)

with f
(1)
T (1) and f

(2)
T (1) denote, respectively, the first and second model

forecasts;
- comb2 model, with the combination given by

rvT (1) = α+ (β1 + δ1Dt−1)f
(1)
T (1) + (β2 + δ2Dt−1)f

(2)
T (1) (7)

which includes a dummy variableDt that takes the value 1 if rvt is lower than
rvt−1 and 0 otherwise. The ratio of this choice is given by the consideration
that, as we have mentioned before, the forecast of volatility is often far from
the actual realized volatility while this is decreasing.

To compare the results of the combination schemes with those that can be
reached by exclusively relying on a single model, we compute four loss functions:

1. Mean Square Error (MSE);
2. Mean Absolute Error (MAE);
3. Quasi-Likelihood (QLIKE), defined as

1

n

n∑
i=1

[
rvT+i

rvT+i−1(1)
− ln

(
rvT+i

rvT+i−1(1)

)
− 1

]
(8)

with rvT+i being the observed value of the realized volatility and rvT+i−1(1)
is the one-step-ahead forecast for time T + i, i = 1, . . . , n;

4. a new measure, given by

1

n

n∑
i=1

(
1 +

(
|εT+i|
rvT+i

)m
I(εT+i > 0)

)
|εT+i| (9)
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where εT+i = rvT+i− rvT+i−1(1). This measure is an extension of the MAE
(we will call it Asymmetric MAE, or AMAE): it reduces to |εT+i| when
the indicator function is 0 (overestimation of the volatility) and is given by(
1 +

(
|εT+i|
rvT+i

)m)
|εT+i| when the indicator function is 1 (underestimation of

the volatility).

For the computation of the forecast combinations, we start by splitting the
data into an estimation and training set and a test set. The former is again split
into two parts, the first to estimate the parameters of the model, the second
(the training period) to estimate the weights to be attributed to the single fore-
casts. The latter, the test set, will be used for the evaluation of the different
models. We have chosen to take into account two different training periods in
our analysis: a four-years training period and a three-years training period. For
instance, with a four-years training period, we estimate the parameters of the
models using observations from 02/01/2008 to 31/12/2011, then compute one-
step-ahead forecasts from 02/01/2012 to 31/12/2015; these forecasts are used to
estimate the weights of the combinations, finally the one-step-ahead forecast for
02/01/2016 is produced. Then, we estimate the parameters of the models using
observations from 03/01/2008 to 02/01/2012, compute one-step-ahead forecasts
from 03/01/2012 to 02/01/2016 to estimate the weights of the combinations,
and the one-step-ahead forecast for 03/01/2016 is produced. And so on.
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Fig. 1. Comparison among observed realized volatility (5 minutes) for year 2016 and
AMEM(1,1), APMEM(1,1) and AHAR forecasts - DAX dataset
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3 Comparisons among forecasting models

In this section we will show the findings of our analysis. For each model we display
the value of the four loss functions mentioned above between the forecasts and
the observed values. Since two of the three single models we have used (AMEM
and APMEM) are very similar each other, we will present first a comparison
between AMEM and AHAR and then between APMEM and AHAR, along with
the combination schemes we have described in Sect. 2.

3.1 AMEM vs AHAR

The order of the two single models is defined using the Ljung-Box test on
the residuals of the in-sample analysis of the two models. We have selected
an AMEM(1,1) for DAX dataset, an AMEM(1,2) for CAC and AEX, and an
AHAR with a second lag term (rvt−2) for all datasets.

Table 1. Comparison among AMEM(1,1), AHAR and combination schemes (in bold
the smallest values) - DAX dataset

MSE MAE
Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2

period (1,1) (1,1)

rv 5 min. 4 years 0.254 0.293 0.254 0.248 3.459 3.671 3.458 3.361
3 years 0.254 0.293 0.254 0.250 3.459 3.671 3.461 3.418

rv kernel 4 years 0.206 0.251 0.206 0.200 3.124 3.386 3.125 3.021
3 years 0.206 0.251 0.206 0.203 3.124 3.386 3.126 3.082

QLIKE AMAE (m = 2)

Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2
period (1,1) (1,1)

rv 5 min. 4 years 4.231 4.979 4.235 4.246 3.679 3.925 3.679 3.596
3 years 4.231 4.979 4.244 4.338 3.679 3.925 3.682 3.644

rv kernel 4 years 3.505 4.312 3.505 3.508 3.296 3.599 3.297 3.205
3 years 3.505 4.312 3.511 3.594 3.296 3.599 3.299 3.259

Table 1 shows the results for the first comparison, i.e. AMEM(1,1) and
AHAR models along with combined forecasts on DAX data. We can see that
comb2 model performs very well for almost all indicators, only QLIKE prefers
AMEM(1,1) model (three times out of four) and comb1.

Findings provided by Table 2 for CAC dataset are very similar, the only
difference is that QLIKE prefers comb2 for rv kernel with a training period of
four years instead of comb1.
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Table 2. Comparison among AMEM(1,2), AHAR and combination schemes (in bold
the smallest values) - CAC dataset

MSE MAE
Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2

period (1,2) (1,2)

rv 5 min. 4 years 0.243 0.292 0.243 0.239 3.164 3.502 3.169 3.098
3 years 0.243 0.292 0.243 0.242 3.164 3.502 3.169 3.126

rv kernel 4 years 0.240 0.295 0.240 0.233 3.150 3.546 3.161 3.045
3 years 0.240 0.295 0.241 0.236 3.150 3.546 3.160 3.083

QLIKE AMAE (m = 2)

Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5 min. 4 years 3.809 4.660 3.831 3.836 3.375 3.752 3.381 3.323
3 years 3.809 4.660 3.838 3.891 3.375 3.752 3.383 3.349

rv kernel 4 years 3.855 4.810 3.877 3.834 3.364 3.800 3.376 3.270
3 years 3.855 4.810 3.878 3.895 3.364 3.800 3.375 3.306

Table 3. Comparison among AMEM(1,2), AHAR and combination schemes (in bold
the smallest values) - AEX dataset

MSE MAE
Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2

period (1,2) (1,2)

rv 5 min. 4 years 0.251 0.293 0.251 0.247 3.003 3.170 2.993 2.960
3 years 0.251 0.293 0.251 0.251 3.003 3.170 2.995 3.006

rv kernel 4 years 0.219 0.257 0.219 0.213 2.947 3.180 2.948 2.884
3 years 0.219 0.257 0.219 0.216 2.947 3.180 2.950 2.922

QLIKE AMAE (m = 2)

Series Training AMEM AHAR comb1 comb2 AMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5 min. 4 years 3.925 4.706 3.941 3.960 3.233 3.434 3.225 3.198
3 years 3.925 4.706 3.949 4.023 3.233 3.434 3.228 3.240

rv kernel 4 years 3.854 4.677 3.872 3.834 3.153 3.419 3.155 3.095
3 years 3.854 4.677 3.874 3.886 3.153 3.419 3.157 3.129
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The results for AEX dataset (Table 3) are very similar. There is a predom-
inance of comb2 model, but the AMEM(1,1) performs well too particularly ac-
cording to QLIKE (in three cases out of four), whereas comb1 is chosen as best
model once in both MAE and AMAE.

So far we have evaluated the available forecasts by means of the numerical
values provided to the loss functions. Before doing so, however, we need to assess
if the forecast series are different from a statistical point of view too. To this
end, we have used the Conditional Predictive Ability (CPA) test (Giacomini
and White 2006) to make pair-wise comparisons among all forecasting models
(α = 0.05).

The test shows different results according to the different datasets.3 As re-
gards DAX, we accept the null hypothesis of equal accuracy for comb1 and
AMEM(1,1) (for both training periods) and for comb2 and AMEM(1,1) (for the
3 years training period only). The same holds for CAC dataset, except for rv 5
minutes with a 4 years training period where AMEM(1,2) and both combining
models have the same accuracy. Findings are rather dissimilar for AEX dataset:
looking at rv 5 minutes, we can observe that no model (neither combination
or single model) is better than others, whereas in the rv kernel case we reject
the alternative hypothesis for the comparisons between comb1 and AMEM(1,2),
AMEM(1,2) and AHAR (for both 3 and 4 years training periods) and comb2
and AMEM(1,2) (for the 3 years training period only).

3.2 APMEM vs AHAR

In this subsection we want to inspect if a generalization of the AMEM basic
model is able to improve the accuracy of the forecasts of combinations. According
to the Ljung-Box test, we use an APMEM(1,1) for DAX and an APMEM(1,2)
for CAC and AEX.

As shown in Table 4, we have observed an actual improvement in the com-
bined forecasts. Compared to the findings shown in Table 1, this time all the
loss functions appoint the smallest value to a combination. The best combination
scheme is comb2 again, with comb1 preferred only by QLIKE three times out
of four.

Unfortunately, the improvement occurred for DAX dataset moving from
AMEM to APMEM does not hold for CAC. Indeed the results shown in Ta-
ble 5 are the same that we can draw from the Table 2 in terms of loss functions
values.

Observing the Table 6 we can see that, compared to the Table 3, the transition
from AMEM to APMEM has caused an agreement of the loss functions towards
the choice of comb2, with the single model APMEM(1,2) thas has been chosen
by QLIKE only (overall, they are the same findings that can be draw from Table
5)

As before, we have measured the statistical meaning of the different forecasts
by using the CPA test. Concerning the first two datasets, the results are perfectly
3 For lack of space, tables providing the findings are not shown herein.
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Table 4. Comparison among APMEM(1,1), AHAR and combination schemes (in bold
the smallest values) - DAX dataset

MSE MAE
Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2

period (1,1) (1,1)

rv 5 min. 4 years 0.249 0.293 0.249 0.245 3.421 3.671 3.418 3.332
3 years 0.249 0.293 0.249 0.247 3.421 3.671 3.421 3.383

rv kernel 4 years 0.203 0.251 0.203 0.198 3.101 3.386 3.099 3.006
3 years 0.203 0.251 0.203 0.200 3.101 3.386 3.101 3.059

QLIKE AMAE (m = 2)

Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2
period (1,1) (1,1)

rv 5 min. 4 years 4.165 4.979 4.152 4.156 3.640 3.925 3.637 3.564
3 years 4.165 4.979 4.162 4.232 3.640 3.925 3.640 3.607

rv kernel 4 years 3.464 4.312 3.448 3.429 3.274 3.599 3.271 3.187
3 years 3.464 4.312 3.456 3.506 3.274 3.599 3.273 3.236

Table 5. Comparison among APMEM(1,2), AHAR and combination schemes (in bold
the smallest values) - CAC dataset

MSE MAE
Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2

period (1,2) (1,2)

rv 5 min. 4 years 0.246 0.292 0.245 0.240 3.177 3.502 3.191 3.091
3 years 0.246 0.292 0.246 0.242 3.177 3.502 3.193 3.113

rv kernel 4 years 0.242 0.295 0.242 0.234 3.158 3.546 3.172 3.045
3 years 0.242 0.295 0.242 0.236 3.158 3.546 3.173 3.077

QLIKE AMAE (m = 2)

Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5 min. 4 years 3.833 4.660 3.868 3.855 3.389 3.752 3.405 3.318
3 years 3.833 4.660 3.877 3.913 3.389 3.752 3.407 3,340

rv kernel 4 years 3.865 4.810 3.893 3.840 3.372 3.800 3.387 3.271
3 years 3.865 4.810 3.899 3.903 3.372 3.800 3.389 3.301
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Table 6. Comparison among APMEM(1,2), AHAR and combination schemes (in bold
the smallest values) - AEX dataset

MSE MAE
Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2

period (1,2) (1,2)

rv 5 min. 4 years 0.256 0.293 0.254 0.247 3.022 3.170 3.003 2.945
3 years 0.256 0.293 0.254 0.250 3.022 3.170 3.005 2.989

rv kernel 4 years 0.219 0.257 0.219 0.213 2.950 3.180 2.949 2.878
3 years 0.219 0.257 0.220 0.215 2.950 3.180 2.950 2.916

QLIKE AMAE (m = 2)

Series Training APMEM AHAR comb1 comb2 APMEM AHAR comb1 comb2
period (1,2) (1,2)

rv 5 min. 4 years 3.946 4.706 3.971 3.975 3.253 3.434 3.236 3.186
3 years 3.946 4.706 3.980 4.039 3.253 3.434 3.239 3.226

rv kernel 4 years 3.855 4.677 3.875 3.831 3.156 3.419 3.156 3.091
3 years 3.855 4.677 3.879 3.886 3.156 3.419 3.158 3.125

equal to those depicted in the previous subsection. As regards AEX, the only
difference with findings mentioned above lies in the rv 5 minutes with a 4 years
training period forecasts. Here, we accept the null hypothesis that all competing
models are equally accurate on average, except the comparison between comb2
and AHAR.

4 Conclusions

A comparison among forecasts provided by single and combination models is
investigated. We have found that combining the AHAR model with APMEM
instead of AMEM causes an improvement in the accuracy of the forecasts com-
puted using combination schemes, especially the comb2 model. This finding holds
for DAX and AEX datasets and for all training periods, whereas for the CAC in-
dex there was not any change in loss function choises when moving from AMEM
to APMEM.
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Abstract. Profitable exploitation of rare earths is unusual. These elements are 
essential for new technologies as well as for the development of the current world 
economy. The need for rare earths and their demand on markets between 2006 
and 2014 was roughly constant, without decrease despite the global crisis, and 
demand is expected to increase. However, fluctuations in the need for the various 
rare earths will make it difficult to keep the market equilibrium. With the aim of 
forecasting the behavior of market prices, multivariate time series processes are 
used to model and forecast the prices of one of the rare earths,  terbium. Although 
the results achieved are satisfactory, an alternative model is proposed, based on 
univariate time series for the predictions, together with a support machine model 
for the multivariate relations with their parameters set with a genetic algorithm, 
thus improving the forecasts. 
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1 Introduction 

There are fifteen chemical elements called rare earths or lanthanides. They can be 
classified as light and heavy rare earths, according to their atomic weight. Light rare 
earths include the following chemical elements: lanthanum, cerium, praseodymium, 
neodymium, promethium and samarium; the heavy rare earths are terbium, dysprosium, 
holmium, terbium, thulium, ytterbium and lutetium. Finally, scandium and yttrium, alt-
hough not true rare earths, are often considered as such because of their physical and 
chemical properties. Rare earths follow the Oddo-Harkins law, whereby the percentage 
composition in which they are found in the different minerals containing them de-
creases as their atomic number increases. It means that light rare earths are more abun-
dant than heavy rare earths [1]. 

Rare earths are not common in quantities sufficient to allow profitable exploitation. 
In addition, these elements are essential for certain civil and military technologies as 
well as for the development of the current world economy, including wind turbines, 
catalysts, glassmaking, metallurgy, aerospace, health care and advanced battery sys-
tems. According to the Worldwide Threat Assessment [2], 90% of world rare earth 
mining is now concentrated in China. The European Union has classified some of the 
rare earths into the list of "critical raw materials" [3]. The importance of light and heavy 
rare earths is very similar, but heavy rare earths present a much higher risk of supply, 
due to China's influence in terms of global supply, since it provides 99% of them, com-
pared to 87% of the lightweight ones. 

The British Geological Survey [4] also classifies rare earths within the category of 
"critical materials" with a relative supply risk index of 9.5, on a scale ranging from 1 to 
10, due mainly to the concentration of production, the distribution of reserves, the rate 
of recycling and the difficulty of substitution by other minerals. The United States De-
partment of Energy, in a 2011 report [5], also gave them a high importance. In the study 
entitled "Critical Material Strategy", neodymium, europium, terbium, dysprosium and 
yttrium were identified as the rare earths critical for the short and medium term. Dys-
prosium was the rare earth selected as of major importance for clean energies and with 
the greatest risk of supply in the medium term, followed by terbium, and neodymium. 

According to ERECON (2014) [6], the estimated total consumption of rare earths in 
Europe in 2012 was 113,250 tons, while consumption in 2010 was 8,050 tons. The 
historical consumption of rare earths between 2006 and 2014 was roughly constant, 
without any decrease despite the global crisis, and demand is expected to increase [7] 
in the coming years. 

Although fluctuations in the demand for the various rare earths will make it difficult 
to achieve market equilibrium [8], in 2014 there were five mining projects in develop-
ment that would have meant an increase in the supply of rare earths by some 41,100 
tons per year, so that these projects alone could have covered about one third of the 
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total consumption of rare earths in the world. In 2016 and after a fall in prices, some of 
the projects mentioned were paralyzed [9]. 

Finally, we would like to point out that there is currently no substitutability for about 
45% of rare earth applications, while for another 45% this is only possible at a high 
cost or with loss of performance. 

In this paper, we present an alternative methodology to the classical time series tech-
niques, with the aim of improving the forecasts over the series of prices of the rare 
earths introduced above. This approach includes the use of artificial intelligence meth-
ods to support the modelling of the series, whose parameters are set with the support of 
a genetic algorithm. 

2 Materials and Methods 

2.1 Univariate and Multivariate Time Series models. 

Univariate time series processes ARMA (autoregressive moving average) define a 
parametric family of stationary processes that make it possible to model the time struc-
ture and behavior of large sets of data measured in homogeneous time lapses. There-
fore, these processes also enable predictions for the modelled data [10,11]. 

The process {𝑋𝑡 , 𝑡 = 0, ±1, ±2, … } is called an ARMA(𝑝, 𝑞) process if {𝑋𝑡} is sta-
tionary an, for all 𝑡, 

                        𝑋𝑡 − 𝛷1𝑋𝑡−1 − ⋯ − 𝛷𝑝𝑋𝑡−𝑝 = 𝑍𝑡 + 𝜃1𝑍𝑡−1 + ⋯ + 𝜃𝑞𝑍𝑡−𝑞                  (1)  

 Where {𝑍𝑡} is a white noise process of uncorrelated observations with mean zero. 
Also,  𝛷 and 𝜃 are polynomials of degrees 𝑝 and 𝑞 respectively, defined as follows, 

                                                 𝛷(𝑧) = 1 − 𝛷1𝑧 − ⋯ − 𝛷𝑝𝑧𝑝                                              (2) 

                                                 𝜃(𝑧) = 1 +  θ1𝑧 + ⋯ + θ𝑞𝑧𝑞                                               (3) 

The equation 1 is usually reformulated as  

                                           𝛷(𝐵)𝑋𝑡 = θ(𝐵)𝑍𝑡  ,     𝑡 = 0, ±1, ±2, …                                   (4) 

With 𝐵 the backward shift operator defined as 

                                               𝐵𝑗𝑋𝑡 = 𝑋𝑡−𝑗,     𝑗 = 0, ±1, ±2, …                                           (5) 

As a generalization of ARMA models, ARIMA models include the possibility of 
modeling non-stationary series due to the existence of tendency, with a differentiation 
order 𝑑. Therefore, the process {𝑋𝑡} will be an ARIMA(𝑝, 𝑑, 𝑞) if, 

                                                 𝛷(𝐵)(1 − 𝐵)𝑑𝑋𝑡 =  θ(𝐵)𝑍𝑡                                                  (6) 

The extension to multivariate modeling, in the case of time series with relations be-
tween variables, can be modeled with multivariate processes for vectors of time series, 
VARMA (vector auto-regressive moving average) [12,13]. 
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A 𝑘-dimensional process {𝑋𝑡}, with 𝑋𝑡 = (𝑋𝑡1, … , 𝑋𝑡𝑘), is generated with a station-
ary and invertible model, VARMA(𝑝, 𝑞), if it satisfies the equation, 

                     𝑋𝑡 − 𝛷1𝑋𝑡−1 − ⋯ − 𝛷𝑝𝑋𝑡−𝑝 = 𝑍𝑡 − θ1𝑍𝑡−1 − ⋯ −  θ𝑞𝑍𝑡−𝑞                    (7) 

With coefficient matrixes 𝛷𝑖  and 𝜃𝑗 , for 𝑖 = 1, … , 𝑝 , 𝑗 = 1, … , 𝑞  and {𝑍𝑡} =

(𝑍𝑡1, … , 𝑍𝑡𝑘) vector of white noise processes. 

2.2 𝐒𝐮𝐩𝐩𝐨𝐫𝐭 𝐕𝐞𝐜𝐭𝐨𝐫 𝐌𝐚𝐜𝐡𝐢𝐧𝐞𝐬. 

The support vector machines (SVM) are machine learning techniques. This category 
of techniques is known for its aptitude for approximating multivariate functions 
[14,15].  Among other mathematical models for similar problems [11,16], SVM belong 
to the family of machine learning methods and are used to model different types of 
physical systems through the adaptation of their parameters [17,18] with a training pro-
cess. These methods are commonly used in classification [19] and regression problems 
[20,21]. The performance of SVM relies on the training with data previously obtained 
from the system to be modelled, as training data set. 

For classification problems, the vectors from the training data are used to map a 
feature space of a higher dimension, which depends on the kernel function selected. 
The classification is made through the separation of classes defined by hyperplanes. 
These hyperplanes are constructed as an optimized linear solution. 

Then, the output of a trained SVM can be formulated as [15,22]: 

                                     ŷ𝑖 = 𝑎𝑇𝛷(𝑥𝑖) + 𝑏                                                       (8) 

With  𝑥𝑖 the input vectors from the training set, mapped into a hyperplane via 𝛷(𝑥𝑖), 
a function that linearizes the relations between inputs and outputs. The parameters are 
𝑎 and 𝑏, which are a vector of the same dimension as the image of 𝛷, and a coefficient, 
respectively. 

The determination of the parameters is made by finding an optimized solution to the 
problem [23] 

                                   min
a,ε,ηi,ηi

′ 

1

2
 𝑎𝑇𝑎 + 𝐶 (

1

𝑁
   ∑(𝜂𝑖 +  𝜂𝑖

′)  + 𝑣 𝜀

𝑁

𝑖=1

)                              (9) 

Where the restrictions of the optimization problem are:  

                                                  𝑎𝑇𝛷(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤  𝜀 + 𝜂𝑖                                               (10) 

                                                  𝑦𝑖 − 𝑎𝑇𝛷(𝑥𝑖) − 𝑏 ≤  𝜀 + 𝜂𝑖
′                                              (11) 

Where 𝐶 is a regularization parameter, ε is the tolerance error for each input 𝑥𝑖. Both 
η and η' are the slack variables, that take positive values. Finally, 𝑣 is a parameter for 
the adjustment of the tolerance. The estimation of SVM can be expressed as  
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                                               ŷ𝑖 =  ∑(𝛽𝑖
′ −  𝛽) 𝐾(𝑥𝑖 , 𝑥) + 𝑏 

𝑁

𝑖=1

                                         (12) 

In this expression, 𝛽 and 𝛽′ are the Lagrange multipliers corresponding to the re-
strictions above. The kernel function 𝐾 can be defined as 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝛷(𝑥𝑖)𝑇𝛷(𝑥𝑗).  

Some of the most common kernel functions are the following [24]: 
- Linear kernel;  𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖

𝑇 · 𝑥𝑗 . 
- Polynomial kernel; with parameters 𝛾, 𝛼0 and, as the polynomial degree, 𝛼. 

This is defined as  𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾 · 𝑥𝑖
𝑇 · 𝑥𝑗 + 𝛼0)

𝛼
 

- Radial basis kernel; with 𝛾 as parameter, and expression 𝐾(𝑥𝑖 , 𝑥𝑗) =

𝑒−𝛾|𝑥𝑖−𝑥𝑗|
2

. 
- Sigmoid kernel; with parameters 𝛾 and 𝛼0. It is defined as 𝐾(𝑥𝑖 , 𝑥𝑗) =

tanh (𝛾 · 𝑥𝑖
𝑇 · 𝑥𝑗 + 𝛼0). 

2.3 Genetic algorithms. 

Genetic Algorithms were developed to simulate the evolution of a population in 
terms of optimizing the survival of the next generation. These algorithms were first 
developed for chromosomic studies [25], but now, their use has been generalized for 
optimization problems. Consequently, genetic algorithms work to improve the fitness 
of the iterations, that is, of the formation of new generations, until a solution is reached. 
Four basic genetic operators are used in each step as criteria [26–28]: 

 
- Crossover: to modify the programming of the chromosomes from one gen-

eration to the next. Its behavior is similar to that of biological crossover. 
- Mutation: used to provide genetic diversity from one generation to the next, 

randomly altering values of genes before the crossover operation. Usually, 
uniform random mutation is used. 

- Reproduction: in each generation, two solutions are selected and mixed 
with crossover or mutation techniques, in order to create a child solution for 
the next generation.  

- Elitism: This is used as accelerator criterion for improving the fitness func-
tion, allowing the genetic algorithm to clone the best genomes from one gen-
eration to the next. 

The optimization problem and the iterations of the genetic algorithm are widely 
known and formulated in literature [29]. 

In our case the aim of the algorithm is to find adequate parameters for the SVM. The 
iterations of the genetic algorithm are focused in minimizing the mean absolute error 
over the predictions. The steps of the algorithm are as shown in figure 1: 
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Fig. 1. Genetic algorithm for setting optimal SVM parameters. 

The algorithm begins with the setting of parameters for the genetic algorithm, such 
as crossover, mutation, elitism and population size. After this, an initial population 
should be created. The set of the initial population has to be a vector with size of the 
possible variation of parameters for the SVM.  

Since we will consider, among the possible variable parameters, the type of kernel 
used for the SVM, we will have different types of initial populations, based on the type 
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of kernel. To avoid this problem, we consider a branching of the algorithm. Considering 
four ways in parallel, in each branch, the genetic algorithm is performed with each 
possible type of kernel (linear, polynomial, radial basis or sigmoid).  

The stop criterion will be satisfied if the error does not change more than 0.01% in 
the last 1000 iterations of the algorithm. When the stop criterion is not satisfied, a new 
population has to be created. This is performed by implementing the crossover, muta-
tion and elitism. The process is repeated until the stop criterion is satisfied.  

 

2.4 Data available for the study. 

Data is in the form of time series, taken monthly, of the prices of 5 rare earths. The 
length of the series is not equal; the first and last data can be found on table 1. Once the 
measurement began, it was taken every month until the last one; therefore there are no 
missing values. 

Table 1. Characteristics of the price series 

Series Rare earth First date Last date Length 
1 Dysprosium March-2003       February-

2017 
167 

2 Europium March-2003       February-
2017 

167 

3 Neodynium March-2003       February-
2017 

167 

4 Praseodyum March-2003       February-
2017 

167 

5 Terbium January-2004 February-
2017 

127 

 
For the study, data are separated into two sets, a training set and a validation set, for 

estimating errors in the prediction of the developed models. The validation set will have 
the last 5 measurements of each series, and the training set will have the rest of the 
measurements. 

3 Results and discussion. 

Data considered are time series of prices, which are supposed to be related among 
themselves. With this hypothesis, a multivariate approach is required in order to model 
and consider the possible relationships between the time series of prices. Our first ap-
proach was to consider VARMA models, where data was available for the whole series 
(from 𝑡 = 25 to 𝑡 = 162). 
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However, a search in the usual indicators of fitted VARMA models, such as AIC, 
BIC or the mean absolute error of predictions over the validation set, led us to discard 
the models that have a moving average component.  

The available data corresponding with the terbium price series is the one to be pre-
dicted, with values ranging from a minimum of 196.35 to a maximum of 5,900 US 
dollars. With VARMA models, the mean absolute error of the predictions represented 
a high percentage of the range of values of the data of the Terbium price series, 5,703.65 
dollars.  

Consequently, the modeling was restricted to VAR processes. Mean absolute errors 
over the prediction of Terbium series data in the validation set are presented in Figure 
2.  

 
 

 
Fig. 2. Estimated mean absolute error over predictions of the terbium series. 

 
The best option in the VAR models was found in VAR(5). Considering models of 

higher complexity, VAR(11) gave close results; nevertheless, in terms of both com-
plexity and results, VAR(5) is the most appropriate model, with 25,163 US dollars as 
the mean absolute error. 

However, in order to achieve better results, another approach was performed. To 
improve the performance, we consider that, due to the low quantity of available data, it 
could be inferred that both processes, prediction and modeling the multivariate rela-
tions, could be difficult to perform with only a model. With this aim, a hybrid approach 
is proposed, with time series processes and artificial intelligence techniques.  

Univariate time series processes were used to model each of the first four series of 
prices. This also makes it possible to use more data for the modeling, as explained be-
fore. Therefore, the predictions for each single series are expected to be more accurate 
than those in the multivariate approach. Regarding the usual indicators, such as AIC 
and BIC, the best models with the simplest complexity for each series is found in Table 
2. 
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Table 2. ARIMA processes for modeling each univariate series. 

Series 1 2 3 4 
ARIMA(p,d,q) (0,1,0) (0,1,0) (1,1,0) (1,1,0) 

 
It is interesting to remark the fact that the multivariate approach required some level 

of complexity, whereas univariate modeling requires processes of low complexity, even 
when modeling all the series with just an order of differentiation, as is the case in the 
first two series. This led us to set an artificial intelligence model, the SVM, to model 
the multivariate relations. 

Once univariate time series models were set to model each of the four series and 
predict their values, a SVM model was trained to predict the value of the fifth series, 
having as input the corresponding values predicted from the first four series. The 
method is detailed in Figure 3. 

 

 
Fig. 3. Scheme of the method followed. 

 
The SVM was trained to model the relation between series, predicting the value of 

the fifth series. In order to do so, the input data was the values of the first four series of 
the training set, and the values from the fifth series were the output. Data was taken 
from 𝑡 = 25 to 𝑡 = 162 , where data from the fifth series was available. 

To select the most adequate parameters of the SVM, a genetic algorithm was used, 
with a search in all the possible parameters and with four simultaneous branches, in the 
four possible types of kernels, since each kernel has a different number of parameters.  

For the estimation of the performance, the mean absolute error in the fifth series 
validation data was used. The inputs of each of the SVM models were the predictions 
provided from each ARIMA model, and the outputs compared to the validation data of 
the fifth series. 

The parameters obtained as result of the genetic algorithm determined the best SVM 
for the data considered, with a SVM of ν-regression type, with ν = 1. The chosen kernel 
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was polynomial, with degree 3, 𝛾 = 2 and independent parameter 𝛼0 =  5. Regarding 
the general parameters of the SVM, cost was set at 𝐶 = 1.12 and 𝜀 = 0.1. 

The model of SMV here presented, gives as result, a total of 9,843 dollars as average 
absolute error of the predictions from the fifth series, which represents 0.172% of the 
total variation of the price, improving significantly the forecasts from classical time 
series methods. 

4 Conclusions 

The prices of the rare earths were modeled with two methodologies. First, a multi-
variate time series approach with VARMA procedures was used. These techniques 
made it possible to model the time series and predict using the fitted model at the same 
time. This gave a mean absolute error of 24.16 dollars as result. 

Despite being able to model and predict satisfactorily with the multivariate tech-
nique, another approach was performed, with a mixture of time series and artificial 
intelligence techniques. 

Modeling and forecasting with ARIMA processes each of the first series individually 
made it possible to use more information for the modeling and consequently, to achieve 
more accurate forecasts. The SVM is trained to learn the relationships within the series, 
and to predict the value of the terbium series. 

Using the predictions from the ARIMA processes as inputs for the SVM, the mean 
absolute error obtained for the predictions was 9,843 dollars. This represents a range of 
terbium prices of 0.172%, which is a significant improvement on the best predictions 
that can be obtained with the multivariate approaches. 

The improvements that provide the stated hybrid approach, additionally to the good 
results presented, give the hints to the development of the method for its general use, 
by means of a deep study, considering computational cost and times, and the compari-
son with other methodologies applied in other fields, or deeply in this kind of economic 
studies. 
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Abstract. Bankruptcy prediction problem is not new. Over the past
50 years, researchers have become increasingly interested in this prob-
lem, as it is a critical issue to forecast for companies. Taking this into
account, in this work an efficient solution to the bankruptcy prediction
problem is presented. To this end, a real dataset from Spanish compa-
nies are used, dealing with the present unbalance on the data applying
some data resampling techniques. Then, several well-known classifiers,
i.e. J48, Random forest and Näıve Bayes, are compared in order to fig-
ure out which one obtains the highest prediction accuracy to be adopted
as appropriate solution. The judgment about the most ideal and con-
venient classifier to do this job is based on several metrics, which are
the outcomes of four experiments. Random forest classifier obtains the
superior results according to the outcomes.

1 Introduction

Predicting financial status of companies is a very important problem, since there
are numerous concerned stakeholders attentive to this information. For instance,
the investors are usually very interested in the information about future invest-
ments. On the other hand, many firms and organizations care about the financial
state prediction to do some studies. Also, many companies need a financial cov-
erage from other companies or firms, and these cases the creditor company cares
about whether the debtor company is a solvent or not.

Several techniques have been used before to solve the problem of predicting
an incoming bankruptcy situation. Part of them was statistical, which made more
effort in case of functional relations between dependent and independent vari-
ables [2]. In this paper, we use artificial intelligence methods, in order to predict
the financial status of the companies considering a dataset of many companies
in Spain.

This study comes as an improvement of our previous works, which applied
a hybrid technique to solve the problem of detecting the financial state using
Kohonen’s Self-organizing Map + U-Matrix graph to determine the influence of
the variables on the different clusters present in the data. This was combined
respectively with Genetic Programming [2] and Support Vector Machines [15],
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to classify the data regarding the book losses of the companies. Due to the con-
straints of the applied techniques, just numerical data were considered. That
gives the current work a preference while the methods used also deal with cate-
gorical variables, related to financial and nonfinancial data. Thus, in this study,
we have considered a wider dataset, enriched by more information, which might
let to obtain better results. In addition, the use of decision trees will yield more
interpretable outputs than those obtained in previous works, from the point of
view of an expert who has to justify the decision of the system for a new company
record.

J48, Random forest and Näıve Bayes classifiers addressed in this study in or-
der to figure out the most convenient classifier to do this job. Four incremental
experiment have been conducted, and their results analyzed and compared con-
sidering the values of several metrics such as the accuracy, sensitivity, specificity
and false positive rate.

2 State of the art

Since 1966, many researchers have been interested in the financial status predic-
tion problem. They attempted to innovate by applying useful tools or methods
in order to be a solution.

In the case of using one prediction method or classifier for the same objec-
tive, several researchers used support vector machine (SVM) [7], which is well
known artificial intelligence method invented to make a good prediction in var-
ious cases. It based on finding the separating hyperplane in the space between
the classes with the largest margin. Thus, obtains a good accuracy and low gen-
eralization error. In this research line, Hui and Sun [8] depended on SVM to do
an empirical study about the financial status of Chinese companies. Li and Sun
[11] in their study improved the financial status prediction accuracy by using a
straightforward wrapper approach in order to complement SVM. Also, Bose and
Pal [3] made a study comparing several methods to forecast the financial status.
They proved that neural networks accuracy is better than SVM for this aim.

On the other hand, many researches were focused on using more than one
method simultaneously. Verikas et al. [18] proposed a solution for bankruptcy
prediction problem relaying on hybrid and ensemble based soft computing tech-
niques for prediction. Hybrid techniques constructed from combining different
prediction methods in one, aims to enhance the accuracy of prediction. The en-
sembling technique achieved by combining the results of each prediction model
according to majority voting, minimum, maximum and simple average to obtain
optimized predictions.

Regarding the hybrid technique, numerous researchers focused on this tech-
nique as a robust and effective solution in order to predict the financial status.
Some of them merge two classifiers, one of it assigned to select the features to the
other classifiers. Yeh et al. [21] created two stage classifier by merging Rough set
theory with SVM. Rough set used to eliminate the redundant attributes, then
the bankruptcy state predicted by SVM. Lin et al. [12] eliminated the attributes
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dimensionality using isometric feature-mapping algorithm; which is one of the
most advanced dimensionality reduction techniques, then use SVM normally. Wu
et al. [19] merged real valued genetic algorithm with SVM, so the attributes of
SVM enhanced with real valued genetic algorithm, this classifier obtains better
accuracy than pure SVM. Min et al. [13], also merge genetic algorithm with SVM
to create a hybrid method with a different technique. They used the genetic al-
gorithm to enhance the feature selection and SVM attributes, which gave better
prediction ability to SVM classifier. Mora et al. [14] used the mutual-information
criterion in order to select the variables in order to improve the capacity of SVM
regarding to predicting the financial status, as an improvement of their previous
work [15], which combining genetic programming, self-organizing map, evolu-
tionary algorithms and neural networks in the aim of predicting the financial
status too.

Also for ensembling technique, several researchers attended to use it as a
convenient robust prediction solution. Jo and Han [9] used multivariate dis-
criminant analysis, case-based reasoning and neural networks in order to re-
duce the bankruptcy prediction errors, the result of the three methods extracted
by weighted sum scheme. Ravi et al. [17] also create a system for bankruptcy
prediction by combining several classifiers results, which is probabilistic neural
networks, SVM, decision trees and fuzzy rule.

As stated in the introduction, these data were also studied in previous works
by the authors [2, 15], but the used variables were more limited, as they were just
numerical and no data balancing methods were applied to the problem, which
are highly recommended in order to obtain reliable results. Thus, in the present
work, we have performed three data resampling approaches.

3 Problem description

In this study, we address the problem of predicting the financial status of the
companies, transforming it into a classification one. We use a combination of
the financial and non-financial data. Many previous studies based on some clas-
sifiers or predicting method were not effected with more than one type of data;
numerical [14].

A dataset brought from the Infotel database has been used; it is a company in
charge to gather information in several domains about companies in Spain. Data
from 471 companies in Spain during six years sequentially (1998 to 2003) has
been used. In this paper, several algorithms have been used in order to obtain
good and accurate predictions about the financial state of the companies.

The dataset proposed in this work include particular domain attributes used
in order to determine whether a firm succeed or fail. It includes 2859 instances,
each one of them consists of 39 independent variables of different types (cate-
gorical and numerical). After removing meaningless variables (such as internal
codes), we adopted 33 variables, 27 of them are numeric and the remaining are
categorical. Some of these variables refer to financial information. Each record
represents a company in one year, and have an attribute Bankruptcy to men-
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tion the financial status for that firm. Table 1 shows the adopted independent
variables in the dataset.

Table 1. Independent Variables

Financial Variables Description Type

Debt Structure Long-Term Liabilities / Current Liabilities Real
Debt Cost Interest Cost / Total Liabilities Real
Debt Paying Ability Operating Cash Flow / Total Liabilities Real
Debt Ratio Total Assets / Total Liabilities Real
Working Capital Working Capital / Total Assets Real
Warranty Financial Warrant Real
Operating Income Margin Operating Income / Net Sales Real
Return on Operating Assets Operating Income / Average Operating Assets Real
Return on Equity Net Income / Average Total Equity Real
Return on Assets Net Income / Average Total Assets Real
Stock Turnover Cost of Sales / Average Inventory Real
Asset Turnover Net Sales / Average Total Assets Real
Receivable Turnover Net Sales / Average Receivables Real
Asset Rotation Asset allocation decisions Real
Financial Solvency Current Assets / Current Liabilities Real
Acid Test (Cash Equivalent + Marketable Securities

+ Net receivables) / Current Liabilities Real

Non-financial Variables Description Type

Year Corresponding to the sample Integer
Size Small—Medium—Large Categorical
Number of employees Integer
Age of the company Integer
Type of company Public Company—Limited Liability Company—Others Categorical
Linked to a group If the company is part of a group holding Binary
Number of partners Integer
Province code Code of the location where the company is set Categorical
Number of changes of location Integer
Delay If the company has submitted its annual accounts on time Binary
Historic number of Since the company was created Integer
judicial incidences
Number of judicial incidences Last year Integer
Historic amount of money Since the company was created Real
spent on judicial incidences
Amount of money spent on Last year Real
judicial incidences
Historic number of Such as strikes, accidents... Integer
serious incidences
Audited If the company has been audited Binary
Auditor’s opinion Favourable—Exceptions—Unfavourable Categorical

4 Methodology

In this paper, three classification algorithms have been used in order to predict
the financial status of several companies.

J48 classifier is an improvement of C4.5 classifier [16], and both of them are
extensions of ID3 decision tree algorithm. The main objective of J48 classifier
is to implement the training dataset into a decision tree based on the number
of attributes in it. While J48 classifier creates the decision tree it ignores all of
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the missing values because they are valueless. The procedure of J48 predicting
stands on the known attributes values [16], and handle the discrete and the
contiguous data, then pruning the decision tree if there are some branches which
do not help in order to reach the leaf node[10]. J48 algorithm runs according
to particular steps. The first step is if all of the records in the dataset belong
to the same class, so the tree is a leaf, this leaf will be labeled with the same
class. The second step is calculating the information of the attributes given by
applying a test on it depending on the probability of the attribute value in each
record, then the information Gain calculation relaying on the information given
by applying the tests. The last step is to select the best attributes regarding
to the information gain calculated in the previous step. The final touch on the
decision tree after the full creation of it, and before performing the classification,
is to remove a discordant information, which is far away from the majority of
data and adversely affect data classification. This process called pruning, it is
very important to improve the accuracy of the prediction while many datasets
may contain this type of unuseful data [10].

Näıve Bayes classifier is a probabilistic method used to assign the class
of each record relaying on calculating the probability of each attribute indepen-
dently from the other attributes. In other words, Näıve Bayes assume that the
effect of each attribute value is detached from other attributes values on predict-
ing the class. This classification method presents high accuracy and efficiency
when applied on large training set by calculating the frequencies and combining
the values to make a good decision about the predicted class for each records[20].

Also Random forest classifier used in this study, It is an ensemble classi-
fication method, which creates several individual random training subsets from
the original dataset [1]. Training these subsets creates several decision trees con-
structing the random forest, each instances class in the test set predicts inde-
pendently in each decision tree. The final results of the instances class relay on
the majority voting of these decision trees. As an initial step in Random forest
classifier bagging uses to split the original dataset into training and test set by
taking a partition of data as a training and the remaining is the test set. In other
words, some instances will be selected from the original dataset by sampling and
replacement method to be a training dataset and the remaining instances that
defined as Out-Of-Bag considered to be a test set. Creating a decision tree for
each subset basically depend on C4.5 algorithm that stand on information Gain
and Entropy.The last mission of Random Forest classifier is to gather the sub-
trees with each other to create the forest, the classification result is the average
of class probabilities obtained from all the training trees [4].

5 Experiments and results

This section discusses the differences between J48, Random forest and Näıve
Bayes classifiers, considering the obtained results in four different (and incre-
mental) experiments, using Weka1 (a machine learning software suite).

1 http://www.cs.waikato.ac.nz/ml/weka/index.html
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The dataset used in these experiments is extremely unbalanced, it contains
2797 records labeled with healthy companies class and 62 records labeled with
bankrupt companies, which is around 98% / 2% out of the whole dataset. This
situation creates a challenge for classifiers to work properly.

The solution to prepare such an extremely unbalanced dataset is to use data
balancing (or data resampling) methods. That stands on changing the size of the
original dataset to get the most proper and optimum dataset to evaluate and
training the classifiers [5]. Three methods have been applied here to balance the
data: the first one is oversampling method, it stands on creating a superset from
the original dataset by replicating some random instances to achieve the desired
distribution. The second one is undersampling method, it stands on creating a
subset of the original dataset by removing some records randomly. The third is
a hybrid approach, which combines the two previous methods. Thus, it stands
on removing some valueless records and replicating another part of the training
dataset to achieve a fairer distribution of classes in the samples [6].

Actually, four metrics adopted in order to make a judgment about the clas-
sifiers; the first one is the accuracy, which represents the ability of the classifier
to assign the correct class to each instance. The second is the sensitivity, It
represents the capacity of the classifier regarding to assign the company to the
bankruptcy class (prediction) while it is actually bankrupt (real status). The
third metrics is the specificity. It represents the capacity of the classifier to as-
sign the companies to the succeed class (prediction) while it is actually that (real
status). The last metric is the false positive rate (FPR), which represents the fail-
ure of the classifier in assigning bankrupt companies to bankruptcy class (wrong
prediction), while their actual class is bankruptcy (real status), this metric is
a complement value of specificity, both of them have the same Standard devia-
tion value. In other words, the superior classifier gives the maximum accuracy,
sensitivity and specificity, and the minimum false positive rate.

The experiments addressed in this section considered in a certain sequence
in order to figure out the most convenient to reliant regarding the dataset cir-
cumstances; unbalanced dataset, and achieve the required criteria.

The first experiment solves the problem of the balancing by partitioning
the dataset to several equally subsets under the coverage of the balancing tech-
niques, i.e. (undersampling and oversampling), to makes the subsets balanced
(not exactly). in other hand, the cross validation creates a problem regarding to
the reliability; in the case of existing mutual records in test and training folds.
To avoid the problem of the reliability, the need of the next experiment arose,
it’s based on splitting the original dataset to training and test sets, but unfor-
tunately the problem of the metrics values inconsistency appeared due to the
balancing problem in the training set; the classifier selects unrequired procedure.
To improve this technique the experiment 3 based on using the balancing tech-
niques in the training set of the previous experiment in order to overcome the
inconsistency problem. The performance of the classifiers improved as expected
but the problem of the inconsistency still exist. The last experiment created as
a combination of the 2 previous ways to solve to problem, it stands on merging
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the dataset partitioning technique and splitting a test set from each partition,
under the coverage of the balancing technique to make the training sets balanced
after splitting the test sets. The new technique came as improvement of all the
previous experiments techniques, while it solves the problem of the reliability
and eliminates the metrics inconsistency problem.

5.1 Experiment 1: Using a balanced dataset

In this experiment, the dataset has been split in 9 equal subsets, ignoring 7
records as outliers in order to have an exact number of samples in order to avoid
the problem of balancing. Thus, each subset contains 310 patterns labeled as
healthy companies class (i.e. bankruptcy = ’NO’). On the other hand, and in or-
der to obtain a more balanced amount of patterns labeled with class bankruptcy
(YES), the 62 originally available records have been duplicated using an over-
sampling technique to obtain 124 (30% of samples in every partial dataset). This
technique aims to improve the performance of the classifiers. After the subsets
created each classifier applied on each subset with 10-fold cross validation. For
each classifier the average of the accuracy, sensitivity, specificity and false posi-
tive rate calculated. Table 2 shows the average values and the standard deviation
for each metric.

Table 2. Experiment 1 results

Classifier Accuracy Accu. SD Sensitivity Se. SD Specificity FPR Sp. & FPR SD
J48 91.6538% ±0.0113 0.9058 ±0.0211 0.9207 0.0791 ±0.01411
Random Forest 96.7741% ±0.00669 0.9766 ±0.0110 0.9641 0.0358 ±0.0068
Näıve Bayes 58.8069% ±0.0825 0.9193 ±0.0237 0.4555 0.5443 ±0.1230

Random forest classifier gave the best results in this experiment, with the
maximum values of sensitivity and specificity, and the minimum value of FPR.
Thus, it obtains a high performance in predicting the healthy states of the com-
panies while their in fact healthy. in other words, the rate of missing the healthy
companies prediction is very low. In addition, it obtain also the maximum sen-
sitivity comparing with the others classifiers.This means, the it obtains a high
performance in case of predicting the bankrupt companies while their in fact
bankrupt. Thus, the rate of missing the bankrupt companies is very low. Also,
the minimum amount of accuracy, sensitivity and specificity standard deviation
makes it the most stable classifier for all the subsets in this experiment; this
values represents the oscillation of the metrics values obtained by the classifier
for each subset test. J48 ranked as a second one with very good results, it have
yielded not much less accuracy, sensitivity and specificity than Random forest,
and not much more metrics standard deviation values, makes it also stable for
all of the subsets. Also, the metrics values are consistent, that means J48 select
the expected behavior to solve the problem; it distribute the effort on all of the
classes, not just predict one class most the time. The lowest rank, as expected,
assigned to Näıve Bayes classifier with the minimum accuracy and minimum
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specificity, and maximum FPR.Thus, it obtains a low performance in predicting
the healthy statuses of the companies while their in fact healthy. in other words,
the rate of missing the healthy companies prediction is very high. The value of
sensitivity metric in Näıve Bayes still high, which means it still predict failed
companies in a high rate on the expense of predicting the healthy companies(not
optimum behavior). The values of metrics standard deviation is the biggest with
Näıve Bayes, proving that it is obviously unstable.

In this experiment, all the records of bankruptcy class have been oversampled
in each subset, in order to make them more balanced. In addition cross validation
have been used to test the classifiers. This makes the results of all the classifier
not very reliable, as some patterns could be potentially located in training folds
and test folds at the same time, thus, ‘artificially’ improving the accuracy and
other metrics.

5.2 Experiment 2: Training and test sets

In this experiment, a subset of the original dataset has been used for testing,
while the remaining data has been used to train the classifiers. In this case,
data balancing techniques have not been used. The test set contains a specific
percentage of the original dataset: 20% of random companies’ records labeled as
healthy (bankruptcy = ’NO’), i.e. 559 samples. and 20% of random companies’
records labeled with bankruptcy class, i.e. 12 records samples.

Proposed classifiers have been used to classify the test set after being trained
using a dataset containing 2238 records labeled with healthy class and 50 records
labeled with bankruptcy class (training data).

Table 3. Experiment 2 results

Classifier Accuracy Sensitivity Specificity FPR
J48 94.2207% 0.1666 0.9588 0.0411
Random Forest 97.7233 % 0.1666 0.9946 0.0053
Näıve Bayes 19.6147 % 1 0.1788 0.8211

As shown in table 3 the accuracy of Random forest and J48 are reasonable,
values of specificity and FPR metrics are considerable. As mentioned before, the
rate of missing the healthy companies is low. The value of sensitivity contradicts
the results of accuracy, the reason is because the training dataset and the test
set are again extremely unbalanced. Therefore, in this experiment also J48 and
Random forest unfortunately selects the easiest behavior, which is almost all
of the time predicting healthy companies. Even if the accuracy is quite high
the behavior of both classifiers make both of them inappropriate to solve the
problem in this experiment circumstances. Näıve Bayes has a different situation;
it predicts the bankruptcy case more than the reasonable, the rate of missing the
bankrupt companies is 0 in the expense of predicting the healthy companies. This
gave a poor accuracy for the same reason made the other classifiers confused:
the unbalanced dataset.

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 668



5.3 Experiment 3: Training and test sets (applying oversampling)

As in previous experiment, a test set containing the 20% of the samples have
been created and the remaining 80% have been used for training. However, in
this experiment, a simple data balancing technique has been used on the train-
ing set. Thus, the records labeled with bankruptcy class have been replicated
several times up to reach a 30% of records from bankrupt companies. There-
fore, the training dataset contains totally 3197 records, 2238 records for healthy
companies and 959 records for the failed ones.

J48, Random forest and Näıve Bayes classifiers have been applied on the test
set, after being trained using the training dataset. Table 4 shows the obtained
results for each classifier in this experiment.

Table 4. Experiment 3 results

Classifier Accuracy Sensitivity Specificity FPR
J48 92.2942 % 0.3333 0.9355 0.0644
Random Forest 96.8476 % 0.2500 0.9838 0.0161
Näıve Bayes 18.0385 % 1 0.1627 0.8372

The results of this experiment became worse than the previous one a little
in the case of accuracy, specificity and FPR. On the other hand, sensitivity in
this experiment is better than in the previous one, J48 classifier yield a value
higher than it with Random forest, but the greatest one is given by Näıve Bayes
classifier due to the same problem appears in all previous experiments; predict-
ing the bankruptcy state more than reasonable. The improvement point in this
experiment over the previous one is the distribution of the effort in each classi-
fier, while each one improved the prediction of the bankrupt companies in the
expense of the healthy companies. In general, the classifiers made more effort
to predict the 2 cases of the financial status as expected, this makes the overall
results relatively better than the previous experiment.

In addition, the main issue of previous experiments has been repeated in this
one; the unbalanced dataset with huge amount of replications, which made the
classifier confused.

As an outline, also in this experiment, all of the classifiers aren’t completely
appropriate to solve the problem.

5.4 Experiment 4: Several training and test subsets (using
oversampling)

In the last experiment, the dataset has been splitted into nine equal subsets. Each
of them contains 310 patterns labeled as healthy companies, and 62 labeled as
bankrupt. After this step, every subset has been divided to create a test set
containing 20% of each class; 12 records labeled as bankrupt and 62 records
labeled as healthy. Thus, every training subset contains 248 records for succeed
companies and 50 records for failed ones. Then, the oversampling method was
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applied to all the training subsets to make them more balanced; 70% of its
records for the healthy companies (248 records) and 30% for the failed ones (106
records). The three classifiers have been then used, and the obtained results are
shown in Table 5.

Table 5. Experiment 4 results

Classifier Accuracy Accu. SD Sensitivity Se. SD Specificity FPR Sp. & FPR SD
J48 84.9849 % ±0.04479 0.5462 ±0.2119 0.9085 0.0913 ±0.0252
Random Forest 91.2912 % ±0.0247 0.6018 ±0.2143 0.9659 0.0340 ±0.0221
Näıve Bayes 57.8078 % ±0.1409 0.8703 ±0.1761 0.5214 0.4784 ±0.1994

In this experiment there are no mutual records in each training subset and its
test set, also all the training subsets are balanced (70-30%). This gave strength
to the obtained results and made the procedure more robust and reliable. In this
case, all the classifiers gave considerable results with relatively low amount of
standard deviation, being them equiponderant with regard to the consistency of
all the metrics values. Comparing the classifiers results in this experiment, Ran-
dom forest classifier results were the best with the maximum values of accuracy
and specificity, and the lowest FPR value, and the lowest amounts of metrics
standard deviation, which makes it the most appropriate classifier to solve the
problem with the lowest missing the healthy and bankrupt companies rate, and
the lowest oscillatory metrics value which makes it the most stable classifier. J48
ranked second with comparable results regarding to all the metrics, also it is
convenient to solve the problem but the preference is for Random forest.

The lowest ranked classifier is Näıve Bayes with the minimum accuracy and
specificity, and maximum FPR and standard deviation amount for each metric.
As expected the values of sensitivity for Näıve Bayes was the biggest comparing
with the others, but unfortunately, its values are lopsided; due to the same reason
mentioned in all of the previous experiments, which means it is also inappropriate
and unstable in this experiment also.

As shown in all of the previous experiments, Random forest achieved the
most considerable results, makes it the ideal and the most stable classifier to do
this job. This does not mean that J48 is not convenient or stable also. On the
other hand, Näıve Bayes obtains a poor performance, which makes inappropriate
classifier to solve the problem addressed in this study. Using the data balancing
methods not always obtain good results regarding the reliability. In fact, it is
perfect to improve the performance of the classifiers, but in the case of using
cross validation the replication of some records in the dataset represents a major
problem and makes the results imprecise.

6 Conclusions and future work

In this work, we compare three classification algorithms in order to predict the
financial status (bankruptcy) of several companies in Spain. Weka software tool
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was used to apply J48, Random forest and Näıve Bayes classifiers. In order to
improve the efficiency of each classifier, data balancing techniques, namely un-
dersampling, oversampling, and a mixture of them, have been used. Several ex-
periments have been conducted using different datasets from the original dataset
(extremely unbalanced) and considered in a certain sequence in order to figure
out the convenient procedure to deal with the dataset to obtain the ideal results.
It started from partitioning the dataset into several subsets and using the bal-
ancing techniques in order to solve the problem of the balancing, this technique
presents unreliable outcomes while the cross validation is used also. Then, the
procedure of solving the problem changed to splitting the original dataset in
training and test set in order to avoid the reliability problem on the expense of
the metrics values consistency; the classifiers select an inappropriate behavior to
solve the problem while the training set is extremely unbalanced. Thus, the last
experiment came with a perfect solution in order to avoid the disadvantages of
the previous procedures, it stands on integrating both of procedure; partitioning
the dataset to several equally subsets and split test set for each partition with
using the balancing techniques to make the training dataset balanced. This in-
tegration yielded the best results regarding the reliability and the consistency of
the metrics values and prove itself as the most proper style to solve the problem.

Taking into account the obtained results, Random Forest and J48 obtains
considerable outcomes regarding the accuracy of the prediction, sensitivity (re-
call), specificity, and false positive rate metrics. The outcomes provided by Näıve
Bayes are not as a required regarding to all of the metrics values. Random forest
outcomes regarding to the financial status prediction are the best. This lead us
to propose it as the most appropriate solution to predict the financial status of
the companies.

As future work, it would be interesting to use other classification methods
to solve the problem, and fine-tuning their parameters, or even combining them
in ensembles. Also, in future studies, it would be convenient to study the devel-
opment of methods that take into account type I and type II errors, instead of
taking into account only the total error obtained.
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Abstract. A sequence of time-ordered observations follows an autore-
gressive model of order one and its parameter is possibly subject to
change at most once at some unknown time point. The aim is to test
whether such an unknown change has occurred or not. A change point
method presented here rely on a ratio type test statistic based on the
maxima of cumulative sums. The main advantage of the proposed ap-
proach is that the variance of the observations neither has to be known
nor estimated. Asymptotic distribution of the test statistic under the no
change null hypothesis is derived. Moreover, we prove the consistency
of the test under the alternative. The results are illustrated through
a simulation study, which demonstrates computational efficiency of the
procedure. A practical application to real data is presented as well.

Keywords: Change point, structural change, change in autoregression,
hypothesis testing, ratio type statistic, variance estimation free test

1 Introduction and main goals

The focus lies on autoregressive time series of order one, i.e., AR(1) series. We
try to detect a possible change of the scalar parameter from a stationary au-
toregressive model using the ratio type test statistic, which allows us to avoid
estimating the unknown nuisance dispersion parameter of the time series.

The results are inspired by [6], where an autoregressive times series model of
order p is taken into account and the whole vector of autoregression parameters
is subject to change. The authors proposed to detect such change by computing
partial sums of weighted residuals based on the maximum type CUSUM test
statistics. The results were consequently extended by the bootstrap approach
in [5]. The main disadvantage of these methods is that the variance estimation is
problematic. To overcome such a dilemma, the ratio type test statistic is utilized
in the change point detection.

‹ With institutional support RVO:67985807.
‹‹ Supported by the Czech Science Foundation project No. P402/12/G097.
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2 B. Peštová and M. Pešta

The paper is structured as follows: Section 2 introduces a change point model
for AR(1) series together with stochastic assumptions. The ratio type test statis-
tic for the change point detection is proposed in Section 3. Consequently, the
asymptotic behavior of the considered test statistic is derived, which covers the
main theoretical contribution. Asymptotic critical values are calculated in Sec-
tion 4 by Monte Carlo simulations. Section 5 contains a simulation study that
illustrates performance of the asymptotic test. It numerically emphasizes the ad-
vantages and disadvantages of the proposed procedure. A practical application
of the developed approach to a stock exchange index is presented in Section 6.
Proofs are given in the Appendix.

2 Autoregressive model with possibly changed parameter

Let us consider the following time series model with a possible change in param-
eter β after an unknown time point τ :

Yt “ βYt´1 ` δYt´1Itt ą τu ` εt, t “ 2, . . . n, (1)

where β and δ ‰ 0 are fixed (not depending on n) unknown parameters, 1 ă
τ “ τn ď n is the unknown change point, and ε2, . . . , εn are independent and
identically distributed (iid) random errors satisfying further conditions specified
later on. For the sake of convenience, we suppress the index n in the observations
Yt,n as well as in the parameter τn whenever possible.

We are going to test the null hypothesis that the autoregression parameter
remained constant for the whole observation period

H0 : τ “ n (2)

against the alternative that a change of the autoregression parameter occurred
at some unknown time point τ prior to the latest observed time n, i.e.,

H1 : τ ă n, δ ‰ 0. (3)

3 Test statistic for change in autoregression

The ratio type test statistics for the simple change in mean were introduced
in [2]. We utilize this idea and propose the following ratio type test statistic to
detect the change in the autoregression of order one

Vn “ max
nγďkďn´nγ

max
2ďiďk

ˇ

ˇ

ˇ

ři´1
j“1 YjpYj`1 ´ pβ1kYjq

ˇ

ˇ

ˇ

max
k`1ďiďn´1

ˇ

ˇ

ˇ

řn´1
j“i YjpYj`1 ´ pβ2kYjq

ˇ

ˇ

ˇ

, (4)

where 0 ă γ ă 1{2 is a given constant, pβ1k is an ordinary least squares estimate of

the parameter β based on the observations Y1, . . . , Yk and pβ2k is an ordinary least
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Change Point Detection in Autoregression Without Variability Estimation 3

squares estimate of β based on the observations Yk`1, . . . , Yn. Being more formal,

the estimate pβ1k is obtained when regressing the vector of responses y1,k :“
pY2, . . . , Ykq

J on the vector of covariates x1,k :“ pY1, . . . , Yk´1q
J. Analogously,

the estimate pβ2k is obtained when regressing the vector of responses yk`1,n :“
pYk`2, . . . , Ynq

J on the vector of regressors xk`1,n :“ pYk`1, . . . , Yn´1q
J.

The motivation for constructing the ratio type test statistic Vn comes from
the linear regression setup (so-called normal equations). The estimate pβ1k is
a solution of

xJ1,k py1,k ´ x1,kbq “ 0

with respect to b P R and the estimate pβ2k is a solution of

xJk`1,n pyk`1,n ´ xk`1,nbq “ 0

with respect to b P R. Then, one may define partial sums of the weighted residuals
as

xJ1,i

´

y1,i ´ x1,i
pβ1k

¯

, i “ 2, . . . , k

and
xJi,n

´

y,n ´ xi,npβ2k

¯

, i “ k ` 1, . . . , n.

Consequently, these partial sums can be used as basis for the maxima of partial
sums in the numerator and the denominator of Vn. Note that this approach—
usage of the ratio type test statistics—can be generalized for the change of a vec-
tor autoregression parameter of the stationary autoregressive AR(p)-process,
when p ě 2, using the notation from [6].

Before deriving asymptotic properties of the ratio type test statistic, we for-
mulate several stochastic assumptions on the time series model (1):

Assumption A1 β P p´1, 1qzt0u.

Assumption A2 β ` δ P p´1, 1qzt0u.

Assumption A3 tεi, i “ 0,˘1, . . .u are iid random variables having Eεi “ 0,
Var εi “ σ2 ą 0, and Eε4i ă 8 for all i. Observation Y1 is independent of
tε2, ε3, . . .u.

Assumptions A1, A2, and A3 mean that the time series is a stationary au-
toregressive sequence of order one (and not an iid sequence) before and even
after the possible change point.

The limit behavior of the test statistic under the null hypothesis is charac-
terized by the following theorem.

Theorem 1 (Under null). Suppose that Y1, . . . , Yn follow model (1), assume
that Assumptions A1 and A3 hold. Then, under null hypothesis (2)

Vn
D

ÝÝÝÑ
nÑ8

sup
γďtď1´γ

sup0ďuďt |Wpuq ´ u{tWptq|

suptďuď1

ˇ

ˇ

ˇ

ĂWpuq ´ p1´ uq{p1´ tqĂWptq
ˇ

ˇ

ˇ

, (5)

where tWpxq, x P r0, 1su is a standard Wiener process and ĂWpxq “Wp1q´Wpxq.
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4 B. Peštová and M. Pešta

The next theorem describes the test statistic’s behavior under a fixed alter-
native.

Theorem 2 (Under alternative). Suppose that Y1, . . . , Yn follow model (1),
assume that alternative (3) holds for some fixed δ ‰ 0, and τ “ rζns for some
γ ă ζ ă 1´ γ. Then, under Assumptions A1, A2, and A3

Vn
P

ÝÝÝÑ
nÑ8

8.

The previous theorem provides consistency of the studied test statistic under
the given assumptions. The null hypothesis is rejected for large values of the ratio
type statistic. Being more formal, we reject H0 at significance level α if Vn ą
v1´α,γ , where v1´α,γ is the p1´ αq-quantile of the asymptotic distribution (5).

4 Asymptotic critical values

The explicit form of the limit distribution (5) is not known. The critical values
may be determined by simulations from the limit distribution from Theorem 1.
Theorem 2 ensures that we reject the null hypothesis for large values of the test
statistic. We tried to simulate the asymptotic distribution (5) by discretizing
the Wiener process and using the relationship of a random walk to the Wiener
process. We considered 1000 as the number of discretization points within r0, 1s
interval and the number of simulation runs equals to 100000. In Table 1, we
present several critical values for γ “ .1 and γ “ .2.

100p1´ αq% 90% 95% 97.5% 99%

γ “ .1 6.298815 7.293031 8.283429 9.589896
γ “ .2 4.117010 4.745884 5.368286 6.159252

Table 1. Simulated critical values corresponding to the asymptotic distribution of the
test statistic Vn under the null hypothesis.

Note that the numerator and denominator in the test statistic Vn can be
interchanged and such a modified test statistic can still be used for detection of
the change in autoregression (but using different critical values).

A possible extension of the proposed methods, which will be part of the future
research, is bootstrapping. Using the bootstrap techniques implemented similarly
as in [3] for the change in means, one can obtain critical values in an alternative
way compared to the presented asymptotic approach.

5 Simulation study

A simulation experiment was performed to study the finite sample properties of
the asymptotic test for the change in the AR(1) parameter. In particular, the
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interest lies in the empirical size of the proposed test under the null hypothesis
and in the empirical rejection rate (power) under the alternative. Random sam-
ples (1000 each time) are generated from the time series change point model (1).
The number of observations is set to n “ 200, n “ 400, and n “ 800 in order to
demonstrate the performance of the testing approach in case of different sample
sizes. Two values of the autoregression parameter are taken into consideration,
i.e., β “ ´.6 and β “ .2 to represent stronger negative dependence and weaker
positive dependence. The innovations are obtained as iid random variables from
a standard normal Np0, 1q or Student t5 distribution. Simulation scenarios are
produced as all possible combinations of the above mentioned settings. Param-
eter γ is set to .1.

To assess the theoretical results under H0 numerically, Table 2 provides the
empirical sizes (empirical probabilities of the type I error) of the test for change
in the autoregression parameter, where the significance level is α.

α .100 .050 .025 .010
innovations Np0, 1q t5 Np0, 1q t5 Np0, 1q t5 Np0, 1q t5

n “ 200 β “ ´.6 .258 .342 .172 .266 .126 .216 .088 .152
β “ .2 .296 .400 .206 .318 .158 .234 .106 .176

n “ 400 β “ ´.6 .218 .238 .136 .160 .080 .108 .046 .072
β “ .2 .186 .220 .124 .152 .086 .106 .044 .072

n “ 800 β “ ´.6 .157 .193 .098 .122 .059 .081 .022 .048
β “ .2 .135 .187 .078 .115 .054 .073 .023 .049

Table 2. Empirical size of the test for change in autoregression under H0 using the
asymptotic critical values of Vn with γ “ .1, considering a significance level α. Innova-
tions are iid having Student t5 and standard normal Np0, 1q distribution.

The proportion of rejecting the null hypothesis is getting closer to the the-
oretical significance level as the number of time series observations increases.
Better performance of the test under the null hypothesis is observed, when the
innovations have lighter tails (represented by Np0, 1q distribution). Note that the
test statistic Vn is based on the L2 regression approach. There is no visible di-
rect effect of the value of the autoregression parameter on the empirical rejection
rates based on this particular simulation study. Generally, the empirical sizes are
higher than they should be, i.e., the test rejects the null hypothesis more often
than one would expect.

The performance of the testing procedure under H1 in terms of the empirical
rejection rates is shown in Table 3, where the change point is set to τ “ n{2 or
τ “ n{3. Parameter δ is chosen as δ “ .5.

We may conclude that the power of the test increases as the number of
observations increases, which was expected. The test power drops when switching
from a change point located in the middle of the time series to a change point
closer to the beginning or the end of the time series. Innovations with heavier tails
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6 B. Peštová and M. Pešta

α .100 .050 .025 .010
innovations Np0, 1q t5 Np0, 1q t5 Np0, 1q t5 Np0, 1q t5

n “ 200 β “ ´.6 τ “ n{2 .924 .920 .888 .888 .834 .848 .774 .774
τ “ n{3 .930 .896 .894 .866 .838 .830 .772 .766

β “ .2 τ “ n{2 .788 .828 .718 .766 .640 .694 .548 .602
τ “ n{3 .774 .784 .676 .698 .596 .606 .478 .508

n “ 400 β “ ´.6 τ “ n{2 .984 .984 .968 .958 .926 .924 .856 .888
τ “ n{3 .992 .982 .972 .962 .958 .944 .924 .926

β “ .2 τ “ n{2 .948 .938 .906 .904 .864 .852 .792 .798
τ “ n{3 .898 .892 .826 .828 .752 .758 .634 .642

n “ 800 β “ ´.6 τ “ n{2 .999 .999 .996 .996 .992 .995 .980 .981
τ “ n{3 .999 .999 .996 .998 .995 .997 .987 .988

β “ .2 τ “ n{2 .996 .989 .988 .978 .972 .963 .938 .931
τ “ n{3 .981 .980 .960 .959 .926 .929 .860 .866

Table 3. Empirical power of the test for change in autoregression under H1 using
the asymptotic critical values of Vn with γ “ .1, considering a significance level α and
δ “ .5. Innovations are iid having Student t5 and standard normal Np0, 1q distribution.

(i.e., t5) yield slightly smaller power than innovations with lighter tails. Negative
dependence seems to give higher power of the test based on this simulation study.

In contrast to the slightly lower power in case of relatively small sample size
and moderate change in the autoregression parameter, one may try to consider
larger change in β from ´.8 to .8 in case of n “ 150. Here, the simulated power
reaches .994 (for α “ .05). Hence, in case of a large change in autoregression,
the test achieves high power.

To improve the computational performance of the test for detecting the
change in autoregression, longer time series of observations are a general solu-
tion. Moreover, a suitable bootstrap extension of the developed procedure could
be helpful from a numerical and computational point of view.

6 Application to stock exchange index

As an illustrative example of the proposed technique for detecting of the change
in autoregression, we concentrate on the Prague Stock Exchange index called
PX Index (formerly PX50 ). It is a capitalization-weighted index of major stocks
that trade on the Prague Stock Exchange.

The starting exchange day for the Index PX50 was April 5, 1994. We consider
a time series consisting of daily PX50 values starting from November 16, 1994 up
to September 27, 2001. Only business days were taken into account, providing
1850 observations. The starting date of the observation period was chosen later
than the starting day of the exchange, since only weekly (not daily) values of
the PX50 records were available at the beginning. Moreover, the market after
opening the exchange was not as stable as later on. The last observation date
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was chosen in order to avoid effects of the attacks on September 11, 2001. The
considered time series can be seen in Figure 1. The PX50 data can also be
downloaded from [7].

300

400

500

600

700

0 500 1000 1500

Days

In
d
e
x
 v

a
lu

e

PX50

Fig. 1. Daily Prague Stock Exchange index (PX50) values from November 16, 1994 to
September 27, 2001.

We denote the original data of the PX50 index as tXtut. Firstly, we transform
the PX50 index by taking into account the differences of logarithms, i.e, Yt “
logpXt{Xt´1q. This transformation can be interpreted as considering logarithms
of daily returns of the PX50 index. Besides that, using this approach stationary
time series before and even after a possible change point are obtained. The
transformed index values are shown in Figure 3.

Let us assume that Y1, . . . , Yn follow autoregressive change point model (1).
We are going to decide whether the change in the AR(1) parameter occurred or
not based on the proposed asymptotic test. The value of the test statistic Vn for
γ “ .1 is 7.321143, which is larger than the 95%-critical value 7.293031 simulated
from the limit distribution under the null hypothesis. Therefore, we reject the
null hypothesis of no change in the autoregressive parameter. The progress of
the ratio of the test statistic

Qk “
max
2ďiďk

ˇ

ˇ

ˇ

ři´1
j“1 YjpYj`1 ´ pβ1kYjq

ˇ

ˇ

ˇ

max
k`1ďiďn´1

ˇ

ˇ

ˇ

řn´1
j“i YjpYj`1 ´ pβ2kYjq

ˇ

ˇ

ˇ

, nγ ď k ď n´ nγ

is depicted in Figure 2.
We can estimate the unknown change point τ in a similar fashion as in [4]:

pτ “ arg max
2ďkďn

ˇ

ˇ

ˇ

ˇ

ˇ

k´1
ÿ

j“1

YjpYj`1 ´ pβ1nYjq

ˇ

ˇ

ˇ

ˇ

ˇ

.
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Fig. 2. The values of Qk for the PX50 index data with γ “ .1. The colored horizontal
line represents the 95%-critical value.

This leads to pτ “ 949, which corresponds to October 7, 1998. The log returns of
PX50 together with the depicted change point for the change in autoregression
are displayed in Figure 3.

The explanation of the detected change in autoregression is possibly con-
nected to the Russian financial crisis (also called Ruble crisis) that hit Russia on
August 17, 1998. It resulted in the Russian government and the Russian Central
Bank devaluing the ruble and defaulting on its debt. In 1998 influenced by Rus-
sian financial crisis, the index reached its historical bottom on October 8 with
316 points, which is the first day after the detected change in autoregression of
the PX50 log returns.

Finally, we investigated eligibility of the model. The ACF (autocorrelation
function) and PACF (partial autocorrelation function) plots of the time series
before and after the estimated change point are employed. Both ACF plots go
to zero at an exponential rate, while both PACF plots become zero immediately
after the first lag. We applied the Ljung-Box test on the residuals of the fitted
AR(1) models (before and after the change). The hypothesis that the residuals
in each AR(1) model have no autocorrelation is rejected in both cases, which
suggests that the two series are stationary.

7 Conclusions

A testing procedure for a possible change in the autoregression parameter is
demonstrated. It detects whether the observed sequence is an AR(1) process, or
the time series is an AR(1) process up to some unknown time point and it is again
an AR(1) process after this unknown time point with a different autoregression
parameter.
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Fig. 3. Log returns of PX50.

The asymptotic behavior of the ratio type test statistic for the change in
autoregression was investigated under the null hypothesis as well as under the
alternative. The theoretical limiting distribution under the null hypothesis pro-
vided critical values for the test, which were obtained by simulation. The main
advantage of the ratio type statistics in hypotheses testing is that they provide
an alternative to the non-ratio type statistics mainly in situations, in which vari-
ance estimation is not straightforward. The simulations reveal that the method
keeps the significance level under the null and provides reasonable powers under
the alternatives. Finally, an application of the developed procedure on the stock
exchange index data was performed.
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Appendix: Proofs

Proof (of Theorem 1). Let us consider an array

Un,i “

a

1´ β2

σ2
?
n´ 1

Yi´1εi, i “ 2, . . . , n

and a filtration Fn,i “ σtεj , j ď iu, i “ 2, . . . , n and n P N. Then, tUn,i,Fn,iu is
a martingale difference array such that

EU2
n,i “

1´ β2

σ4pn´ 1q
EY 2

i´1ε
2
i “

1

n´ 1
.

Moreover,

n
ÿ

i“2

U2
n,i ´

n
ÿ

i“2

EU2
n,i “

1´ β2

σ4pn´ 1q

n
ÿ

i“2

pY 2
i´1ε

2
i ´ EY 2

i´1ε
2
i q.

Furthermore,

1

n´ 1

n
ÿ

i“2

pY 2
i´1ε

2
i ´ EY 2

i´1ε
2
i q

“
1

n´ 1

n
ÿ

i“2

rY 2
i´1pε

2
i ´ σ

2qs `
1

n´ 1

n
ÿ

i“2

pY 2
i´1 ´ EY 2

i´1qσ
2.

Since tY 2
i´1pε

2
i ´σ

2qu is a martingale difference array again with respect to Fn,i,
we have under Assumption A3 from the Chebyshev’s inequality that

1

n´ 1

n
ÿ

i“2

rY 2
i´1pε

2
i ´ σ

2qs
P

ÝÝÝÑ
nÑ8

0.

Similarly, as a consequence of Lemma 4.2 in [6],

1

n´ 1

n
ÿ

i“2

pY 2
i´1 ´ EY 2

i´1q
P

ÝÝÝÑ
nÑ8

0.

Thus,
n
ÿ

i“2

U2
n,i

P
ÝÝÝÑ
nÑ8

1. (6)
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Next, for any ε ą 0,

P

ˆ

max
2ďiďn

U2
n,i ą ε

˙

ď

n
ÿ

i“2

P

ˆ

1´ β2

σ4pn´ 1q
Y 2
i´1ε

2
i ą ε

˙

ď
p1´ β2q2

ε2σ8pn´ 1q2

n
ÿ

i“2

EY 4
i´1Eε

4
i ÝÝÝÑ
nÑ8

0. (7)

Additionally,

lim
nÑ8

rnts
ÿ

i“2

EU2
n,i “ lim

nÑ8

rnts ´ 1

n´ 1
“ t (8)

for all t P r0, 1s.
According to Theorem 27.14 from [1] for the martingale difference array

tUn,i,Fn,iu, where the assumptions of this theorem are satisfied due to (6), (7),
and (8), we get

rnts
ÿ

i“2

Un,i
Dr0,1s
ÝÝÝÝÑ
nÑ8

Wptq.

Therefore,

1
?
n´ 1

¨

˝

rnts
ÿ

i“2

Yi´1εi,
n
ÿ

i“rnts`2

Yi´1εi

˛

‚

D2
r0,1s

ÝÝÝÝÝÑ
nÑ8

σ2

a

1´ β2

´

Wptq,ĂWptq
¯

, (9)

where ĂWptq “Wp1q ´Wptq.
Let us define Yj,l “ pYj , . . . , Ylq

J and εj,l “ pεj , . . . , εlq
J. Hence, for the

expression in the numerator of Vn it holds

i´1
ÿ

j“1

YjpYj`1 ´ pβ1kYjq “ Y J
1,i´1

´

Y2,i ´ Y1,i´1
pβ1k

¯

“ Y J
1,i´1

´

Y1,i´1β ` ε2,i ´ Y1,i´1β ´ Y1,i´1

`

Y J
1,k´1Y1,k´1

˘´1
Y J
1,k´1ε2,k

¯

“ Y J
1,i´1ε2,i ´ Y J

1,i´1Y1,i´1

`

Y J
1,k´1Y1,k´1

˘´1
Y J
1,k´1ε2,k. (10)

Similarly for the expression in the denominator of Vn
n´1
ÿ

j“i

YjpYj`1 ´ pβ2kYjq

“ Y J
i,n´1εi`1,n ´ Y J

i,n´1Yi,n´1

`

Y J
k`1,n´1Yk`1,n´1

˘´1
Y J
k`1,n´1εk`2,n. (11)

Lemma 4.2 in [6] gives

sup
γďtă1

1

rnts

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rnts
ÿ

s“1

pY 2
s ´ EY 2

s q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q (12)
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12 B. Peštová and M. Pešta

and

sup
0ătď1´γ

1

rnp1´ tqs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

s“rnts`1

pY 2
s ´ EY 2

s q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oPp1q. (13)

Finally, (9) together with (10), (11), (12), and (13) implies

1
?
n´ 1

¨

˚

˝

sup
0ďuďt

ˇ

ˇ

ˇ

řrnus´1
j“1 YjpYj`1 ´ pβ1rntsYjq

ˇ

ˇ

ˇ

sup
tďuď1

ˇ

ˇ

ˇ

řn´1
j“rnus`1 YjpYj`1 ´ pβ2rntsYjq

ˇ

ˇ

ˇ

˛

‹

‚

D2
rγ,1´γs

ÝÝÝÝÝÝÝÑ
nÑ8

σ2

a

1´ β2

˜

sup0ďuďt |Wpuq ´ u{tWptq|
suptďuď1

ˇ

ˇ

ˇ

ĂWpuq ´ p1´ uq{p1´ tqĂWptq
ˇ

ˇ

ˇ

¸

.

Then, the assertion of the theorem directly follows. [\

Proof (of Theorem 2). Let us take k “ τ ` 2, k “ rξns for some ζ ă ξ ă 1 ´ γ
and i “ τ ` 1. Then,

τ
ÿ

j“1

YjpYj`1 ´ pβ1pτ`2qYjq

“ Y J
1,τε2,τ`1 ´ Y J

1,τY1,τ

`

Y J
1,τ`1Y1,τ`1

˘´1
Y J
1,τ`1ε2,τ`2 ´ Y J

1,τY1,τδ.

According to the proof of Theorem 1, as nÑ8,

1
?
n´ 1

´

Y J
1,τε2,τ`1 ´ Y J

1,τY1,τ

`

Y J
1,τ`1Y1,τ`1

˘´1
Y J
1,τ`1ε2,τ`2

¯

“ OPp1q.

Lemma 4.2 from [6] gives

1
?
n´ 1

ˇ

ˇY J
1,τY1,τδ

ˇ

ˇ

P
ÝÝÝÑ
nÑ8

8.

Now,

1
?
n´ 1

max
2ďiďk

ˇ

ˇ

ˇ

ˇ

ˇ

i´1
ÿ

j“1

YjpYj`1 ´ pβ1kYjq

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÝÝÑ
nÑ8

8.

For τ ă k “ rξns, the denominator in (4) divided by
?
n´ 1 has the same distri-

bution as under the null hypothesis and it is, therefore, bounded in probability.
It follows that the maximum of the ratio has to tend in probability to infinity
as well, while nÑ8. [\
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Abstract. In this paper a novel distance measure for evaluating the
closeness of two vector autoregressive models is presented and its main
properties are discussed. The proposed distance is used to investigate
the presence of spatial differences in the dynamic link between unemploy-
ment rate variation and GDP growth in some European Union countries.
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1 Introduction

Vector autoreressive (VAR) models, popularized by [6], are a class of models
that are designed to capture joint movements and dynamic patterns in an array
of multiple variables. These models have been applied in various research fields.
Their success is mainly based upon the fact that they are considered to be
data-driven, i.e., the underlying structure in the estimated model is determined
by the data. However, there is no canonical way to measure the dissimilarity
between two different VARs. The need for such a distance measure arises in both
clustering and classification of multivariate time series. In this paper, we propose
a distance measure for evaluating the closeness of two vector VAR models and
we use such notion of distance to investigate the presence of spatial differences
in the dynamic link between unemployment rate variation and economic growth
in some European Union economies.

The rest of paper is organized as follows. Section 2 introduces a distance
measure between pairs of VAR models. We start by giving a formal definition of
distance between VAR models. After that, its main properties are discussed. In
section 3, we present the application. Finally, we conclude in section 4.

2 A distance measure between VAR models

In this section, we introduce a new distance measure between VAR models. Let
us reminder that a k-dimensional process y =

{
yt = (y1t, . . . ykt)

′
; t ∈ Z

}
is a
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VAR(p) process if it can be represented as

A(L)yt = ut (1)

where
{
ut = (u1t, . . . ukt)

′
; t ∈ Z

}
is a k-variate white-noise process with zero

mean vector and nonsingular covariance matrix ΣΣΣu. The (k × k) matrix AAA(L)
has finite polynomial elements in lag operator L and is assumed to be of full
rank. It can be expressed as

A(L) = I−A1L− · · · −ApL
p

where I is the (k × k) identity matrix and {AAAi} are matrices of parameters.
Process (1) is stationary if the roots of the determinant equation det [AAA(z)] =

0 are outside the unit circle.
In this paper, we assume that

det [A(z)] 6= 0, |z| < 1 for z ∈ C (2)

It is important to note that the condition (2) allows for nonstationarity. How-
ever, it excludes explosive processes from our consideration. Now, following [8],
we show that a VAR process implies a particular specification of its individual
elements in terms of univariate ARMA processes.

We first observe that

adj [AAA(L)]AAA(L) = det [AAA(L)] I

where adj [AAA(L)] is the adjoint of the matrix AAA(L). Then, premultiplying both
sides of (1) by adj [AAA(L)], we obtain the autoregressive final form,

det [AAA(L)] yt = adj [AAA(L)] ut.

Consequently, the marginal model for the ith element of yt is given by

det [AAA(L)] yit = adji [AAA(L)] ut (3)

where adji [AAA(L)] denotes the ith row of the matrix adj [AAA(L)]. As the right-hand
side of (3) is the sum of k finite moving averages, it can also be represented as
a finite moving average θi(L)εit, where εit is a white noise process, such that

θi(L)εit = adji [AAA(L)] ut (4)

The coefficients of the polynomial θi(L) are found by equating the autocovari-
ances in the two representations. The invertibility condition ensures a unique
solution. Considering (3) and (4), the univariate ARMA models implied by (1)
are given by

det [AAA(L)] yit = θi(L)εit.

Thus we have
yit ∼ ARMA(p∗, q∗) i = 1, ..., k,
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where it is well known that p∗ ≤ kp and q∗ ≤ (k − 1)p. We note that the
innovations in the different ARMA models are correlated and, in absence of
any cancellation, all the univariate models have identical autoregressive parts.
Further, we observe that one unit root in the VAR model implies a unit root in
each of the univariate models.

Summarizing, we have that a set Ay of k invertible univariate ARMA pro-
cesses corresponds to every k-variate VAR process, y. We note that any univari-
ate process yi ∈ Ay has an (possibly infinite order) AR representation,

yit =
∞∑
l=1

πilyit−l + εit.

Given two invertible ARMA processes, x, y, following [4], we consider the quan-
tity

d(x, y) =

[ ∞∑
l=1

(πxl − πyl)2
] 1

2

.

as a measure of distance between the two invertible ARMA processes. Thus in
the class of the k-variate VAR processes, Vk, could seem natural to consider the
following function as measure of dissimilarity between two VAR processes. Then:

Definition 1. Let x and y two VAR models in Vk; then their distance L(x,y)
is given by the sum of the distances between the implied ARMA models com-
ponent by component:

L(x,y) =
k∑

i=1

d(xi, yi), x,y ∈ Vk (5)

where xi and yi (i = 1, ..., k) are the univariate invertible ARMA processes
implied by k-variate VAR processes x and y, respectively. �

Using the proposed distance (5) we can introduce the notion of norm of a
VAR process.

Definition 2. Let y a VAR model in Vk; their norm is given by: ‖y‖ =
L(y,u). �

Example 1. Consider the following VAR(1)[
1− 0.5L 0.66L

0.5L 1 + 0.3L

] [
xt
yt

]
=

[
εxt

εyt

]
(6)

where (εxt, εyt)
′ is a bivariate white noise with covariance matrix

E

([
εxt
εyt

] [
εxt εyt

])
=

[
1 0
0 1

]
.
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This example is presented in [2](p.438). The norm of this process is equal to
1.05. �

The norm can also be seen as a ”measure” of stochastic dependence structure
in a VAR process. To describe this point we recall that the innovation vector

u =
{
yt = (u1t, . . . ukt)

′
; t ∈ Z

}
is a k-variate VAR(0) process; thus the norm of the VAR(p) process y ∈ Vk
can be defined as the distance between the VAR process and its innovations.
Furthermore, we observe that the norm of a k-variate process y ∈ Vk depends
on the sequences {π1i},...,{πki}. Since these sequences contain all information
about the stochastic dependence structure of the process y, we can interpret
the norm of a VAR process like a measure of the stochastic dependence struc-
ture of the process. To illustrate this point, we consider the following Example 2.

Example 2. [
1− 0.5L 0

0 1 + 0.3L

] [
xt
yt

]
=

[
εxt

εyt

]
(7)

The norm of process (7) is 0.8, less than the norm of the process (6), then we
can say that in process (7) there is less ”structure” than in the process (6).�

The next proposition provides some main properties of the distance L.

Proposition 1. Let Vk be the class of the k-variate VAR processes. The
function L : Vk × Vk → R defined as

L(v1,v2) =
k∑

i=1

d(v1i, v2i) v1,v2 ∈ Vk,

satisfies the following properties:

i. Non-negativity: d(v1,v2) ≥ 0 ∀v1,v2 ∈ Vk;
ii. Symmetry: d(v1,v2) = d(v1,v2) ∀v1,v2 ∈ Vk;

iii. Triangularity: d(v1,v2) ≤ d(v1, v3) + d(v3,v2) ∀v1,v2, v3 ∈ Vk;
iv. v1 = v2 implies d(v1,v2) = 0 ∀v1,v2 ∈ Vk.

Proof. Evidently, L(v1,v2) is a nonnegative function. Further, since d(v1i, v2i) =
d(v2i, v1i) for i = 1, ..., k, we have that

L(v1,v2) =

k∑
i=1

d(v1i, v2i) =

k∑
i=1

d(v2i, v1i) = L(v2,v1) ∀v1,v2 ∈ Vk.

and hence L(v1,v2) is a symmetric function. In order to show the triangle in-
equality, we first note that

d(v1i, v2i) ≤ d(v1i, v3i) + d(v3i, v2i),
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where v3i is the ith univariate invertible ARMA component implied by the k-
variate VAR processes v3. Thus

L(v1,v2) ≤
k∑

i=1

[d(v1i, v3i) + d(v3i, v2i)]

=
k∑

i=1

d(v1i, v3i) +
k∑

i=1

d(v3i, v2i)

= L(v1,v3) + L(v3,v2).

Finally, it is clear that if v1 = v2 we have that v1i = v2i for i = 1, ..., k and
hence d(v1i, v2i) = 0 for i = 1, ..., k. It follows that L(v1,v2) = 0. �
It is important to underline that the distance between two VAR processes is

allowed to be null even if they are generated by different white noise processes.
This implies that L(x,y) is a pseudometric.

In order to obtain an estimate of L(x,y) we use the following procedure:

Procedure 1

1. Estimate on the observed data the VAR(p) models for the processes x and
y;

2. using the estimated parameters from step 1 obtain the implied univariate
ARMA models for the univariate processes xi and yi (i = 1, ..., k);

3. evaluate the AR(∞) representation truncated a some suitable lag p∗ of the
ARMA models in step 2;

4. using the the AR(∞) representation from step 3 calculate the estimate dis-

tance d̂(xi, yi) (i = 1, ..., k);

5. use the formula L̂(x,y) =
∑k

i=1 d̂(xi, yi) as estimate the VAR distance
L(x,y).

3 Spatial variability of the relationship between
unemployment and GDP

The linkage between the rate of change in GDP and change in unemployment
(the Okuns Law) is one of the most studied issue of empirical macroeconomics
(see [1], [7], and [5], among others).

The aim of this section is to investigate the presence of spatial differences in
the dynamic linkage between unemployment (U) and Gross Domestic Product
(GDP) in thirteen European Union economies: Belgium, Denmark, Germany,
Ireland, Greece, Spain, France, Italy, Netherlands, Austria, Portugal, Finland
and UK. The used quarterly data, from Eurostat database, are the Gross Domes-
tic Product at market prices, chain linked volumes index with 2010 = 100, and
the Total Unemployment rates. The data are seasonally and calendar adjusted
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6 Di Iorio F, Triacca U.

and the sample period is first quarter 1998 - fourth quarter of 2016 (1998Q1 -
2016Q4). Figure 3 and figure 3 describe the general behavior of the GDP and
the Unemployment rates. The considered economies share more or less the same
story before and after the 2009 crisis: a decreasing path for Unemployment until
2008 then an increasing path, an increasing path for GDP until 2008 then a
growth slowdown, or a fall or a sharp fall for example in Greece.
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Fig. 1. Gross Domestic Product at market prices, chain linked volumes index 2010 =
100

There are some missing values for the Unemployment rates at the beginning
of the period for some countries, as reported in Table 1.

missing data
Be 1998: Q1, Q3 Q4
Dk 1998: Q1, Q3 Q4
Ge 1998, 1999, 2000, 2001, 2002, 2003, 2004: Q1, Q3 Q4
Ei 1998: Q1, Q3 Q4; 1999: Q1
Fr 1998, 1999, 2000, 2001, 2002: Q1, Q3 Q4
Nl 1998, 1999 : Q1, Q3 Q4
Au 1998: Q1, Q3 Q4
Uk 1998: Q1, Q3 Q4

Table 1. Missing data

The missing data are imputated using backcasting. The usual preliminary
analysis shows some of the series have outliers that have been corrected using
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Fig. 2. Total Unemployment rates

TRAMO. More, using ADF unit root test, with lags selection according the
Bai-Ng test, we verified that all the series are I(1). Then we decided to consider
the relationship between the rates of growth of unemployment rate and GDP.
Lags selection procedure for the VARs, based on BIC criteria, choose just one
lag for all countries. The relationship is thus analyzed through bivariate VAR(1)
model for the variables ∆log(U) and ∆log(GDP ). We apply for each countries
the Procedure 1 described above evaluating proposed distance (5) between any
pair of models, setting p? = 15, obtaining the matrix of distances reported in
Table 2.1

A useful way to visualizing the information contained in a distance matrix
between units is to conduct a MultiDimensional Scaling (MDS) analysis.2 Given
the matrix of distances among VARs presented in Table 2, classical MDS pro-
duces the map reported in Figure 3.

The analysis by MDS of the distance matrix shows that we can identify the
following clouds of similarity:

1. France, Germany, Portugal;

2. Italy, Spain;

3. Austria, Denmark

1 Full results concerning the estimation of the VAR models are available from the
authors on request.

2 See [3]. From a non-technical point of view, the purpose of MDS is to provide a visual
representation of the pattern of distances among a set of objects. Given a matrix of
distances between various objects, MDS plots the objects on a map such that those
objects that are very similar to each other are placed near each other on the map,
and those objects that are very different from each other are placed far away from
each other on the map.
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Fig. 3. Two-dimensional scatterplot of countries obtained by multidimensional scaling.

The other countries reveal peculiar paths. This is true, in particular, for Belgium
and Netherlands. The relative proximity between Italy and Spain seems to be
overwhelmed by the recent dynamics of both the labor market and GDP resulting
from the crisis that has hit Europe since 2009. In the same way the well known
situation in Greece explains its position in the figure. It seems more difficult to
explain, however, the position of Portugal near to Germany and France, even if
a graphical inspection reveals a similar general dynamic in the GDP growth rate
before 2009. Belgium and Netherlands seem to be very far each other; also in this
case an explanation can be found in the peculiar political situation experimented
by Belgium when the political parties were not able to form a government for at
lest 2 year starting form June 2010. The overall conclusion is that, despite the
ongoing integration within the EU, there are still significant differences among
countries regarding the dynamic link between unemployment rate variation and
economic growth.

4 Conclusions

There are many circumstances in which is important to compute a distance
measure for multivariate time series. In this paper, a novel notion of distance
measure between pairs of VAR models has been introduced and its main prop-
erties have been discussed. We have used such notion to investigate the presence
of spatial differences in the dynamic linkage between unemployment rate varia-
tion and economic growth in 13 European Union economies. The analysis reveals
that, despite the ongoing integration within the EU, many countries have special
positions of their own.
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Be Dk Ge Ei Gr Es Fr It Nl Au Pt Fi UK
Be 0.000 0.967 0.682 0.925 1.112 0.707 0.787 0.667 1.216 0.751 0.715 0.569 1.155
Dk 0.000 0.787 0.346 0.411 1.098 0.840 1.050 1.098 0.217 0.727 0.479 0.654
Ge 0.000 0.496 0.463 0.386 0.133 0.285 0.549 0.696 0.062 0.568 0.480
Ei 0.000 0.259 0.840 0.572 0.779 0.794 0.295 0.435 0.370 0.401
Gr 0.000 0.784 0.432 0.644 0.690 0.371 0.424 0.587 0.244
Es 0.000 0.458 0.285 0.885 1.010 0.430 0.903 0.827
Fr 0.000 0.212 0.472 0.752 0.152 0.647 0.370
It 0.000 0.608 0.962 0.344 0.850 0.543
Nl 0.000 1.019 0.531 0.892 0.455
Au 0.000 0.636 0.296 0.567
Pt 0.000 0.508 0.447
Fi 0.000 0.637
Uk 0.000

Table 2. Distance matrix
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Abstract. We discuss how to estimate the impulse-response function
of a general linear model by regressing its endogenous variables on the
lagged residuals derived from a general linear model. Therefore, it amounts
to estimating a truncated Wold form by least-squares. In comparison
with the standard VAR approach, our method accommodates any for-
mulation for the data model and only requires a least-squares routine for
implementation. On the other hand, its least-squares foundation is an ad-
vantage by itself, as it provides easy solutions to many difficult problems
related with IR analysis, such as computing analytical standard errors
for the response coefficients or testing for causality. Besides describing
the procedure in detail, we provide several examples and discuss its pros
and cons in comparison with the alternatives.

Keywords. Impulse-response analysis; VAR models; Least-squares.

1 Introduction

This paper describes a procedure to estimate the impulse-response (IR) func-
tion of a general linear model by regressing its endogenous variables on the lagged
residuals derived from a general linear model. Therefore, it amounts to estimat-
ing a truncated Wold [1] form by least-squares (LS).

The standard approach to IR analysis typically inverts a VAR model to
obtain the corresponding Wold form. In comparison, our direct estimation ap-
proach has important advantages as it accommodates any formulation for the
data model and only requires a LS routine for implementation. On the other
hand its LS foundation is an advantage by itself, as it provides easy and well-
tested solutions to many difficult problems related with IR analysis, such as
computing analytical standard errors for the response coefficients or testing for
causality.

The structure of the paper is as follows: Section 2 defines the basic notation
and summarizes some previous results. Section 3 describes the basic methods
and Section 4 discusses some extensions, such as models with orthogonal errors
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or exogenous inputs. Last, Section 5 discusses the pros and cons of the proposed
approach in comparison with its alternatives.

2 Notation and previous results

2.1 The impulse-response form of a stochastic process

Let zt ∈ Rm be a random vector of endogenous variables or outputs at time
t, which has been decomposed using a previously fitted data model as:

zt = Ê (zt |Ωt−1 ) + ât , (1)

where Ωt−1 is the information set containing all the information available up to
time t− 1, Ê (. |. ) denotes the (estimated) expected value of the first argument,
conditional to the information set in the second argument, and ât is a vector of
zero-mean white noise residuals.

As it is well known, if the stochastic process underlying the decomposition
(1) is zero-mean and covariance-stationary, zt can be alternatively represented
by the corresponding Wold [1] form:

zt = ât + Ψ̂1ât−1 + Ψ̂2ât−2 + . . . , (2)

where the weights Ψi (i=1,2,. . .) must be square summable to assure the stability
of the stochastic process, see Hamilton [2].

The coefficient matrices Ψ̂i (i=1,2,. . .) in (2) provide the expected response
of zt to a unit impulse in ât−i, so determining the IR function in practice reduces
to computing these matrices.

2.2 The VAR approach to estimate the impulse-response
function

In applied macroeconometrics, the standard approach to estimate the IR co-
efficients consists in: (a) fitting a vector autoregressive (VAR) model to zt:(

I− Π̂1B− Π̂2B2 − . . .− Π̂pBp
)

zt = ât , (3)

where B denotes the backshift operator, such that for any sequence ωt: B
iωt =

ωt−i, i = 0,±1,±2, . . ., (b) computing the sequence Ψ̂i (i=1,2,. . .) by inverting
the polynomial in the left-hand-side of (3):

zt =
[
I− Π̂1B− Π̂2B2 − . . .− Π̂pBp

]−1

ât , (4)

and then, if required, (c) obtaining standard errors for the IR coefficients re-
sulting from (4) either by an asymptotic approximation or bootstrapping, see
Lütkepohl [3] or Hamilton [2].
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3 Basic methods

3.1 Least-squares estimation of the impulse-response function

Point estimation The first L parameter matrices in (2) can be estimated
consistently by applying LS to the truncated Wold form:

zt − ât = Ψ1ât−1 + Ψ2ât−2 + . . . + ΨLât−L + εt , (5)

where the residuals ât−k (k = 0, 1, . . . , L) in (5) are obtained from (1) and
the term εt represents the terms omitted in the right-hand-side of (5), i.e.,
ΨL+1ât−L−1 + ΨL+2ât−L−2 + . . . Because of this, we will refer to εt as the
“approximation error”. Note that:

1. The stochastic properties of εt depend on those of the omitted residuals
ât−L−1, ât−L−2, . . .

2. In particular, if these residuals are zero-mean, homoscedastic, non-autocorrelated
and Gaussian, the approximation error will have the same properties.

3. Lack of autocorrelation of ât−L−1 is very important, as it implies that:

(a) ...the regressors in the right-hand-side of (5) are asymptotically indepen-
dent among themselves and from the approximation errors, so that

(b) ...the degree of collinearity between the regressors in (5) will be low, and

(c) ...the omitted regressors will be asymptotically independent from those
included in (5), so LS estimates will be consistent and robust to the
truncation lag.

4. The determination coefficient obtained when estimating model (5) measures
the approximation achieved because, as the truncation lag L increases, the
determination coefficient converges to unity and, accordingly, the covariance
of the approximation error converges to zero.

Precedents The idea of using residuals to estimate a MA structure by LS is
not new. It can be traced back to the seminal paper by Durbin [4], where the
estimated residuals from a first-stage long autoregression were used to replace
the unobservable innovations in the MA term. The same idea was later applied
in different frameworks by Hannan and Rissanen [5, 6], Spliid [7], Hannan and
Kavalieris [8], Koreisha and Pukkila [9] or Flores and Serrano [10]. All these
papers concentrate in model estimation and conclude that the estimates obtained
are very precise. On the other hand, they do not investigate the potential of this
approach to estimate IR functions.

Another branch of the literature explored the idea of estimating the IR
function by LS methods, with emphasis in estimating “model-free” responses. In
this line, Jorda [11] proposed an IR estimator computed by running a sequence of
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predictive regressions of the variable of interest on a structural shock, for different
prediction horizons. The IR is then given by the sequence of LS coefficients of
the shock. An alternative and equivalent procedure by Chang and Sakata [12]
combines a long first-stage autoregression with a second-stage MA fit.

The work of Chang and Sakata [12] is therefore close to our proposal with
some differences, as we allow for a general first-stage model and, in the next
sections, take advantage of LS results to solve nontrivial problems such as, e.g.,
computing analytical standard errors for the IR coefficients.

Example #1: Precision of IR point estimates Table 1 shows four ARIMA
models with autoregressive and moving average structure. We simulated a sample
of 200 observations of the stochastic process in the column “True model” and
then estimated it using Gretl [13] exact maximum likelihood algorithm. The
results obtained are summarized in the column “Estimated model”.

Table 1. Univariate models. The estimates shown in the last column have been calcu-
lated with Gretl 2016d exact maximum likelihood procedure.

Series True model Estimated model

A (1 − .7B)zt = at ; σ2
a = 1 (1 − .722

(.049)
B)zt = ât ; σ̂2

a = 1.003

B zt = (1 − .8B)at ; σ2
a = 1 zt = (1 − .808

(.040)
B)ât ; σ̂2

a = 1.016

C (1 − .7B + .6B2)zt = at ; σ2
a = 1 (1 − .721

(.058)
B + .577

(.057)
B2)zt = ât ; σ̂2

a = .940

D zt = (1 − .8B + .6B2)at ; σ2
a = 1 zt = (1 − .843

(.051)
B + .628

(.059)
B)ât ; σ̂2

a = .927

Building on these models, we have computed: (a) the “true” IR function,
derived analytically from the true parameter values, as well as (b) ten IR values
corresponding to “Estimated model” using both, the standard method described
in Subsection 2.21 and the LS procedure proposed in previous sections. Table
2 displays the Root Mean Squared Errors (RMSEs) corresponding to both ap-
proaches, being both remarkably small and similar.

Example #2: Robustness of IRs to the truncation lag As noted before,
the regressors in (5) are (supposedly) white noise residuals. If so, the variables
omitted by truncation in (5) and accumulated in the approximation error, εt,
are asymptotically independent from those included in the model, so the IR esti-
mates resulting from our procedure should be robust to the truncation lag.

1 In the case of MA structures, the standard IR values have been set to zero when
the lag is higher than the order of the stochastic process. This criterion provides
the standard approach with a deliberate advantage, as most IR lags are computed
without error.
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Table 2. RMSE of the IR estimates computed with the standard and alternative
approaches. The smallest RMSE in each row is underlined.

Model Standard approach LS approach Standard - LS

Series A AR(1) 2.414E-02 2.506E-02 -9.281E-04
Series B MA(1) 2.649E-03 2.632E-03 1.699E-05
Series C AR(2) 3.223E-02 3.282E-02 -5.884E-04
Series D MA(2) 1.626E-02 1.617E-02 9.011E-05

The Table 3 shows the first 10 IR weights estimated for series A, computed
with L = 10, 15, 20. Note that, for this sample size (N=200): (a) changes in IR
estimates typically occur in the 2nd or 3rd decimal place, and (b) the accumulated
response estimated with the first 10 coefficients is very robust.

Table 3. Robustness of IR estimates to the specification of the truncation lag. The table
shows the first 10 point estimates for the IR coefficients computed with L=10, L=15
and L=20. The last rows display respectively the sum of the coefficients displayed,
which would be the 10 lag accumulated response or “gain”, and the determination
coefficient of the corresponding regression.

Regressor L=10 L=15 L=20

ât−1 0.7173 0.7226 0.7219
ât−2 0.5171 0.5220 0.5213
ât−3 0.3757 0.3767 0.3763
ât−4 0.2722 0.2719 0.2716
ât−5 0.2001 0.1960 0.1962
ât−6 0.1463 0.1405 0.1417
ât−7 0.1069 0.1012 0.1023
ât−8 0.0776 0.0735 0.0738
ât−9 0.0550 0.0532 0.0533
ât−10 0.0380 0.0392 0.0384

Sum (10-lag gain) 2.5062 2.4967 2.4968
R2 0.9987 0.9999 1.0000

3.2 Confidence intervals

Calculation of asymptotic standard errors The standard errors for the
parameters in (5) provided by a standard LS routine are not adequate. To see
this, note that they would be computed with the sample covariance of the ap-
proximation errors εt, Σ̂ε, thus ignoring the uncertainty in ât.
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It is easy to compute asymptotical standard errors by replacing in the LS
formulas the covariance Σ̂ε by any of the following alternatives: Σ̂a or Σ̂ε + Σ̂a,
being Σ̂a the residual in the decomposition (1).

As noted before, Σ̂ε converges to zero as the truncation lag L increases. This
implies that:

1. ...estimating expression (5) produces consistent estimates for the correspond-
ing IR coefficients,

2. ...when L tends to infinity the only source of uncertainty in the model is at,
which justifies replacing Σ̂ε by Σ̂a,

3. ...on the other hand, one may want to compute a more conservative (i.e.

larger) standard error, by using Σ̂ε + Σ̂a as replacement matrix, bearing in
mind that,

4. ...both, Σ̂a and Σ̂ε + Σ̂a converge to the same limit, Σa, as L and T tend
to infinity.

Example #3: Confidence intervals for IR coefficients and comparison
with standard software Figure 1 shows the IRs and the LS 95% confidence
interval obtained for series A, see the example in subsection 3.1. Note that the
interval is symmetric and has a width which increases with the lag.

Fig. 1. Impulse response function and LS 95% confidence interval obtained for series
A using the LS method proposed. Standard errors provided by the LS formulae have
been rescaled using Σ̂ε + Σ̂a as replacement matrix.
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Figure 2 displays the IR analysis result calculated with Gretl [13]. In partic-
ular, it is a the response to one sigma innovation with a 95% confidence interval
calculated by bootstrap. These results are somewhat surprising because: (a) 0-
lag response seems to have some uncertainty, (b) the IR confidence interval is
not asymmetric, and (c) it displays a “banana shape”, meaning that its width
decreases for lags greater than 4.

Fig. 2. Impulse response function and bootstrap 95% confidence interval obtained for
series A using Gretl 2016d. The figure displayed is a direct copypaste of Gretl’s output.

On the other hand, Figure 3 shows the analogous results computed with
Eviews [14]. Specifically, it is the response to a unit innovation with a 95% con-
fidence interval calculated by a method which Eviews describes as “asymptotic
s.e.”. In this case: (a) the 0-lag response has no uncertainty, as it could be ex-
pected, (b) the confidence interval is symmetric, and (c) it also displays the
aforementioned “banana shape” configuration, as its width decreases for lags
greater than 5.

Note that the differences in the confidence intervals may affect the conclu-
sions of inference, as the response becomes non-significant around lags 6-7 for
the results computed with our approach and Eviews, while it is significant for
any lag with the response computed by Gretl.

4 Extensions

4.1 Response to orthogonal shocks

IR functions are interpreted under the assumption that a single error is
pulsed while all the others remain constant. However this assumption is not
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Fig. 3. Impulse response function and asymptotic 95% confidence interval obtained for
series A using Eviews 8.1. The figure displayed is a direct copypaste of EViews’ output.

realistic because the errors in a model are not orthogonal in most cases. Because
of this, most IR analysis is carried out after transforming the data model, which
is given by equation (1) in our case, to a structural representation excited by
orthogonal shocks.

To this end, we define the change of variables ât = Uâ∗
t , where the covari-

ance E(âtâ
T
t ) = Σ is a general positive semi-definite matrix, E(â∗

t â
∗T
t ) = Σ∗ is

diagonal and the transformation matrix U is nonsingular2. Applying this change
of variables to the model (5) we obtain:

zt −Uâ∗
t = Ψ1Uâ∗

t−1 + Ψ2Uâ∗
t−2 + . . . + ΨLUâ∗

t−L + εt , (6)

and the response function to the orthogonal shocks â∗
t would be given by: Ψ∗

0 =
U, Ψ∗

1 = Ψ1U, Ψ∗
2 = Ψ2U, . . .

Therefore, after choosing a matrix U and computing the corresponding struc-
tural residuals â∗

t = U−1ât, one can estimate the structural coefficient matrices
and their standard errors by applying LS to the model:

zt = Ψ∗
0â

∗
t + Ψ∗

1â
∗
t−1 + Ψ∗

2â
∗
t−2 + . . . + Ψ∗

Lâ∗
t−L + εt, (7)

2 As it is well known, the matrix U is not identified in general and the literature
proposes many procedures to determine it. Many works concentrate in choosing U
so that the covariance of the transformed errors has a triangular or block-triangular
causal structure, see e.g. Sims [15] and Bernanke and Blinder [16], respectively.
Another approach concentrates in imposing meaningful constraints on the IR, either
on the long-term responses, see Blanchard and Quah [17], or over the sign of some
IR values, see Uhlig [18].
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4.2 Response to pulsed inputs and testing for exogeneity

Wold’s [1] representation theorem states that every covariance-stationary
time series zt can be written as the sum of two time series, one deterministic and
one stochastic. This result points to a straightforward generalization of model
(5) to accommodate exogenous inputs:

zt − ât = Γ0ut + Γ1ut−1 + Γ2ut−2 + . . . + ΓLuut−Lu +

Ψ1ât−1 + Ψ2ât−2 + . . . + ΨLa ât−La + εt, (8)

so zt receives shocks from both, the model inputs and the errors, and Lu and
La denote, respectively, the truncation lags for the input and error-related IR
weights.

Expression (8) suggests flexible and easy ways to test for exogeneity, for
example by computing a LR test comparing the Gaussian likelihood values cor-
responding to the unconstrained model (8), and a constrained version of (8), in-
cluding as many exclusion restrictions as required by the null to be tested.

5 Pros and cons of the proposed approach

In comparison with the standard approach summarized in Subsection 2.2,
the procedure proposed in this paper has the following pros:

1. Its implementation only requires a standard LS routine and data for the
output and input variables, as well as a time series of uncorrelated residuals.

2. Therefore, it is not constrained to a specific model formulation and, in par-
ticular, can be applied directly to any linear model, including VAR, VARMA
or VARMAX.

3. It estimates the IR coefficients as regression parameters, so analytical stan-
dard errors can be computed from standard LS results, see Subsection 3.2.

4. Last, its LS foundations allows one to apply immediately a wealth of as-
sociated results and techniques such as, e.g., combining the IR estimates
with heteroscedasticity and autocorrelation-consistent standard errors, see
e.g. White [19] and Newey and West [20].

On the other hand, it also has some cons in comparison with standard ap-
proaches because:

1. ...estimating the regression (5) consumes degrees of freedom, and

2. ...the resulting IRs are somewhat “ragged”, as the coefficients are estimated
directly. On the other hand, smoothness can be easily achieved by fitting a
high-degree polynomial to the sequence of estimated IR values.
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Our method may have other advantages which have not been explored in this
paper. In particular, estimating directly the IR form probably simplifies sophis-
ticated IR analyses such as, e.g., imposing constraints or applying a Bayesian
analysis of the IR. Last, in the nonlinear case our procedure may offer an ap-
proximation to the system response by a linear IR function. The precision of
such approximation would obviously depend on the type of nonlinearity.

Acknowledgments. Support from Instituto Complutense de Analisis Eco-
nomico (ICAE) and grant PR26/16-20270 from Programa de ayudas a proyectos
de investigacion Santander-UCM is gratefully acknowledged.

References

1. Wold, H.O.A.: A Study in the Analysis of Stationary Time Series. Almqvist and
Wiksell, Uppsala (1964)

2. Hamilton, H.D.: Time Series Analysis. Princeton University Press (1993)
3. Lutkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer-

Verlag, Berlin (2005)
4. Durbin, J.: The fitting of time-series models. Revue de l’ Institut International de

Statistique 28, 233-244 (1960)
5. Hannan, E.J., Rissanen, J.: Recursive estimation of mixed autoregressive-moving

average order. Biometrika, 69, 8194 (1982.)
6. Hannan, E., Rissanen, J.: Amendments and corrections: recursive estimation of

mixed autoregressive-moving average order. Biometrika 70, 30 (1983)
7. Spliid, H.: A fast estimation method for the vector autoregressive moving average

model with exogenous variables. Journal of the American Statistical Association,
78, 384, 843-849 (1983)

8. Hannan, E., Kavalieris, L.: A method for autoregressive-moving average estimation.
Biometrika, 71, 273-80 (1984)

9. Koreisha, S.G., Pukkila, T.H.: Fast linear estimation methods for vector autore-
gressive moving average models. Journal of Time Series Analysis, 10, 325-339
(1989)

10. Flores, R., Serrano, G.: A generalized least squares estimation method for VARMA
models. Statistics, 36, 4, 303-316 (2002)

11. Jorda, O.: Estimation and inference of impulse responses by local projections.
American Economic Review 95, 161-182 (2005)

12. Chang, P., Sakata, S.: Estimation of impulse response functions using long autore-
gression. Econometrics Journal, 10, 453-469 (2007)

13. Baiocchi, G., Distaso, W.: Gretl: Econometric software for the GNU generation.
Journal of Applied Econometrics, 18,105-110 (2003)

14. Ouliaris, A., Pagan, A., Restrepo, J.: Quantitative Macroeconomic Modeling with
Structural Vector Autoregressions An EViews Implementation. This book can
be freely downloaded from http://www.eviews.com/StructVAR/structvar.html

(2016)
15. Sims, C.A.: Macroeconomics and reality. Econometrica, 48, 1-47 (1980)
16. Bernanke, B.S., Blinder, A.: The federal funds rate and the channels of monetary

transmission. American Economic Review, 82, 901-921. (1992)

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 705



17. Blanchard, O.J., Quah, D.T.: The dynamic effects of agregate demand and supply
disturbances. American Economic Review, 79, 655-73 (1989)

18. Uhlig, H.: What are the effects of monetary policy on output? results from an
agnostic identification procedure. Journal of Monetary Economics, 52, 381-419
(2005)

19. White, H.: A heteroskedasticity-consistent covariance matrix estimator and a direct
test for heteroskedasticity. Econometrica, 48, 4, 817-838 (1980)

20. Newey, W.K., West, K.D.: A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica, 55, 3, 703-708 (1987)

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 706



Recovering the background noise of a Lévy-driven
CARMA process using an SDDE approach
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Abstract Based on a vast amount of literature on continuous-time
ARMA processes, the so-called CARMA processes, we exploit their re-
lation to stochastic delay differential equations (SDDEs) and provide a
simple and transparent way of estimating the background driving noise.
An estimation technique for CARMA processes, which is particularly tai-
lored for the SDDE specification, is given along with an alternative and
(for the purpose) suitable state-space representation. Through a simula-
tion study of the celebrated CARMA(2, 1) process we check the ability
of the approach to recover the distribution.

Keywords: continuous-time ARMA process; Lévy processes; noise es-
timation; stochastic volatility

1 Introduction

Continuous-time ARMA processes, specifically the class of CARMA processes,
have been studied extensively and found several applications. The most basic
CARMA process is the CAR(1) process, which corresponds to the Ornstein-
Uhlenbeck process. This process serves as the building block in stochastic mod-
eling, e.g., Barndorff-Nielsen and Shephard [1] use it as the stochastic volatil-
ity component in option pricing modeling and Schwartz [14] models (log) spot
price of many different commodities through an Ornstein-Uhlenbeck specifi-
cation. More recently, several researchers have paid attention to higher order
CARMA processes. To give a few examples, Brockwell et al. [8] model turbulent
wind speed data as a CAR(2) process, García et al. [11] and Benth et al. [3]
fit a CARMA(2, 1) process to electricity spot prices, and Benth et al. [4] find a
good fit of the CAR(3) to daily temperature observations (and thus, suggests
a suitable model for the OTC market for temperature derivatives). In addition,
as for the CAR(1) process, several studies have concerned the use of CARMA
processes in the modeling of stochastic volatility (see, e.g., [7, 15, 17]).

From a statistical point of view, as noted in the above references, the ability
to recover the underlying noise of the CARMA process is important. However,
? This work was supported by the Danish Council for Independent Research (Grant
DFF - 4002 - 00003)
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while it is possible to recover the driving noise process, it is a subtle task. Due
to the non-trivial nature of the typical algorithm, see [7], implementation is
not straightforward and approximation errors may be difficult to locate. The
recent study of Basse-O’Connor et al. [2] on processes of ARMA structure relates
CARMA processes to certain stochastic (delay) differential equations, and this
leads to an alternative way of backing out the noise from the observed process
which is transparent and easy to implement. The contribution of this paper is
exploiting this result to get a simple way to recover the driving noise. The study
both relies and supports the related work of Brockwell et al. [7].

Section 2 recalls a few central definitions and gives a dynamic interpreta-
tion of CARMA processes by relating them to solutions of stochastic differential
equations. Section 3 briefly discusses how to do (consistent) estimation and in-
ference in the dynamic model and, finally, in Section 4 we investigate through
a simulation study the ability of the approach to recover the distribution of the
underlying noise for two sample frequencies.

2 CARMA processes and their dynamic SDDE
representation

Recall that a Lévy process is interpreted as the continuous-time analogue to the
(discrete-time) random walk. More precisely, a (one-sided) Lévy process (Lt)t≥0,
L0 = 0, is a stochastic process having stationary independent increments and
cádlág sample paths. From these properties it follows that the distribution of L1

is infinitely divisible, and the distribution of (Lt)t≥0 is determined by the one of
L1 according to the relation

E[eiyLt ] = E[eiyL1 ]t

for y ∈ R and t ≥ 0. The definition is extended to a two-sided Lévy process
(Lt)t∈R, L0 = 0, which can be constructed from a one-sided Lévy process (L1

t )t≥0
by taking an independent copy (L2

t )t≥0 and setting Lt = L1
t if t ≥ 0 and Lt =

−L2
(−t)− if t < 0. Throughout, (Lt)t∈R denotes a two-sided Lévy process, which

is assumed to be square integrable.
Next, we will give a brief recap of Lévy-driven CARMA processes. (For an

extensive treatment, see [5, 7, 9].) Let p ∈ N and set

P (z) = zp + a1z
p−1 + · · ·+ ap and Q(z) = b0 + b1z + · · ·+ bp−1z

p−1 (2.1)

for z ∈ C and a1, . . . , ap, b0, . . . , bp−1 ∈ R. Define

Ãp =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1

 ,
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ep =
[
0 0 · · · 0 1

]′ ∈ Rp, and b =
[
b0 b1 · · · bp−2 bp−1

]′. In order to ensure the
existence of a casual CARMA process we will assume that the eigenvalues of
Ãp or, equivalently, the zeroes of P all have negative real parts. Then there is a
unique (strictly) stationary Rp-valued process (Xt)t∈R satisfying

dXt = ÃpXt dt+ ep dLt, (2.2)

and it is explicitly given by Xt =
∫ t
−∞ eÃp(t−u)ep dLu for t ∈ R. For a given

q ∈ N0 with q < p, we set bq = 1 and bj = 0 for q < j < p. A CARMA(p, q)
process (Yt)t∈R is then the strictly stationary process defined by

Yt = b′Xt (2.3)

for t ∈ R. This is the state-space representation of the formal stochastic differ-
ential equation

P (D)Yt = Q(D)DLt, (2.4)

where D denotes differentiation with respect to time. One says that (Yt)t∈R
is causal, since Yt is independent of (Ls − Lt)s>t for all t ∈ R. We will say
that (Yt)t∈R is invertible if all the zeroes of Q have negative real parts. The
word "invertible" is justified by Theorem 1 below and the fact that this is the
assumption imposed in [7] in order to make the recovery of the increments of the
Lévy process possible. In Figure 1 we have simulated a CARMA(2, 1) process
driven by a gamma (Lévy) process and by a Brownian motion, respectively.

Figure 1. A simulation of a CARMA(2, 1) process with parameters a1 = 1.3619, a2 =
0.0443, and b0 = 0.2061. It is driven by a gamma (Lévy) process with parameters
λ = 0.2488 and ξ = 0.5792 on the left and a Brownian motion with mean µ = 0.1441
and standard deviation σ = 0.2889 on the right.

For a given finite (signed) measure η concentrated on [0,∞) we will adopt
a definition from [2] and say that an integrable measurable process (Yt)t∈R is
a solution to the associated Lévy-driven stochastic delay differential equation
(SDDE) if it is stationary and satisfies

dYt =

∫
[0,∞)

Yt−v η(dv) dt+ dLt. (2.5)

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 709



4 Mikkel Slot Nielsen and Victor Rohde

In the formulation of the next result we denote by δ0 the Dirac measure at 0
and use the convention

∏
∅ = 1 and

∑
∅ = 0. Furthermore, we introduce the

finite measure ηβ = 1[0,∞)(v)eβv dv for β ∈ C with Re(β) < 0, and let η0 = δ0
and ηj = ηj−1 ∗ ηβj

for j = 1, . . . , p− 1. By relying on [2, Theorem 3.12] we get
the following dynamic SDDE representation of an invertible CARMA(p, p − 1)
process:

Theorem 1. Let (Yt)t∈R be an invertible CARMA(p, p − 1) process and let
β1, . . . , βp−1 be the roots of Q. Then (Yt)t∈R is the (up to modification) unique
stationary solution to (2.5) with the real-valued measure η given by

η =

p−1∑
j=0

αjηj , (2.6)

where α0, . . . , αp−1 ∈ C are chosen such that the relation

P (z) = z

p−1∏
k=1

(z − βk)−
p−1∑
j=0

αj

p−1∏
k=j+1

(z − βk) (2.7)

holds for all z ∈ C. In particular, if β1, . . . , βp−1 are distinct,

η(dv) = γ0δ0(dv)+

(
1[0,∞)(v)

p−1∑
i=1

γie
βiv

)
dv (2.8)

where

γ0 = −
(
a1 +

p−1∑
j=1

βj

)
and γi = − P (βi)

Q′(βi)
for i = 1, . . . , p− 1.

Proof. It follows immediately from [2, Theorem 3.12] that (Yt)t∈R is the unique
stationary solution to (2.5) with η given by (2.6). Assume now that the roots
of Q are distinct. Then relation (2.7) implies in particular that γ0 = α0 =

−(a1 +
∑p−1
j=1 βj). Moreover, an induction argument shows that

ηj(dv) = 1[0,∞)(v)

j∑
i=1

eβiv

j∏
k=1,k 6=i

(βi − βk)−1 dv,

from which it follows that

η(dv)− α0δ0(dv) =

p−1∑
j=1

αj

(
1[0,∞)(v)

j∑
i=1

eβiv

j∏
k=1,k 6=i

(βi − βk)−1 dv

)

= 1[0,∞)(v)

p−1∑
i=1

eβiv

p−1∑
j=i

αj

j∏
k=1,k 6=i

(βi − βk)−1 dv.
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Finally, observe that the definition of α0, α1, . . . , αp−1 implies that

γi =

∑p−1
j=i αj

∏p−1
k=j+1(βi − βk)∏p−1

k=1,k 6=i(βi − βk)
=

p−1∑
j=i

αj

j∏
k=1,k 6=i

(βi − βk)−1, i = 1, . . . , p− 1,

which concludes the proof.

Remark 1. In Brockwell et al. [7] they assume that the roots of P are dis-
tinct. This makes it possible to write (Yt)t∈R as a sum of dependent Ornstein-
Uhlenbeck processes, which they in turn use to recover the driving Lévy process.
In Theorem 1 above we invert the CARMA process by using that it is a solution
to an SDDE and thereby circumvent the assumption of distinct roots. On the
other hand, when q ≥ 2, the roots of Q may complex-valued and this would
make an estimation procedure that is parametrized by these roots (such as the
one given in Section 3) more complicated in practice.

Theorem 1 gives an insightful intuition about inverting CARMA processes as
well. Let F be the Fourier transform where F [f ](y) =

∫
R e

iyxf(x)dx for f ∈ L1.
If we then heuristically take this Fourier transform on both sides of (2.4) we get

P (−iy)F [Y ](y) = Q(−iy)F [DL](y).

For γ0 ∈ R, this can be rewritten as

F [DL](y) =

(
P (−iy) + (iy + γ0)Q(−iy)

Q(−iy)
− γ0

)
F [Y ](y) + F [DY ](y).

If we let γ0 = −
(
a1 +

∑p−1
j=1 βj

)
then

y 7→ P (−iy) + (iy + γ0)Q(−iy)

Q(−iy)
∈ L2,

and consequently, there exists f ∈ L2 such that(
P (−iy) + (iy + γ0)Q(−iy)

Q(−iy)
− γ0

)
F [Y ](y) = F [−f ∗ Y − γ0Y ](y).

We conclude that (Yt)t∈R satisfy the formal equation DYt = f ∗Yt+γ0Yt+DLt.
By integrating this equation we get an equation of the form (2.5), and in the case
where Q has distinct roots, contour integration and Cauchy’s residue theorem
imply that

f(v) = 1[0,∞)(v)

p−1∑
i=1

− P (βi)

Q′(βi)
eβiv

in line with Theorem 1.

The simplest example beyond the (Lévy-driven) Ornstein-Uhlenbeck process
is the invertible CARMA(2, 1) process:
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Example 1. Suppose that a0, a1 ∈ R are chosen such that the zeroes of P (z) =
z2 + a1z + a2 have negative real parts and let b0 > 0 so that the same holds for
Q(z) = b0 + z. Then there exists an associated invertible CARMA(2, 1) process
(Yt)t∈R, and Theorem 1 implies that

dYt = α0Yt dt+ α1

∫ ∞
0

eβ1vYt−v dv dt+ dLt,

where β1 = −b0, α0 = b0 − a1, and α1 = (a1 − b0)b0 − a2. Note that, in this
particular case, we have γ0 = α0 and γ1 = α1.

We end this section by giving the mean and the autocovariance function of the
invertible CARMA(p, p − 1) process. To formulate the result we introduce the
p× p-matrix

Ap =



β1 0 0 · · · 0 1
1 β2 0 · · · 0 0
0 1 β3 · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · 1 βp−1 0
α1 α2 · · · αp−2 αp−1 α0


, (2.9)

where α0, α1, β1, . . . , αp−1, βp−1 ∈ C are given as in Theorem 1. In case p = 1,
respectively p = 2, the matrix in (2.9) reduces to A1 = α0, respectively

A2 =

[
β1 1
α1 α0

]
.

Proposition 1. Let (Yt)t∈R be an invertible CARMA(p, p − 1) process and let
η be the associated measure introduced in Theorem 1. Then

E[Yt] = − µ

η([0,∞))
and γ(t) := Cov(Yt, Y0) = σ2e′pe

Ap|t|Σep, t ∈ R,

where

µ = E[L1], σ2 = Var(L1), and Σ =

∫ ∞
0

eApyepe
′
pe
A′

py dy.

In particular, (Yt)t∈R is centered if and only if (Lt)t∈R is centered.

Proof. The mean of Yt is obtained from (2.5) using the stationarity of (Yt)t∈R.
The autocovariance of (Yt)t∈R function is given in [2, p. 14].

3 Estimation of the SDDE parameters

Fix ∆ > 0 and n ∈ N, and suppose that we have n + 1 equidistant observa-
tions Y0, Y∆, Y2∆, . . . , Yn∆ of an invertible CARMA(p, p − 1) process (Yt)t∈R.
Our interest will be on estimating the vector of parameters

θ0 = (α0, α1, β1, α2, β2, . . . , αp−1, βp−1)′
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of η in (2.6). We will restrict our attention to the case where θ0 ∈ R2p−1. For
simplicity, we will also assume that (Yt)t∈R or, equivalently, (Lt)t∈R is centered.
For any given θ let Pk−1(Yk∆ | θ) be the L2(Pθ)-projection of Yk∆ onto the linear
span of Y0, Y∆, Y2∆, . . . , Y(k−1)∆ and set εk(θ) = Yk∆ −Pk−1(Yk∆ | θ). Then the
least squares estimator θ̂n of θ0 is the point that minimizes

θ 7→
n∑
k=1

εk(θ)2.

In practice, the projections Pk−1(Yk∆ | θ), k = 1, . . . , n, can be computed us-
ing the Kalman recursions (see, e.g., [6, Proposition 12.2.2]) together with the
state-space representation given in Proposition 2 below. We stress that one can
compute the projections without a state-space representation, e.g., using the
Durbin-Levinson algorithm (see [6, p. 169]), but this approach will be very time-
consuming for large n and a cut-off is necessary in practice. (This technique is
used by [12] in the SDDE framework (2.5) when η is compactly supported and
(Lt)t∈R is a Brownian motion.) Under weak regularity assumptions, following
the arguments in [7, Proposition 4-5] that rely on [10], one can show that the
estimator θ̂n of θ0 is (strongly) consistent and asymptotically normal.

Proposition 2 provides a convenient state-space representation of (Yk∆)k∈N0

in terms of α0, α1, β1, . . . , αp−1, βp−1 (rather than the one from the definition of
(Yt)t∈R in terms of the coefficients of P and Q).

Proposition 2. Let the setup be as above and let Ap be the matrix given in
(2.9). Then (Yk∆)k∈N0

has the state-space representation Yk∆ = e′pZk, k ∈ N0,
with (Zk)k∈N0

satisfying the state-equation

Zk = eAp∆Zk−1 + Uk, k ∈ N,

where (Uk)k∈N is a sequence of i.i.d. random vectors with mean 0 and covariance
matrix

∫∆
0
eApuepe

′
pe
A′

pu du.

Proof. It follows by [2, Proposition 3.13] that Yt = e′pZ̃t, t ∈ R, where (Z̃t)t∈R
is the Rp-valued Ornstein-Uhlenbeck process given by

Z̃t =

∫ t

−∞
eAp(t−u)ep dLu

for t ∈ R. Thus, by defining Zk = Z̃k∆ so that Yk∆ = e′pZk, k ∈ N0, and
observing that

Zk =

∫ (k−1)∆

−∞
eAp(k∆−u)ep dLu +

∫ k∆

(k−1)∆
eAp(k∆−u)ep dLu = eAp∆Zk−1 + Uk

with Uk :=
∫ k∆
(k−1)∆ e

Ap(k∆−u)ep dLu for k ∈ N, the result is immediate.
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4 A simulation study, p = 2

The simulation of the invertible CARMA(2, 1) is done in a straightforward man-
ner by the (defining) state-space representation of (Yt)t∈R and an Euler dis-
cretization of (2.2). In order to ensure that X0 is a realization of the stationary
distribution we take 20, 000 steps of size 0.01 before time 0. Given X0 the sim-
ulation is based on 200, 000 steps each of size 0.01, and then it is assumed that
we have n+ 1 = 2, 000, respectively n+ 1 = 20, 000, observations of the process
Y0, Y∆, Y2∆, . . . , Y(n−1)∆ on a grid with distance ∆ = 1, respectively ∆ = 0.1,
between adjacent points. We will be considering the case where the background
noise (Lt)t∈R is a gamma (Lévy) process with shape parameter λ > 0 and scale
parameter ξ > 0. Recall that the gamma process with parameters λ and ξ is a
pure jump process with infinite activity, and the density f (at time 1) is given
by

f(x) =
1

Γ (λ)ξλ
xλ−1e

−xξ , x > 0,

where Γ is the gamma function. In line with [7] we will choose the parameters to
be λ = 0.2488 and ξ = 0.5792. For comparison we will also study the situation
where (Lt)t∈R is Brownian motion with mean µ = λξ = 0.1441 and standard
deviation σ = ξ

√
λ = 0.2889 (these parameters are chosen so that the Brownian

motion matches the mean and standard deviation of the gamma process). After
subtracting the sample mean Ȳn = n−1

∑n−1
k=0 Yk∆ from the observations, the

vector of true parameters θ0 = (α0, α1, β1) is estimated as outlined in Section 3.
We will choose θ0 = (−1.1558, 0.1939,−0.2061) as in [7] (this choice corresponds
to a1 = 1.3619, a2 = 0.0443, and b0 = 0.2061, which are certain estimated values
of a stochastic volatility model by [16]). We repeat the experiment 100 times and
the estimated parameters are given in Table 1.

It appears that the (absolute value of the) bias of (α0, α1, β1) is very small
when ∆ = 0.1. The general picture is that the bias is largest for α0, and it is
also consistently negative. This observations should, however, be seen in light of
the relative size of α0 compared to α1 and β1.

Once we have estimated θ0 we can estimate the driving Lévy process by
exploiting the relation presented in Theorem 1 and using the trapezoidal rule.
Note that, as in the estimation, we use the relation in Theorem 1 on the de-
meaned data so that we in turn recover the centered version of the Lévy pro-
cess. Finally, to obtain an estimate of the true Lévy process we estimate µ =
E[L1] using Proposition 1. In order to get a proper approximation of the in-
tegral

∫∞
0
eβ1v(Yt−v − Eθ0 [Y0]) dv we will only be estimating Lk∆ − L(k−1)∆

for m := 50∆−1 ≤ k ≤ n. If one is interested in estimating the entire path
L(m+1)∆ − Lm∆, L(m+2)∆ − Lm∆, . . . , Ln∆ − Lm∆, one will need data observed
at a high frequency, that is, small ∆, since the approximation errors accumulate
over time. Typically, one is more interested in estimating the distribution of L1,
which is less sensitive to these approximation errors, and this is our focus in the
following. For this reason, we have in Figure 2 plotted five estimations of the
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Sample Sample
Noise Spacing Parameter mean Bias std deviation

Gamma

∆ = 1
α0 -1.2075 - 0.0517 0.1155
α1 0.2157 0.0218 0.0501
β1 -0.2190 -0.0129 0.0366

∆ = 0.1
α0 -1.1688 -0.0130 0.0466
α1 0.1934 -0.0005 0.0315
β1 -0.2053 0.0008 0.0296

Gaussian

∆ = 1
α0 -1.1967 - 0.0409 0.1147
α1 0.2117 0.0178 0.0524
β1 -0.2201 -0.0140 0.0358

∆ = 0.1
α0 -1.1653 -0.0095 0.0469
α1 0.2002 0.0062 0.0353
β1 -0.2121 -0.0060 0.0324

Table 1. Estimated SDDE parameters based on 100 simulations of the CARMA(2, 1)
process on [0, 2000] with true parameters α0 = −1.1558, α1 = 0.1939, and β1 =
−0.2061.

distribution function of L1 in dashed lines against the true distribution function
(represented by a solid line) in the low frequency case (∆ = 1). The left, re-
spectively right, figure corresponds to the gamma, respectively Gaussian, case.
Due to the above conventions, each estimated distribution function is based on
1, 950 estimated realizations of L1. Generally, the estimated distribution func-
tions in the figures seem to capture the true structure and give a fairly precise
estimate, however, there is a slight tendency to over-estimate small values and
under-estimate large values.

Due to the high degree of precision of the estimated distribution functions, we
plot an associated histogram, based on 1, 950 realizations of L1 and a sampling
frequency of ∆ = 1, against the theoretical probability density function in order
to detect potential (smaller) biases. We compare this to a histogram of the
actual increments. For simplicity, we have restricted ourselves to the Gaussian
case as the gamma case is difficult to analyze close to zero (specifically, this will
require more observations). The plots are found in Figure 3. We see that the two
histograms have very similar appearances, but the histogram based on estimated
parameters has a slightly smaller mean.

5 Conclusion and future research

In this paper we have studied the ability to recover the underlying Lévy process
from an observed invertible CARMA process using the SDDE relation presented
in Theorem 1. In particular, after discussing the theoretical foundations, we did
a simulation study similar to the one in the classical approach presented in [7]
and estimated the underlying Lévy noise. Our findings supported the theory and
it seemed possible to (visually) detect the distribution of the underlying Lévy
process.
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Future research could include a further study of the performance of the pre-
sented SDDE inversion technique compared to the classical approach in [7].
Specifically, in light of Remark 1, a suggestion could be to consider a situa-
tion where P has a root of multiplicity strictly greater than one or where q ≥ 2
and some of the roots of Q are not real numbers. Such situations may complicate
the analysis in one approach relative to the other. Furthermore, it may be inter-
esting to study inversion formulas for invertible CARMA(p, q) processes when
p > q + 1. In particular, a manipulation of the equation (2.4) yields

dLt =

(
P (D)

Q(D)
Yt

)
dt. (5.1)

The content of Theorem 1 is that the right-hand side of (5.1) is meaningful when
p = q+1 and it should be interpreted as dYt−

∫
[0,∞)

Yt−v η(dv) dt. It seems that
this statement continues to hold when p > q+ 1 as well when dYt is replaced by
a suitable linear combination of dYt, dY

(1)
t , . . . , dY

(p−q−1)
t .

Figure 2. Five estimations of the distribution function of L1, based on estimates of
α0, α1, and β1, plotted against the true distribution function for a sampling frequency
of ∆ = 1. The left corresponds to gamma noise and the right to Gaussian noise.

Figure 3. Histograms of the true increments on the left and estimated increments,
based on estimates of α0, α1, and β1 for a sampling frequency of ∆ = 1, on the right
plotted against the theoretical (Gaussian) probability density function.
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Fuel Consumption Estimation for Climbing Phase 
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Abstract. Aiming at the problem of the civil aviation carbon emission, the purpose of this paper is to 
pre-sent a simplified method to estimate aircraft fuel consumption using an adaptive Genetic Algo-
rithm-Back Propagation (GA-BP) Strong prediction network. 

This paper gives a brief overview of the modelling approach, and describes efforts to validate and 
analyze the initial results of this project. The parameters of fuel consumption are analyzed by using 
QAR flight data, and two kinds of fuel consumption prediction model are proposed .It is the BP predic-
tion model and the adaptive GA-BP Genetic Algorithm-Back Propagation Strong prediction model. 
The crossover and mutation probability of GA-BP Strong prediction model can be adaptive adjustment   
network parameters, according to the characteristics of data. The BP neural network as a weak predic-
tor, after the limited number of iterations, it can realize error optimization adjustment and solve the 
complicated nonlinear problem. Results of the simulation indicated the two models have obvious ad-
vantages in nonlinear prediction, and the prediction accuracy and the degree of fitting are good. The 
results of this study illustrate that the two neural networks, it with nonlinear transfer functions can ac-
curately represent complex aircraft fuel consumption functions for climb phases of flight, and so the 
two models are feasible in the field of fuel consumption prediction. The methodology can be extended 
to cruise and descent phases of flight.

Keywords: Flight data,Adaptive GA-BP-Adaboost network,Fuel consumption, Prediction
�

1 INTRODUCTION 

Air Transport industry acts as a catalyst to the economic and social development of a nation. But the 
development of air transport industry is faced with major issues like high fuel consumption [1 2]. Fur-
thermore, according to Henderson RP (2012) research that aircraft fuel burn is proportional to CO2 
emission [3].From the perspective of civil aviation, reducing fuel oil can not only reduce operating 
costs, but also reduce carbon emissions and ease the pressure on the environment [4]. Consequently, to 
keep sustainable and stable development, accurate forecast of energy consumption is essential, and the 
development of rational forecast model especially is urgent and necessary [5]. For this challenge, many 
researchers have studied about different models on aircraft fuel flow prediction. Thus, to obtain rational 
forecast results, various prediction models are put out. Such as Chang R C (2014) presents a fuzzy 
logic system [6], Zhang HF (2015) presents a support Vector Regression (SVR) model [7], 
Cavcar .Aydan analyzed the influence of aircraft performance difference on fuel consumption in air 
traffic environment, which reflected the influence of air traffic control on flight fuel economy 
[8].Based on the principle of energy conservation, a model was established to estimate the fuel con-
sumption by Bella P[9]. Based on the flight process, Ralf H presented an exponential relationship mod-
el which is to establish the relationship between the fuel flow and the height.in the fall and climb phas-
es [10]. Based on the genetic algorithm, the Baklacioglu.Tolga researched a fuel consumption model 
which used to study the change of the fuel with the air speed and altitude at different time [11]. Bak-
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lacioglu.T used a thrust model to optimizate the flight trajectory [12], Matthias Bartel also proposed the 
relationship between thrust and fuel consumption model to achieve fuel saving purposes [13]. Howev-
er, the mentioned above have some limitations for the study of fuel consumption. Most of them were 
based on the level of time series with a single flight as the research object to analyze the characteristics 
of flight, and then built a model to predict the fuel consumption at different times in the flight process. 
It is lack of practical application. 

Using neural network, complex nonlinear function can be easily handled, and the network has an 
advantage that there is no need to reveal the mathematical equation describing the input-output map-
ping before the network training. The output of the network function is close to the actual output value, 
so as to achieve a more accurate prediction effect. The genetic algorithm can realize global optimiza-
tion and optimize the initial state of the network. Back propagation neural network prediction model 
and a back propagation based on genetic algorithm (GA-BP) neural network prediction model have 
many successful applications [14-15], in areas such as prediction of electricity demand and stock price 
etc[16-17]. This is mainly because they have very good approximation capabilities and self-learning 
and adaptive ability. 

Based on this premise, this paper attempts to develop a suitable method to estimate aircraft fuel 
consumption using neural network approach to deal with relation between energy consumption and its 
influence factors. To study single aircraft fuel consumption, it can forecast the total fuel consumption 
of fixed flight and the fuel flow. Harshad Khadilkar (2012) demonstrates that flight data record the 
main parameters used for the analysis of fuel consumption [18]. In the study, through the analysis of 
QAR data, we select the main factors that affect the fuel consumption, but only for the climbing condi-
tion.  

 An adaptive GA-BP neural network fuel consumption forecasting model is established, and a 
strong prediction is joined in the model. It will enable more accurate climb fuel predictions. In this 
paper, the fitting degree of the model output, the average value of the relative error and the mean 
square error are chosen the benchmark of the feasibility of the model. Furthermore, as an improvement 
to the existing models is compared with the BP neural network prediction model, and the simulation 
results are analyzed. It is proved that these two models have good prediction effect. 

2 FUEL CONSUMPTION INFLUENCING FACTORS  

Flight data QAR records the most flight parameters of the aircraft from takeoff to landing, these pa-

rameters can reflect the impact of engine performance degradation on fuel consumption, which pro-

vides a good basis for the analysis of fuel consumption [19]. So, in this paper, the QAR data is selected 

as the data set of model training and prediction. 

Based on those flight control parameters, a prediction model can be made to estimate fuel loading. 

There is required to do data filtering. Sometimes, when data is missed out, interpolation is also required 

if the filtering frequency is fixed. Similarly, in this paper, the idea of stepwise linear regression is used 

to screen and eliminate the multiple co linear variables in the QAR data [20]. We can screen effect 

parameters of aircraft climb phase. In this study, we take the initial weight of climbing segment, the 

climbing distance, the rate of climb, and the force of the wind in the nose and the total temperature of 

the atmosphere as the input of the model 5 factors. We use the direct factor of fuel consumption and 

analyze the contribution of the minor changes of each factor to fuel consumption. The outputs of the 

model are relative easy to determine according to our modeling objective. They are fuel consumption.

After that, the model input data are normalized to the same dimension. We define and  as the 
maximum and minimum value in the sample and as the sample normalization value. And the function 

can be written as  
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�

�
                      (1)

3 Improved Model Algorithm 

3.1 Basic Procedures and Ideas. 

We propose a genetic optimization BP neural network. The whole idea of network structure is using 

the improved adaptive genetic algorithm to obtain the optimal individual, and used to optimize the 

initial weights and threshold of the neural network. After training the BP network learning to get the 

fuel consumption forecast output, in order to improve the prediction accuracy, we BP network as a 

weak predictor, after a finite number of iterations and outputs the result of strong prediction results.

Structure diagram as shown in Figure 1.

3.2 GA-BP-Adaboost Parameters Setup 

In this section, we propose a fuel consumption prediction model based on GA-BP-Adaboost neural 

network. We take the 280 sets of QAR data from different flights in the same course, and take them as 

the training data set and test data set of the fuel consumption model. The input is the starting weight of 

aircraft, the climbing distance, the rate of climb, the wind speed, the total temperature of the atmos-
phere, set  as input vector, , Aircraft fuel flow as the output, set  as the output 

vector. Genetic algorithm for optimizing network weight needs to design the main parameters.  

Step 1. An initial population is generated. A population of W individuals were randomly generated. 

W is chosen 30. 

Step 2. Coding for neural network. In order to get the high precision weight and threshold value,

the real number coding method is adopted. Individual coding length is . There is equal to

� � � , and the Input node number take 5, the number of hidden nodes take 

10, the number of output nodes  take 1. 

Step 3. Fitness Function. Training overall error is as small as possible and genetic algorithm uses 

the minimum objective function value as the fitness function. We calculate square of fuel consumption 

error sum in the training sample and chromosome adaptive value is 

�

� ��                      (2) 

�  is the training samples number, is the expected output of BP network, is the forecasted 

output of BP network, � is the coefficient of function. 

Step 4. Selecting operation. Training overall error is as small as possible and genetic algorithm uses 

the minimum objective function value as the fitness function. We calculate square of components re-
sponse time error sum in the training sample and chromosome adaptive value is selective probability 

is

�                           (3)
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                   (4)

s the reciprocal of fitness, � is population size.
Step 5. Crossover Operator and Crossover Probability. We randomly select two chromosomes and 

choose their weights and thresholds with crossover probability to form two new individuals .We 

use arithmetic crossover operation to generate two new individuals: 

� � �                       (5) 

� � �                       (6)

� is a parameter. The crossover probability is usually take the value of the [0.5, 0.98]. 

The crossover probability of this study is obtained by the following formula: 

� � �
�

                  (7)

�
� � 	

�
                   (8)

� , is the smaller value of the fitness value of the two selected individuals, is the aver-

age value of all fitness values, is the minimum value in all fitness values. 

Step 6. Mutation Operator and Mutation Probability. We randomly select a chromosome, and mu-
tation probability selects weight threshold to achieve mutation. We use arithmetic mutation operation 

to generate two new individuals: 

� � � �                      (9) 

� � � 
 	                    (10) 

� �
                        (11) 

Mutation point is and the value range is � � � . Random number is the number of iterations 

is .The max number of evolution is . The value range of is [0, 1]. 

� �
�� � 	

�
                    (12) 

� �
�� � 	

�
                      (13) 

� , � is The value of the smaller adaptation for the current two variants. 

Step7. Initialization of BP weights and thresholds. The obtained optimal individual is decomposed 

into the initialization weight and threshold value of the BP network. In this paper, we use three layers 

of BP neural network the input neurons are 5, the hidden neurons is 10.

Step8. Training model. After optimized, the composite model of BP and Adaboost is established

and began to start training. 

In the5) and 6) step the formula mentioned, we can know that the crossover probability and muta-
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tion probability follow the change of fitness value, which can avoid the divergence of GA algorithm, 

fall into local minimum and speed up the convergence. In step 8) we can be obtained the optimization 

of initial weights and thresholds. Then began to train the BP network, if the predicted output error does 

not meet the conditions, the iterative adjustment of program can reduce the output error, and prediction 

model precision improved, and the practical application of the prediction is enhanced.

4 Model Validations 

4.1 Model feasibility evaluation criteria 

In this paper, mean relative error (MRE), sum of relative error absolute values and mean square er-

ror of relative error (MSE) were introduced as metrics of the modelling accuracy. Goodness of fit (R) is 

used to quantify model accuracy. For a data set of n measured outputs  and predicted outputs ,

Relative error, MRE and MSE is calculated as 

�
�                      (14) 

�

�
� �

                    (15) 

�

�

�
�                     (16) 

�

�

�

�

�
�

�

�

�

                   (17) 

4.2  Model testing and evaluation 

We use Matlab software platform to build model. It is the BP neural network model and the GA-

BP-Adaboost model. There were 200 training samples and 80 of the samples were verification samples. 

The best stability of ELM was analyzed by comparison of [21]. In this case, the optimal sample set is 

selected by the cross-validation model as the input sample set of the network described below. The 

parameters of the BP neural network model are set as follows: the number of training is 30, the training 

target is 0.002, and the learning rate is 0.1. The parameters of the GA-BP-Adaboost neural network 

model are set as follows: the population size is 30, and the evolutionary algebra is 30. 

Neural network training index of output value are as follows: the mean relative error value is 

0.0035 and the sum of absolute value of relative error is 2.0225, the relative error of standard deviation 

is 0.0260, the goodness of fit is 0.9801, the mean square error of the relative error is 6.8235e-04. Ac-

cording to evaluation index shows that the training model good can output prediction. 

Figure 2 are the contrast diagram of the two models of the prediction of the output and the error. 

Figure 3 is the neural network curve fitting, which can show the validity of the prediction function. 

With the different prediction samples 40, 60, 80, table 1 gives the relative mean error, mean square 

error and fitting degree of two kinds of prediction models. 
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Factors affecting fuel consumption is not limited to the factors considered in this paper, also affect-

ed by other factors, such as weather conditions, the same flight with different routes and airports and 

other factors such as route congestion. And considering the security requirements of actual flight, the 

plane will usually carry 45 minutes’ alternate or return flight fuel, which may lead to “Fuel oil con-

sumption " happen. So the prediction value and the expected value of the fuel consumption are allowed 

to error exist.  

It is concluded that adaptive GA-BP-Adaboost prediction model has a small increase in the predic-

tion accuracy and nonlinear fitting ability, fault tolerance capability. Moreover, when the training data 

set is less, the prediction precision and dynamic quality of the model are still kept. By analyzing the 

index value of the simulation and evaluation model, and considering the existence of the actual error, it 

can be draw the conclusion that the results indicate that these two methods used to forecast fuel con-

sumption is feasible, effective and convenient for practical applications. 

4.3 Analysis of simulation experiment   

With the increase of the genetic algebra, the fitness value is reduced after 20 generations, and the 
network fitness is optimal. So the weights and thresholds of the model are optimized which can im-
prove the prediction accuracy of the model. In Figure 3, the relative error values of the two prediction 
models are between [-0.1 0.1]. 

When the prediction sample number is 80, after 3 iterations the best validation parameters of the im-
proved adaptive GA-BP-Adaboost prediction model is 0.0025504. Similarly, after 4 iterations the best 
validation parameters of BP model is 0.0035213. Which it indicates that mean square error of GA-BP 
strong prediction is smaller than BP prediction. So, its output values closer to the predicted target and 
has a stronger adaptability.  

Table 1 gives the average relative error, mean square error and fitting value of two prediction mod-
els at different prediction samples, through the table we can analysis the accuracy of the prediction 
models. In the application of fuel consumption prediction, along with the increase of the number of 
prediction samples, the two-forecast model can be effective convergence and the predictive accuracy of 
adaptive GA-BP-Adaboost prediction model increases slightly which is converted to the number level 
of the actual project can achieve a more significant improvement.  

The fuzzy logic model of fuel consumption proposed by Chang R C and the SVR model of fuel con-
sumption proposed by HF Zhang are using the same data as the above experimental data to forecast,
the prediction sample number is 80. Results in the following table 2. Analyzing the data in the table 2, 
it is found that the Improved GA - BP - Adaboost model than other model has a good capability of 
nonlinear fitting, and the average relative error is small than SVR model and BP model .However, the 
average relative error of fuzzy logic model proposed by Chang R C is small than the average relative 
error of Improved GA - BP - Adaboost model, but it’s sum of relative error is 2.4319, higher than the 
Improved GA - BP - Adaboost model error sum 0.5489.it shows that fuzzy logic model is at the cost of 
model performance to reduce the output error ,so that dynamic stability of fuzzy logic model become 
lower.  

Factors affecting fuel consumption is not limited to the factors considered in this paper, also affected 
by other factors, such as weather conditions, the same flight with different routes and airports and other 
factors such as route congestion. And considering the security requirements of actual flight, the plane 
will usually carry 45 minutes’ alternate or return flight fuel, which may lead to “Fuel oil consumption "
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happen. So, the prediction value and the expected value of the fuel consumption are allowed to error 
exist.  

It is concluded that adaptive GA-BP-Adaboost prediction model has a small increase in the predic-
tion accuracy and nonlinear fitting ability, fault tolerance capability. Moreover, when the training data 
set is less, the prediction precision and dynamic quality of the model are still kept. By analyzing the 
index value of the simulation and evaluation model, and considering the existence of the actual error, it 
can be draw the conclusion that the results indicate that these two methods used to forecast fuel con-
sumption is feasible, effective and convenient for practical applications. 

In the premise of not affect flight safety, it is in order to effectively reduce the fuel consumption, as 

much as possible to improve the utilization rate of fuel resources. We use the model proposed in this 

paper to analysis single factor influence on fuel consumption when defining other influence factors. 

Prediction of fuel consumption, we can get the single factor variable interval after we get most eco-

nomical fuel consumption costs. It can provide a reference for the flight plan, so that flight to achieve 

the best fuel saving flight state. 

5 Conclusion 

Accurate forecasts of fuel consumption are vital when demand grows faster, it can guide Civil 
Aviation energy policies effective implementation and reduce flight carbon emissions. Energy con-
sumption forecast is a complex problem due to interactive factors. In this study, we in order to reduce 
the amount of carbon emissions from flights and improve the fuel utilization rate, by analysing flight 
data, a fuel consumption forecast model based on GA-BP-Adaboost is presented. The model is verified 
by flight climbing stage. 

By comparing the BP prediction model, the proposed model in the prediction accuracy, nonlinear 
fitting ability and fault-tolerant ability are increased. And there have small training data set in the 
study, the model can still maintain prediction accuracy and dynamic performance index. Analyzing the 
Simulation and considering the actual causes of errors, it can be concluded that two models have prac-
tical applications. Also, through the analysis of QAR data, we can aim at the different stages of the 
same voyage flight to establishment two kinds of prediction models is presented in the paper, they used 
to predict aircraft in various stages of the fuel consumption. Similarly, in the case of network training 
well, if the forecast result of test set is found to have a large deviation from the actual value and then 
analyze the error, we can even determine this flight if there is a fault. Therefore, it is necessary for us to 
study the prediction model of fuel oil. 

In future work, the enhancement of the model presented here is the extension to estimate thrust as-
sociated with a fuel burn flight condition parameter such as Thrust Specific Fuel Consumption (TSFC). 
Preliminary results obtained in research indicate that thrust and TSFC can also be easily characterized 
using genetic algorithm. To build trajectory predictions of transport aircraft based on time series, this is 
a good research direction. 
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Fig. 1. Based on improved GA-BP strong prediction model 

 

 

Fig. 2. Output and relative error of model prediction

 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 728



 
Fig. 3. Analysis of neural network fitting curve 

Table 1. Model index value 

 BP model Improved GA-BP-Adaboost model 

Forecast 

sample 

number 

40 60 80 40 60 80 

MRE 0.0100 0.0177 0.0127 0.0185 0.0149 0.0119 
SRE 1.0125 1.5365 1.8855 1.1026 1.3550 1.8830 
MSE 0.0011 0.0011 8.8011e-04 0.0011 7.6700e-04 0.0011 
R 0.9558 0.9041 0.9043 0.9347 0.9440 0.9633 

a. MRE-Mean Relative Error. 

b. SRE-Sum of Relative Error Absolute Values. 

c. MSE- Mean Square Error of Relative Error. 

d. R-Goodness of Fit. 

 

Table 2.  Model comparison 

 

Forecast 

sample number 

80 

BP model FUZZY 

model 

SVR model Improved GA-BP-Adaboost 

model  

MRE 0.0177 0.0065 0.01945 0.0119 

R 0.9043 0.9049 0.9070 0.9633 
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Abstract. One of the most important elements in Wi-Fi networks is
the access point. The number of sessions and data traffic established in
the access points has a direct impact on the energy consumption, which
can be considered as a certain measure of the users’ behavior. Moreover,
the energy is a parameter to be taken into account when we plan many
maintenance tasks of the network infrastructure. Therefore, knowing the
energy consumption in a determined access point in advance can be
useful to make decisions about the maintenance works. In this work, we
present an energy prediction methodology based on system identification
applied to time series. Ten time series model the energy patterns of the
access points of a Wi-Fi network in an academic environment during five
weeks. The identified models of these series were used to predict next
energy consumption in the access points, with reasonably good results.

Keywords: Wi-Fi networks; access point; energy consumption; time se-
ries; system identification; prediction.

1 Introduction

The Access Point (AP) is a device that supports the data traffic and the sessions
requests in a Wi-Fi infrastructure. The energy use in the AP comes mainly from
the demand of network access by users, although there are other factors with
energy impact, such as usual operations, location, physical characteristics, etc.

The energy levels in the APs are optimization objectives in many research
works [1] [2], and they give us useful information about the users’ behavior.
From this knowledge, we can plan several maintenance tasks of the network
infrastructure, with regard to the deployment, device replacing, etc. In this sense,
we should know the energy impact of any maintenance task before doing it,
predicting the energy in the APs according to the past energy patterns.

In this work we predict the energy in the APs from time series modeling,
using a three-step methodology. First, we collect data of the energy from the

? Corresponding author.
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network usage during a determined time period where the users had a regular
activity. Next, we build as many time series as access points the network has,
where each series draws the daily energy level in the corresponding AP. Next, we
model the time series applying system identification: auto-regressive modeling
and recursive least squares identification. Finally, the models obtained are used
to predict the next energy data.

We have not found works about predicting energy in the APs using time
series, but other focus with regard to predict the density of neighbouring APs
and the corresponding data traffic [3], or the data quota [4], for example. Other
aspects of the wireless networks, as users’ location [5], data traffic [6], mobility
[7] and [8] application workloads were studied for prediction purposes.

2 System Identification of Time Series

A Time Series (TS) is a signal y(k) sampled by a period T that describes the
behaviour of a dynamic system. System Identification (SI) [9] tries to find a
parametric mathematical model of the TS from the measures of y(k).

The parametric polynomial description is usual in SI. The ARMAX (Moving-
Average Auto-Regressive) model [10] is a well-known option to model a discrete
system. If q is the delay unit, and q−d the time delay (k−d), ARMAX is described
by A(q)y(k) = 0, where A(q) = 1 + a1q

−1 + · · · + anaq
−na , being na the model

size. In a polynomial description, the ARMAX model is given by (1).

y(k) + a1y(k − 1) + · · · + anay(k − na) = 0 (1)

The identification of the time series consists in determining the values of
ai from the observation of the signal y. From this model, we can calculate the
estimated signal ye(k) (2), and compare it with the real signal y(k) in order to
determine the error done (3). Hence, the time series in k is given by (4).

ye(k) = [−a1y(k − 1) − · · · − anay(k − na)] = ϕT (k)θ (2)

where θ =


a1
a2
. . .
ana

 ϕ =


−y(k − 1)
−y(k − 2)

. . .
−y(k − na)



err(k) = y(k) − ye(k) = y(k) + [a1y(k − 1) + · · · + anay(k − na)] = 0 (3)

y(k) = ϕ(k)θ + err(k) (4)

There are two possibilities to perform the identification (obtain θ): batch or
recursive. We choose the recursive parametric estimation, which estimates and
updates θ along the time, in a way that, for each time k, we obtain an ARMAX
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model. Obviously, the more past samples we have, the more accurate model we
obtain, because we have more information about the behaviour of the system.

There are several algorithms for the recursive identification: Kalman Filter,
RLS (Recursive Least Squares) and LMS (Least Mean Squares). We choose RLS
because its goodness and accuracy. It starts from the initial conditions: θ(p) = 0
and P (p) = 10, 000I, where I is the identity matrix and p is the initial time
for the recursive algorithm, so that p > na. Next, RLS processes iteratively
five steps: build the data matrix ϕ(k), calculation of the estimated signal (5),
calculation of the error made (3), calculation of an intermediate matrix (6),
updating matrix P (7), and updating parameter matrix θ (8).

ye(k) = ϕT (k)θ(k − 1) (5)

K =
P (k − 1)ϕ(k)

λ+ ϕT (k)P (k − 1)ϕ(k)
(6)

P (k) = y
P (k − 1) −KϕT (k)P (k − 1)

λ
(7)

θ(k) = θ(k − 1) +Kerr(k) (8)

This algorithm considers the forgetting factor λ , which value is chosen in
the interval 0.97 to 0.995 [10].

3 Energy Prediction in Access Points

The prediction of the future behaviour of the TS is possible if it is previously
identified in order to know its behaviour by a mathematical description. The
recursive estimation of the ARMAX model allows us to obtain this description.
From this approach, the prediction can improve when the identification advances
in the time, because we suppose more accurate models.

3.1 Prediction Approach

In order to perform the prediction, we choose the time ks from which we model
the system based on the past history. In practice, ks will be the last known
value of the TS. Figure 1 shows this approach, where y is the real TS, ye is
the estimated value from the ARMAX model, and ys is the predicted TS. We
have real values of y until k = ks, so the last estimated value will be ye(ks + 1),
since the estimated value in ks + 1 is calculated from the model built with the
real values up to previous time, ks. From ks + 1, we predict by RLS assuming
ys(k) = ye(k). Therefore, ys(ks+1) = ye(ks+1), and we apply RLS successively.

Figure 2 shows an example of TS predicted with this approach. The top plot
shows the identification of the full TS (na = 3 and λ = 0.98), where ye is the TS
estimated from the model generated with all the data in the TS, and NM = 39
is the number of samples. Now, let’s suppose we only know the TS up to ks = 20.
From this time, we generate the predicted signal ys, calculated in this way:
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Fig. 1. The predicted signal is the estimated one from the next time to the last known.

– In the next time (ks + 1) to the last known value y(ks), the predicted value
ys is the estimated one ye according to the model ARMAX-RLS built con-
sidering the previous known y values.

– In ks +2, we perform the identification taking the real value of the TS as ys,
instead of y (we suppose we do not know it already). Therefore, we calculate
the estimated value ye(ks + 2) according to ARMAX-RLS, and next it is
assigned again to the predicted signal ys at this time, and so on.

We can see in the down plot of the figure the predicted ys (the dotted plot
is the real y which has not been taken into account for the prediction; it is
shown only for comparison purpose). Obviously, the more predicted values, the
worse prediction we have, because the predicted signal is built with the previous
predicted values, instead of the previous real ones.

Fig. 2. Example of identification (top) and prediction from ks = 20 (down).
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3.2 Energy Data

We have collected data from a library building of the University of Extremadura
(UEX), Spain (Figure 3). This Wi-Fi network is composed of 10 access points
accessed by 2,907 users along 73 days: 10 full weeks labeled from #1 to #10,
plus the first three days next to the last week; nevertheless, we only consider five
of these 10 weeks, as we explain later. The energy data in each AP were collected
each 60 seconds in the 12 hours daily period from 9h to 21h, in order to filter
the energy data closer to the real users’ behavior, since the usual activity of the
network users happens in that period in the library building.

Fig. 3. Deployment of 10 APs in the Library building at the Caceres UEX campus.

From the collected data, we have built 10 time series, one for each AP, show-
ing the total daily energy due to the users activity in the period. Our purpose
is to predict the energy in the APs when we do not have more real data. The
prediction is more accurate in the next day to the last known day, and it gets
worse when the predicted day moves away. The three last days (71 to 73) are
not part of the series, but they are left for comparison purposes with the three
first predicted days.

We are interested in analize the users’ behavior through the energy patterns.
For this purpose, we remove all the weekends, since the library is closed then.
Moreover, we delete those weeks where one of their days does not reflect an usual
behaviour (holiday, network down, etc). Taking into account these constraints,
we only consider five weeks (25 days), as they are shown in Figure 4.

3.3 Access Point Technology

The model of wireless device where the data were collected is Alcatel-Lucent
IAP-215. They have dual radio technogy, supporting standards 802.11ac at 1.3
Gbps in 5 GHz band and 802.11n at 450 Mbps in 2.4 Ghz band. These APs
are usual in high-performance Wi-Fi infrastructures, where up to 256 users can
access simultaneously. The devices are configured as hive under InstantOS oper-
ating system from Aruba. At the same time, the hive is monitored by Nodowifi,
a management tool from UEX [11].
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Fig. 4. Ten time series corresponding with the energy in each AP, sampled daily con-
sidering only working days: from Monday (day 1) to Friday (day 5). Each series is
composed of 25 samples. The three last days considered for comparison purposes with
the predicted days are also shown.

The IAP-215 device includes a CPU Freescale P1010 800 MHz, 256 MB
SDRAM and 32 MB flash memories. The power and channel assignment in the
installed APs is driven by Adaptive Radio Management (ARM) technology from
Aruba, which analyzes the frequency spectrum in order to select the optimal
power and channel, according to the regional configuration and the interferences
and signals received from other devices. In any case, the power is selected in the
range from 13 dBm to 18 dBm in both radios.

Last, the power of the APs is supplied by PoE (Power Over Ethernet) of 48
VDC with 802.3af compliance. The maximum operational energy consumption
is 14.9 W, the minimum with radius is 4.5 W, and the power base emitting both
radios at 18 dBm without connected users is 7 W. The efficiency of the PoE
energy conversion to 12 VDC is around 88%.

4 Experimental Results

Figure 5 shows the prediction of the time series. Dotted and continuous lines are
real (y) and predicted (ys) series respectively.

The value of na determines the initial time kini from which RLS builds the
ARMAX model. The more na is, the more value for kini. Therefore, as the time
series have a low number of samples (NM=25), we should consider a low value
for na; otherwise, the identification would start later, the recursive calculations
would consider few data and, consequently, the identification would be worse.

The predicted values were compared with the real ones using the variable v
(variation) defined in (9). The predicted data and their corresponding variations
are shown in Table 1, and the absolute values of these variations are shown
graphically in Figure 6 in order to notice better the prediction accuracy.
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Fig. 5. Predicted energy (continuous line) in each AP in the next three days to the last
considered day (sample number 25). The known energy data (dotted line) correspond
with the working days of the five considered weeks, from Monday (1) to Friday (5).
The real energies of the three last days are not considered in the time series, but they
are useful for calculating the prediction performance. Energy is displayed in mW.
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v(%) =
ys − y

y
× 100 (9)

AP1 AP2 AP3 AP4 AP5

Real ks + 1 5,147,200 5,249,500 5,303,400 5,459,200 5,220,400
energy ks + 2 5,112,500 5,229,500 5,231,300 5,427,600 5,154,000
(mW) ks + 3 5,157,600 5,260,200 5,319,500 5,486,700 5,218,400

Predicted ks + 1 5,148,392 5,255,567 5,253,432 5,436,080 5,184,900
energy ks + 2 5,156,477 5,239,271 5,253,643 5,442,510 5,190,563
(mW) ks + 3 5,155,487 5,231,616 5,234,009 5,433,628 5,184,372

Variation ks + 1 0.02% 0.12% -0.94% -0.42% -0.68%
ks + 2 0.86% 0.19% 0.43% 0.27% 0.71%
ks + 3 -0.04% -0.54% -1.61% -0.97% -0.65%

AP6 AP7 AP8 AP9 AP10

Real ks + 1 5,130,600 5,183,100 5,274,600 5,554,300 5,526,900
energy ks + 2 5,108,400 5,150,600 5,262,600 5,448,900 5,173,800
(mW) ks + 3 5,167,400 5,192,800 5,312,900 5,470,800 5,216,100

Predicted ks + 1 5,144,935 5,312,812 5,274,947 5,538,894 5,180,182
energy ks + 2 5,143,113 5,305,317 5,270,491 5,540,667 5,213,637
(mW) ks + 3 5,137,779 5,279,461 5,263,770 5,569,270 5,197,231

Variation ks + 1 0.28% 2.50% 0.01% -0.28% -6.27%
ks + 2 0.68% 3.00% 0.15% 1.68% 0.77%
ks + 3 -0.57% 1.67% -0.92% 1.80% -0.36%

Table 1. Real and predicted energies, and the corresponding variations, for each access
point, in the next three days to the last day considered (ks = 25).

In general, the predictions are good; as regards they do not moves away too
much from the real values (less than 2% in almost all the cases). Only two of
the 30 predictions have variations of 3% and 4%. Besides, the variations for the
first predicted day (ks + 1) are under 1% in eight of the 10 access points.

The variation can be positive or negative, showing the trend to increase or
decrease the own time series (according to the day in the week, the trend in the
network use will be greater or smaller).

We can see how the prediction gets worse when it is far from the last known
value (ks = 25). This is observable in six of the 10 access points; in the other
4 APs, the prediction is different, depending on the behavior and variability of
the own time series.

Finally, we remember that the size of the time series and its behavior in-
fluences on the prediction results. One the one hand, the more weeks the TS
has, the more accurate the prediction will be, because we have more samples
of the same day. On the other hand, the variability of the TS (a very different
behavior between consecutive days or for the same day in each week) implies a
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Fig. 6. Absolute variation of the predicted energy with regard to the real energy, in
each access point, for the next three days to the last known day (ks): Monday (ks + 1),
Tuesday (ks + 2) and Wednesday (ks + 3)).

worse identification. Ideally, the prediction will be better as more stable be the
behavior of the time series. The worse results of our work can be blamed to the
access points that show high variability in its behavior (for example, AP7).

5 Conclusions

We have applied the time series analysis to the daily energy consumption in the
access points of a Wi-Fi network, in order to predict the values for the next
days. This knowledge can be useful for network maintenance purposes. We have
collected data from a real wireless infrastructure, in an academic environment,
accessed by thousands of students during several weeks. The time series, one for
each access point, were modeled following an auto-regressive formulation and a
recursive estimation. The result models were applied to do the prediction, whose
results were compared with real energies in order to analyze the performance.

We think the obtained results are good enough, since the differences between
prediction and real values are under 2% in almost all the cases. Nevertheless, we
point out some research future efforts to improve the prediction. First, we can
add other parameters different than energy consumption as possible data to be
predicted for maintenance issues, like number of users, sessions and data traffic,
since these information is easily accessible from the AP itself. Second, the time
series should be larger, in order to analyze more data of the same type that
reflect the usual behavior; besides, this would allow us to build larger models;
for example, we may consider a wider window of days in order to give more
representation to the different parts of the year (holidays, beginning of the aca-
demic year, examination period, etc.). Third, we can consider other networks
composed of APs of different types and models in order to lead to different con-
sumption behavior depending on the energetic efficiency. Last, we can optimize
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the settings of the main parameters involved in the prediction processes, such
as the forgetting factor in the recursive identification algorithm; in this case, we
would use the error made as cost or objective function.
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Abstract. 

Recently, there has been a significant emphasis on the forecasting of the elec-

tricity demand due to the increase in the power consumption. This paper presents 

the computational modeling of electricity consumption based on Neural Network 

(NN) training algorithms. The noise in signals, which are caused by various ex-

ternal factors, often corrupt demand series and influence consequently on the 

model performance. For accurate electricity demand forecasting, we propose a 

novel approach that combines a NN MLP (multilayer perceptron) with VMD 

(variational mode decomposition)-based signal filtering. Using the daily electric-

ity demand series of EDF (Electricté De France) obtained from the UCI machine 

learning repository, this paper demonstrates that the proposed VMD-NN model 

greatly improves the forecasting error comparing to existing stationary stochastic 

process such as the autoregressive moving average (ARMA) model. 

Keywords:  neural network algorithms, time series, household electricity con-

sumption forecast, variational mode decomposition, multiresolution analysis 

1 Introduction 

Domestic energy consumption [1] is the total amount of energy used in a house for 

household work. The amount of energy used per household varies widely depending on 

the standard of living of the country, the climate, and the age and type of residence. 

Energy demand forecasting is a very important task in the electric power distribution 

system to enable appropriate planning for future power generation. Quantitative and 

qualitative methods have been utilized previously for the electricity demand forecast-

ing. These methods fail to provide effective results. With the development of the ad-

vanced tools, these methods are replaced by efficient forecasting techniques. According 

to common classifications [2], demand forecasting models are classified based on two 

different criteria: the forecasting horizon and the aim of the forecast, also we can divide 

them into linear and nonlinear models and a third group consists of models that use a 

combination of both.  
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This paper presents an improved method for forecasting, we use the VMD-NN 

model. The VMD is a fully adaptive method for the analysis of nonlinear and non-

stationary properties of time series. The original series will be decomposed by the VMD 

method into several high and low frequency signals. These sub-series will be used in 

the NN model in order to make the prediction. The forecasting results of this work have 

revealed that the VMD-NN model outperforms the NN itself and the ARMA models. 

The rest of this paper is organized as follows: Section 2 introduces the notions of the 

classical forecasting models namely the autoregressive moving average and the artifi-

cial neural networks. Section 3 shows in details the theory of the recently developed 

variational mode decomposition. Section 4 contains our experiments and results, we 

start this part by defining the practical error measurement, we describe different steps 

to get the optimal training algorithm on our dataset, and we sum up our work with some 

simple quantitative performance evaluations compared to the baseline models. Section 

5 concludes on the effectiveness of our novel approach, and includes some future di-

rections and expected improvements. 

2 Classical Forecasting Methods 

2.1 ARMA Process 

The various researches [3] have used these methods with time series data for the electric 

power consumption. In [4] Zhu, Guo, and Feng studied the issue of household energy 

consumption in China from the year 1980 to 2009 with construction on of VAR model. 

There were two forecasting methods that used ARIMA and BVAR. The results showed 

that both of them can predict the sustained growth of household energy consumption 

(HEC) trends. Ediger and Akar [5] applied SARIMA (Seasonal ARIMA) methods to 

estimate the future primary fuel energy demand in Turkey from the years 2005 to 2020. 

The research work of Contreras et al. [6] applied ARIMA methods to predict next day 

electricity price in Californian markets. Conejo et al. [7] applied wavelet transform and 

ARIMA models to predict day-ahead electricity price of mainland Spain in year 2002.  

In this paper, we use the ARMA process [8, 9] as a reference model. It has become 

a popular linear statistical model for stationary time series analysis and forecasting. The 

ARMA (p,q) generating process is given by  

 φ(B) vt = θ(B) et  

where vt and et are respectively the actual value and random error at time period t, B is 

the backshift operator. The error term et are assumed to be independently and identi-

cally distributed (iid) with a mean E(et) = 0 and a variance V(et) = σ2. The polynomials 

φ(B) and θ(B) are given by 

 φ(B) = (1−φ1B−···−φpBp) 

 θ(B) = (1−θ1B−···−θqBq)  

where p is the number of autoregressive orders, q is the number of moving average 

orders, θ is the autoregressive coefficient, and φ is the moving average coefficient. 
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In particular, the autoregressive (AR) component is expressed by the coefficients φ 

that represent a linear relationship between the value predicted by the model at time t 

and the past values of the interest rate variation time series. Similarly, the moving av-

erage (MA) component is expressed by the coefficients θ that represent a linear rela-

tionship between the value predicted by the model at time t and the error term e. 

2.2 Artificial Neural Networks 

Based on some literature reviews, the non-linear models, derived from the artificial 

neural networks (ANNs), have gained more and more attention since the second half of 

the 80’s. This evolution is due to the fact that certain researchers achieved great ad-

vances on ANNs.  

Artificial neural networks in Fig.1 [10] are a class of statistical learning models in-

spired by the physiology of biological neural networks. Each neuron performs a specific 

kind of computation. First, a weighted sum of the input variables and the bias term b is 

built, with the result being then processed by an activation function f(t). Once the single 

neuron operation is specified, one can easily calculate the network outputs given an 

input vector by evaluating the output of each layer by forward input propagation. The 

result is a function of the network configuration, i.e. its topology and the value of the 

connection weights. It will be the job of the training phase to learn the weights in order 

to induce the desired computation. 

 

 
Fig. 1. Schematics of a fully connected multilayer perceptron with four inputs and a 

bias unit. The weighted input sum is added to the bias term and then enters as argu-

ment of the activation function f which generates the output (Neuromaster, 2015) 

 

This has been overcome by the back-propagation [11, 12] algorithm; nowadays it is 

widely applied in training multilayer perceptron. Given a supervised training set {xi, ti: 

i = 1...N} with xi input variables and ti target variables, we denote by yi the correspond-

ent output computed by the network when xi is fed forward. In general, we have ti ≠ yi. 

A global error on the training set can be then defined as a quadratic function of the form  
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and can be seen as a function of the network weights w. Other error definitions are 

possible, for example by choosing a different norm. The idea behind back propagation 

is to minimize this error by updating the weights using the gradient descend [13] 

method (with k as iteration index), i.e. 

 

The calculation of the partial derivatives is thus crucial for the algorithm. It is done 

by using directly the dependence of the error function on the training set instances. 

When all the instances have been used, one ‘epoch’ of training is completed. Usually 

many epochs of training are needed in order for the error function to converge to a local 

or global minimum, resulting in longer training periods. 

3 Variational Mode Decomposition 

 More recently, a new multiresolution technique called variational mode Decomposi-

tion (VMD) was introduced by Dragomiretskiy and Zosso (2014) yields better results 

in signal processing domain specifically in the case of signals without prior knowledge. 

In [14], they propose an entirely non-recursive variational mode decomposition model. 

The model looks for an ensemble of modes and their respective center frequencies. We 

apply this technique on our dataset before using the predictive neural network model 

described in Section 2.2. In this part, we mentioned a few concepts and tools from signal 

processing that will constitute the building blocks of the VMD model. 

 

3.1 Denoising Problem 

Using a simple denoising problem, an underlying signal f0 consist of an unknown signal 

f corrupted by an additive noise, namely the zero-mean Gaussian noise. The use of the 

Wiener filter is to estimate the unknown signal using an original signal as input. The 

filter is based on a statistical theory in order to minimize the mean squared error clas-

sically addressed using Tikhonov regularization [15].   

 

The Euler-Lagrange equations are typically solved in Fourier domain: 

 

where 𝑓 is the fourier transform of the signal f. This solution corresponds to convolu-

tion with a Wiener filter, where α represents the variance of the white noise, and the 

signal has a low-pass 1/w2 power spectrum prior.  

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 743



3.2 Constrained Model 

For a multicomposition real valued signal 𝑓, VMD assumes that 𝑓 is composed of a 

given number of subsignals 𝑢𝑘 (modes). Each mode is regarded as an amplitude-mod-

ulated and frequency-modulated (AM-FM) signal and has mostly compact frequency 

𝜔𝑘 around a center pulsation [16].  

To assess the bandwidth of the modes, the following scheme is proposed by Drago-

miretskiy and Zosso (2014): 

(a) Compute the associated analytic signal by means of the Hilbert transform to obtain 

a unilateral frequency spectrum for each mode. 

(b) Shift the frequency spectrum of each mode to the baseband by mixing with an ex-

ponential tuned to the estimated center frequency. 

(c) Estimate the bandwidth through the 𝐻1 Gaussian smoothness of the frequency trans-

lated function, that is, the squared 𝐿2-norm of the gradient. 

The resulted constrained variational problem is the following: 

 

where f is the signal, u is its mode, w is the frequency, σ is the Dirac distribution, t is 

time script, k is number of modes, and ∗ denotes convolution.  

Thus, we intend to minimize the sum of the bandwidths defined as the squared L2-

norm of the gradient of the demodulated signal components. To solve the constrained 

variational problem [16], the augmented Lagrangian is introduced and the non-con-

strained variational problem is gotten by 

 

 

 

where 𝛼 denotes the balancing parameter of the fidelity constraint and λ is the lagran-

gian multiplier. The saddle point here is to get the optimal solutions of uk and wk using 

the alternate direction method of multipliers (ADMM). 

3.3 Minimization with respect to uk 

The subproblem can be written as the following equivalent minimization problem: 
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The solution of this quadratic optimization problem is found by using Parse-

val/Plancherel Fourier isometry and exploiting the Hermitian symmetry [16]. All the 

modes can be obtained from the below equation in the frequency domain through up-

dating each mode and its center frequency 𝜔𝑘 constantly: 

 

This equation is regarded as the Wiener filtering result of the current residue with signal 

prior 1/ (w - wk)2. Consequently, the mode in time domain is obtained as the real part 

of the inverse Fourier transform of this filtered analytic signal. 

3.4 Minimization with respect to wk 

As before, the optimization takes place in the Fourier domain. The relevant subproblem 

thus reads: 

 
The new center frequency is put at the center of gravity of the corresponding mode’s 

power spectrum, which can be updated by 

 

4 Experimentation 

4.1 Performance Measure 

The forecasting performance [9] is examined using the root mean of squared errors 

(RMSE). It measures the deviation between actual and predicted values. A small value 

of RMSE means that the predicted time series values are closed to the actual values. 

Thus, it can be used to evaluate the prediction error. The computation of this criterion 

is given as follows: 

 
where v and p represent respectively the actual and predicted value and n is the total 

number of the sample data points. 
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4.2 Data Preprocessing and Training 

This research used dataset [17] about the electric power consumption in one household 

that has a sampling rate one minute over a long period of time from the years 2006 to 

2010. Following the existing study [3], we use the “Global Active Power” variable 

which is the household global minute-averaged active power (in kilowatt). 

The raw data were not ready for constructing the forecast model because some values 

are missing and the recorded time frames are inappropriate. The lack of some infor-

mation [3] may decrease the predictive efficiency of the forecasting model. To fill the 

missing data, we use the previous value, where we assume that the current data will be 

similar to the previous ones as shown in Fig.2.  

 

 
Fig. 2. Fill the missing data by the previous value “0.244” (extracted from [3]) 

 

We aggregate the minute-by-minute data into daily observations, and then we got a 

new sample of 1442 data points. In Fig.3, we represent the shape of the daily HEC time 

series. It is clearly shown that the data points are highly fluctuated and non-stationary, 

since their means and variances change over time. 

The data is divided into two parts. The first group is the training dataset which con-

tain data from 26/12/2006 to 31/12/2009 (1112 observations) for the construction of the 

predictive models. The second group is the test sample which contain data from 

01/01/2010 to 26/11/2010 (330 observations). 

We want to predict the future value based on n previous days, where n is consid-

ered as the window size of the time series. There is no specific rule to define the win-

dow, in our case, we choose the first thirty lags for training the artificial neural net-

works.  
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Fig. 3. The daily time series of the Global Active Power from 2006 to 2010 

 

The main aim of this work is to determine the optimal NN for electricity demand 

forecasting. The model is generated by using the grid search cross validation technique. 

In brief, the grid search is simply an exhaustive searching algorithm with a manual 

specified subset for hyperparameter optimization. It must be guided by some perfor-

mance metric, typically measured by the k-fold cross-validation. The cross validation 

algorithm does this by splitting the training dataset into k subsets and takes turns train-

ing models on all subsets except one which is held out, and evaluating model perfor-

mance on the held out validation dataset. The process is repeated until all subsets are 

given an opportunity to be the held out validation set. The performance measure is then 

averaged across all models that are created. 

We used this technique to identify the number of layers (length) and the number of 

neurons in each layer (width).  First, we vary the length from 1 to 5 layers with a width 

of 10, 60, 110 neurons per layer. We found that the optimal model structure consists of 

a hidden layer with 110 neurons. Then, we tried again the algorithm for one layer with 

a range of neurons between 90 and 120; the record gives 100 neurons as the best fit. 

Thus, the optimal neural network is composed of one layer with 100 neurons. Through-

out the training, we use an epoch equal to 1000. Considering that, one epoch is a mul-

tiple number of iterations for the gradient descent updates until we show all the data to 

the NN, and then start again. 

As proposed in this paper, we work on the VMD-based signal filtering method to 

reduce the noise. The VMD algorithm requires predetermining the number of varia-

tional modes to be extracted. However, it is not easy to set a rule to determine an ap-

propriate number of modes. 

On the one hand, we tried our experiments on the training sample with mode = 6 in 

order to exemplify the theory described in Section 3. We illustrate in Fig.4 the results 

of the VMD algorithm on the non-stationary HEC dataset in order to assess the clarifi-

cation of the proposed approach (Dragomiretskiy & Zosso, 2014). 
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Fig. 4. Applying the VMD = 6 on the train sample 

One can clearly see an oscillating low-frequency pattern. The first mode captures the 

low-frequency oscillation of the baseline. Then, the distinct spikes of the train sample 

create important higher-order harmonics in the next modes. The 6th mode is the highest 

frequency mode and contains the most noise with a highly non-sinusoidal spikes.  

On the other hand, in order to contribute to the forecasting system, we repeatedly 

apply the VMD algorithm on every window of the time series to elaborate the modes. 

We tried our experiments on different levels of decomposition: 8, 10, 15, and 20. In 

each case, the modes are integrated in the optimized MLP model for 7 day-ahead fore-

cast. Based on the RMSE values explained in the Section 4.1, we found that VMD = 

15 gives the most efficient result.  

 

 
Fig. 5. The VMD-NN model components 
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As a partial conclusion, the following diagram in Fig.5 explains the different steps 

of the hybrid combination VMD-NN model in order to build this novel forecasting ap-

proach. We mean by signal S(t), the series values that correspond to the window range 

from 1 to 30. Applying the VMD on each signal, we obtain the 15 different variational 

modes. Then, using the previous optimized MLP (100,) as indicated in Fig.5, we con-

sidered the variational modes as inputs of the model in order to obtain the prediction on 

horizon h. 

4.3 Results 

We define the Carbon Copy as the model that takes exactly the same value of the pre-

vious day, which means that the predicted value is equal to the actual value. For com-

parison purpose with ARMA models (Chujai et al., 2013), the horizon h = 7 was em-

ployed. 

Based on the test sample and the optimal models, we make a summary of the RMSE 

values shown in the table 1. Using the NN model, we found a significant improvement 

in the error comparing to ARMA process for the proposed dataset. The RMSE de-

creases from 0.34 to 0.272. However, the novel approach VMD-NN model clearly 

shows an efficient reduction in the error among all the previous studies. Its correspond-

ing RMSE is equal to 0.077. The VMD-NN greatly outperforms the NN itself by de-

creasing the RMSE from 0.272 to 0.077 for predicting the household electricity con-

sumption dataset. 

 

Models RMSE h = 7 

Carbon Copy 0.374 

ARMA (Chujai et al. [3]) 0.340 

NN 0.272 

VMD-NN 0.077 

Table 1. RMSE comparative analysis 

 

Thus, based on the VMD-NN model, the RMSE analysis shows that we divide the error 

by 4.4 (~ 0.34/0.077) comparing to ARMA, and by 3.5 (~ 0.272/0.077) comparing to 

NN. 

The VMD technique cannot be applied to ARMA model. The variational modes can-

not be implemented in its algorithm, since it only involves regressing the variable on 

its own lagged (i.e. past) values. 

The RMSE of the VMD-NN could be also minimized by making a new optimization 

of the hyperparameters of the neural network. But, as long as we get a significant de-

crease in the RMSE, we restrict our study to the MLP (100,) to show the effectiveness 

of the VMD comparing to the same previous MLP. 

In Fig. 6, we only plot the first 150 observations of the test sample to clearly show 

the difference between the curve of the predicted and original values. The curves are 

very close to each other, thus the VMD-NN model fits the data very well. 
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Fig. 6. The actual versus predicted values 

 

Besides the RMSE measures, we also examined the distribution of the forecast errors 

in order to check the normality of the distribution. The histogram in Fig.7 shows that 

the errors are normally distributed between [-0.3, 0.3] where the highest point on the 

curve represents the most probable event in the error close to zero, while all other pos-

sible occurrences are equally distributed around the center, creating a downward-slop-

ing line on each side of the peak. 

 

 
Fig. 7. The histogram (left) and the Q-Q plot (right) of the forecast errors 

 

We use the Q-Q plot in Fig.7 as a test to verify the normality.  Roughly speaking, 

the Q-Q plot take the sample data, sort it in ascending order, and then plot them versus 

quantiles calculated from a theoretical distribution known as the standard normal dis-

tribution with mean 0 and standard deviation 1. If both sets of quantiles come from the 

same distribution, we should see the points converge to the straight line. As long as the 

blue points in Fig.7 are close to the red line, the normality can be assumed, and we have 

stability in the model error. 

5 Conclusion 

Due to the lack of research on this UCI dataset, our objective was to build a forecast 

system to make some improvement comparing to existing studies specifically on a daily 

level. Experiments with RMSE statistical criteria, clearly demonstrate that VMD-based 

Neural Network model significantly achieved the lowest forecasting error among mod-

els. This indicates that this novel approach can be used as a very promising methodol-

ogy specifically for non-stationary and noisy time series. The VMD is considered as a 
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new adaptive multiresolution technique, and this is the main advantage of adopting this 

approach.  

Finally, a comparative study of accuracy of the VMD combined with other machine 

learning models such as support vector machines could be considered for future works 

to also examine its effectiveness. 
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Nonparametric panel stationarity testing. An application 

to crude oil production 
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Abstract. A nonparametric panel stationarity test is proposed that offers the ad-

vantage of not requiring a priori specification of the trend function for each of 

the series in the panel. A bootstrap implementation of the test is outlined and its 

finite sample performance is analyzed via Monte Carlo simulations. The stochas-

tic properties of monthly crude oil production are then analyzed for a panel of 20 

-both OPEC and non-OPEC- countries in the period from January 1973 to De-

cember 2015. Our analysis detects strong evidence of non-stationarity, both glob-

ally and group-wise for both OPEC and non-OPEC countries. A case-by-case 

study reveals that stationarity is rejected for 8 out of the countries under study, 

with stationarity being relatively more frequent among OPEC members. 

Keywords: Stationarity, Panel, Nonparametric, Oil Production. 

1 Introduction 

A potential drawback of conventional unit root and stationarity testing stems from its 

lack of robustness to misspecification of the trend function of the series. Conclusions 

may change depending on the presence of breaks (as well as their number and even the 

speed of change1) and whether non-linear features are taken into account or not. In 

practice this is a serious limitation, as for many series it is hard to a priori specify a 

simple parametric form for their deterministic trend component. The problem is even 

more serious in the panel case as many panel test statistics are averages of the corre-

sponding test statistics for the individual components of the panel, so correct model 

specification is required simultaneously for all the series in the panel, at the risk of 

undue rejection of the null hypothesis of the test as a consequence of model misspeci-

fication for some components of the panel.  

Our goal in this work is developing an approach that properly addresses the above 

limitations. For this we shall rely on nonparametric panel stationarity testing. In a recent 

paper, Landajo and Presno (2013, LP hereafter) propose a fully nonparametric (univari-

ate) stationarity test that offers the advantage of not requiring a priori specification of 

the trend of the series. In this paper we build on that contribution, proposing a panel, 

bootstrap-based extension of the LP test. 

                                                           
1 See Landajo and Presno (2010). 
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The proposed test is applied to analyze stationarity in monthly oil production, along 

the period from 1973 to 2015, for some of the leading producer countries. We shall 

focus on a panel of 20 OPEC and non-OPEC countries encompassing more than 80% 

of global oil production. 

The remainder of this paper is organized as follows. Section 2 outlines the method-

ology and includes the technical details on implementation of the proposed test and an 

extensive simulation analysis on its finite sample performance under several trend spec-

ifications and time series models. In Section 3, the datasets are presented, together with 

the empirical results and a discussion. Some concluding remarks are included in Section 

4. 

2 Methodology 

2.1. The model and the nonparametric panel stationarity test 

We consider a panel of N (fixed) time series 𝒚𝑡 = (𝑦1,𝑡 , . . . , 𝑦𝑁,𝑡) generated by the fol-

lowing multivariate process:  
  

        𝑦𝑖,𝑡 = 𝜇𝑖,𝑡 +  𝜃𝑖
∗(𝑡

𝑇⁄ ) +  휀𝑖,𝑡 ,    

        𝜇𝑖,𝑡 = 𝜇𝑖,𝑡−1 + 𝑢𝑖,𝑡 ;   𝑡 =  1, … , 𝑇;   𝑇 =  1, 2, … ;  𝑖 =  1, 2, … , 𝑁 (1) 

with θi
∗:[0, 1] → ℝ being the trend function of the i-th time series in the panel. 𝜺𝒕  

=

 (휀1,𝑡 , . . . , 휀𝑁,𝑡) is a zero mean random vector process (both serial dependence and cross-

section correlation among the components of εt is allowed). In addition, for any i = 

1, ..., N, the processes {εi,t, t = 1, 2, ...} and {ui,t, t = 1, 2, ...} are assumed to be inde-

pendent of each other having zero means and respective (finite) variances 𝐸(휀𝑖,𝑡
2 )  =

 𝜎𝑖,𝜀
2 >  0 and 𝐸(𝑢𝑖,𝑡

2 )  =  𝜎𝑖,𝑢
2  

≥  0; {μi,t} starts with μi,0, which is assumed to be zero 

for each 𝑖 = 1, … , 𝑁. 

We consider the following panel stationarity testing problem: 

 𝐻0: 𝑞𝑖 ≡
𝜎𝑖,𝑢

2

𝜎𝑖,𝜀
2 = 0 for 𝑖  =   1, . . . , 𝑁,  versus 𝐻1: ∑ 𝑞𝑖

𝑁
𝑖=1 > 0 (2) 

In the above setting, under the null hypothesis (H0), all the series of the panel are 

stationary around their respective deterministic trend functions, whereas at least one of 

the series includes a unit root under the alternative (H1). 

Stationarity can be tested separately for each component of the panel by using the 

nonparametric stationarity test derived by Landajo and Presno (2013). In that setting, 

the trend function −𝜃𝑖
∗(𝑡

𝑇⁄ ) − of time series 𝑦𝑖,𝑡 is first estimated nonparametrically 

by OLS regression of 𝑦𝑖,𝑡 on the elements of a cosine basis. The resulting estimate has 

the form: 

  

 �̂�𝑖(
𝑡

𝑇⁄ ) = �̂�𝑖,𝑜 + ∑ �̂�𝑖,𝑗cos (𝑗𝜋𝑡/𝑇)
𝑚𝑇
𝑗=1  (3) 

Model complexity (𝑚𝑇) in (3) grows with sample size (T) obeying a suitable 

deterministic rule (e.g., a rule as 𝑚𝑇 = [𝑐𝑇]1/5, with 𝑐 > 0 and [∙] denoting the integer 

part function, is often appropriate). Then the raw (KPSS-type) stationarity test statistic 
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for series 𝑦𝑖,𝑡 is readily computed from the OLS residuals of the above regression, 

namely:  

 �̂�𝑖,𝑇 =
∑ 𝐸𝑖,𝑡

2𝑇
𝑡=1

�̂�𝑖
2𝑇2  (4) 

where, 𝐸𝑖,𝑡 = ∑ 휀�̂�,𝑘
𝑡
𝑘=1  with 휀�̂�,𝑘 = 𝑦𝑖,𝑘 − �̂�𝑖(

𝑘
𝑇⁄ ), 𝑘 = 1, … , 𝑇, and �̂�𝑖

2 is a suitable 

estimator for the long run variance of 𝑦𝑖,𝑡 . Finally, the standardized test statistic for 

series 𝑦𝑖,𝑡 is computed as follows: 

 �̂�𝑖,𝑇 =
�̂�𝑖,𝑇−𝜇𝑚𝑇

𝑠𝑚𝑇

 (5) 

with 𝜇𝑚𝑇
 and 𝑠𝑚𝑇

 being suitable standardization factors.2 It is readily checked (Landajo 

and Presno, 2013) that the null distribution of �̂�𝑖,𝑇 approaches the standard normal as T 

increases, whereas under H1 the nonparametric panel test statistic diverges in 

probability to +∞, so a consistent test statistic is readily obtained.  

In the panel setting (2), we can test for the null of joint stationarity by using the 

following nonparametric panel stationarity (NPS, hereafter) test statistic: 

 �̅�𝑇 =
∑ �̂�𝑖,𝑇

𝑁
𝑖=1

𝑁
 (6) 

which is a simple average of the standardized nonparametric stationarity test statistics 

for each element of the panel.3 

𝑍𝑇 is easily calculated once the scalar test statistics have been obtained for each 

component of the panel and, by construction, it is assured to have limiting power 

approaching 1 as T grows (for every fixed N). Unfortunately, the limiting null 

distribution of 𝑍𝑇 is unknown excepting some especial cases4, though it can be readily 

bootstrapped, which renders a feasible test. In Section 2.2 below the details for the 

bootstrap implementation are included5. Section 2.3 summarizes the results of a Monte 

Carlo simulation study on the finite sample performance of the proposed test, showing 

that it performs suitably in realistic settings. 

2.2. Bootstrap implementation of the NPS test 

We shall assume that, for any 𝑖 = 1, … , 𝑁  and some known pi<∞, the weakly stationary 

process {휀𝑖,𝑡 , 𝑡 = 1,2, . . . } has the AR(pi) representation 휀𝑖,𝑡 = ∑ 𝜑𝑖𝑘휀𝑖,𝑡−𝑘 + 𝑣𝑖𝑡
𝑝𝑖
𝑘=1 . 

The following sequence is applied to implement the bootstrapped test: 

Algorithm 

1. Select the number of bootstrap resamples (B) and the complexity order (𝑚𝑇). Set 

b=1.  

2. For each 𝑖 = 1, . . . , 𝑁, fit by OLS the model 𝑦𝑖,𝑡 = �̂�𝑖0 +

                                                           

2 Namely,  𝜇𝑚𝑇
=  ∑ (𝑗𝜋)−2∞

𝑗=𝑚𝑇+1  , 𝑠𝑚𝑇

2 = 2 ∑ (𝑗𝜋)−4∞
𝑗=𝑚𝑇+1  , and  𝑠𝑚𝑇

= +√𝑠𝑚𝑇

2 . 

3 A great many panel extensions (e.g., Carrion-i-Silvestre et al., 2005) of classical stationarity 

and unit root tests are derived in this simple average fashion. 
4 For instance, if the panel is composed of time series having independent random error processes, 

√𝑁�̅�𝑇 is approximately standard normal as T increases, for any fixed N. 
5 Matlab codes are available from the authors upon request. 
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∑ �̂�𝑖𝑗𝑐𝑜𝑠 (
𝑗𝜋𝑡

 𝑇
) +

𝑚𝑇
𝑗=1  𝑒𝑖,𝑡 . 

3. For each 𝑖 = 1, . . . , 𝑁, fit by Yule-Walker (or OLS) the model 𝑒𝑖,𝑡 =

 ∑ �̂�𝑖𝑘𝑒𝑖,𝑡−𝑘 +   �̂�𝑖,𝑡 ,
𝑝𝑖
𝑘=1  with pi obtained by minimization of the Schwarz information 

Criterion (SIC). Compute �̂�𝑖
2 and the observed test statistic �̂�𝑖𝑇. Compute �̅�𝑇.  

4. For each 𝑖  = 1,   . . . ,  𝑁, generate centered residuals for the AR models:  

�̇�𝑖,𝑡 =   �̂�𝑖,𝑡 − (𝑇 − 𝑝𝑖)−1   ∑ �̂�𝑖,𝑡

𝑇

𝑡=1+𝑝𝑖

 ,      𝑡  =  1 + 𝑝𝑖 ,   . . . ,  𝑇.  

5. Set bootstrap starting values (e.g., 휀𝑖,0
∗ = . . .  =  휀𝑖,1−𝑝𝑖

∗ =  0, or random values 

drawn from the sample distribution of 𝑒𝑖,𝑡, 𝑖 = 1, … 𝑁). 

6. Draw with replacement a random sample of observations 𝒗𝒕
∗ =   (𝑣1,𝑡

∗ ,   . . . ,  𝑣𝑁,𝑡
∗ ),

𝑡  =  1,   . . . 𝑇, from the sample distribution of vector �̇�𝑡  =   (�̇�1,𝑡 , . . . ,   �̇�𝑁,𝑡).  

7. For each 𝑖 = 1, . . . , 𝑁, generate the pseudo series 휀𝑖,𝑡
∗ = ∑ �̂�𝑖,𝑘휀𝑖,𝑡−𝑘

∗ + 𝑣𝑖,𝑡
∗  

𝑝𝑖
𝑘=1  and 

𝑦𝑡,𝑖
∗ = �̂�𝑖0 + ∑ �̂�𝑖𝑗𝑐𝑜𝑠 (

𝑗𝜋𝑡

 𝑇
) +

𝑚𝑇
𝑗=1  휀𝑖,𝑡

∗  , 𝑡 = 1, . . . , 𝑇. Compute �̂�𝑖
2∗ 

(the bootstrap 

analogue for �̂�𝑖
2). Compute �̂�𝑖𝑇

∗  and �̅�𝑇
∗   (these are, respectively, the bootstrap analogues 

of �̂�𝑖𝑇 and �̅�𝑇).  

8. Set 𝑏 =  𝑏 +  1 and repeat steps 5 to 7 while 𝑏 ≤ 𝐵.  

9. Compute the bootstrap approximation for the critical value, namely:  

𝑝𝐵  =   𝐵−1𝑐𝑎𝑟𝑑{�̅�𝑇
∗ >   �̅�𝑇}  

10.  Reject H0 if pB is below the specified significance level (α). 

 

Model complexity (𝑚𝑇) is determined through the same kind of deterministic rules 

proposed in Landajo and Presno (2013), namely, 𝑚𝑇 = [𝑐𝑇1/5], with c being some 

reasonable constant (further details are provided in Section 2.3). 

In this paper we rely on a (roughly) parametric estimator for 𝜎𝑖
2, as we assume that 

an AR(pi) model provides an accurate approximation to the underlying data generating 

processes, and thus we estimate 𝜎𝑖
2 parametrically. The maximum lag order in the above 

AR(pi) models is limited to 𝑚𝑎𝑥𝑝 = [𝑑𝑇]1/5, with 𝑑 = 1.6 

2.3. Monte Carlo analysis 

In this section we analyze the finite sample performance (size and local power) of the 

proposed NPS test, first under i.i.d. errors and then the research will be extended to time 

series. Our computer-based experiment considers several trend models, panel sizes, 

sample sizes, and signal-to-noise ratios (𝑞 = 0, 0.01, 0.1).  

For the case of i.i.d. errors, we considered data sets generated under model (1) above, 

with the following trend specifications:   

(M1) 𝜃∗(𝑥) = 𝛽0,  

(M2) 𝜃∗(𝑥) = 𝛽0 + 𝛽1𝑥,  

                                                           
6 Other possibilities would involve use of fully nonparametric (spectral window) estimators for 

the long run variance of the error processes (e.g., the class considered in Pötscher and Prucha, 

1991), although in our simulations the parametric approach provided more accurate results. 
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(M3) 𝜃∗(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2,  

(M4) 𝜃∗(𝑥) = 𝛽0 + 𝛽1𝑥 + 𝛽3[1 + 𝑒𝑥𝑝{−𝛾1(𝑥 − 𝜔1)}]−1,  

with (independent uniformly distributed) randomly selected parameters −2 < 𝛽𝑘 < 2, 

𝑘 = 0, . . . ,3;  0 < 𝛾1 < 100, and 0.05 < 𝜔1 < 0.95;  0 < 𝑥 < 1. Models M1 and M2 

are classical linear trend specifications. Model M4 incorporates a smooth transition in 

the level of the series (with 𝜔1  and 𝛾1 being, respectively, the relative position of the 

timing of the transition midpoint and the speed of transition –gradual for small values 

of 𝛾1 and approaching a break as that parameter increases). Finally, M3 is a quadratic 

model. 

Throughout the simulation process, for each fixed model specification, each com-

ponent of the panel and each Monte Carlo replication, the parameters of the trend model 

are randomly generated from independent uniform distributions with support on the 

above mentioned intervals. Hence, the trend parameters randomly change with each 

Monte Carlo replication and each component of the panel. We consider panel and sam-

ple sizes 𝑁 = 1, 5, 10, 20, and 𝑇 = 100, 200, 300, 400 (for the i.i.d. processes) and 

𝑇 = 200, 400, 600 (in the time series case), and signal-to-noise ratios 𝑞 =
0, 0.01, and 0.1. Cross-correlation is also allowed for. In model (1), the error term 

ti,  

allows for the presence of a common factor zt , under the following form: 

   zρ+ε-ρε t

'

i,ti,t 1  (7) 

where '

,ti  is the idiosyncratic random component (to be detailed below) and {zt, 

t=1,...,T} is an i.i.d. N(0,1) process independent of  Ttti ,...,1,'

,  . Coefficient ρ al-

lows us to incorporate cross-correlation. We consider the case cases ρ=0, 0.5 and 1. The 

case ρ=0 corresponds to absence of cross-correlation, whereas under ρ=1 the random 

error processes of all the components of the panel coincide under the null hypothesis. 

The case ρ=0.5 is an intermediate, more realistic setting.  

The test is conducted at 5% significance level. 1,000 Monte Carlo replications were 

generated for each case. In order to reduce computational complexity, the null distribu-

tion of the tests (and corresponding critical values) are approximated by using 𝐵 = 200 

bootstrap replications. The simulation analysis was implemented in Matlab.  

2.3.1. Simulation results for i.i.d. processes.  

In this case the idiosyncratic component  Ttti ,...,1,'

,   is an i.i.d. N(0,1) process. A 

summary of results is provided in Table 1 below.7 

Overall, results indicate that the empirical size of the test (at rows 𝑞 = 0) is close to 

the nominal (5%) level. Seemingly, test size is roughly unaffected by changes in model 

                                                           

7 Model complexity in the i.i.d. setting is determined through the rule 𝑚𝑇 = [5𝑇1/5]. 
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specification, series length (T), the number of series in the panel (N), and cross-corre-
lation intensity (ρ). As for the power of the test, as expected it increases with q (the 
signal-to-noise ratio), N, and T. For fixed q, T, and N, we do not observe significant 
differences in the power of the test for the various trend specifications considered. As 
to the effect of ρ, power clearly decreases as cross-correlation intensity rises.

Table 1. Empirical size (q = 0) and local power (q>0) of the NPS test under i.i.d. 
processes.  1,000 Monte Carlo replications. 

ρ=0 ρ=0.5 ρ=1
N T q M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
1 100 0 4.8 3.7 5.9 6.1
1 100 0.01 6.1 5.4 6 6.5
1 100 0.1 17.5 17.5 14.8 18.1
1 200 0 4.7 3.4 4.6 5.9
1 200 0.01 9.4 8.5 7.9 8.6
1 200 0.1 54.9 56.3 54.4 54.9
1 300 0 4.9 4.1 5.8 6.1
1 300 0.01 14.3 15.8 15 15.6
1 300 0.1 87.5 89.2 86.6 89.1
1 400 0 5.3 5.3 5 6.6
1 400 0.01 23.2 21.2 20.1 22.1
1 400 0.1 97.8 98.1 98 98.5
5 100 0 4.4 4.2 3.7 5.1 5.9 4.4 4.1 4.8 6.2 4.3 5.1 5.9
5 100 0.01 6.7 6.2 6 7.1 5.6 6.6 6.6 7 5.9 5.7 4.8 5.6
5 100 0.1 36.3 38.2 40 37.6 26.1 23.5 22.6 26.3 14.2 15.8 14.5 15.4
5 200 0 4.4 4.2 4.6 5 4.8 4 5.5 4.8 5.1 4.9 3.5 5.5
5 200 0.01 12.8 12.5 15.6 17 9.7 9.3 10.2 12.2 7.4 5.9 7.2 7
5 200 0.1 98.5 98.2 97.9 97.7 94.1 89.5 92.3 91.5 66 70.4 70.1 69.4
5 300 0 4.7 5.5 5.4 7.2 4.7 6 5.5 4.9 5.7 5.5 5.8 5.9
5 300 0.01 32.9 34.1 31.4 33.5 20 18 19 20.6 12.5 12 11.7 12
5 300 0.1 100 100 100 100 99.9 100 99.9 100 99.1 99.5 98.9 99.8
5 400 0 5.6 5.6 5.3 6.3 4.4 5.4 6.2 7 3.9 3.6 4.9 4.3
5 400 0.01 57.1 58 54.3 56.3 34.2 33.5 34.5 39.8 19.5 19.2 17.1 20.1
5 400 0.1 100 100 100 100 100 100 100 100 100 100 100 100
10 100 0 3.2 4.1 4.1 5.6 4.7 5 5.6 5.6 4.4 5.4 4.5 5.6
10 100 0.01 5.4 6.6 6.8 9.6 6.3 5.1 6.8 8.6 5.1 5.4 5 6.6
10 100 0.1 57.3 56.8 54.5 63.5 28.1 28.9 30.8 30.1 15.4 15.9 11.8 14.9
10 200 0 4.2 4.3 4.7 5.8 5.2 6 5.8 5.4 3.7 4.6 4.2 5.5
10 200 0.01 18.9 17 20.3 22.7 9.5 9.5 9.6 11.4 7.7 8.1 5.9 7.8
10 200 0.1 99.9 99.9 99.9 100 97.5 97.1 98.1 98.4 70.8 69.6 71.6 71.7
10 300 0 3.6 5.1 6.1 6.1 5 3.6 4.5 6.6 5 4.8 4 7
10 300 0.01 49.6 47.6 46.9 50.6 21.1 21 21.6 23.2 11.8 10 9.7 12.7
10 300 0.1 100 100 100 100 100 100 100 100 99.9 100 100 100
10 400 0 5.8 5.2 4.6 7.6 4.3 4.2 4.1 6.3 4.1 4.9 4.6 5.6
10 400 0.01 79.6 79.6 77.1 80.9 39.5 38.1 39.5 40.3 19.4 18.6 19.2 18.3
10 400 0.1 100 100 100 100 100 100 100 100 100 100 100 100
20 100 0 4.1 4.3 3.7 6.1 4.3 5.5 5.8 5.5 4.1 4.5 2.1 5.9
20 100 0.01 8.7 5.6 7 9.5 5.1 5.3 6.2 6.5 4.8 6.5 4.6 5.2
20 100 0.1 80 81.1 80.8 85.8 31.3 29.9 30.3 37.3 14.1 16.2 14.4 12.8
20 200 0 3.8 3.7 4.4 5.8 3.6 4.5 4.3 5.8 4.6 4.3 5.4 5.6
20 200 0.01 28.4 24.6 27.9 32.8 8.7 9.5 11.4 11.4 7.4 8.3 7.5 8.1
20 200 0.1 100 100 100 100 99.5 99.5 99.1 99.8 73.7 72.3 74.1 74.3
20 300 0 5.3 4.8 3.2 9.1 5 5.4 6.4 6.5 5.8 6 4.3 4.9
20 300 0.01 67.3 69.4 68.9 74.8 22.1 21.6 22.7 24.4 12.5 9.5 11.6 14.1
20 300 0.1 100 100 100 100 100 100 100 100 99.9 100 100 99.9
20 400 0 5.3 4.9 4.3 7.9 5.2 5.3 3.8 4.9 3.9 5.8 5.1 5.4
20 400 0.01 97 96.6 97.2 96.2 44 41.7 44.4 44.5 18.1 17.2 18.9 18.6
20 400 0.1 100 100 100 100 100 100 100 100 100 100 100 100
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2.3.2. Time series simulation results 

Then the above study was extended in order to allow for serial dependence. We con-

sider the idiosyncratic component of the series generated under the following time se-

ries models, for any 𝑖 =  1, . . . , 𝑁:  

(I) AR: 휀𝑖,𝑡
′ = 𝜑𝑖1휀𝑖,𝑡−1

′ + 𝑣𝑖,𝑡, with −0.8 ≤ 𝜑𝑖1 ≤ 0.8, 

(II) MA: 휀𝑖,𝑡
′ = 𝛿𝑖1𝜈𝑖,𝑡−1 + 𝑣𝑖,𝑡, with −0.8 ≤ 𝛿𝑖1 ≤ 0.8,  

(III) ARHET: 휀𝑖,𝑡
′ = 𝜑𝑖1휀𝑖,𝑡−1

′ + √𝜋𝑖𝑣𝑖,𝑡, with −0.5 ≤ 𝜑𝑖1 ≤ 0.5, 

 𝜋𝑖 = 𝛿𝑖0 + 𝛿𝑖1(휀𝑖,𝑡−1
′ )

2
+ 𝛿𝑖2(휀𝑖,𝑡−1

′ )
2
, 0 < 𝛿𝑖𝑗 < 0.4, 𝑗 = 0, 1, 2, 

 (IV) BIL: 휀𝑖,𝑡
′ = 𝜑𝑖1휀𝑖,𝑡−1

′ + 𝜑𝑖2휀𝑖,𝑡−2
′ 𝑣𝑖,𝑡−1 + 𝑣𝑖,𝑡, with −0.4 ≤ 𝜑𝑖𝑗 ≤ 0.4, 𝑗 = 1, 2, 

 (V) NLMA: 휀𝑖,𝑡
′ = 𝛿𝑖1휀𝑖,𝑡−1

′ + 𝛿𝑖2𝑣𝑖,𝑡−1𝑣𝑖,𝑡−2 + 𝑣𝑖,𝑡 , with −0.4 ≤ 𝛿𝑖𝑗 ≤ 0.4, 𝑗 = 1, 2, 

with the components of the basis process {𝑣𝑖,𝑡 , 𝑖 = 1, . . . , 𝑁;  𝑡 = 1, . . . , 𝑇} being a se-

quence of independent N(0,1) random variables. In the simulations, for each Monte 

Carlo replication and each 𝑖 = 1, . . . , 𝑁, coefficients 𝜑𝑖𝑗  and 𝛿𝑖𝑗 are drawn at random 

from independent uniform distributions with support on the above intervals.  

Models I and II above are examples of classical (respectively, AR and MA) linear 

time series models, whereas the remaining specifications will allow us to analyse the 

performance of the NPS test in nonlinear settings (Model III is an AR specification with 

heteroskedastic errors; Model IV a bilinear time series; Model V a nonlinear MA time 

series). 

In order to calculate the long run variance estimators �̂�𝑖
2, AR processes were fitted 

separately to each residual series in the panel, with AR complexity determined by the 

SIC, with maximum lag order8 set at 𝑚𝑎𝑥𝑝 = [𝑇
1

5].  
Results (under the smooth transition trend specification, M4, with cross-correlation 

intensity fixed at ρ=0.5) are reported in Table 2.9 As in the i.i.d. case, the power of the 

test increases with q, N, and T although -as expected- serial dependence reduces the 

power of the test with respect to the i.i.d. case.10 

 

 

 

 

 

 

 

 

 

 

                                                           
8 For the sake of simplicity, the highest lag order selected by the SIC is used simultaneously to 

fit all the residual series. 
9 Results for the other trend specifications and cross-correlation levels –omitted for brevity- are 

similar to those reported here. 

10 The deterministic rule 𝑚𝑇 = [4𝑇1/5] is used for model complexity in the time series setting. 
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Table 2. Empirical size (𝑞 = 0) and local power (𝑞 > 0) of the NPS test under sev-

eral time series models. 1,000 Monte Carlo replications. Model M4. ρ=0.5. 

N T q AR 

model 

MA 

model 

ARHET 

model 

BIL 

model 

 

NLMA 

model 

1 200 0 12.8 13.7 6 0.9 2.4 

1 200 0.01 14.4 15.5 6.1 0.2 0.8 

1 200 0.1 23.9 25.5 5.4 1 0.5 

1 400 0 5.3 4.4 3.1 0.2 0.4 

1 400 0.01 11.3 7.2 3.1 1.7 1.6 

1 400 0.1 22.1 20.4 11 5.4 4.7 

1 600 0 9.4 2.5 1.7 0.2 1 

1 600 0.01 19 13 11.9 3.2 4.5 

1 600 0.1 40.1 38.2 27.9 15.7 16.9 

5 200 0 5.1 6.5 2.4 3 3.1 

5 200 0.01 7.4 8.6 6 2 3.6 

5 200 0.1 31.9 51.8 20.4 18.3 18.5 

5 400 0 5.6 5.6 4.9 2.8 2.8 

5 400 0.01 19.5 22.6 18.7 12.3 11.7 

5 400 0.1 67.6 73 59.6 67.2 67.5 

5 600 0 8.6 7.3 6.2 4.5 3.8 

5 600 0.01 55.5 62.9 63.3 46.9 48.3 

5 600 0.1 96.2 98.8 90.9 98.1 97.7 

10 200 0 2.5 4 3.2 2.1 2.6 

10 200 0.01 5.7 7 3.9 4.3 3.5 

10 200 0.1 33 59.3 30 30 30.1 

10 400 0 5.8 3.2 5.3 3.7 4.1 

10 400 0.01 20 26.2 22.1 15.4 17.3 

10 400 0.1 84.5 91.4 65.7 86.1 85.6 

10 600 0 8.2 7.1 6.2 6.3 7 

10 600 0.01 69.3 79.5 76.9 70.3 68.2 

10 600 0.1 99.9 100 98.8 100 100 

20 200 0 2.2 2.2 3.7 3 2 

20 200 0.01 3.1 5.7 5.1 2.6 3.2 

20 200 0.1 31.6 64 30.9 39.6 40.6 

20 400 0 3.9 3.7 6.1 3.7 4.1 

20 400 0.01 20.7 24.5 23.4 20.2 20 

20 400 0.1 95.4 98.7 76.4 96.1 97 

20 600 0 7.8 6.9 7.5 6.4 4.2 

20 600 0.01 80.5 88.1 81.6 77 76.4 

20 600 0.1 100 100 99.9 100 99.7 
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3 Empirical analysis 
The time series to be analyzed are the logged monthly values of the production of crude 

oil including lease condensate (in thousand barrels of oil per day), for the period 

between January 1973 and December 2015 (so the total number of observations is 516 

for each country). The source of the data is the Energy Information Administration 

(EIA) of the U.S. Department of Energy. We considered 12 OPEC members (Algeria, 

Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, United Arab 

Emirates -UAE-, and Venezuela) and 8 non-OPEC countries (Canada, China, Egypt, 

Mexico, Norway, Russia, the United Kingdom -UK-, and the United States -US-). This 

list of countries – amounting to 82.7% of world oil production in 2015- is similar to 

that considered by Maslyuk and Smyth (2009). As in that paper, we do not adjust for 

seasonality in the time series under study, since the seasonal pattern was not as strong 

as that observed in the oil consumption series and the effects of seasonal filters on the 

test have not been researched up to date.  

In this Section we test for trend stationarity of the oil production series. Three cases 

will be considered: (i) first we test for stationarity of aggregate oil production 

(considering successively three aggregates: global, OPEC, and non-OPEC). Then, (ii) 

we apply panel stationarity testing to the panel of the 20 countries, considering also 

subpanels of OPEC and non-OPEC states. Finally, (iii) we undertake a detailed research 

on stationarity of oil production in each country separately.  

Step (ii) in the analysis will be carried out by resorting to the NPS test proposed in 

Section 2 above,  whereas steps (i) and (iii) (which only involve separate analysis of 

individual series) will be implemented by relying on a bootstrapped version of the 

nonparametric LP stationarity test. Technically, as the latter is an adaption of the 

general NPS test to panels including a single series, steps (i) and (iii) do not increase 

the conceptual/computational complexity of the study (yet, according to the power 

analysis in Section 2.3 below, the panel test in (ii) may be expected to have higher 

power to detect departures from stationarity than the single-series version of the test as 

applied in steps (i) and (iii)). In addition, simultaneous stationarity for all the individual 

series in (iii) would imply panel stationarity in (ii) and stationarity of the aggregates in 

(i), so the conclusions of those three analyses should tend to be mutually consistent. 

It is remarked in literature both the non-linear character of the series (tested by 

Maslyuk and Smyth, 2009) and the presence of breaks and outliers (many of them de-

tected by Barros et al., 2011 for the OPEC states). As commented above, the model-

free nature of the analysis liberates researchers from the need of prior, correct specifi-

cation of functional forms for the trend function in each component of the panel. 

3.1. Aggregate oil production and panel analysis 

Focusing on stationarity analysis for the aggregates (total oil production of the 20 coun-

tries, as well as separate totals for the 12 OPEC states and 8 non-OPEC countries), the 

nonparametric LP stationarity test leads us (see Table 3) to reject the null of stationarity 

for both the aggregate production of all the countries and that of the non-OPEC group 

but not for the OPEC aggregate, implying that shocks affecting the latter aggregate 

would be transitory in nature and tend to vanish in the long run. According to these 

results, in the event of any exogenous shock, stronger policy measures must be applied 
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to non-OPEC countries than to the OPEC ones in order to return their respective pro-

duction series to their original trends. 

However, as pointed out by Yang (2000), aggregate data do not fully capture the 

variability in the grade that countries depend on energy. In addition, it is well known 

that single-series stationarity tests may exhibit low power in short series. This led us to 

rely on panel stationarity testing in order to obtain more powerful results. Table 3 re-

ports the observed test statistics and the conclusions of panel stationarity testing. Be-

ginning with the global panel of 20 countries, the null of stationarity is rejected at 1% 

significance, suggesting that shocks would have permanent effects on oil production. 

Separate analysis for the OPEC and non-OPEC subpanels let us reject again the null of 

stationarity at 5% significance for both subpanels, but not at the 1% level for the group 

of OPEC countries.  

 

Table 3. Analysis for aggregate oil production (LP test) and panel (NPS test) 

Aggregate Obs. LP test 

statistic (p-value) 
Panel Obs. NPS test 

statistic (p-value) 

Total oil 

production 

3.205b 

(p=0.000) 
All the 

countries 

6.566b 

(p=0.000) 

Total OPEC 

production 

-0.535 

(p=0.614) 
OPEC 

countries 

3.409a 

(p=0.032) 

Total Non-

OPEC production 

3.205b 

(p=0.000) 
Non-OPEC 

countries 

6.206b 

(p=0.000) 
a, b denote significance at 5% and 1% level, respectively. 

 

3.2. Country-level stationarity analysis   

The above results suggest that it would also be convenient to test for stationarity indi-

vidually for each of the 20 oil production series, in order to detect specific countries 

that may be responsible for aggregate and panel non-stationarity. The results of the 

individual (country) tests are reported in Table 4 below. The null of stationarity is re-

jected at 1% significance for Canada, China, Mexico, and the US (among the non-

OPEC countries), as well as for Algeria, Iran, Nigeria, and Qatar (from the OPEC 

group). Therefore, the percentage of series for which the null of trend stationarity is 

rejected seems to be higher in the group of non-OPEC states (50%) than among OPEC 

countries (33.33%).  

Comparing the above results with those of previous studies that applied different 

techniques, we have on one hand Narayan et al. (2008), who -for a panel of 60 coun-

tries- report that an LM linear panel-unit-root test with a single structural break provides 

strong evidence that crude oil production does not contain unit roots. On the other end, 

Maslyuk and Smyth (2009) -for a group of countries similar to that examined in this 

paper, and using unit root tests in a non-linear framework- find that all the countries 

have a unit root in at least one of the regimes examined. They justify differences in 

results on the basis of the assumption of linearity in Narayan et al. (2008), which might 

be somewhat restrictive. Barros et al. (2011) - in their analysis for OPEC countries, 

using fractional integration modelling and incorporating breaks and outliers- find that 

shocks affecting OPEC oil production have a high degree of persistence in the long run, 
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but a unit root is only present in some cases. Therefore, depending on the trend speci-

fication considered, different conclusions have been reached in literature. The main 

advantage of  nonparametric testing as implemented in this paper resides in its flexibil-

ity as prior, correct specification of the trend functions is not required, so more robust 

results can be  expected. 

 

Table 4. Nonparametric stationarity analysis for country oil production. LP test. 

Countries Obs. test statistic (p-value) 

Algeria 3.300b (p=0.002) 

Angola -1.787 (p=0.992) 

Ecuador -0.725 (p=0.862) 

Iran 3.332b (p=0.002) 

Iraq 0.936 (p=0.082) 

Kuwait -1.859 (p=0.986) 

Libya -1.408 (p=0.996) 

Nigeria 4.087b (p=0.000) 

Qatar 3.027b (p=0.004) 

Saudi Arabia 0.413 (p=0.500) 

UAE -0.633 (p=0.896) 

Venezuela 0.611 (p=0.478) 

Canada 6.482b (p=0.000) 

China 5.409b (p=0.000) 

Egypt -0.130 (p=0.804) 

Mexico 5.636b (p=0.000) 

Norway 0.086 (p=0.598) 

Russia 0.422 (p=0.228) 

UK 0.076 (p=0.402) 

US 5.352b (p=0.000) 
a, b denote significance at 5% and 1%, respectively. 

4 Concluding remarks 

Traditional unit root and stationarity tests are not robust to misspecification of the trend 

components of the series, potentially leading to spurious results. In this paper we have 

proposed a nonparametric approach that bypasses that limitation. The advantage of the 

proposed tests resides in their remarkable flexibility as they free researchers from the 

need of correct specification of the trend function for each component of the panel, so 

that far more robust results -not depending on trend specification- can be expected. 

Extensive Monte Carlo evidence reported in this paper (considering several trend 

specifications and various stochastic structures -including both i.i.d. and time series 

data-) indicates that the empirical size of the test is close to the nominal level and is 

roughly unaffected by such factors as changes in model specification, series length, the 

number of series in the panel, and cross-correlation intensity. As for the power of the 
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test, as expected, it increases with the signal-to-noise ratio, series length, and the num-

ber of series in the panel, with no significant differences observed for the various trend 

specifications considered. 

We have applied the tests to analyze stationarity of monthly crude oil production in 

the period between years 1973 and 2015 for a panel of 20 OPEC and non-OPEC coun-

tries. Our analysis indicates that the null of stationarity is strongly rejected (at 1% sig-

nificance) for both the panel of 20 countries and the subpanel of 8 non-OPEC nations. 

For the subpanel of 12 OPEC members the evidence is slightly weaker, with stationarity 

being rejected at 5% but not at 1% significance. These results suggest that disruptions 

in crude oil production may have permanent effects, with other macroeconomic varia-

bles also inheriting the characteristic that might thus spill over throughout the economy. 

We have completed panel analysis with a case-by-case stationarity study for the 

individual oil production series, with a view to obtain a deeper understanding of specific 

factors that may have motivated rejection at the panel level. The null of stationarity is 

rejected for Canada, China, Mexico, and the US (among non-OPEC members), and for 

Algeria, Iran, Nigeria, and Qatar (in the OPEC group), with a higher percentage of non-

stationary countries in the block of non-OPEC nations. Therefore, in order to explain 

these results, OPEC membership would also be a factor to be considered, mainly be-

cause of the greater coordination capacity of that organization in order to influence the 

oil market. 
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Abstract. Natural gas is one of the most important fuels of the future.
However, its supplies and demand are typically imbalanced. It is due to
the seasonality of consumption. The lack of match between the supply
and demand provides justification for gas storage. In this work, there
was proposed a method of detecting the temperature break point. In
the period of year when ambient temperature is higher than the break
point, there exist favorable circumstances for gas storage. The tempera-
ture break point was defined as the daily ambient temperature, t when
the probability, p1(t) that daily gas consumption exceeds the supply
equals the probability, p2(t) that daily gas consumption is smaller than
the supply. The detection method is based on the analysis of the de-
pendence structure between ambient temperature and gas consumption.
The two probabilities p1(t) and p1(t) were derived from the model of the
bivariate dependence. Copula is an effective tool of studying and mod-
eling the multivariate dependence and this concept was applied in our
work. The temperature break point method was tested using real data
set, which referred to an exemplary year. For this data, the temperature
break point for gas storage was found equal 8 ± 0.5 ◦C. The obtained
estimate was highly realistic. The presented method may have important
policy implications.

Keywords: natural gas, copula, change-point detection

1 Introduction

Natural gas is one of the cleanest (environmentally-friendly), safest, and the
most diversified fuels. It primarily serves thermal energy generation for heating
buildings and homes, but also for electric power generation and cooling. There-
fore, the demand for natural gas is highly seasonal and it is heavily dependent

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 764



2 Detection of temperature break point for gas storage.

on how the temperature fluctuates with reference to the time of the year and
the time of the day. Traditionally, gas consumption increases greatly in winter.
However, recently there is observed a growing summer peak demand. It is due
to the electricity consumption for powering air conditioners and the like.

In winter, the demand can be as much as 6 times higher than in summer.
Therefore, the accumulated surplus from the summer must be stored in order
to meet the higher demand in winter. In other words, shippers want to inject
natural gas into storage when the demand is low - historically in the summer
- and withdraw it during times of high demand - generally, to meet the peak
heating demands in winter. Natural gas from storage accounts for about 20 %
of the natural gas consumed in winter. Shippers now sometimes use gas from
storage in the summer as well, to meet gas-fired electric generation needs. Natural
gas storage enables supply to match the demand on any given day throughout the
year by adjusting to daily and seasonal fluctuations in demand while natural gas
production remains relatively constant year-round [1]. Natural gas in storage
also serves as insurance against any unforeseen accidents, market speculation
(reducing price volatility), natural disasters such as e.g. hurricanes, or other
occurrences that may affect the production or delivery of the natural gas. Storage
facilities are ones of the tools needed to increase the energy security. They ensure,
to some extent, the reliability of gas supply to the consumer at the lowest cost,
as required by the regulatory body.

Natural gas can be stored for an indefinite period of time in natural gas stor-
age facilities for later consumption. The most important type of gas storage is
in underground reservoirs [2]. There are three main types of underground stor-
age: depleted gas reservoirs, aquifer reservoirs and salt cavern reservoirs. Each of
these types has distinct physical and economic characteristics which govern the
suitability of a particular type of storage for a given application. The most promi-
nent and common form of underground storage consists in re-filling depleted gas
reservoirs. They are generally the cheapest and easiest to develop, operate and
maintain, compared with two other types of underground storage. Depleted gas
reservoirs are used to meet base load requirements (seasonal demand increases).
They are capable of holding enough natural gas to satisfy long term seasonal
demand requirements. Typically, these facilities are operated on a single annual
cycle; gas is injected into storage during periods of low demand (non-heating
season, which usually runs from April through October) and withdrawn from
storage during periods of peak demand (heating season, usually from November
to March). It means, that depleted gas reservoirs have long term injection and
withdrawal seasons.

For economic and technical reasons (like pipeline capacity, physical limits on
existing storage capacity), it is important to predict moments when gas should
be injected during the off-peak summer months and withdrawn during the winter
months of peak demand. This type of information can be extracted from time
series of appropriate variables using stochastic methods of data analysis.

Time series reflect the stochastic nature of most variables over time. There
are two main goals of time series analysis: (1) identifying the nature of the

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 765



Detection of temperature break point for gas storage 3

phenomenon represented by the sequence of observations, and (2) forecasting,
i.e. predicting future values of the variable in time. In both cases, it is required
to identify the pattern in the time series data and to describe it, more or less
formally.

Usually, time series analysis refers to trend, seasonal and cyclic patterns.
Regardless of the depth of understanding and the validity of interpretation of
the processes influencing natural gas storage possibilities, we can extrapolate the
identified pattern to estimate the conditions when particular events occur and
to predict future events.

In this work, there was explored the pattern of the dependence structure
between ambient temperature and natural gas consumption. The analysis was
aimed at estimating the temperature break point. At temperatures lower that the
break point, gas consumption dominates over supply. Otherwise, the situation
is the opposite. Thus, temperature break point indicates conditions which are
favorable for gas storage.

Copula offers a way of describing the dependence between random variables.
Due to abundance of multivariate problems, which require this kind of analysis
copulas are more and more willingly used in various areas of science and tech-
nique, in particular in finances [3] and environmental science [4, 5]. The approach
is also under constant development from theoretical point of view [6]. Copula
is the principal element of the presented method of temperature break point
detection.

2 Methods

In this work there is presented a method for detecting the temperature break
point with respect to gas usage. It allows to determine the period of time, which
is most appropriate for gas injection to the underground storage.

The method is based on the analysis of the bi-variate time series. The con-
sidered variables are ambient air temperature and gas consumption.

Let U(t) be the daily natural gas usage, expressed as a function of tempera-
ture. Let S be the daily gas supply. This variable is independent of temperature.
We additionally assume it takes constant value in time.

There are considered two functions of temperature p1(t) and p2(t), where
p1(t) represents the probability that real daily gas consumption at particular
temperature t is greater than the supply

p1 (t) = p (U (t) > S) (1)

and p2(t) represents the probability that real daily gas consumption at par-
ticular temperature t is smaller than the supply

p1 (t) = p (U (t) < S) . (2)

The temperature break point is defined as the temperature for which the
values of two functions are equal, p1(t) = p2(t). In terms of graphical interpre-
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4 Detection of temperature break point for gas storage.

tation the temperature break point is the value of argument where the plots of
two functions p1(t) and p2(t) intersect.

The basis for determining p1(t) and p2(t) is the bi-variate distribution of
daily temperature and gas consumption.

It was proposed to evaluate the dependence structure of the two variables us-
ing copulas [7]. Copulas are functions that describe dependencies among variables
and provide a way to create distributions which model correlated multivariate
data [8]. This approach has the capability of capturing the complex nonlinear
multivariate relationship between parameters.

The copula approach for dependence modeling is based on the Sklar’s theo-
rem [7]. It states that when C is a d−variate copula and F1, . . . , Fd are univariate
cumulative distribution functions (cdf-s), then the function

F (x) = C (F1 (x1) , . . . , Fd (xd)) (3)

is a d-variate cdf with margins F1, . . . , Fd. In other words, F (x) is the joint
distribution with marginal distributions F1, . . . , Fd.

The principal value of copula concept consists in the fact that it allows for
separation of two major characteristics of multivariate data. The first is the
individual behavior of variables x1, . . . , xd. It is represented by marginal distri-
butions F1, . . . , Fd. The second is the dependence structure of these variables.
It is captured by the copula function, C. One should notice that F1, . . . Fd may
be viewed as uniform random variables u, . . . , v. Because of fundamental prop-
erties of cumulative distribution function, the range of values for these variables
is always [0, 1]. In the direct manner, copula operates on the variables u, . . . , v
and it is insensitive to the underlying distributions F1, . . . , Fd, which link them
with the variables x1, . . . , xd.

There are available a number of parametric copula functions. Here belong
for example: Gauss copula, t-Student copula and a family of Archimedean cop-
ulas, including Clayton, Gumbel and Frank ones. The essential step in applying
these copulas for modeling the dependence structure of the experimental data is
to determine the degree of association between variables u, . . . , v. Whole range
of correlation coefficients may be used for this purpose, but rank correlation
estimates (Kendall, Spearman) are favored.

In this work there was considered copula-based joint probability model for
the bi-variate problem

F (x1, x2) = C (F1 (x1) , F2 (x2)) (4)

where: x1 is the daily ambient air temperature and x2 is the daily average
natural gas consumption, F (x1) and F (x2) the respective cumulative distribu-
tion functions. The joint distribution may also be expressed as

F (u, v) = C (u, v) (5)

where variables u and v are defined as follows u := F1(x1) and u := F2(x2).
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Frank copula was found most appropriate for modeling the examined bi-
variate data. Frank copula has the following analytical function

Cα (u, v) = −
1

α
ln

[
1 +

(e−αu − 1) (e−αv − 1)

(e−α − 1)

]
(6)

where α is the Frank copula parameter. It is a measure of association between
variables u and v, based on Kendall’s rank correlation.

A two-step procedure was implemented to evaluate the joint distribution of
x1 and x2. It consisted in marginal modeling and copula parameter estimation.

The criterion for the quality of copula fitting was the root mean square
error, which represented the distance between the empirical distributions of the
measurement data and the data generated when using the particular copula
function.

Joint cumulative distribution F (x1, x2), obtained from copula modeling, was
the basis for estimation of joint probability density function f (x1, x2). For this
purpose we applied the grid with the predefined resolution ∆x1 in the dimension
x1 and ∆x2 in the dimension x2. The following formula was applied

f

(
x1 +

∆x1

2
, x2 +

∆x2

2

)
= F (x1 +∆x1, x2 +∆x2)−F (x1, x2 +∆x2)−F (x1 +∆x1, x2)

(7)
where: x1 = x1min : ∆x1 : x1max and x1 = x1min : ∆x1 : x1max.
Via domain quantization the problem was moved from the continuous to

discrete domain. The following was assumed about probability that temperature
and gas consumption take particular discrete values:

p

(
X1 = x1 +

∆x1

2
, X2 = x2 +

∆x2

2

)
= f

(
x1 +

∆x1

2
, x2 +

∆x2

2

)
∆x1∆x2.

(8)
Therefore, functions p1 (t) and p2 (t) are directly expressed as follows

p1 (t) = p (X1 = t,X2 > S) (9)

and

p2 (t) = p (X1 = t,X2 < S) (10)

and they may be easily computed.
All calculations were carried out using Matlab [8].

3 Data

Two major assumptions were made regarding analyzed data. They refer to the
temporal resolution and the time span.
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6 Detection of temperature break point for gas storage.

1. In most countries, the gas consumption is publicly reported in terms of
daily average consumption, while the specialized agencies have access to
higher resolution data. We demonstrated the performance of the method
using the bi-variate time series of daily ambient air temperature and daily
gas consumption. Hence, in the presented analysis, the break point is the
average daily temperature. In principal, the method may be applied to data
featured by higher temporal resolution. Mind, the status of break point would
change in such case e.g. this could be one hour average. Using lower resolution
data is not recommended, because the sufficient size of data set is necessary
to study the dependence structure.

2. It is required that data describes the time period of at least one year. This
requirement is justified by the cyclic character of ambient temperature vari-
ation and gas consumption variation. In both cases the period of the basic
cycle is one year.

Further, we present the results of the analysis performed, with the proposed
method, for the exemplary data set. It consists of daily ambient air temperatures
and daily natural gas consumption in Poland, throughout the year 2006. The
temperature was quantized with the resolution of 0.5 ◦C and the gas consumption
was quantized with resolution of 0.5 mln m3/h. Average daily gas supply was
computed equal 34.74 mln m3/h.

4 Results

The time series of daily ambient air temperature and natural gas consumption
in Poland, in 2006, are shown in Fig. 1. It displays a typical behavior of the two
variables in time. Namely, the temperature is low in winter and high in summer.
Contrarily, gas consumption is high during winter and small in summer. The
transition between large and small gas consumption takes place in spring, while
at the same time of year ambient temperature climbs from its lowest towards
highest values. The opposite behavior of both variables is typical for autumn.
As shown in Fig. 2 the two variables are negatively correlated.

The dependence structure between the temperature and gas consumption
displayed in Fig. 2 was evaluated using copula concept. Several parametric cop-
ulas were considered for empirical data fitting, namely Gauss, t-Student and all
members Archimedes family. In Table 1 there is shown the root mean square
error of fitting. It represents the difference between the empirical joint distribu-
tion (relative frequency histogram) and the joint distribution obtained from the
data simulated using copulas functions.

As shown in Table 1, Frank copula best represented the correlation structure
between the examined variables.

The bi-variate cumulative distribution of temperature and gas consumption
was computed using the analytical form of Frank copula. The joint distribution
is shown in Fig. 3. The Frank copula parameter that controls the strength of
dependence was estimated as α = −20.84.
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Fig. 1. Time series of daily ambient air temperature and daily natural gas consumption
in Poland, in 2006. Time axis starts at 1.01.2006. 00:00
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Fig. 2. Relationship between daily ambient temperature and daily natural gas con-
sumption in Poland, in 2006.
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8 Detection of temperature break point for gas storage.

Table 1. RMSE of fitting empirical bivariate distribution with a selection of parametric
copula functions.

Copula function RMSE

Gauss 0.017

t-Student 0.016

Clayton 0.020

Gumbel 0.045

Frank 0.015

From the comparison of Fig. 2 and Fig. 3 it may be concluded that the bi-
variate distribution which results from copula modeling well accounts for the
dependencies in the empirical data. As a result, it successfully retrieves the true
underlying distribution. The copula function parameter confirms negative corre-
lation of ambient temperature and gas consumption. Additionally, the function
itself also reveals the nonlinear character of the relationship. As shown in Fig. 2
and Fig. 3, in general, gas consumption decreases upon ambient temperature
increase. However, at high temperatures, over approximately 10◦C the decrease
rate is smaller as compared to lower temperature range, under 10◦C. The anal-
ysis discloses that in warm period of year, gas consumption is less temperature-
dependent.

Fig. 4 presents the temperature dependency of two probabilities p1(t) and
p2(t). The first is the probability that real daily gas consumption is higher than
the supply, and the second is the probability that real daily gas consumption is
lower than the supply. They were calculated based on the bivariate distribution,
which shown in Fig. 3, as explained in Section 2.
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Fig. 3. Bivariate distribution of daily ambient air temperature and daily natural gas
consumption in Poland in 2006, estimated by Frank copula, α=-20.84
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Fig. 4. Break point temperature. The coordinate of the the coordinate of intersection
of two curves p1(t), the probability that real daily gas consumption exceeds the supply
(blue line) and and p2(t) probability that real daily gas consumption is smaller than
the supply (red line).

It is shown in Fig. 4, that plots of two functions meet in a single pint. This
meeting point indicates temperature conditions when it is equally likely that gas
consumption exceeds the supply and stays behind it. The coordinate of this point
is the temperature break point. We found it equal 8 ± 0.5 ◦C. As shown in shown
in Fig. 4, at temperatures lower than the break point, the probability p1(t) is
higher than p2(t). This points at the higher likelihood of the supply deficiency.
At temperatures higher than the break point, probability p2(t) is higher than
p1(t). This indicates excessive supply i.e. conditions which are favorable for gas
storage.

Using break point temperature there may be estimated the recommended
period of gas storage filling. It was defined as the longest continuous time period
when the temperature remained over the break point. From our analysis, in 2006
it lasted between 107th and 286th day of the year. This corresponds to nearly 6
months, which is half a year.

5 Conclusions

In this work, there was proposed a method of temperature break point detection
with respect to gas storage. It is the ambient temperature associated with the
highest probability that the gas supply and demand are balanced. Temperature
break point detection is based on the analysis of the dependence structure be-
tween daily temperature and daily natural gas consumption. In order to achieve
this goal, copulas were applied. In particular, it was found that Frank copula
allowed for the most accurate evaluation of the bi-variate distribution of the two
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10 Detection of temperature break point for gas storage.

variables. For the studied exemplary data set, the temperature break point was
8 ± 0.5 ◦C and the conditions favorable for gas storage occurred between the
107 and 286 day of the year. The presented method may have important policy
implications.
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Abstract 
 

In this paper, we carry out an econometric analysis for Germany, in 

order to investigate impact of wind energy and Photovoltaic feed-in on 

electricity spot price level, the so-called merit-order effect. 

We have used an ARMA-X- GARCH-X modeling in order to assess 

the joint impact of RES on the electricity spot price level as well as on 

spot price volatility in Germany.  

Our main empirical findings suggest that wind power and Photovoltaic 

feed-in decreases electricity spot price. However, their impact on elec-

tricity spot prices volatility are quite different. Indeed, the solar Photo-

voltaic power has a lowering on impact electricity price volatility 

whereas the wind feed-in exacerbates it.  
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1. Introduction 

Renewable energy is a key component of the EU energy strategy. It 

started with the adoption of the 1997 White paper and has been driven 

by the need to decarbonise the energy sector and address growing de-

pendency on fossil fuel imports from politically unstable regions out-

side the EU.  

Various RES supporting schemes are operating in Europe, mainly feed-

in tariffs, fixed premiums, green certificate systems. The German Re-

newable Energy Act, ”Erneuerbare-Energien-Gesetz” (EEG), a well 

known support scheme, has provided a favorable feed-in tariff (FIT) for 

a variety of renewable energy sources (RES) since the year 2000. It 

also gives priority to electric power in-feed from RES over power in-

feed from conventional power plants, i.e., fossil- and nuclear-fuel ther-

mal and already existing hydro-based power plants. Thus, all renewable 

sources combined made up 25 per cent of gross electricity production 

in 2016 and are Germany’s second most important source of electricity 

generation after lignite (BDEW, 2016).  

The goal of this paper is to carry out an econometric analysis to inves-

tigate the well-known merit-order effect consisting on a downward 

pressure of RES on the spot electricity price, by using a data sample of 

daily electricity spot prices in Germany for the 2012-2016 period. 

There are two main contributions of this study to the literature. Firstly, 

in contrast to the previous studies, we take into account the joint impact 

of wind feed-in and solar photovoltaic on electricity price and volatility 

with a more recent dataset allowing us to assess the learning curve of 

new technologies integration at the energy-mix of Germany.  

Secondly, an ARMA-X-GARCH-X modeling is used with wind and 

photovoltaic power generation as exogenous variables included in the 

mean and the variance equation. The goal is to assess the joint impact 

of intermittent renewable electricity generation on the electricity spot 

price level as well as on spot price volatility in Germany.  

 

Our main findings suggest that intermittent wind feed-in and solar pho-

tovoltaic power generation not only decrease the spot electricity price 

in Germany but also have an impact on its price volatility. However, 
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photovoltaic has a downward impact whereas the wind feed-in has an 

opposite impact-upward- on electricity spot price volatility. 

 

Several papers have carried out empirical analysis on the impact of 

RES in electricity markets, finding evidence of the merit-order effect.  

It is worth noting that several authors have explored this topic. For 

Germany, Bode and Groscurth (2006) find that renewable power gener-

ation lowers the electricity price. Neubarth et al. (2006) show that the 

daily average value of the market spot price decreases by 1 €/MWh per 

additional 1,000 MW wind capacity. Sensfuss et al. (2008) show that in 

2006, renewables reduced the average market price by 7.83 €/MWh. 

Weigt (2008) concludes that the price was on average 10 €/MWh low-

er. Nicolosi and Fürsch (2009) confirm that in the short run, wind pow-

er feed-in reduces prices whereas in the long run, wind power affects 

conventional capacity, which could eventually be substituted. For 

Denmark, Munksgaard and Morthorst (2008)  conclude that if there is 

little or no wind (<400MW), prices can increase up to around 80 

€/MWh (600 DKK/MWh), whilst with strong wind (>1500MW) spot 

prices can be brought down to around 34 €/MWh  (250 DKK/MWh). 

Jonsson et al. (2010) show that the average spot price is considerably 

lower at times where wind power production has been predicted to be 

large. Sáenz de Miera et al. (2008) found that wind power generation in 

Spain would have led to a drop in the wholesale price amounting to 

7.08 €/MWh in 2005, 4.75 €/MWh in 2006, and 12.44 €/MWh during 

the first half of 2007. 

 

Gelabert el al. (2011) find that an increase of renewable electricity pro-

duction by 1 GWh reduces the daily average of the Spanish electricity 

price by 2 €/MWh. Wurzburg et al. (2013) find that additional RES 

generation by 1 GWh reduces the daily average price by roughly 1 

€/MWh in German and Austrian integrated markets. Woo et al. (2011) 

carry out a empirical analysis for the Texas electricity price market and 

showed a strong negative effect of wind power generation on Texas 

balancing electricity prices. Huisman et al. (2013) obtained equivalent 

results for the Nord Pool market by modeling energy supply and de-

mand.  Ketterer (2014) also examined wind power in German electrici-

ty markets and found that an additional RES generation by 1GWh led 

to a reduction of daily spot price by approximatively 1€/MWh. 
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Benhmad and Percebois (2016) also explored German electricity mar-

kets for a more recent dataset and found similar results consisting on a 

reduction of daily spot price by approximatively 1€/MWh for each an 

additional GWh  of wind feed-in. 

The paper is organized as follows. Section 2 provides an overview of 

the merit order effect. In section 3, we carry out an empirical analysis 

and discuss the main findings. Section 4 provides some concluding re-

marks. 

2. The merit order effect 

The electricity market operates according to day-ahead bidding. Indeed, 

the transmission system operators basically receives the bids from all 

power producers for the quantity and cost for each hour of the next day 

and then assigns the dispatch based on the lowest cost producer until 

demand is met. All producers who dispatch get the marginal price of 

the last producer that dispatched.  This conventional approach consists 

in ranking the power plants of the system in ascending order of their 

marginal cost of generation. This approach is called the merit order.  

Traditionally, the hydroelectric power plants are the first to be dis-

patched on the grid, followed respectively by nuclear plants, coal-fired 

and/or combined-cycle gas turbines (CCGT), and then open cycle gas 

turbine (OCGT) plants and oil-fired units with the highest fuel costs. 

Gas plants are usually the marginal producers. But, due to EU ETS 

price weaknesses, carbon prices have plunged to record low prices 

making it more expensive to burn gas than coal. Moreover, The U.S. 

coal surpluses export due to shale gas revolution has lowered coal pric-

es in Europe. Therefore, the price competitiveness of more polluting 

coal-fired plants, allow them to be dispatched before the gas turbine 

and to be the key of electricity price setting.  

However, a pricing based on marginal costs could never allow RES to 

recover their fixed costs. Indeed, the photovoltaic (PV) and wind power 

plants have a high average cost and their load factor is too low due to 

intermittency. Therefore, subsidising renewable energy sources by 

feed-in tariff (FIT) scheme allowing their average costs to be recovered 
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corresponds to a support mechanism outside the market.  By granting 

an economic return above the market price, these supporting schemes 

have promoted RES development in several European electricity mar-

kets. 

As the renewable energy sources (RES) have priority access to grid at 

zero marginal cost, electricity from RES induces a shifting of the sup-

ply curve to the right. Without RES feed-in, during full and peak times, 

the marginal power plant is logically a combined-cycle gas-fired plant. 

However, RES make the coal-fired plant becoming the marginal plant. 

Therefore, RES have a downward impact on average equilibrium price 

called merit order effect (Sioshansi, 2013). 

3. Empirical evidence 

 

3.1 Data 

The sample data covers the period going from the 1
st
 January 2012 to 

the 31
st
 December 2016, summing up to 1827 observations. 

The day-ahead electricity German market consists on hourly contracts 

with physical delivery on the next day. The daily prices are calculated 

as the average weighted price over these hourly contracts. 

 

Figure 3 provides a plot of the data which exhibits seasonality, periods 

of extreme volatility, price spikes and a mean-reverting behavior. 
 
                                   Figure 3. Daily EEX day-ahead spot prices (€/ MWh)  
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The descriptive statistics of German electricity spot prices summarized 

in Table 1 show that values of sample mean are close to 34.97 and a 

standard deviation of 11.74. The sample kurtosis (6.86) indicates that 

price distribution exhibit fat tails and negative skewness a greater prob-

ability of large falls in electricity price than large increases. 

 
                   Table 1 Descriptive statistics of German electricity spot prices  

                 _______________________________________________ 

                                Mean                         34.97 

                                Std.Dev.                    11.74 

                                Skewness                 -0.33 

                                Kurtosis                     6.86 

                                Jarque-Bera             1171.37 

                                Prob.                        0.0000 

                 ____________________________________ 

 

The RES generation data collected by the four German transmission 

system operators (TSO) 1
, for the full period is illustrated in Figure 4.  

                         

                          Figure 4 .Wind power and photovoltaic feed-in (2012-2016) 

                                          

 

 

_________________________________________________________ 

1
The data are available in 15-minute format. For this study, 15-minute MW data are 

averaged for each hour and again averaged to MWh per day. There is four transmis-

sion system operators (TSO) in Germany and one TSO in Austria: Amprion GmbH, 

TenneT TSO GmbH, 50hertz Transmission GmbH, EnBW Transportnetze, and APG-

Austrian Power Grid AG. 
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The descriptive statistics (Table 2) show that the wind power and pho-

tovoltaic  forecasts fed into the grid has a respectively a daily mean of 

6817 and 3651 MWh per day but a high variability. 

 
                            Table 2. Descriptive statistics of wind feed-in and photovoltaic 

                                                           Wind          PV 
                                  ___________________________________________ 

                                   Observations             1827               1827 

                                   Mean                         6817.63          3651 

                                   Std.Dev.                    5652.75          2380 

                                   Skewness                   1.54               0.28 

                                   Kurtosis                     5.32                1.91 

                                   Jarque-Bera             1135.58            113.14 

                                   Prob.                        0.0000              0.0000 

                          ____________________________________  

                       
 3.2 Empirical methodology: ARMA-X-GARCH-X model  
 

In order to explore the link between daily electricity spot price and RES 

wind in-feed (wind and photovoltaic), we should carry out a linear re-

gression using least squares method. As electricity spot prices deviates 

from the normal distribution due to more frequent large outliers, outli-

ers should first be removed before conducting the regression analysis. 

Values that exceed 3 times the prices standard deviation are removed 

and replaced with the value of 3 times the standard deviation. Further-

more, electricity demand has a typical seasonal pattern as it varies 

throughout the day, during the week, as well as across the year. 

Therefore, models of electricity prices should incorporate seasonality 

by using dummy variables. After outliers removal and seasonal adjust-

ment, we carry out an augmented Dickey-Fuller  (ADF) test (Dickey 

and Fuller,1981) to test for stationarity.  
                                    Table 3. ADF unit root test on adjusted electricity spot prices                                                                                                 

                                                  t-statistic             Prob. 

ADF teststatistic                      -8.588311            0.0000 

Critical Value (5%)                -2.862924 

                                           

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 780



 

                                                                                                                                 

The spot electricity prices are then stationary. As electricity is not stor-

able, the price tends to spike and then revert as soon as the divergence 

of supply and demand is resolved (Escribano et al., 2011).  

For the Wind power and photovoltaic generation, after adjusting their 

seasonal dynamics, the ADF test on (Wind_sa) and (PV_sa) reveals 

their stationary behavior (the ADF t-statistic is respectively -19.17 and 

-23.18 whereas the 5% critical value is -2.86). 
 
Even after removing out seasonality and outliers, electricity spot prices 

still present high order  serial correlation in its structure which could be 

filtered out by an autoregressive moving average(ARMA) filter (Box 

and Jenkins, 1976) . Therefore, the impact of wind-in feed and photo-

voltaic on electricity prices is explored according to the following 

ARMA-X model where the wind feed-in and photovoltaic power con-

sidered as exogenous variables X: 

      

tttjt

q

j

jit

p

i

t sapvsawindsaspotsaspot   







 __)_()_(
11

10  

The selection of autoregressive lag p could depend on AIC minimiza-

tion, and q is assumed to be 0.  According to the Akaike information 

criterion, the best choice was lag p =7 which corresponds to a weekly 

seasonality. 2  

 

The estimation results a reported in Table 4 (Column A) reveal a nega-

tive impact of wind power on the electricity price in Germany. Indeed, 

for each additional GWh of wind feed-in, the electricity price decreases 

by 1€/MWh at the spot market. Therefore, and given the average wind 

electricity generation during 2012-2016, the merit-order effect roughly 

corresponds to an average price decrease, in absolute terms, of approx-

imately 7€/MWh. 

_________________________________________________________ 

2
The results, not reported here, are available upon request. 
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Table 4. Wind and Photovoltaic feed-in impact on electricity prices and volatility 

       Dependant variable : electricity spot prices 

       Sample : 1.1.2012   31.12.2016 

                          (A)                                                       (B)                                                               

                                                                   Mean  equation 

Constant        -0.46    (0.65)                       0.00    (0.99) 

Wind             -0.00099(0.00)                    -0.0010 (0.00) 

PV                                                             -0.00098(0.00)                                                                              

                                                                   Variance equation 

 

Constant         3.59   (0.00)                        3.44(0.00) 

Alpha             0.31   (0.00)                        0.31(0.00) 

Beta               0.56   (0.00)                         0.56 (0.00) 

Wind             0.00016 (0.00)                     0.00016 (0.00) 

        PV                                                                      -0.0004 (0.00) 

    Adj.R squared         0.7467                                 0.7584 

    AIC                            5.7713                                 5.6973 

    BIC                            5.8116                                 5.7426 

 Note: AIC and BIC stand respectively for Akaike and Bayesian information criterion, 

p-values are in parentheses. 

 
    

An ARCH test following Engle (1982), carried out on residuals data 

shows that residuals are heteroskedastic. Thus, GARCH(1,1) specifica-

tion (Bolleslev,1986) is used explore the joint impact of wind in-feed 

and photovoltaic generation on spot electricity price level and also on 

price volatility dynamics. Therefore, our empirical analysis is based on 

ARMA (p,q)-X-GARCH(1,1)-X modeling where wind feed-in and 

photovoltaic generation are taken as exogenous variables in the mean 

equation as well as in the variance equation. 

The empirical results reported in Table 4 (Column A) show that wind 

electricity has not only reduced the electricity spot prices (-0.001), in 

absolute terms approximately 7 €/MWh, but also induced an increase of 

their volatility (positive sign +0.00016 at the conditional variance equa-

tion). 
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The estimation results (Column B) also reveal a negative impact of so-

lar photovoltaic generation on electricity prices of the same magnitude 

as wind feed-in. Indeed, for each additional GWh of photovoltaic feed-

in, the electricity price decreases approximatively by 1€/MWh at the 

spot market, in absolute terms, of approximately 3.65€/MWh. Howev-

er, photovoltaic generation, in contrast to wind generation, also induced 

a downward pressure of their volatility (negative sign - 0.0004 at the 

conditional variance equation).  

Indeed, the upward effect on electricity prices volatility induced by 

highly intermittent wind feed-in is largely offset by the photovoltaic 

downward effect. Thus, the mixture of installed electricity generation 

capacities consisting on wind and solar photovoltaic allows German 

electricity market volatility to be less higher than it would be if Germa-

ny had only installed wind generation capacities.               

4. Conclusion: 

The feed-in tariffs support scheme, consisting in buying intermittent 

electricity at a fixed price off-market has clearly induced a huge market 

penetration of RES in Germany. The fact that this intermittent electrici-

ty has statutory priority on the grid and participates in spot market auc-

tions at a zero marginal cost, leads to a downward trend in the equilib-

rium price: the so-called merit-order effect.  

The purpose of the paper consists in quantifying the merit order effect 

of wind feed-in and photovoltaics in Germany during the 2012-2016 

period. One of the major findings is that the day-ahead electricity spot 

price fell by 1€/MWh for each additional GWh respectively for the two 

renewable energy sources. Moreover, the wind electricity generation 

has an increasing effect on the spot prices volatility which is largely 

offset by photovoltaics with their downward impact on volatility. 

 

However, although the volatility is controlled by a mixture of installed 

capacities of RES, the merit order effect remains a big challenge for 

Germany. This negative effect of RES could significantly be limited by 

the interconnections with Germany neighbouring countries especially 

France, allowing it to export its surplus wind power. Therefore, the de-

velopment of the renewable energy sources should be accompanied by 

a market coupling. 
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Abstract. The accurate prediction of wind speed has turned into a very
hot topic in recent years. The wind is a clean source of energy that is
increasingly being used. In this work, the suitability of applying pattern
similarity based algorithms to forecast wind speed is explored. In par-
ticular, the PSF algorithm is selected for this problem and data of India
are predicted for the �rst time. Additionally, two kind of predictions are
made: single instance prediction and one step ahead predictions. Compar-
isons to well-known ARIMA and Bayesian methods are reported, with
clear superiority of PSF, in terms of standard RMSE and MAE error
metrics. These results are very promising and suggest extensive e�orts
in this line, in order to develop adapted versions and modi�cations of
PSF.

Keywords: Wind speed, time series, pattern sequence, forecasting.

1 Introduction

Wind power is a renewable energy source, that can be relied on for the long-term
future. Since wind is non-polluting, its generated energy does not produce gases
or radioactivity and is currently being used across the world.

The power grid is a�ected by the uncertain nature of wind energy. Hence,
the ability of predicting wind speed is a task of utmost relevance for both en-
ergy managers and electricity traders, in order to minimize the aforementioned
uncertainty when this kind of renewable energy is used. Precise wind speed fore-
casts can be used in many contexts, typically in the evaluation of wind energy
potential, in wind power planning or in the design of wind farms. For all the
mentioned, to accurately predict wind speed has become a critical task with
deep impact and huge bene�ts for the human kind.

For the �rst time, the concept of Pattern Sequence-based Forecasting (PSF)
method was proposed in [17] and presented in an updated form with a detailed
study in [18]. This method found various applications in time series analysis,
including electricity price forecasting [18, 11], electric vehicle charging energy

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 786



consumption [16], electricity demand forecast [23, 13] or photovoltaic energy de-
mand [9]. These articles highlight the better performance of PSF method over
other state-of-the-art methods.

To assess the performance of this methodology in wind speed, data from India
have been analyzed for the �rst time. In particular, years 2012 to 2015 have been
analyzed with horizon of prediction of one hour, one day, and one week. Reported
results outperform those of other well-established methods, such as ARIMA or
Bayesian methods. The successful application of PSF in this context opens new
opportunities in this emerging research �eld.

The rest of the paper is structured as follows. Section 2 reviews and discusses
relevant works in the �eld of wind speed forecasting. Section 3 describes the
methodology applied. Results are reported and discussed in Section 4. Finally,
the conclusions drawn in this work are summarized in Section 5.

2 Related work

A revision of the di�erent approaches recently published in the literature related
to the wind speed forecasting is reported in this section.

Several previous works have dealt with wind speed prediction problems in
wind farms using data from measuring towers. The majority of the approaches
used modern regression techniques, many of them based on neural networks:
multi-layer perceptrons [24, 14, 22], fuzzy-based neural approaches [15], two-hidden
layer neural networks [10], fast training neural approaches [20] and abductive
networks [1].

In the last years, support vector machines (SVM) have been also proposed to
obtain wind speed predictions. In [21], a SVM was applied to predict wind speed
from Mexico. The SVM was optimized by a genetic algorithm, showing a good
performance when comparing with time series models such as autoregressive
integrated moving average (ARIMA).

Regression trees, well-known as Classi�cation and Regression Trees (CART)
[4], have been widely applied to predict both wind speed and wind power or
to obtain rules between wind and other variables. CART has been used to dis-
cover relationships between wind speed and several weather conditions such as
atmospheric pressure, temperature, solar radiation, and humidity [19]. The sim-
ulation results reported the station pressure and sea-level pressure as the most
important variables explaining the wind speed. It can be noticed that the input
variables for forecasting the wind speed are meteorological variables while in this
work the input variables are the wind measurements of neighbors towers. More-
over, regression trees have been also proposed for predicting the wind energy
production. For example, CART has been applied by Clifton et al. [5] to obtain
the power output of a wind turbine from wind speed, turbulence intensity and
wind shear. The results provided by CART were two or three times better than
those of a standard power curve method typically used in the industry.

In Fugon et al. [8] a comparison of di�erent data mining techniques for short-
term wind power forecasting in three real wind farms can be found. Namely,
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hourly power production and weather forecasts comprising a period of 18 months
were considered.

3 Methodology

This section describes the PSF algorithm, an algorithm that has already been
successfully applied in other research �elds. One of the main features of PSF lies
in its ability of discover patterns in the historical data and to make use of them
to generate accurate forecasts.

The PSF method can be broadly divided into two steps: (i) labeling of time
series using a clustering technique and (ii) sequence based forecast. In the �rst
step, labels are given to time series on the basis of the well-known k-means clus-
tering algorithm, and the time series is partitioned into various cluster centers.
The optimal number of clusters is determined by means of a wise combination
of three indices: Silhouette [12], Dunn [7] and Davies-Bouldin [6].

By contrast, in the second step, the sequence-based prediction is done fol-
lowing three sub-steps: (a) optimum window size selection, (b) matching pattern
sequences and (c) estimation.

In the labeled series, the last sequence of the label with a window of size W
is searched for and very next value of each repetition of the window is kept in
a new vector. The arithmetic mean of this vector is assigned as a label for next
value to be predicted. The selection of W is one of the most important steps
on which prediction performance exhibits high dependency. Once the labels for
predicted values are obtained, the process of de-normalization is performed on
label sequence to achieve actual prediction values.

To continue with further predictions, the predicted label is appended to the
sequence of labels in the series prior to the procedure of de-normalization. The
block diagram of PSF method and its associated pseudocode are as shown in
Figs. 1, 2 and 3, respectively. These �gures are adopted from [3]. W is searched
for within the label series such that the sequence of labels in the window should
repeat at least once within the series. The detailed information of these steps
involved in PSF is available in [18, 3]. The e�orts are taken in [3] to present an
R package for PSF [2].

4 Results

This section reports the results achieved by PSF, as well as a comparative study
with ARIMA and Bayesian methods. But, �rst, Section 4.1 describes the dataset
used and, second, Section 4.2 the quality parameters used to assess the perfor-
mance of the considered methods. The results themselves can be found in Section
4.3.
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Fig. 1. Block diagram of the PSF algorithm.

Fig. 2. Prediction with the PSF algorithm.

4.1 Data description

This section describes the data used in this work. The wind speed time series used
in the present study has been collected by State load dispatch centre located in
the Maharashtra state region of India. The wind speed mean values are collected
on an hourly basis, in m/s, for four consecutive years, from January 2012 to
December 2015. The total length of the time series is 34,320 values and its
statistical parameters including mean and median are shown in Table 1.

Table 1. Summary of wind speed time series.

Minimum Maximum Median Mean

Wind speed data 101 543 346.5 344.8
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Input: Dataset D, number of clusters K, labeled dataset
[L1, L2, ..., Ld−2, Ld−1], length of the window W and Test Set T
Output: Forecasts X̂(d) for all days of T

PSF()
ESd ← {}
X̂(d)← 0
for each day d ∈ T

Sd−1
W ← [Ld−W , Ld−W+1, . . . , Ld−2, Ld−1]
for each j such as X(j) ∈ D

Sj
W ← [Lj−W+1, Lj−W+2, . . . , Lj−1, Lj ]
if(Sj

W = Sd−1
W )

ESd ← ESd

⋃
j

for each j ∈ ESd

X̂(d)← X̂(d) +X(j + 1)

X̂(d)← X̂(d)/size(ESd)

D ← D B X̂(d)
[L1, L2, ..., Ld−1, Ld]← clustering(D,K)
d← d+ 1

return X̂(d) for all days of T

Fig. 3. Pseudocode for the PSF algorithm.

4.2 Quality parameters

The prediction with PSF method is compared to ARIMA and Bayesian methods.
Prediction of these methods are compared for various durations (varies from 1
hour to few days) and the comparison is assessed by means of Root Mean Square
Value (RMSE) and Mean Absolute Error (MAE), as performance measures.
Their formulas are shown in Eq. 1 and 2.

RMSE =

√√√√ 1

N

N∑
i=1

∣∣∣Xi − X̂i

∣∣∣2 (1)

MAE =
1

N

N∑
i=1

∣∣∣Xi − X̂i

∣∣∣ (2)

where Xi is the original data, �Xi is the corresponding predicted data, and N

is the number of samples in X.

4.3 Wind speed forecasting

In this section, the prediction of wind speed time series is performed with
PSF and compared to few well-established state-of-the-art time series predic-
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tion methods. The performance of PSF is examined with two types of prediction
techniques: single instance prediction and one step ahead predictions.

In single instance prediction, predictions for various time intervals are per-
formed in a single step, whereas in one step ahead forecast technique, the predic-
tion is performed one step by another. In this technique, one step is predicted at
a time and the predicted value is appended on the time series and the forecasting
continues until desired time instances are predicted.

The observations describing the comparison of various prediction methods
are shown in Table 2. Among all three methods under study, the RMSE values
for PSF method are found to be lesser than that of both ARIMA and Bayesian
methods for all time durations.

Note that for the application of these methods, PSF parametrization con-
sisted in setting K=2 (number of clusters) and W=10 (size of the window).
These values are automatically generated if using the R package [3]. Alterna-
tively, the forecast R package was used to apply ARIMA, which suggested that
ARIMA(4,1,2) was the most suitable method for this particular time series. As
for Bayesian methods, lower and upper quantiles for the forecast interval esti-
mate were set to 0.025 and 0.975, respectively and the seasonal state model was
set to 24 hours.

Table 2. Error comparison for prediction at single instance.

Methods
PSF Bayesian ARIMA

RMSE MAE RMSE MAE RMSE MAE

1 Hour 5.03 4.63 7.31 6.02 6.98 5.90
2 Hours 8.48 7.96 12.03 10.98 11.70 10.05
6 Hours 38.75 31.11 45.11 42.66 47.54 43.83
12 Hours 48.56 42.96 53.69 48.34 59.41 54.35
1 Day 51.55 45.03 67.07 62.12 72.01 66.41
2 Days 63.43 57.35 80.35 71.72 87.90 78.77

Similarly, in the case of one step ahead forecast technique, the performance
of the PSF method is compared to ARIMA and Bayesian methods. The time
series are predicted for next 20 and 40 hours. Table 3 shows the RMSE errors
comparison. It analysis reveals the superiority of the PSF method for wind speed
time series prediction. The prediction with PSF method is shown in Fig 4, which
shows its accuracy while performing one-step ahead forecasting. Apart from this,
the summary of the 40 hours predicted values are shown in Table 4. It shows
the mean and median of the time series used.

5 Conclusions

Wind speed for India data have been successfully forecasted in this work. Four
years, from 2012 to 2015, have been predicted with the PSF algorithm in two
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Table 3. Error comparison for prediction at one step-ahead forecast.

Methods
PSF Bayesian ARIMA

RMSE MAE RMSE MAE RMSE MAE

20 Hours 29.88 27.90 37.12 35.63 46.09 49.22

40 Hours 40.43 35.61 47.32 41.76 59.83 54.03
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Fig. 4. One-step ahead forecast comparison.
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Table 4. Summary of predicted values for duration of 40 hours.

Minimum Maximum Median Mean

Validating time series 196 655 311 376.9
PSF 198.2 674 317.4 384.2

Bayesian 170.1 636.9 282.6 351.4
ARIMA 206.8 681 324.5 382.6

di�erent ways �one single sample and one step ahead� reaching quite promis-
ing results. Additionally, other well-known algorithms, ARIMA and Bayesian
methods, have been used for comparative purposes, con�rming the robust val-
ues obtained by PSF. Given the good performance exhibited by PSF in wind
speed forecasting, future works are directed towards the development of adapted
versions of PSF to this particular time series.
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Abstract. Combining the strengths of different modelling approaches and vari-
ous information sources is studied in short-term forecasting of aggregated elec-
trical loads that are controllable and include e.g. thermal storage capacity.  Meas-
urement data driven models tend to fail in forecasting power during rare situa-
tions such as dynamic control actions and extreme weather conditions. The ther-
mal dynamics of the loads, large outdoor temperature variations, and changes in 
the technologies contribute to this challenge. Here we study a model integration 
approach using field trial data covering about 7000 houses and 27 months. Con-
trol responses and load saturation are forecast using a physically based structure. 
The residual is forecast with a machine learning model designed and tuned to 
learn also system dynamics. The load forecast is the sum of these component 
forecasts. The forecasting accuracy of this hybrid method is compared with using 
the machine learning alone. The results show improvement in the accuracy.  

Keywords: forecasting, machine learning, physically based models, smart grid. 

1 Introduction 

Accurate forecasts of the power flows in the distribution system are a critical enabler 
for high penetrations of distributed power generation and demand response. Ignoring 
the explicit presence of active demand in the model of the load leads to unsatisfactory 
forecasts according to [1] and [2].  

This contribution belongs to a project Response funded by the Academy of Finland, 
which studies the following research hypotheses. 1) Hybrid models can combine the 
benefits of different load modelling approaches, thus providing models that (a) forecast 
relatively accurately in different situations including also those that have not been ex-
perienced before, (b) adapt to expected and unexpected changes in the load behavior, 
and (c) are easy and fast to maintain. 2) Models that combine all relevant available 
information forecast dynamically controlled aggregated load more accurately than 
black box models (purely data driven models) or purely physically based models. 
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There are several ways to improve forecasting accuracy by combining forecasting 
methods. An approach is to run several forecasting algorithms in parallel and use a 
weighted average of the forecasts while adjusting the weights according to the situation 
as learned in the identification [3].  A hybrid ARIMA-ANN model for time series pre-
diction is proposed and studied by [4]; there a multilayer perceptron forecasts the re-
sidual of the ARIMA system. We found forecasting the control responses using 
ARIMA unreliable and inaccurate.  The obvious reasons include nonlinearities, nonsta-
tionary behavior and limited amount of test responses. We use a model with a physi-
cally based structure to forecast the control responses and the saturation of the load, and 
the machine learning models forecast the residual. Then the load forecast is the sum of 
these two component forecasts. We successfully applied this approach for electricity 
spot price based direct control of the aggregate loads of full storage heating houses [2].  

In the present contribution, we explain the methods of [2] and give a new summary 
of the results. Then we apply and modify the approach of [2] to very seldom activated 
emergency load control of partial storage heating houses located in a climate with large 
temperature variations. A further difference is that the control responses are modelled 
from aggregated 3 minute interval measurements from the primary substations in addi-
tion to the hourly interval measurements from the smart billing meters. That enables 
forecasting the emergency control responses with 3 minute time resolution, which is 
necessary. We also apply and compare two machine learning methods: support vector 
machine (SVM) and multilayer perceptron (MLP). According to the literature, such as 
[5], SVM has many methodological benefits and produces smaller forecasting errors.  

2 The forecasting problem 

The problem studied is to forecast aggregated powers of customer groups that include 
active demand (AD). The focus is on short-term forecasting: each day at 9 a.m. the 
power during the next day is forecast with one hour or 3-minute time resolution. Hourly 
interval consumption measurements from the previous day are available from each cus-
tomer. The behavior of individual customers is very stochastic but their aggregated be-
havior is rather well predictable. The outdoor temperature in the region has large vari-
ations and the AD responses and loads have highly nonlinear behavior due to saturation 
of cooling and especially heating. Accurate forecasts during high load situations, such 
as very cold temperatures, are very important, because then the balancing errors are 
exceptionally costly and the operational margins in the distribution grid are small.  

Two AD forecasting cases are studied using load control field test data. These are 
1) forecasting about 700 full storage electrically heated houses subject to electric-

ity spot price based direct load control in Helsinki, and 
2) forecasting partial storage electrically heated houses subject to both emergency 

load control and Time-of-Use (ToU) load control. (The reported results repre-
sent 5188 customers. Slightly over 7500 customers were controlled in the veri-
fication tests, but we removed from this study all those sites that had gaps in the 
data or clearly different load behavior.)  
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In the first case the identification period was 12 months and the verification period was 
7 months. In the latter case, the identification data covered 13 months and the verifica-
tion data 14 months.  For forecasting the emergency load control responses, time reso-
lution of the forecasts must be better than 3 minutes. With the physically based response 
model structures, this is easy to achieve.  

Hourly interval consumption history of each customer is available thanks to ubiqui-
tous smart metering. In addition to them, we used outdoor temperature measurements 
and forecasts, and power measurements from the primary substations to identify and 
verify the emergency response models.   

3 Background research for the emergency load control case   

Paper [6] developed and studied physical model based short term daily energy forecast-
ing using the identification data of the emergency load control case.  Fig. 1 shows how 
the daily mean power per house and outdoor temperature varied in the identification 
period. The developed forecast is shown denoted as simulation. The figure shows ag-
gregated sliding 24 mean powers and sliding 24 h mean outdoor temperature. Here they 
demonstrate how large the temperature variation is, how much the loads depend on it 
and how short the extreme temperatures are. It was found out that most of the temper-
ature dependence comes from heating loads, but there is significant cooling load in 
summer time, and it has somewhat different dynamics than the heating.  
 

 
Fig. 1.   Temperature dependence of the load in 2011 [6]. 

4 The hybrid forecasting approach 

Machine learning methods alone tend to have challenges in forecasting the dynamics 
of power during temperature dependent active demand responses and during the load 
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saturation. Here we study a potential solution. We forecast the control responses and 
load saturation using model structures based on the thermal dynamics of the houses. 
We identified the parameter values from the identification field tests also taking into 
account the feasible parameter ranges estimated from the building codes. Then the ma-
chine learning methods were taught to forecast the residual of the physically based 
model. The residual is also a dynamic process so the machine learning models applied 
need to include capabilities to model the dynamics.  

   Fig. 2 shows the resulting main structure of the forecasting model.     

      
Fig. 2. The machine learning model forecasts the residual of the partly physically based response 
model. 

P is the measured power, Pf the power forecast, u is the control signal and n is the 
number of houses. Tout is a combination of the measured and forecast temperatures as 
available at the time of forecasting the power. Time t is also an input signal. Each con-
trolled group has its own control signal u and model. The residual model may be com-
mon to all groups or each group may have its own residual model. Which one is better 
depends on the performance and complexity in the particular case. 

5 The machine learning methods 

In this study, two standard machine learning methods: multi-layer perceptron (MLP) 
and support vector machine (SVM) are evaluated. Both the methods are largely adopted 
in the domain of electric load forecasting, e.g. [7]. 

5.1 Support vector machine (SVM) 

Basically SVM is a machine learning technique for data classification and non-linear 
regression. For more technical details the reader is referred e.g. to [8]. 
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In this study, epsilon(ε)-SVM (or SVR) with the radial basis kernel function based 
on the LIBSVM package was used to execute the model runs. We have adopted the 
direct prediction scheme for both the machine learning models by using delayed power 
and temperature values as regressors. Alternatively, this could be considered as a re-
cursive forecast problem by performing one step ahead prediction. The hyper parame-
ters of SVM were defined as follows. The gamma of kernel function was defined using 
the LIBSVM default, i.e. 1/number of features whereas C (value 20) was defined based 
on experimental testing. The value of epsilon ε (0.1) was defined based on the defaults. 

The input variables of SVM model were selected based on the previous study [9], 
which showed that timing variables: day of year, day of week, hour of day, and day 
length and few delayed outdoor temperature values (-0 hour, -9 hour, and some longer 
delays, here we used -19 hour) are required to produce sufficient prediction accuracy 
within the direct prediction scheme. Additionally, we have used delayed power value 
(here -48 hour) as the SVM model input. 

The input data were normalized between -1 and 1. The variance scaling was also 
tested to prevent influence of potential outliers, but it was not observed to enhance the 
accuracy. 

5.2 Multilayer Perceptron (MLP) 

Following, the basic outlines given in the SVM model definition, the standard MLP 
model was trained to forecast hourly mean powers using timing variables, outdoor tem-
perature and power measurements. The MLP network with one hidden layer (25 nodes) 
was trained using Levenberg-Marquadt algorithm. In total 3000 training epochs were 
utilized. A subset of the identification (training) data (5%) were used to control poten-
tial over-fitting and to ensure external prediction power. Discontinuous input variables 
(such as hour of day, day of week) were divided into continuous form by using sine and 
cosine transformations. This transformation was adopted in case of SVM model, as 
well. 

5.3 Modelling the system dynamics with the machine learning methods  

A set of delays is introduced to the forecasting model and during the identification those 
delays are selected that best improve the fit.    

6 Partly physically based control response models 

The responses of active demand (AD) to control signals are modelled using models of 
the thermal dynamics for the buildings and their heat storages. In the houses, the tem-
perature controls are often on-off type. The heating is either on full power or zero 
power. Such a model is very inaccurate in forecasting the aggregated behavior if a large 
number of models with stochastic disturbances is not run in parallel. Thus we use a 
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continuous controller in the house model. We fit it to the observed aggregated re-
sponses. It turned out that it forecasts accurately the aggregated responses also when 
the heating in the individual houses is controlled on-off. 

For many model parameters a feasible range was estimated from the building codes 
that set the minimum requirements for the dimensioning and operation of heating, ven-
tilation and insulation. Then the model parameters were estimated by fitting them to the 
measured test responses in the identification data. In the partial storage heating case the 
parameters were identified using nonlinear constrained optimization (such as sequential 
quadratic programming, SQP, or nonlinear conjugate gradient methods). Several initial 
guesses were used, because multiple local optima were sometimes detected.  

The tests of the emergency load control in the identification data set did not include 
load control actions in cold enough temperatures. Thus it is not possible to model the 
saturation of heating powers from them. The number of tests was also very small and 
the information on the rough geographical location of each controlled customers was 
unknown. Similar emergency load control field tests using power measurements from 
13 substations in different cold temperatures had been implemented in1996-1997 and 
summarized in [10] in chapter 6 and Appendix B. Some of the response models identi-
fied from them were applied to the new identification test data. Good forecasting per-
formance was observed. Thus for the emergency load control we use the dynamics and 
saturation from the old models as such. Only static gain of the model is identified on-
line from the past measurements.   A figure of the structure of the emergency load 
control response model is given in the Appendix B of [10]. It comprises four internal 
temperatures, the corresponding heat storage capacities, the connecting heat conductiv-
ities and ventilation heat loss. The internal state of the temperature controller is in the 
model, too. The input variables are the following three temperatures: outside air, ground 
and the set point of the inside temperature. 

The model for the responses of full storage heating (for space heating and hot do-
mestic water) includes only the heat storage and its heating element. The thermal dy-
namics of the building are taken into account only via the forecasting of the heat de-
mand. This response model is given in [2]. 

The modelling of partial storage heating response still needs some research. For it 
the model of full storage heating tends to be too simple alone.  The very simple response 
model may nevertheless be adequate in combination with a suitable machine learning 
model that possibly compensates the shortcomings.  

7 Results 

Both in the spot price based control case and in the emergency control case the applied 
machine learning models did not alone forecast the load control responses accurately 
enough while the hybrid model accurately forecast also the responses. A further initial 
observation is that also when loads were not dynamically controlled the hybrid models 
consistently had a slightly better forecasting accuracy than the machine learning models 
alone. The forecasting performance in exceptional weather situations, and near summer 
time winter time clock changes, improved. 
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7.1 Results in the full storage heating case 

We studied the dynamically controlled full storage heating case in [2]. There the iden-
tification data include 365 days and the verification period was 208 days long. The test 
included about 700 houses divided in two separately controlled groups. 

Table 1 summarizes the results added with a new row. The performance criterion is 
root mean square error (RMSE) of the forecast normalized to the annual mean power. 
The first two rows represent models that have a physically based structure.  Only the 
latter one includes a model of the control responses.  The method on the last row models 
the responses using SVM based machine learning. All the other rows are different ver-
sions of the approach shown in the Fig. 2, where partly physical models forecast the 
control responses and saturation, and SVM forecasts the residual.  The residual model 
is common to both groups, because it gave a slightly better performance than forecast-
ing the group residuals separately.    

Table 1. Forecasting the residual using SVM improves the forecasting performance 

RMSE (normalized) Identification Verification 

partly physical without response model 0.99105 1.14260 

partly physical with response model 0.33606 0.52645 

response model and SVM 0.22893 0.36391 

response model, SVM and minimum 0.22841 0.34487 

response model, SVM and range limit 0.22827 0.34400 

SVM 0.17224 0.75300 

 
The SVM alone forecast very well the identification data but not the verification 

data. This suggests that the 365 dynamically controlled days in the identification data 
set were not enough for the SVM to generalize the control responses correctly. The 
hybrid method clearly outperformed its component methods. Using a physically based 
model for range limitation gives a small further improvement in forecasting perfor-
mance. Fig. 3 shows a sample of the best forecast of Table 1 compared to the measured 
power in verification.  

 
Fig. 3. Forecast and measured aggregated power in verification of the full storage heating case, 
an example. 
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The control signals were dynamically scheduled according to the electricity market en-
ergy prices and forecast heating needs. When the control signal allows the heating and 
the heat storage is not full, a thermostat turns heating on and high power peaks occur. 
The physically based response model models the aggregated behavior of such heat stor-
age system. 

7.2 Results in the emergency load control case 

The control response model.  
 

The identification period was 13 months long and included some emergency load con-
trol tests in early 2013. Then about 8600 electricity customers were subject to the tests 
and we selected 7062 of them for the response modelling. The test comprised two main 
groups controlled at different times thus enabling the response identification by refer-
ence group comparison. The main groups were split further to subgroups. An identified 
response of hourly interval powers in outdoor temperature -5 o C is in Fig. 4.  

 

 
Fig. 4. Emergency load control response identified by reference group comparison, when outdoor 
temperature was about -5 o C; the control command was applied on hour 40. 

The tests in the identification data set were not alone adequate for modelling the emer-
gency load control responses in the temperature range of interest. It was only possible 
to model the control response in one temperature. Similar emergency load control re-
sponse identification tests had been implemented in three adjacent power distribution 
areas in winter 1996-1997 using power measurements from 13 substations [6]. Then 
the hourly interval measurements of each customer were not available, but the temper-
ature range covered by the tests was -7…-29 o C, which was wide enough to see also 
the load saturation in some tests. The dimensioning temperature in the area was -32 o C 
and based on the test results the actual dimensioning of heating and insulation was 
somewhat better.  In the 1996-1997 tests six separately controlled groups of houses 
were applied based on the thermal dynamics and usage of the buildings.  A simple 
thermal dynamics model was developed, its feasible parameter ranges defined based on 
building codes and the parameters identified using a nonlinear constrained optimization 
method, Sequential Quadratic Programming.  Now we chose one of those six models 
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for comparison with the 2013 control tests and the results are shown in Tables 2 and 3 
below. In the Table 2 the measured responses are uncertain, because the power meas-
urement includes all the loads in the whole distribution area.  Especially the reduction 
of the load in the test 2 has large uncertainty due to apparent simultaneous changes in 
the other loads. In Table 3 the measured responses are much more accurate. 

Table 2. Comparison of the average house responses of power measurements in 2013 with the 
model identified in 1997 (3 minute time resolution). 

Test 
nr. 

Source Tempera-
ture 
during test 
oC 

Previous 
mean 24 h 
tempera-
ture  oC 

Number of 
houses con-
trolled 

Load 
step 
down 
kW 

Load 
step up 
kW 
 

1 measurement -5.5 -6.9 4757 1.1 2.5 
1 old model -5.5 -6.9 4757 0.95 2.2 
2 measurement -4.5 -9.0 2305 1.2-1.6 2.3 
2 old model -4.5 -9.0 2305 0.98 2.2 

Table 3. Comparison of the average house responses of hourly interval powers in 2013 with the 
model identified in 1997.  

Test 
nr. 

Source Houses controlled reduction in load  
kWh/h 

next hour pay-
back kWh/h 

1+2 measurement 7062 0.7 0.5 
1+2 old model 7062 0.93 0.41 

 
The old model forecast reasonably well the responses in the emergency load control 

in the identification data. The time constants are slightly too short and can be adjusted 
accordingly. For clarity in the following, we use the dynamics of the old model as such. 
Only the scaling of the response model is identified on-line from the latest power meas-
urements available during the forecasting. 

Integration with machine learning models.  
 
Tables 4 and 5 compare the forecasting performance of the hybrid approach with the 
machine learning methods. Hourly interval powers are forecast. In the verification, the 
controlled houses were in six groups and the four biggest groups are shown here.  

Table 4. Comparison of machine learning with the hybrid methods over the verification period. 

 RMSE (normalized)  
Method  Group 1 Group 2 Group 3 Group 4 

SVM alone 0.1457 0.1756 0.6850 0.6866 
MLP alone 0.1283 0.1651 0.8904 0.9622 
SVM with response model 0.1161 0.1290 0.3801 0.3767 
MLP with response model 0.1108 0.1361 0.4758 0.4622 
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Table 5. Comparison of machine learning with the hybrid approach when emergency load control 
was applied in verification; RMSE is evaluated over two 48 h periods, one for each of the two 
control actions.   

 RMSE (normalized)  
Method  Group 1 Group 2 Group 3 Group 4 

SVM alone 0.2180 0.2784 1.1122 1.1380 
MLP alone 0.2037 0.2880 1.3519 1.4536 
SVM with response model 0.1162 0.1350 0.5681 0.5820 
MLP with response model 0.1126 0.1750 0.6186 0.6493 

 
SVM and MLP produced roughly equal accuracy and they could not predict emer-

gency control load situations. By combining the methods with the physically based re-
sponse model, also the dynamic control situations were predicted with good accuracy. 
We prefer the use of SVM models, because MLP has many well-known challenges, 
such as a risk of over-fitting. 

In the verification, the groups were different from the identification. In the identifi-
cation, the average customer size was the same in all the four main groups. In the veri-
fication, the average customer size in the groups 3 and 4 was clearly smaller. The 
change in the group size from identification to verification resulted in large errors in 
the forecast. We compared two solutions: 1) each identification test group was split to 
two subgroups based on the average annual power thus enabling the machine learning 
to learn the dependence on the average group, and 2) the hybrid forecast was scaled 
using feedback from the measurement history available when making the short-term 
forecasts. The same feedback from the measured average power of customer scaled the 
partly physically based control response model in all alternatives.    

Often the on-line feedback scaling of the response model turned out to be the most 
accurate although the feedback scaling took about two first weeks of data history to 
converge to a suitable feedback gain. Table 6 shows the results of the comparison. 

Table 6. Modelling the dependence on average site power of the group.  

Normalized 
RMSE 

Without scaling Identification from 
data split based on 

customer size 

Feedback scaling to 
group mean size 

Machine learning with response model 
MLP SVM MLP SVM MLP SVM 

Group1 0.1108 0.1161 0.1712 0.1587 0.1047 0.1122 
Group2 0.1795 0.1290 0.1803 0.1717 0.1431 0.1143 
Group3 0.4758 0.3801 0.1365 0.1333 0.1640 0.1718 
Group4 0.4622 0.3767 0.1657 0.1330 0.1820 0.1639 

 
Figures 5 and 6 show the machine learning forecasts, hybrid forecasts and the meas-

ured responses. The hybrid forecast is the sum of the physically based response forecast 
and the machine learning forecast of the residual. Alone the machine learning models 
are not able to forecast the emergency load control responses, see also Table 5.    
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Fig. 5. The responses of the forecasting methods during emergency load control 30 January 2014 
in the verification. 

 
Fig. 6. The responses of the forecasting methods during emergency load control 6 February 2014 
in the verification. 

8 Discussion 

Planned future studies include:  
 forecasting the total power of the distribution area with 3 minute time resolution 

when dynamic load control is applied, 
 other hybrid methods in AD forecasting, 
 on-line implementation and field testing of the response forecasting,  
 tests in cold temperatures,  
 analysis and development of criteria for the performance of load forecasting, and  
 estimating confidence intervals for the forecasts.     
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Commonly applied performance criteria reflect poorly or very poorly the costs of fore-
casting errors. Selection and development of performance criteria should be considered. 
Splitting the analysis to four groups enables getting some information on the confidence 
intervals of the forecasts, but further studies are needed. 

Common claims are that 1) real time measurements of individual AD customers are 
necessary and 2) determination of a fair base case for reference and thus the actual 
response is ambiguous. Individual customer real time measurements improve the per-
formance of forecasting aggregated loads so little that they may be difficult to justify. 
Our models always forecast the base case or reference case in addition to the responses 
to the planned control actions. Further studies could clarify these issues.   

9 Conclusion 

The results show that the hybrid model developed forecasts more accurately than the 
machine learning models as such. In the hybrid model, the control responses and load 
saturation are forecast using a physically based structure and the residual is forecast 
with a machine learning model designed and tuned to learn also system dynamics. The 
hybrid load forecast is the sum of these component forecasts. 
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Nowcasting is "forecasting" the recent or current state of a phenomenon. It has also 

been defined as the prediction of the present, the very near future and the very recent 

past [1]. The term is a contraction for now and forecasting and has been used for a 

long time in meteorology and recently in economics [2]. Nowcasting gains an im-

portant role in central banks and policymakers since key economic values are released 

with a considerable delay. This is mainly due to time-consuming information collec-

tion and aggregation processes. The underlying principle of nowcasting is to exploit 

the information which is published early in order to obtain an early estimate before 

the official figure becomes available. The different definitions of nowcasting suggest 

it is used in different ways and with different purposes, depending on the needs and 

availability of data. In this work, nowcasting was used to obtain an estimate of recent-

ly-released information. Even if the latter is known, the quantitative deviation be-

tween the estimated and real values can elucidate a change of pattern in the time se-

ries under consideration. Moreover, if the confidence interval associated with the 

estimated value does not include the real value, the time series could be experiencing 

a structural break, or at least, a certain degree of shift which is difficult to detect with-

out a formal approach. This work aims to (i) propose a new method to estimate a con-

fidence interval for the latest values of time series to detect structural changes in 

them, and (ii) introduce a new method to accomplish nowcasting using hidden Mar-

kov models. 

 

By using past observations, two ensembles of models were implemented using R 

software [3] to obtain a confidence interval for the five most recent values of univari-

ate economic time series.. The first ensemble used hidden Markov and Arima models, 

and the second included classic forecasting models for comparative purposes. A total 

of 15 heterogeneous economic time series from Eurostat [4] were used to test the 

nowcasting performance of both ensembles. The first ensemble obtained a much nar-

rower confidence interval than the second one, and its higher performance to detect 

possible shift of trends in time series became evident. 

 

                                                           
*  The views expressed are purely those of the authors and may not in any circumstances be 

regarded as stating an official position of the European Commission. 
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The performance of the first ensemble is robust through all the time series studied, 

revealing it to be a promising methodology for regular use in univariate time series 

nowcasting. However, in order to get a clearer picture, broadening the case studies to 

markedly irregular economic time series or with shorter lengths would be recom-

mendable. In addition, the performance using different forecasting horizons should be 

evaluated. The classification as a structural break or shift pattern in the time series 

according to the nowcasted values obtained remains open for further research. 
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Abstract. From the project owner’s point of view, it is important to screen for 
the projects expected to have excessive cost overruns in the bidding stage be-
fore contracts are finalized. Cost overrun during construction stems from vari-
ous reasons such as macro-economic situations, construction site conditions, 
design errors, or owner’s change orders. Bidding stage data related to project 
type and delivery methods also influence cost overruns. Previous studies have 
made efforts to improve both explanatory and predictive models of project cost 
overruns. Potentially, the knowledge of construction project characteristics 
combined with procurement auction factors can be used to enhance predictions 
of project performance. The objective of this study is to develop an ensemble 
classification model framework that predicts the expected level of cost overrun 
for public sector projects using a dataset consisting of 234 projects completed 
between 1998 and 2013 in Korea where project characteristics such as delivery 
method, project type, cost data and schedule information combined with bid-
ding characteristics are available. 

Keywords: Predicting Cost Overrun Levels, Ensemble Learning, Construction 
Procurement Auctions, Bidding Characteristics, Project Characteristics, Project 
Delivery Methods, Project Type. 

1 Introduction 

Project cost and schedule performance are influenced by the type of project delivery 
method and the type of construction. These factors also impact bidding characteristics 
in construction procurement auctions. Williams [1] found specific bidding patterns 
that would produce a cost increase during the construction phase with a hybrid model 
using a regression model prediction and a neural network. Moon [2] has studied cost 
increases and change orders1 on Design-Build (DB) and Design-Bid-Build (DBB) 

                                                           
1  Change order: a written order to the contractor signed by the owner and architect, issued 

after execution of the contract, authorizing a change in the work or an adjustment in the con-
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delivery method projects using a statistical path analysis of projects in Korea. It was 
found that cost increases in both DBB and DB projects were significantly influenced 
by the ratio of the winning bid price to the owner’s estimate. Projects, where there 
were significant differences between the low bid and the owner’s pre-bid estimate, 
had higher cost overruns regardless of the delivery method. Moon also found that 
there were differences in cost performance between different types of constructions, 
such as civil and building construction. These findings suggest that factors other than 
the delivery method may have significant impacts on project costs and schedule as 
well. Potentially, the knowledge of project characteristics, such as the delivery meth-
od and type of construction project, combined with other factors such as the ratio of 
low bid to engineer’s estimate can be used to enhance predictions of project perfor-
mance. It can be inferred that a combination of factors affects the ultimate project cost 
outcome. The type of construction, the type of procurement method, the scope of the 
project, the accuracy of the bids, and the level of competition can all influence the 
level of overruns on a project. These factors can be categorized as project and bidding 
characteristics that impact change orders and cost overrun during construction phase 
(Fig. 1). 

 

Fig. 1. Basic concept of influential factors on predicting project cost overrun levels 

The objective of this paper is to use a database of 234 projects completed between 
1998 and 2013 in Korea where data related to project and bidding characteristics are 
available, to develop an ensemble-classification model framework that predicts the 
expected level of cost overrun for public sector projects. The model framework de-
veloped uses two different classifiers whose outputs are combined to improve predic-
tion results. The Korean data set consists of both DB and DBB projects, and addition-
al information on the type of project being constructed. 

                                                                                                                                           
tract sum of the contract time (article 12.1.1 of AIA A201). Moreover, the same terms are 
used in other countries; “variation order” was coined in UK, and FIDIC adopted the term 
“variation”. 
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2 Trends in Predicting Construction Project Cost 

Various methods have been used to predict construction cost increases. Research that 
has been conducted in this area includes the application of artificial intelligence (AI) 
techniques and statistical methods to predict costs. Statistical methods have been used 
in a deductive way through hypothesis testing, while AI techniques have been used to 
induce the level of cost increase by using training data and model validation.  

The best performances of both regression and neural network models were found 
using bid data to predict highway project costs [3]. For the regression model, only the 
low bid as input performed the best. The low bid and second lowest bid as inputs were 
used for the best performing neural network. Other approaches that use hybrid statis-
tical methods and AI techniques were studied in cost overrun prediction areas. Emsley 
at al. [4] have developed linear regression techniques as a benchmark for the evalua-
tion of the neural network models. Their models show that compared to the regression 
model, the neural network approach has the ability to model the nonlinearity in the 
data.  Attalla and Hegazy [5] compared artificial neural networks (ANN) and regres-
sion for predicting cost deviation in reconstruction projects. They found that both 
models performed with similar accuracy. On the other hand, the ANN model is more 
sensitive to a larger number of variables. Some studies have investigated the devel-
opment of prediction models using ANN and fuzzy neural networks [6], regression 
analysis compared traditional and weighted least-squares techniques [7], and Fre-
quentist and Bayesian approaches [8]. Recent studies have employed advanced data-
mining techniques to achieve a better prediction performance. Principal component 
analysis and support vector regression have been used to predict project costs [9]. The 
ensemble-learning method combines several methods to obtain a better predictive 
performance than any single method. Williams and Gong [10] used a text mining 
method where text from projects of the California Department of Transportation was 
processed and then transformed using support vector decomposition into a numeric 
value that was combined with other data and submitted to a stacking ensemble classi-
fier. It was found that adding the text data improved the prediction result. 

The trends survey shows that there has been an active interest in applying various 
modeling techniques to construction cost increases. However, it also implies that not 
only modeling techniques but also domain knowledge, such as construction project 
and bidding properties, should be combined to enhance predictions of project perfor-
mance. This study will augment existing studies by considering how the project type 
and delivery method can improve cost predictions. Several factors are involved in 
determining project performance including the delivery method, the number of bid-
ders, the type of project, the complexity of the project, accuracy of bids received, and 
the cost of the project. Therefore, this suggests the use of AI to classify combinations 
of project characteristics that produce overruns in project cost. 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 811



4 

3 Feature Descriptions 

The comprehensive understanding of project characteristics can improve the predic-
tive models of cost overrun. This section will address data collection, descriptive 
statistics, project delivery method and project type as project characteristics. 

This study collected a data set of 234 large construction projects costing more than 
5 million dollars for each project that was awarded by the city of Seoul and completed 
between the dates of Jan 1, 1998 and April 30, 2013. The four types of project deliv-
ery methods acquired in the data set were categorized by Turn-key and Alternative 
method as DB, and Lowest bidding and Qualification as DBB method [11]. The mar-
ket share analysis according to the contract year of 1992 - 2011 in Seoul is in Fig. 2. 
In addition, announcements of governmental policy on delivery methods were 
searched and matched up with the market share in the figure. It shows that the number 
of DB method projects increased due to governmental policy since 1992, as well as 
how both DB and DBB method market shares have similar rise and fall trends in the 
number of contracts. 

 

Fig. 2. Public sector project delivery method market share analysis in Seoul, South Korea 
(augmented from Moon 2015 [2]) 

The data available for the projects included two variables that describe the type of 
project being constructed. Table 1 shows the variable. Project Variable 1 is the gen-
eral project type and Project Variable 2 is the sub-category of the general project type. 

Table 1. Project variables 

Project Variable 1 Project Variable 2 

Civil 

Sewerage 
Subway 

Road 
River 

Water Supply 

Building General Building 
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Apartment 

Facility Facility 

Landscaping Landscaping 

Table 2 shows that for the general Civil, Building and Facility project types, the 
DB delivery method had, on average, a lower level of cost growth due to change or-
ders than DBB projects. Landscaping projects were only let using DBB. 

Table 2. Average percentage cost growth due to change orders 

Project Type 1 
Mean Value(Std. Deviation) Mean  

difference 
Sample Size 

of DB/DBB DB DBB 

Civil 13.43(23.39) 20.11(33.22) 6.68 49/61 
Building 9.72(13.50) 14.49(11.28) 4.77 35/56 
Facility 1.54(4.21) 20.73(22.97) 19.19 13/4 

Landscape - 36.67(24.41) NA 0/16 

Total 10.50(18.86) 19.76(25.71) 9.26 97/137 

Table 3 shows that the superiority of the DB method is not clear for some specific 
types of construction. For road and water supply projects, the average cost increase 
was less that using DBB. The table also shows that subway projects in this data were 
only conducted as design build projects, while sewerage and landscape projects were 
only conducted as DBB. 

Table 3. Average percentage cost growth due to change orders for specific project types. 

Project Type 2 
Mean Value(Std. Deviation) Mean dif-

ference 
Sample Size 

of DB/DBB DB DBB 

Sewerage - 13.30(15.18) NA 0/8 
Subway 7.78(20.65) - NA 32/0 

Road 26.26(30.09) 23.62(32.89) -2.64 10/36 
River 30.68(19.67) 78.84(70.29) 48.16 3/3 

Water Supply 13.61(13.81) 2.38(9.95) -11.22 4/14 
General Building 7.63(14.24) 15.53(13.81) 7.90 24/26 

Apartment 14.29(10.91) 13.58(8.67) -0.71 11/30 
Facility 1.54(4.21) 20.73(22.97) 19.19 13/4 

Landscape - 36.67(24.41) NA 0/16 

Total 14.54(16.23) 25.58(24.77) 11.04 97/137 

To be more specific regarding the problem that the superiority of the DB method 
is not clear for some project types, we consider the project type as a confounding 
factor. Fig. 3(b) shows the visualization of Table 3 as a bar chart. It simplifies the 
comparison between DB/DBB itself (Fig. 3(a)) and DB/DBB with the project type 
(Fig. 3(b)). 
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(a) Average percentage cost growth due to change orders for only delivery method 

 

(b) Average percentage cost growth due to change orders for delivery method with specific 
project types (bar chart visualization of data in Table 3) 

Fig. 3. Project type as a confounding factor 

4 Deriving Input Variables 

To derive input variables affecting the project cost overrun, the analysis of field pro-
ject work data (real-world data) and an extensive literature survey were conducted. 
They can be categorized as project and bidding characteristics. This section combines 
the former section results as the analysis of data set with an extensive literature survey 
to deal with the selection of input data. 

Some of the existing research has identified factors that contribute to construction 
cost increases. Williams et al. [12] showed that there was a strong linear relationship 
between the natural log of the low bid and the natural log of the completed cost for 
highway projects in Great Britain and the United States. Skitmore and Ng [13] have 
developed different forms of regression models to forecast the actual construction cost 
and time; they found that client sector, contractor selection method, contractual ar-
rangement, and project type could affect the final cost and time. Gkritza and Labi [14] 
have applied econometric models to the analysis of highway project cost overruns. 
They found that for a given project type and project duration, contracts of larger size 
or longer duration were generally more likely to incur cost overruns. These input data 
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used by previous researchers including section 2 literatures are chronicled in Table 4, 
and the possible variables that are matched with the data set are underlined. 

Table 4. Input data used by previous researchers 

Researcher Project type(sample size) Input data 

Jahren and Ashe 1990 
[15] 

Naval facilities(U.S. 1576) 
Project size, the difference between the 
low bid and government estimate, the type 
of construction, the level of competition 

Williams et al.1999 
[12] 

Highway(UK 28, the U.S. 
90) 

Low bid 

Williams 2002[1]; 
2005[3] 

Highway(NJ, 302);  
Highway(TX, 1260) 

Low bid, median bid, expected project 
duration, number of bids 

Attalla and Hegazy 
2003 [5] 

Reconstruction project (Can-
ada, 50) 

36 variables(scope definition and planning, 
tendering stage, schedule, cost, quality, 
communication, safety) 

Skidmore and Ng 2003 
[13] 

Australian construction 
projects(various,93) 

Client sector, contractor selection method, 
contractual arrangement, project type 

Ling et al. 2004 [16] Residential(Singapore,87) 59 variables, delivery methods(DB/DBB) 

  George et al. 2005 [6] 
Industrial construction pro-

jects (U.S. 50) 

25 variables(project size, contract type, 
relative level of complexity,  site condi-
tions, design schedule) 

Gkriska and Labi 2008 
[14] 

Highway(Indiana, 1957) Project type, project duration, contract size 

Son et al. 2012 [9] Commercial buildings(84) 
64 variables (pre-project planning stage: 
project type, project size, project duration) 

Williams and Gong 
2014 [10] 

Highway(California,1221) 
Low bid, the completed project cost, the 
number of bidders 

Sousa et al. 2014 [7] Sanitation(Chicago,180) 
Delivery method(DBB), project type (wa-
ter/ sewer) 

From the combination analysis of the data set and extensive literature survey, in-
puts to the model were categorized into two characteristics and selected (Table 5). 

Table 5. Input data to the model 

Characteristic Input data 

Project  
characteristics 

Delivery method (DB, DBB) 
Project type as defined by two variables (described in Table 1) 
Initial schedule in days 

Bidding  
characteristics 

Ratio of the bid price to the owner’s pre-bid estimate 
Selected bid amount 
Award method (qualification based award or award to the lowest bidder) 
Number of bidders  
Number of companies forming a joint venture to construct the project 
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5 Methodology 

Figure 4 shows the structure of the ensemble-learning model. The model is supposed 
to produce as output a prediction of the level of cost overruns that will occur during 
construction executions.  

 

Fig. 4. The structure of the ensemble-learning model 

5.1 Ensemble Classifiers and Stacking 

Ensemble classifiers can provide improved prediction results by using several differ-
ent classifiers and combining their results using an algorithm to select the best predic-
tion. This model uses the stacking technique where an ensemble of classifiers is first 
created, whose outputs are used as inputs to a second level meta-classifier to learn the 
mapping between the ensemble outputs and the actual correct classes [17]. In this 
model, an if-then rule is induced to select which of the two model predictions to use. 

5.2 Classification Algorithms 

Two different classification algorithms were used to classify the project data—the 
Ripple-Down and the K-Star classification algorithms. The Ripple-Down algorithm 
automatically generates a set of classification rules from the input data [18]. It learns 
rules with exceptions by generating a default rule. The default or top-level rule is the 
class of the output that occurs most frequently. The algorithm then uses incremental 
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reduced-error pruning to find exceptions with the smallest error rate, finding the best 
exceptions for each exception and iteration [19].  

K-Star is a type of algorithm called a “lazy learner.” The K-Star algorithm is an in-
stance-based learning scheme developed by Cleary et al. [19]. Witten and Frank [20] 
describe the K-Star algorithm as a lazy classifier where the training instances are 
stored and are not employed until the classification time. They also state that K-Star 
uses a nearest neighbor method with a generalized distance function.  

5.3 Normalization of the Original Estimate Data 

The original estimate values vary widely in magnitude. It was found that normalizing 
the original bid amount improved the accuracy of predictions. The purpose of statisti-
cal normalization is to convert data into a normal distribution with mean = 0 and vari-
ance = 1. The formula for statistical normalization is 

 Z = (X-u) /s (1) 

Vector ‘X’ denotes the attribute values, ‘u’ is the mean of the attribute values, and ‘s’ 
is the standard deviation. Using this formula, we can get another vector ‘Z’ that has a 
normal distribution with zero mean and unit variance. It is also called the standard 
normal distribution, N (0, 1).  

5.4 Discretization of Numeric Data 

This discretization is performed by simple binning. The range of numerical values is 
partitioned into segments of equal size. Each segment represents a bin. Numerical 
values are assigned to the bin representing the segment covering the numerical value.  
Four bins were used for each numerical variable.  

5.5 Cross Validation 

The data set of 234 projects is relatively small. Therefore, a cross validation scheme is 
needed to test and validate the model, and to prevent overtraining on training data. 
The cross validation operator is a nested operator. It has two sub-processes: a training 
sub-process and a testing sub-process. The training sub-process is used for training 
the cost prediction model. The trained model is then applied in the testing sub-process 
to make predictions. The performance of the model is also measured during the test-
ing phase.  

The data from the projects needs to be partitioned into k subsets of equal size. Of 
the k subsets, a single subset is used as the testing data set and the remaining k – 
1subsets are used as the training data set. The cross validation process is then repeated 
k times, with each of the k subsets used exactly once as the testing data. The k results 
from the k iterations can then be averaged (or otherwise combined) to produce a sin-
gle estimation. 
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6 Conclusions and Future Work 

This study provides the ensemble-learning model framework to predict project cost 
overrun levels in construction procurement auctions. Although the data is from the 
city of Seoul, this model could adapt the risk levels of other cities/countries, because 
the data includes data from both DB and DBB projects, which are most prevalent 
world-wide, and also includes data about the type of construction. Analysis of this 
data is supposed to compares the overrun level between DB and DBB projects accord-
ing to project types. With the results of the developed model, project owners and pro-
ject managers can check the projects expected to have excessive cost increase and 
prepare for loss of budget before contract completion during bidding phase.  

However, since this model is in the beginning stage, the following process needs to 
be conducted for the near further studies: the ensemble-learning model should show 
the precision and recall for the prediction of the levels of cost overrun. Finally, the 
important contributors to the better-accuracy of the predictions would be shown in the 
further studies. 
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Abstract. This paper is focused in univariate time series forecasting. In this work, 
we present a framework which includes alternative transformations to the origi-
nal time series observations data to carry out the forecasting task. This method is 
based on transforming the original observation time series which turns into a time 
series of the difference between two consecutive values, or the one that indicates 
if there is an increment or a decrement between two consecutive values. A spe-
cific and different model that maps the future values and past values is obtained 
and applied for each of the time series, the original observations and the trans-
formed time series. And finally, the answer given by each of the models is merged 
to get the final one step ahead forecasted value. To fit a model between independ-
ent variables (present and past known values) and dependent variables (future 
unknown values), the Artificial Neural Networks can accomplish suitable results. 
Each of the models committed for the different original and transformed time 
series can be made-up of a single neural net or a combination of several nets, i.e. 
an Ensemble of neural nets. This contribution shows the ongoing experimentation 
performed to evaluate if the system with different ensembles for original and 
transformed time series gets a better result than applying single nets as model to 
forecast the original observations time series. 

Keywords: Artificial Neural Networks, Time Series Forecasting, Taguchi’s 

method, Ensembles. 

1 Introduction  

The univariate time series forecasting task lies in computing the unknown future values 
of a measure by the application of a model f. The inputs (independent variables) of the 
model are the k known previous values of the measure to time t, and it will obtain 
h values ahead (horizon).  

 [𝑦𝑡+ℎ , … , 𝑦𝑡+1 ] = 𝑓(𝑦𝑡  , 𝑦𝑡−1 , … , 𝑦𝑡−𝑘−1 ) (1) 

The Artificial Neural Networks (ANNs) is a well-known and reliable technique to map 
functions, and have been widely applied for system modelling and carry out predictions. 
In time series forecasting, ANNs is considered an advance method as they provide a 
mapping approach for nonlinear relationships. In particular, when ANN are applied to 
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univariate time series forecasting, the ANN inputs (dependent variables) are the k 
known present and past values of a measure got throughout the time. And the output is 
the h unknown future values ahead from time t. That is, the ANN is an approach to 
model the function f in eq(1).  

There are also statistical techniques to model the relationship between past and fu-
ture values. Some of these techniques take not only the original observations (𝑦𝑡) to 
accomplish a model, for instance, they take the residuals, the error on the forecast value 
(𝑒𝑡 = 𝑦�̂� − 𝑦𝑡) into the model as in autoregressive integrated moving average (ARIMA) 
model [1]. Also, some other models include the relation between two consecutive val-
ues of the original time series ( 𝑦𝑡 − 𝑦𝑡−1), so the differencing and the original data can 
be merged into the model. 

In this work, we apply the original observations time series and two additional trans-
formed time series data: differencing (dif) and increment (inc) data, to generate a fore-
cast on the one step ahead time series value (𝑦𝑡+1). For each of the three time series 
raw (i.e. no transformation), dif and inc, a different forecasting model is obtained 
through a supervised learning process, and then combine their answer to forecast the 
future values for original observations. Each of the models is focused only on its par-
ticular time series. In this approach, up to now, the models for any of the time series 
involved (raw, dif, and inc) are based in Artificial Neural Networks. 

The purpose of this paper is to present an ongoing experimentation performed on 
this framework to show that it is an alternative method to carry out time series forecast-
ing. This is bringing out evaluating the performance of a single ANN for raw data, the 
combination of single ANN for each of raw, dif, and inc, and finally, the combination 
of different Ensembles again for each of raw, dif, and inc time series data.  

2 Approach Description 

The approach developed in this work lies in three phases, see Fig. 1. In the first phase: 
the original observations time series (𝑦𝑡

𝑜𝑟𝑖𝑔), i.e. the raw data (𝑦𝑡
𝑟𝑎𝑤), is transformed in 

differencing (𝑦𝑡
𝑑𝑖𝑓) data and increment (𝑦𝑡

𝑖𝑛𝑐) data.  

 

𝑦𝑡
𝑟𝑎𝑤 = 𝑦𝑡

𝑜𝑟𝑖𝑔
                              

𝑦𝑡
𝑑𝑖𝑓

= 𝑦𝑡
𝑜𝑟𝑖𝑔

− 𝑦𝑡−1
𝑜𝑟𝑖𝑔

                

𝑦𝑡
𝑖𝑛𝑐 = {

1 , if 𝑦𝑡
𝑜𝑟𝑖𝑔

> 𝑦𝑡−1
𝑜𝑟𝑖𝑔

0 , if 𝑦𝑡
𝑜𝑟𝑖𝑔

= 𝑦𝑡−1
𝑜𝑟𝑖𝑔

−1 , if 𝑦𝑡
𝑜𝑟𝑖𝑔

< 𝑦𝑡−1
𝑜𝑟𝑖𝑔

  (2) 

In second phase, a different model is obtained for each of the raw, dif and inc time 
series data. In each of these models, for raw, dif and inc independently, the relation 
between the past values (input of the model) and the future values (output of the model) 
is mapped. So, each model, raw, dif and inc, means an approximation for its function 
𝑓𝑟𝑎𝑤 , 𝑓𝑑𝑖𝑓  and 𝑓𝑖𝑛𝑐  respectively, eq. (3),  
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𝑦𝑡+1

𝑟𝑎𝑤 = 𝑓𝑟𝑎𝑤(𝑦𝑡
𝑟𝑎𝑤 , 𝑦𝑡+1

𝑟𝑎𝑤 , … , 𝑦𝑡−𝑘𝑟+1
𝑟𝑎𝑤 )

𝑦𝑡+1
𝑑𝑖𝑓

= 𝑓𝑑𝑖𝑓(𝑦𝑡
𝑑𝑖𝑓

, 𝑦𝑡−1
𝑑𝑖𝑓

, … , 𝑦𝑡−𝑘𝑑+1
𝑑𝑖𝑓

) 

𝑦𝑡+1
𝑖𝑛𝑐 = 𝑓𝑖𝑛𝑐(𝑦𝑡

𝑖𝑛𝑐 , 𝑦𝑡−1
𝑖𝑛𝑐 , … , 𝑦𝑡−𝑘𝑖+1

𝑖𝑛𝑐 )

 (3) 

In the third and final phase, the answers given by the model of each unit in phase 2 
(after a simple post-process to get the answer on original observations data) are com-
bined to get the final answer. Following some details for phase 2 and phase 3 are indi-
cated. 

 

Fig. 1. Schema of the system and its three phases. 

An essential issue when an ANN is applied is its hyper-parameter (other than con-
nection weights, which are computed through learning algorithms based on backprop-
agation) setting to maximize its performance. We can find within the literature several 
methods to manage this issue, but they involve a kind of optimization or search process 
which implies a high computational cost. In this work, we apply as hyper-parameter 
setting procedure the Taguchi’s method, a technique from Design of Experiments 

(DoE) [2], instead of the full-factorial design. The factor (parameter) and level (param-
eter value) combination given by DoE means 32 combinations for 5 hyper-parameters: 
number of inputs, hidden neurons, learning algorithm (resilient backpropagation and 
scaled conjugate gradient backpropagation), learning rate and training cycles. The full 
factorial design means 1024 combinations. 

In this contribution, each model for the second phase will be an ensemble of ANN, 
i.e. a different ensemble of ANN is obtained as the model for each of the raw, dif and 
inc units. These Ensembles comprise some or all of the elements of the set of nets ob-
tained through the factor-level combination applying the Taguchi’s method.  

As final step in phase 2, of course, the ANN which is focused on dif or inc data needs 
the previous raw value to give forecast value for original observations, eq (4). In this 
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equation the parameter r means if the output of the model is rounded just to 1 or +1, or 
not taking just the output of the model (e.g. 0.789) 

 
𝑦𝑡+1

𝑑𝑖𝑓
= 𝑑𝑖𝑓𝑡+1 +  𝑦𝑡                                               

𝑦𝑡+1
𝑖𝑛𝑐 = 𝑟𝑜𝑢𝑛𝑑(𝑖𝑛𝑐𝑡+1, 𝑟) ∗ 𝑎𝑏𝑠(𝑦𝑡+1

𝑑𝑖𝑓
 ) +  𝑦𝑡

 (4) 

The aim of the third phase is to consider the three different units to forecast the raw, dif 
and inc time series data obtained in phase 2 and mix their answers to give a final fore-
casted value. The third phase is only executed for the unknown future values to be 
forecasted (e.g. the test subset, or the final values in a time series competition). How-
ever, the combination of the three models from phase 2, eq. (3) is stablished based on 
the error for validation subset (as generalization abilities), which is part of the known 
time series values.  

 �̂�𝑡 = ∑ (𝑤𝑗×𝑦𝑡
𝑗
),   𝑛 = 3𝑛

𝑗=1  (5) 

The weight of each model depends on its own performance and the performance of 
the other units on validation subset. The formula for the weights is shown in eq. (4), 
where n is the number of units (in this work n = 3), and 𝑒_𝑣𝑎𝑙 is the error on validation 
subset. 

 𝑤𝑗 =
1

𝑛−1
×

(∑ 𝑒_𝑣𝑎𝑙𝑖
𝑛
1 )−𝑒_𝑣𝑎𝑙 𝑗

∑ 𝑒_𝑣𝑎𝑙𝑖
𝑛
1

,   𝑛 = 3 (6) 

3 Experimental Procedure and Results 

In this section, first we are going to explain the experimental setup, and then show the 
experimental results. 

3.1 Experimental Setup 

The framework shown in this work is evaluated in four time series widely applied in 
the literature: Mackey-Glass, Dow-Jones, Quebec, and Temperature. The last three time 
series has been collected from Hyndman’s Time Series Data Library [3]. For each time 
series, the whole data is split in three subsets: train, validation, and test Table 1. Train 
subset is used in phase 2 by the learning algorithm to modify and fixed the ANN 
weights. Validation subset allows to state, in phase 2, the generalization ability of the 
ANN result from learning process. Test subset is never seen by any ANN in the learning 
process, so it is incorporated to test the generalization ability of the system, and taking 
into account only in the third phase. 
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Table 1. Time Series, percentages and number of values for train, valid and test subsets. 

Time Series Training (60%) Validation (20%) Test (20%) 
Dow-Jones  441 146 146 
Mackey-Glass 97 30 30 
Quebec 584 438 146 146 
Temperature 144 48 48 

In this work the accuracy measure to evaluate each ANN or Ensemble and the whole 
system is the root mean square error (rmse). Additionally to accuracy measures, to as-
sess whether differences in accuracy between two models (single ANN, Ensembles or 
any combination of them combination) are statistically significant we use the Diebold-
Mariano test [4]. This test analyzes if the difference of expected losses between two 
models is zero against the alternative that one model is better. If the absolute value 
obtained for the Diebold-Mariano test (dm) for the forecasted values given by two dif-
ferent models is greater than 1.96 (|𝑑𝑚| > 1.96) the forecast of both models are statis-
tically different. 

In this work, the benchmark model is a single ANN for the original time series ob-
servations (raw data), in particular the best ANN (best rmse for validation subset) ob-
tained from the 32 different combinations of hyper-parameters for the raw time series 
data. 

As indicated above, to set the ANN hyper-parameters within each unit in phase 2, 
instead a full factorial combination of the parameters selected (input nodes, hidden 
nodes, learning algorithm, learning rate and training cycles), a factor-level combination 
based on Latin-squares is taking into account which means a much smaller (about 1.5 
order of magnitude lower) number (32) of combinations from the full factory (1024). 

3.2 Experimental Results 

In this contribution we show the results obtained for the four time series indicated above 
for three different options setting the units (raw, dif and inc) in phase 2: i) the best single 
net for each unit ii) an Ensemble of the 32 nets obtained applying Taguchi Method for 
hyper-parameter setting (note that the elements of the ensemble for each unit from 
phase 2 are different and focus on its specific forecast task, raw, dif or inc data), see 
Table 2 for the 32 factors-levels combinations, to get the hyper-parameters; iii) for each 
unit (raw, dif, inc) an Ensemble of any 4 ANN of the 32 nets obtained applying Taguchi 
Method for hyper-parameter setting. 

Due to limited space, for one of the time series, we show the rmse (root mean square 
error) for validation and test subsets, obtained by two options to set the element(s) of 
each units at phase 3 (rounding or not the output of unit inc, and what units are com-
bined wO, 1 for raw, 2 for dif and 3 for inc). These results are shown in Table 3 

To evaluate the performance of the system bearing in mind the three options i), ii) 
and iii) already indicated for phase 2, we can take into account the following options 
for their combination in phase 3:  

(a) The best net from the 32 different nets obtained applying Taguchi’s Method for 

raw (original observations) data. This is the reference benchmark is this study. 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 824



(b) The combination of the best net of each unit (raw, dif, inc) from the 32 nets ap-
plying Taguchi’s Method. 

(c) The net of the unit selected (raw, dif, inc) with lowest rmse error for validation 
subset. The forecast on test subset for the system would be the answer of this unit 
on test subset.  

(d) The combination of the three units, comprises each of them by a different En-
semble. 

(e) The ensemble from the unit selected (raw, dif, inc) with lower rmse error for the 
validation subset. The forecast on test subset for the system would be the answer 
of this unit on test subset. 

Table 2. List of the 32 factors-levels combinations, to get the hyper-parameters 

in: inputs; hn: hidden nodes; la: learning algorithm; α: learning rate; trc: training cycles. 

run in hn la α trc run in hn la α trc run in hn la α trc 

01 05 05 05 0,20 05 12 15 20 05 0,10 05 23 10 35 06 0,01 05 

02 05 10 06 0,10 10 13 20 05 05 0,01 10 24 10 40 05 0,05 10 

03 05 15 05 0,05 20 14 20 10 06 0,05 05 25 15 25 06 0,05 50 

04 05 20 06 0,01 50 15 20 15 05 0,10 50 26 15 30 05 0,01 20 

05 10 05 06 0,10 20 16 20 20 06 0,20 20 27 15 35 06 0,20 10 

06 10 10 05 0,20 50 17 05 25 05 0,20 05 28 15 40 05 0,10 05 

07 10 15 06 0,01 05 18 05 30 06 0,10 10 29 20 25 05 0,01 10 

08 10 20 05 0,05 10 19 05 35 05 0,05 20 30 20 30 06 0,05 05 

09 15 05 06 0,05 50 20 05 40 06 0,01 50 31 20 35 05 0,10 50 

10 15 10 05 0,01 20 21 10 25 06 0,10 20 32 20 40 06 0,20 20 

11 15 15 06 0,20 10 22 10 30 05 0,20 50 - - - - - - 

In (c) and (e), a selection based on validation subset performance is applied as com-
bining method to get the output of the system. In (b) and (d) eq. (3) and eq. (4) are 
applied to get the answer of the system in phase 3. 

To evaluate the framework shown in this contribution we have carried out different 
comparisons, which are shown in Table 4. Note that the options (d) and (e) are the ones 
that comprises ensembles in each unit in phase 2. 

The results for these comparisons are shown in Table 5. The columns dm1 to dm6 
are the Diebold-Mariano test value for comparisons c1 to c6 of Table 4. The columns 
T1 to T6 indicates if the forecasted values are statistically different for each of the com-
parisons. The “+” means that the forecast made by the option related with ensembles 
((d) or (e)) is statistically different (its absolute value for dm test is greater than 1.96) 
and its rmse on test data is better (lower) than the option for single nets ((a), (b) and 
(c)). The “=” means that the forecast made by the option related with Ensembles ((d) 
or (e)) is statistically the same than (a), (b) and (c). And “-” means that gets a statisti-
cally different and worse result. The column rO means if the output of the unit inc is 
round or not to 1 or -1. The column wO means which are the answers combined in 
phase 3 (1: raw; 2: dif; 3: inc). 
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Table 3. For Dow-Jones (dj), results for the best single ANN from 32 combinations of the 
parameters in Taguchis’s method, and for the ensemble comprises by the 32 nets obtained in 

Taguchis’s method. 

 single best ANN for each unit (raw, dif, inc)  
param rmse - validation rmse - test 

ts rO wO raw dif inc comb raw dif inc comb  
dj 0 12 

26,199 24,949 

26,321 
23,041 

149,917 28,814 

27,803 
78,606  

dj 0 13 24,240 80,140  
dj 0 123 23,578 57,906  
dj 1 12 

26,347 
23,041 

28,522 
78,606  

dj 1 13 24,109 80,652  
dj 1 123 23,400 58,118  

 Ensemble of 32 nets for each unit (raw, dif, inc) (a) vs (d) 
dj 0 12 

30,548 27,253 

26,811 
25,802 

152,116 27,148 

26,965 
78,120 = 

dj 0 13 25,730 77,012 + 
dj 0 123 25,534 57,612 = 
dj 1 12 

26,755 
25,802 

27,144 
78,120 = 

dj 1 13 25,787 77,154 + 
dj 1 123 25,543 57,726 = 

Table 4. Comparisons carryied in the experiments on test subset forecast 

c1: (a) vs (d) 

c2: (a) vs (e) 

c3: (b) vs (d) 

c4: (b) vs (e) 

c5: (c) vs (d) 

c6: (c) vs (e) 

The result shown in the final columns of Table 5 indicates than 46% of the config-
urations through the four time series in this experimentation using Ensembles as model 
within the units in phase 2 get a better result than using single nets, almost half of the 
times (52%) of time gets a similar result, and only 1.4 % get a worse results. Additional 
comparisons have been carried out when the number of elements of the ensembles are 
limited (e.g. 4, 8, 16 and 20 nets) where similar results have been obtained. 

4 Conclusions and future works. 

In this work, we show an approach to intend an alternative to the ANN (or model) that 
learns only from the raw time series data. This alternative mix the model obtained for 
original observation (raw) time series data, the differential (dif) time series data and the 
increment (inc) time series data. Also, we evaluate if by means of ensembles as specific 
model for raw, dif, and inc unit gets better results. In fact, more than 98% of the times 
the system with Ensembles as model for each unit gets better (40%) or similar results 
(58%). 
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Table 5. Result for comparisons (dmi and Ti are for ci in Table 4) of best net for each unit in vs 
Ensemble with the 32 nets obtained from Taguchi’s Method. 

nan means that the selected unit is raw. DJ:(Dow-Jones), MG (Mackey-Glass), Q (Quebec), 

T(Temperature) 

Sum through 
Comparisons 

ts rO wO dm1 dm2 dm3 dm4 dm5 dm6 T1 T2 T3 T4 T5 T6 (+) (=) (-) 
DJ 0 12 5,220 5,055 0,323 5,220 0,323 5,055 + + = + = + 4 2 0 
DJ 0 13 5,197 5,056 3,267 5,197 3,267 5,056 + + + + + + 6 0 0 
DJ 0 123 5,214 5,060 0,277 5,214 0,277 5,060 + + = + = + 4 2 0 
DJ 1 12 5,220 5,055 0,323 5,220 0,323 5,055 + + = + = + 4 2 0 
DJ 1 13 5,205 5,047 2,618 5,205 2,618 5,047 + + + + + + 6 0 0 
DJ 1 123 5,217 5,055 0,462 5,217 0,462 5,055 + + = + = + 4 2 0 
MG 0 12 6,861 6,905 5,339 nan 1,097 nan + + + = = = 3 3 0 
MG 0 13 6,840 6,953 6,092 nan 1,097 nan + + + = = = 3 3 0 
MG 0 123 6,504 6,614 2,949 nan 1,097 nan + + + = = = 3 3 0 
MG 1 12 6,861 6,905 5,339 nan 1,097 nan + + + = = = 3 3 0 
MG 1 13 6,808 6,900 5,432 nan 1,097 nan + + + = = = 3 3 0 
MG 1 123 6,446 6,515 3,161 nan 1,097 nan + + + = = = 3 3 0 
Q 0 12 2,985 2,097 1,983 nan 3,344 nan + + + = + = 4 2 0 
Q 0 13 3,236 2,420 0,812 3,236 0,812 2,420 + + = + = + 4 2 0 
Q 0 123 0,943 0,174 0,573 nan 1,026 0,174 = = = = = = 0 6 0 
Q 1 12 2,985 2,097 1,983 nan 3,344 nan + + + = + = 4 2 0 
Q 1 13 2,982 1,946 0,746 2,982 0,746 1,946 + = = + = = 2 4 0 
Q 1 123 0,329 -0,632 -0,468 nan 3,344 nan = = = = + = 1 5 0 
T 0 12 0,760 -0,583 0,871 nan 2,137 nan = = = = + = 1 5 0 
T 0 13 0,469 -0,629 1,004 nan 2,137 nan = = = = + = 1 5 0 
T 0 123 -1,150 -2,090 0,468 nan 2,137 nan = - = = + = 1 4 1 
T 1 12 0,760 -0,583 0,871 nan 2,137 nan = = = = + = 1 5 0 
T 1 13 0,375 -0,687 1,065 nan 2,137 nan = = = = + = 1 5 0 
T 1 123 -1,216 -2,193 0,310 nan 2,137 nan = - = = + = 1 4 1 
               67 75 2 

 

5 Conclusions and future works. 

In this work, we show an approach to intend an alternative to the ANN (or model) that 
learns only from the raw time series data. This alternative mix the model obtained for 
original observation (raw) time series data, the differential (dif) time series data and the 
increment (inc) time series data. Also, we evaluate if by means of ensembles as specific 
model for raw, dif, and inc unit gets better results. In fact, more than 98% of the times 
the system with Ensembles as model for each unit gets better (40%) or similar results 
(58%). 

Among the future works, we must extend the experimentation applying a method to 
get a candidate for best single model at all (brute force, or a metaheuristic search as 
evolutionary computation), and to an additional number of time series to endorse the 
result from this works. Also, the same framework could be applied but in this case with 
different computational intelligence or machine learning techniques, for instance Sup-
port Vector Machines, to get a model of one or each of the units. And additionally, we 
could apply an additional machine learning (artificial neural networks, or support vec-
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tor machines) to learn how to combine the model (Stacking). Also, different transfor-
mations of the original observation can be added to the framework, which means both 
additional units in phase 2 and new answers to merge in phase 3. 
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Dynamics of Memory in Investor
Attention to Energy Market

Ravi Prakash Ranjan? and Malay Bhattachharyya
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Abstract. In this article, we investigate the correlation structure of the
time series of investor attention as measured by relative search query
volume of stocks in Google. Specifically, we explore - i) Whether the time
series has a power law correlated dependence (long range memory) and
how does it evolve over time? ii) How does this dependence vary with
frequencies of sampled data? iii) Does a cross-correlation dependence
exist between local and global investor attention? iv) What happens to
this memory structure in case of volatility clustering periods of price
and volume? We perform detrended fluctuation analysis and detrended
cross-correlation analysis of the time series of investor attention of top 20
energy companies (by their market capitalization). The results confirm
the existence of long range dependence in investor attention. The memory
dynamics are characterized by persistent and mean-reverting behavior.
There is a reasonably high positive cross-correlation dependence between
local and global investor attention. Finally, we observe that volatility
clustering has little effect on long range dependence structure of investor
attention.

Keywords: Investor Attention, Google Trends, Fluctuation Analysis,
Power law dependence

1 Introduction

When the New York times reported the breakthrough in cancer research on 3rd
May 1998, the stock price of EntreMed’s surged by 300 % [1]. Although the
article was there in the journal Nature and some other newspapers five months
back, the market remained under reacted till it appeared in Times. This news
not only affected EntreMed but other biotechnology firms witnessed a consider-
able increase in their stock price as well. This suggests that mere an availability
of information does not get reflected in prices unless enough attention is paid
to it by the relevant people (like investors). Hence, the investor attention must
play a crucial role in determining market movement and efficiency. Furthermore,
attention is a limited cognitive resource available to us [2]. So, even if there is a
huge volume of information available, investors have no choice but to select only
specific set of information and make their investment decisions.

? Corresponding Author, Email: ravi.ranjan14@iimb.ernet.in
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2 Ravi Prakash Ranjan and Malay Bhattachharyya

In this article, we study the memory associated with the time series of investor
attention. An investigation on whether the time series has noise, short memory
or long memory shall have direct implications while modeling the relationships of
investor attention and other variables. A number of studies are available on long
run memory characteristics of stock market variables like - stock prices [3], [4],
stock returns [5], [6], stock volume [7], [8], stock volatility [9], [10] and conditional
variance of stock returns [11]. In case the time series has no memory i.e. it’s a
pure noise, the series cannot be used for any kind of predictive modeling. The
existence of short memory in a time series implies that the effect of exogenous
variable or shock to the series is short lived and dissipates very fast [12]. Long
memory in a time series implies that its autocorrelations decay slowly, making
it efficacious for modeling and analyzing the relationship with other variables.
Understanding of long memory is important and special because it is often ab-
sent in most of the stochastic processes [13]. Existing literature primarily covers
the impact of investor attention on other stock market variables, volatility and
returns predictability [14], [15], [16]. In a very recent article, Xiaoquian Fan et.
al analyzed Baidu search engine based investor attention index and its cross cor-
relations with trading volume and volatility [17]. In this article we analyze noise
and long range memory structure for investor attention based on the relative
volume of Google search queries.

The main focus of this article is to carry out an in depth analysis of this de-
pendence structure rather than predictions. With respect to memory in investor
attention time series, specifically we explore the following - a) Existence & Dy-
namics: Whether the time series has a power law correlated dependence (long
range memory) and how does it change over time? b) Sampling Frequency:
How does the dependence structure vary with frequency of sampled data? c)
Local Vs Global Investor Attention: Does a cross correlation dependence
exist between local and global investor attention? d) Volatility Clustering:
What happens to the memory structure in case of volatility clustering periods of
price and volume? A better understanding of memory in investor attention shall
have important implications to value at risk computation, volatility modeling,
analyzing market efficiency, risk diversification and policies in energy market.

2 Memory Detection in Time Series

In this section we briefly discuss the notion of ‘memory’ in a time series and sta-
tistical methods for its detection. Let Xt be a sequence of IID random variables
such that E(X2

t ) <∞ and var(Xt) is independent of t. Let λu = Cov(Xt, Xt+u).
The time series is said to have [18] no memory if λu = 0 for all u 6= 0. It has
a short memory if λu has decays faster or has an exponential decay. In a less
stringent sense, Xt has a short memory if

∑u=∞
u=−∞ |λu| <∞. A long Memory

exists if λu decays slowly or has a power law decay. Again using the mild defini-
tion, Xt has a long memory if

∑u=∞
u=−∞ |λu| =∞.
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Dynamics of Memory in Investor Attention to Energy Market 3

We analyze the memory structure in the time series using detrended fluctua-
tion and cross correlation analysis. To outline the algorithmic steps involved in
these methods, let {xt} and {yt} be two time series with t = 1,2,3,...,N. We

denote mx = 1
N

∑i=N
i=1 (xi) and my = 1

N

∑i=N
i=1 (yi). A cumulative sum func-

tion (called ‘profile’) for the given time series {xt} and {yt} is constructed as:

Xt =
∑i=t
i=1(xi −mx), Yt =

∑i=t
i=1(yi −my). To perform detrened cross cor-

relation analysis, a fluctuation function is obtained using these steps: [19]:
a) Partition Xt and Yt into

[
Tb = N

l

]
non overlapping segments of size l from

beginning to end of Xt and Yt. If the series N is not divisible by l, some points
at the end of the series may be left out. Hence another partion of size l is done[
Te = N

l

]
from end to beginning on both series. b) Enumerate the partitions as

i = 1,2,3,..,2T = (Tb +Te). For each partition i in 1 < i < 2T , a least square line
is fitted (denoted by Xols

i,t and Y olsi,t ). The detrended covariance is computed as -

ψ2
i (l) =

1

l

l∑
j=1

(
[
X(i−1)l+j −Xols

i,j,

] [
Y(j−1)l+j − Y olsi,j

]
)

for i = 1,2,3,...,Tb

ψ2
i (l) =

1

l

l∑
j=1

(
[
X(N−(i−Te)l+j −X

ols
i,j,

] [
Y(N−(i−Te)l+j − Y

ols
i,j

]
)

for i = Tb+1, Tb+2, ..., 2T . The detrended cross correlation analysis (DCCA) fluc-

tuation function is given by ψ2
DCCA(l) =

{
1
2T

∑i=2T
i=1 ψ2

i (l)
} 1

2

. If only one of the

time series is considered, the detrended covariance reduces to detrended variance.
The detrended fluctuation analysis (DFA) function is given: ψ2

DFA(l) ={
1
2T

∑i=2T
i=1 ψ2

i (l)
} 1

2

. However this method was developed earlier by Peng et.

al [20].The main essence of detrended fluctuation function is the fact it follows
power law [21] : ψ2

DFA(l) ∝ lα. If the individual series xt and yt are power law
correlated then ψ2

DCCA(l)) ∝ lβ [19]. Using DFA and DCCA exponents, de-
trended cross correlation coefficient (ρDCCA) for series xt and yt is computed as
-

ρDCCA(l) =
ψ2
DCCA(l)

[ψ2
DFA(l)]{xi}[ψ

2
DFA(l)]{yi}

(1)

The idea of both DFA and DCCA has its root in a method known as “Hurst
Rescaled Analysis” [22]. The associated exponent (known as Hurst exponent,
H) could be affected by non-stationaries [4], while DFA and DCCA exponents
(α and β) works well on non stationary series as well. In our analysis we only
use DFA and DCCA to analyze the memory structure of the time series. The
interpretations of H and α are similar [23]. For a stationary process the value
of H lies between 0 and 1. For H = 0.5, the series is just a white noise (random
walk) and has no memory. For H < 0.5 the series is anti persistent while H > 0.5
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shows persistent behavior of the series. The series becomes non-stationary when
H crosses 1, however till H=1.5, it exhibits a mean reverting behavior. H = 1.5
reflects that the series is Brown Noise (Brownian motion). When H exceeds 1.5
it represents an explosive process. β is a measure of nature of cross correlation
between two series. For a given value of β the primary nature of series remains
same but for the interpretation. For example - if 0 < β < 0.5, there is anti
persistent cross correlation i.e. increase in one series is marked by a decrease in
another. ρDCCA = −1, 0, 1, imply that there complete negative, zero, positive
cross correlation respectively between the two series.

3 Data & Investor Attention Measure

For our analysis we chose 20 largest energy companies by market capitaliza-
tion [24] listed at New York Stock Exchange. We quantify investor attention
using Google search queries for these particular stock. The key idea is that if an
investor is searching for a query in Google, this means (s)he is paying attention
to it. So Google search could be a revealed measure of attention [25]. Zhi Da et.
al showed that the investor attention as measured by relative search volume of
stock ticker symbols correlates with existing measures of investor attention [25].
Their results also suggest that search based investor attention is more real time.
Amal Aouadi et al. [26] analyzed France stock market and showed that Google
search based investor attention is correlated with trading volume of the stock
and could be used to model volatility.

To quantify investor attention we use relative search volume time series of ‘stock
name’ instead of ‘stock ticker symbol’ because the later is likely to capture more
of retail investor attention [25]. Further, in our analysis a ‘company name’ as
search query is much more relevant than ticker symbol. For example - stocks like
CNOOC Limited has its symbol as ‘CEO’, so looking at search query time series
of ‘CEO’ gives little information about investor attention to the stock. In fact
while looking for time series of a particular stock name, Google gives suggestions
whether the entered stock is just a search term or a corporation. We select the
time series of the stock name corresponding to corporation. The obtained series
is the relative search volume of the stock with respect to the total search volume
worldwide over time scaled from 0 to 100. Let Rt be the relative search volume
of stock at time t. We define the measure of investor attention (It) as log(1+Rt).

We collect the data for Rt for each of the stock using public web facility of
Google called “Google Trends”. For a given stock, we collect dataset for Rt clas-
sified into following categories - a) Longer time duration, searched locally:
In this case Rt consists of weekly data from second week of April 2012 to last
week of April 2017 where search location is restricted to the country of origin
for the stock, b) Longer time duration, searched globally: In this case Rt
is same as above but the search location is worldwide now. c) Shorter time
duration, searched locally: In this case Rt consists of daily data from 26th
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Jan 2017 to 24th April 2017 where search location is restricted to the country of
origin for the stock. d) Shorter time duration, searched globally: Again,
in this case Rt is same as above except the search location is now modified
to worldwide now. The key idea behind this classification is to understand the
memory dependence structure when investor attention data is sampled at a low
& high frequency as well as to see the cross correlations between local and global
investor attention for a given stock.

4 Analysis & Results

4.1 Memory in Investor Attention: Existence

To check the existence of memory in investor attention, we perform detrended
fluctuation analysis of the time series for both long and short duration. Based
on the estimated coefficients we conclude on the existence of long range memory
in the series. For each stock we obtain the investor attention by It = log(1+Rt).
We denote It,d and It,w as investor attention of stock with underlying time series
frequency as daily and weekly respectively. The length of time series of It,d is 89
while for It,w it is 261. In this case, we limit our analysis to investor attention
obtained using global search for the stocks (since local search volume could be
zero if the language of query entered is non - English). For example, we observe
that for Sinopec (a Chinese firm) relative volume of local search query is often
zero while globally it has non zero and significant large search volumes (Figure
1). This means investors in China use Chinese search queries or a different search
engine (like Baidu).

For any given stock we first compute It,d and It,w. Using the steps outlined in sec-
tion 2, we obtain the fluctuations (ψDFA) as a function of window size (l). Using
equation (3), we assume a constant ki for a stock i such that - ψ2

DFA(l) = kil
αi .

Therefore,

Fig. 1. Local and Global Search Trends For Query “Sinopec”
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log(ψ2
DFA(l)) = log(ki) + αi ∗ log(l) (2)

To obtain αi for a given stock, we fit a linear model using ordinary least
squares between log(ψ2

DFA(l)) as dependent variable and log(l) as independent
variable. Since, we are interested in whether the It,d or It,w has memory or its just
a noise, we do an hypothesis testing to check whether obtained αi is statistically
different from 0.5 (case when it is a pure noise). For this we use a null hypothesis
H0 : αi = 0.5 and alternate hypothesis as HA : αi 6= 0.5. Wald statistic for this

test is defined as: W =
(
αi−0.5
σα

)2
, where σαi is the standard error of αi. Figure

2 shows the plot of logarithm of fluctuation function vs logarithm of window
size for the stock Sinopec. To obtain the fluctuation function we vary window
size from 5 to 85 for It,d and 5 to 250 for It,w. It is evident (from Table 1 &
Table 2) that for both the series the null hypothesis of pure noise is rejected.
We observe that the DFA exponent for It,d is 0.34, suggesting that the series is
anti-persistent i.e. it exhibits a mean reverting behavior. However It,w has DFA
exponent as 0.90 (Table 2) indicating a long term dependence in the investor
attention and is near to the edge of non-stationarity. We carry out the same
analysis for global investor attention of all the stocks. It is evident that more
often than not Wald test rejects null of pure noise in investor attention. This
confirms the existence of power law correlated structure implying a long term
memory in the time series of investor attention.

Fig. 2. DFA coefficient estimation for investor attention (for 3 months) for “Sinopec”

4.2 Memory in Investor Attention: Dynamics

To explore the dynamics of memory across time we carry out a rolling window
analysis for both 90 day & and 5 years series of investor attention based on global
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Stock Name DFA Exponent RSquared SdError Wald Statistic P Value

Exxonmobil 0.4359 0.9291 0.0184 12.1934 0.0011
Royal Dutch 0.3395 0.9244 0.0148 117.5224 0.0000
Chevron 0.3452 0.9192 0.0156 98.3467 0.0000
Petrochina 0.2864 0.7039 0.0283 56.8750 0.0000
Total SA 0.6054 0.8817 0.0338 9.7144 0.0033
Schlumberger 0.2335 0.8325 0.0160 278.5484 0.0000
British Petroleum 0.3486 0.8714 0.0204 54.9230 0.0000
Sinopec 0.4825 0.8429 0.0318 0.3045 0.5839
Petrobras 0.4473 0.8945 0.0234 5.0672 0.0295
Conco Phillips 0.3716 0.5840 0.0478 7.2129 0.0102
ENI 0.1779 0.5513 0.0245 173.1554 0.0000
Enterprise Products 0.4601 0.8230 0.0325 1.5019 0.2270
Statoil 0.8162 0.8936 0.0429 54.2219 0.0000
EOG Resources 0.3235 0.8580 0.0201 77.3600 0.0000
CNOOC Limited 0.5332 0.8713 0.0313 1.1292 0.2939
Suncor Energy 0.3534 0.9106 0.0169 75.4474 0.0000
Kinder Morgan 0.4800 0.7820 0.0386 0.2672 0.6079
Occidental Petroleum 0.6091 0.9398 0.0235 21.5404 0.0000
Halliburton 0.2469 0.8833 0.0137 341.8434 0.0000
Phillips 66 0.7697 0.9690 0.0210 164.8613 0.0000

Table 1. DFA Exponents For Investor Attention (90 day Period)

Stock Name DFA Exponent RSquared SdError Wald Statistic P Value

Exxonmobil 0.8085 0.9543 0.0179 298.0700 0.0000
Royal Dutch 0.9214 0.9303 0.0255 273.3864 0.0000
Chevron 1.1181 0.9745 0.0183 1146.7347 0.0000
Petrochina 0.9053 0.9155 0.0278 212.9451 0.0000
Total SA 0.8237 0.9669 0.0154 441.5677 0.0000
Schlumberger 0.9949 0.8210 0.0469 111.2002 0.0000
British Petroleum 0.9665 0.9277 0.0272 293.0681 0.0000
Sinopec 0.9011 0.9308 0.0248 261.3366 0.0000
Petrobras 1.1102 0.9628 0.0220 766.0020 0.0000
Conco Phillips 0.9839 0.9563 0.0212 518.9868 0.0000
ENI 0.6126 0.8886 0.0219 26.4150 0.0000
Enterprise Products 0.6503 0.8818 0.0241 39.0325 0.0000
Statoil 1.0556 0.9380 0.0274 410.5673 0.0000
EOG Resources 0.7491 0.9179 0.0226 121.0644 0.0000
CNOOC Limited 0.6927 0.9512 0.0158 147.8458 0.0000
Suncor Energy 0.6855 0.8659 0.0272 46.3254 0.0000
Kinder Morgan 0.8919 0.9472 0.0213 339.4692 0.0000
Occidental Petroleum 0.8680 0.9266 0.0247 222.3952 0.0000
Halliburton 1.1109 0.8871 0.0400 232.9367 0.0000
Phillips 66 0.6761 0.8182 0.0322 29.9242 0.0000

Table 2. DFA Exponents For Investor Attention (5 years Period)

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 835



8 Ravi Prakash Ranjan and Malay Bhattachharyya

search volume for the stock. For a 90 day period the rolling window consists of 22
days and for a 5 year period, 24 quarters are taken. For each stock we take 65 and
217 rolling windows for 90 days and 5 year period respectively. We compute DFA
coefficients for each rolling window using the method discussed in section 2. The
dynamics of power law dependence is shown in Figure 3 for a subset of stocks.
The dynamics of this dependence structure is observed to persistent and short
lived in nature. This means as we progress across rolling windows for a given
stock, a large change is followed by a large change and small change is followed
by a small change. From the plot, it is clear that direction of changes DFA
exponent varies rapidly thereby changing the extent of dependence quickly. This
characteristic brings down the predictability of investor attention which could
lead to higher efficiency in the market. Similar pattern is observed for both 90
days and a 5 year period.

4.3 Sampling Frequency & Dependence Structure

We have considered the investor attention at two different frequencies. As men-
tioned earlier, for a short term investor attention we consider 90 days data mea-
sured daily and for a long term investor attention we consider 5 years data
measured weekly.

We delved deeper into obtained DFA exponents to spot any differences in pat-
tern or values for It,d & It,w. We partitioned the estimated DFA exponents into
four intervals - a) (0 - 0.4): Anti-persistent, b)(0.4 - 0.6): Almost Pure Noise,
c) (0.6 - 1.0): Persistent & d) (1 - 1.5): Non Stationary. DFA exponent for
each rolling window for a given stock falls exactly in one of the partitions. For
both It,d & It,w, we compute the probability of a rolling window falling into
one of these partitions using the relative frequency approach. From the com-
puted probabilities we observe that for a 5 year period Prob(Persistent) is
consistently higher than Prob(Antipersistent) for all stocks. This suggests that
at low frequency (i.e. weekly), the investor attention has a long range depen-
dence with near non stationary structure making the predictability difficult and
thereby boosting market efficiency. However at a high frequency (i.e. daily),
Prob(Antipersistent) is relatively higher than Prob(Persistent) for almost all
the stocks. This means for most of the rolling windows the series is stationary
and mean reverting indicating higher predictability and lesser efficiency in the
market. The results remain same when estimated DFA exponents are compared
for full time period [Figure 4]. For nearly all stocks low frequency investor atten-
tion is closer to 1 while it is less than 0.5 for high frequency investor attention.

4.4 Local and Global Investor Attention

To investigate the cross correlation structure between local and global investor
attention we compute ρDCCA(l) as defined by equation 4. We perform this anal-
ysis on It,w for a five year period. Local investor attention is the time series based
on search queries for the stock at country of origin as the geographical location
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Fig. 3. Memory Dynamics For Investor Attention For Stocks (5 year period) (Left to
Right, Top : Petrochina, Schlumberger, Sinopec & Bottom: Conco Phillips, Statoil,
Halliburton)

Fig. 4. Dependence Structure At High and Low Frequency

while for global investor attention the location is chosen to be worldwide. An
important point the note here is that ρDCCA(l) is calculated at a given scale.
We have a total of 261 observations and we chose l = 20. One may calculate
ρDCCA(l) at different scales and then average it out. This value will only be
slightly different. We expect the cross correlations to be positive and should be
reasonably high. This is because an important news related to the stock draws
local and global investors attention. However depending on the stock and it’s
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Stock Name P(Antipersistent) P(Antipersistent) P (Persistent) P (Persistent) ρDCCA

(90 days) (5 years) (90 days) (5 years)
Exxonmobil 0.4308 0.1198 0.0923 0.3364 0.86
Royal Dutch 0.3231 0.0507 0.2154 0.4194 0.36
Chevron 0.5385 0.0138 0.0615 0.4378 0.92
Petrochina 0.6462 0.2028 0.0462 0.4286 NA
Total SA 0.4154 0.0507 0.2000 0.5346 0.79
Schlumberger 0.7385 0.0783 0.0000 0.5161 0.35
British Petroleum 0.3231 0.2212 0.2308 0.4700 0.54
Sinopec 0.3846 0.2074 0.2615 0.4424 NA
Petrobras 0.5077 0.0092 0.2000 0.3088 0.99
Conco Phillips 0.6462 0.0553 0.1692 0.4009 0.86
ENI 0.9077 0.0507 0.0000 0.4562 0.94
Enterprise Products 0.7077 0.1429 0.0923 0.3456 0.93
Statoil 0.3538 0.0230 0.2769 0.3318 0.46
EOG Resources 0.5231 0.1751 0.0462 0.2719 0.98
CNOOC Limited 0.6000 0.3502 0.0923 0.3226 NA
Suncor Energy 0.4154 0.0876 0.0769 0.5392 0.94
Kinder Morgan 0.5231 0.1060 0.1077 0.4147 0.81
Occidental Petroleum 0.3231 0.0691 0.2154 0.5023 0.80
Halliburton 0.7846 0.1429 0.0000 0.3180 0.94
Phillips 66 0.3231 0.0599 0.2462 0.3364 0.78

Table 3. DFA Exponents & ρDCCA For Investor Attention

importance of information related to stock, the intensity of attention may vary.
In Table 3 (last column), we enlist all the cross correlation values. As expected
the correlations are positive, some of them are high and most of them are above
0.5. For a few stock correlations cannot be computed because search volume is
very small (due to non English search queries). In our case, all three happens to
be Chinese stocks indicating the investors in China uses queries in ‘Chinese’ to
collect stock information.

4.5 Volatility Clustering and Investor Attention

From the estimated DFA exponents and rolling window analysis we have seen
that the long range memory has persistent and short lived nature. We also ob-
served that the extent of dependence is changing rapidly across rolling windows.
In this part we analyze if the dependence structure changes during returns or
volume volatility clustering periods. Given the dynamics of memory of investor
attention, the long range dependence should not have much variation under such
periods and intrinsic memory structure should be retained. However, it is very
much possible investor attention can affect the returns or volume volatility (as
discussed by Daniel Andrei and Michael Hasler [27]).

For a given window, we measure returns volatility by taking standard deviation
of log returns and log volumes. We observe that memory structure is retained
during volatility clustering periods. To validate this proposition we check corre-
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lations between volatility between DFA exponents and volatility for all stocks.
The results suggest that there is a small negative correlation (∼ 0.2) between
the two for most of the stocks. To confirm this further we carry out Granger
causality tests with lag 3 and check for both ways causality. The null hypothe-
sis that volatility doesn’t Granger cause dependence structure (or vice versa) is
failed to get rejected in almost of all the cases. Hence, the results are in favor of
the proposition that volatility clustering has little effect on long dependence of
investor attention.

5 Conclusions

In this article we investigated the long range dependence of investor attention
for top 20 stocks from energy market. Google search queries are revealed mea-
sure of attention and we used the relative search query volume to quantify the
investor attention. Our results suggest that investor attention is indeed power
law correlated and has long term dependence in its time series at both high and
low frequencies. Further we observed that at high frequencies, investor attention
is stationary and anti-persistent indicating a higher predictability. Dynamics of
long range investor attention indicates that extent of dependence is changing
rapidly and is short lived and persisting in nature. Detrended cross correlation
analysis reveals that there is a reasonably high cross correlations between local
and global investor attention. Finally, by using Granger Causality tests we see
that the returns and volume volatility clustering has little effect on long range
dependence structure of investor attention time series.
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Abstract. In pursuit of learning Granger-causality networks from time
series data we derive, via application of the Alternating Direction Method
of Multipliers (ADMM), a method to fit large and multi-lag vector au-
toregressive models with a “depth-wise” grouped sparsity pattern. Our
grouped sparsity algorithm is an extension of the widely applied LASSO
(directly applicable to VAR(1) models) to VAR(p) models with a struc-
ture specifically tailored to causality networks. We apply our so called
DWGLASSO algorithm on a large system consisting of temperature data
from 165 Canadian weather stations in order to provide some empirical
validation.

Keywords: Granger causality, time series, sparsity, LASSO, vector autore-
gression, proximal methods, ADMM.

1 Introduction and Related Work

Since the work of Granger[1] in the latter half of the 20th century there has been
considerable interest in the discovery of causal relations in time series data. The
idea behind Granger’s definition of causality for stochastic processes, “Granger-
causality”, is that if the past of process j provides information about the future
of process i, that is not available anywhere else, then there must be more than a
merely correlative connection between processes i and j. This definition induces a
natural graph structure among the processes, generally referred to as a causality
graph or causality network, and it is the modeling and analysis of this graph that
is the primary goal of time series analysis in the context of Granger-causality.

In purely autoregressive models, Granger-causality has a particularly simple
structure and statistical methods for testing Granger-causality in these models
were established by Geweke [2] [3]. Along similar lines, [4] [5] have extended the
methods of Geweke to state space models. The crux of these approaches is in
asymptotic analysis of the statistics of classical estimation procedures for time
series models.
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Aside from asymptotic analysis, many researchers have pursued methods for
estimating or learning causality graphs through convex optimization. For ex-
ample, [6] provides a simulation study of a number of different estimation tech-
niques (including sparsity inducing regularization), and [7] provides an approach
to VAR(1) models that enforces stability. Inspired by the success of LASSO type
estimators in regression problems, we follow a similar line of work here. One of
the core requirements underlying the theory of sparsity inducing regularizers is
that the underlying system is in fact sparse, hence we stress that the techniques
presented here are useful primarily for large systems having a small number of
causal interactions.

In this paper we derive a convex optimization algorithm for fitting large
VAR(p) models with a grouped sparsity pattern along the edges of the causal-
ity graph. The algorithm is derived in section (3.2), but we begin with some
preliminaries in section (2) and a review of the ADMM algorithm in section (3).

Applications of Granger Causality have been explored in diverse areas in-
cluding medical imaging [8], neuroscience [9], finance [10], and others. In section
(4) of this paper we demonstrate application of our technique on Canadian tem-
perature data obtained from the Canadian weather energy and engineering data
sets (CWEEDS) [11]. Our concluding remarks are given in section (5).

2 Notation and Preliminaries

2.1 Granger Causality

Let x(t) = (x1(t), . . . , xn(t)) be a column vector of real valued discrete time
(t ∈ ZZ) wide sense stationary (WSS) stochastic processes with bounded second
moments, that is xi(t) ∈ L2(Ω,F ,P), the Hilbert space of square integrable
random variables and E[xi(t)xj(s)] = E[xi(|t− s|)xj(0)]. Let

IHt = cl
{ ∞∑
τ=1

n∑
i=1

b
(τ)
i x(t− τ) | b(τ)i ∈ IR

}
(1)

denote the Hilbert space of random variables generated by the (strict) past
of x(t) and

IH−jt = cl
{ ∞∑
τ=1

∑
i6=j

b
(τ)
i x(t− τ) | b(τ)i ∈ IR

}
(2)

the space generated by all but component j.
The notation Ê[xi(t) | IHt] will be used to denote the unique projection of

xi(t) onto the Hilbert space IHt, which is the causal linear minimum mean square
error (LMMSE), or Wiener, estimate of xi(t) given the strict past of x(t). That
is,

Ê[xi(t) | IHt] = argmin
z∈IHt

E[|xi(t)− z|2] . (3)
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And, the expected squared error of the estimate:

ξ̂[xi(t) | IHt] = E
[
(Ê[xi(t) | IHV

t ]− xi(t))2
]
. (4)

Note that since the processes are wide sense stationary, the aforementioned
quantities do not vary with time. The notion of Granger-causality is captured
in the following definition.

Definition 1. If
ξ̂[xi(t) | IHt] < ξ̂[xi(t) | IH−jt ] , (5)

then we say that xj Granger-causes xi (conditional on x), and write xj −→ xi.

In contrast to the covariance between variablesE[xi(t)xj(t)], Granger-causality
is measured with a strict time difference. Furthermore, Granger-causality is a
joint measure amongst all processes, whereas covariance is only pairwise. And
finally, the covariance is an undirected measurement, and Granger-causality em-
phasizes a direction from one process to another.

Some of the intuition behind this definition is mentioned in section 1, and is
greatly expanded upon in [12]. We also point out that this notion of causality
has little in common with the notion of causality popularized by Pearl [13].

2.2 Autoregressive Modeling

Recall that x(t) is an n−vector of WSS processes. The Wold decomposition
theorem tells us that there is some square-summable (in || · ||F norm) sequence
of real valued n× n matrices A(τ), a white noise sequence ε(t), and a perfectly
predictable sequence u(t) such that

x(t) =
∞∑
τ=0

A(τ)ε(t− τ) + u(t) . (6)

This is a moving average representation of x(t), and exists for every WSS L2

process. In practice, the predictable term u(t) should be removed by detrending,
and so we simply take u(t) = 0. In order to obtain an autoregressive representa-
tion, the LSI filter given by A(τ) must be invertible, and a sufficient condition
for this invertibility is that there is some c > 0 such that the spectral density
matrix Sx(λ) of x(t) satisfies c−1I � Sx(λ) � cI for λ almost everywhere in
[−π, π). Given this condition, we have again a square summable sequence B(τ)
such that

x(t) =
∞∑
τ=1

B(τ)x(t− τ) + e(t) , (7)

where e(t) is uncorrelated in time, but not necessarily across it’s own compo-
nents. Finally, availability of only finite quantities of data necessitates that we
restrict ourselves further by assuming that x(t) is generated by the Markovian
vector autoregressive VAR(p) model
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x(t) =

p∑
τ=1

B(τ)x(t− τ) + e(t) . (8)

A natural perspective is to view this model as a graph having nodes xi(t) and

edges given by the linear shift-invariant (LSI) filter B̃ij(z) =
∑p
τ=1Bij(τ)z−τ

whose coefficients are arranged into a column vector B̃ij = (Bij(1), . . . , Bij(p)).
In this model, Granger-causality has a particularly simple characterization:

Proposition 1. If x(t) is an n dimensional wide sense stationary L2 stochastic
process generated by the VAR(p) model (8) then xj(t) Granger-causes xi(t) if

and only if B̃ij 6= 0.

Proof. The condition for Granger-Causality xj−→xi is given as

ξ̂[xi(t) | IHt] < ξ̂[xi(t) | IH−jt ] . (9)

Since e(t) is temporally uncorrelated, the Hilbert space projections are given
by the model’s true parameters, so (9) is equivalent to

E|xi(t)−
∞∑
τ=1

n∑
k=1

B
(τ)
ik xk(τ)|2 < E|xi(t)−

∞∑
τ=1

∑
k 6=j

B
(τ)
ik xk(τ)|2 .

Now, if there were no τ0 such that B
(τ0)
ij 6= 0 then the above strict inequality

would in fact be an equality, a contradiction. Conversely, since B
(τ)
ik provides the

best linear estimate of xi(t) from x(t), if there is some τ0 such that B
(τ0)
ij 6= 0

then the above strict inequality must hold, otherwise B
(τ0)
ij = 0 would provide

an equivalent or superior prediction, contradicting either the uniqueness of pro-
jections in Hilbert space, or the optimality of the projection. �

2.3 Estimating VAR Model Coefficients

Given a finite sample of T + p data points: x(−p+ 1), x(−p+ 2), . . . , x(T ), there
are a wide variety of methods available to produce an estimate B̂(τ) of the
coefficients B(τ) in the model (8). Classical methods revolve around solving the
Yule-Walker equations with finite data estimates of covariance sequences, and
indeed, this is the approach put forth by Geweke in [3]. A similar approach is
taken in [14]. Another is the simple ordinary least squares estimate

minimize
B(τ)

1

2T

T∑
t=1

||x(t)−
p∑
τ=1

B(τ)x(t− τ)||22 , (10)

which is our starting point in this paper. This can be viewed as either a
maximum likelihood estimate in the case for which e(t) is Gaussian, or as an
asymptotically valid estimate of the LMMSE estimator.
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When data is abundant for each component of x(t) (e.g. when T >> n2p),
either of the aforementioned methods are perfectly adequate. However, many
applications do not satisfy this requirement. Indeed, the underlying graphical
structure induced by B(τ) only becomes interesting when n is of at least modest
size. In this case, the variance of traditional or OLS estimates of B(τ) is so large
as to render the estimates entirely useless.

Standard methods to deal with this issue is to accept some bias in the estima-
tion process and add regularizing terms. By appropriately arranging coefficients,
we can consider the following problem:

minimize
B

1

2T
||Y − ZB||2F + λ

[
α||B||2F + (1− α)Γ (B)

]
, (11)

where Y = [x(T ) . . . x(1)]T is (T × n) formed directly from the vectors x(t),
Z = [z(T −1) . . . z(0)]T is (T ×np) where the rows z(t) are formed from stacking
x(t), . . . , x(t− p+ 1), and B = [B(1)B(2) . . . B(p)]T is the (np× n) coefficient
matrix. The term λ ≥ 0 is a tuning parameter for the amount of regularization,
and α ∈ [0, 1] trades off between the regularizer Γ and || · ||2F .

Different choices of Γ in the problem (11) lead to different estimates of B(τ)
and hence allow for a great deal of flexibility in the modeling process. One obvious
drawback in this approach is that the resulting estimates are not guaranteed
to yield a stable system. This is a big problem if the model is to be used for
forecasting, but when we are interested only in the underlying graphical structure
induced by B̂, it is not of any great consequence whether the resulting system
is stable or not. That being said, Granger-causal analysis can be applied as a
model selection procedure; the estimated B̂ matrix need not be the ultimate
result of the modeling process.

3 Structured Grouping for Causal Inference

3.1 DWGLASSO

Common regularizers in the context of regression are the squared `2 Frobenius
norm (α = 1), referred to as Tikhonov regularization, or a simple `1 norm

Γ1(B) = ||B||1
∆
=
∑
ij |Bij | (with α = 0), which is the well known sparsity

inducing “LASSO” regularizer [15].
The LASSO regularizer, which results in an unstructured sparsity pattern in

the B matrix, can be extended to the grouped LASSO (GLASSO) in which we
take a sum of unsquared Euclidean norms ΓG(B) =

∑
g∈G ||B[g]||2 on groups

in the B matrix, where B[g] denotes a vector of B coefficients in group g ⊆
{1, 2, . . . , n}. It was shown by Yuan et al. [16] that this leads to a sparsity
pattern in which each of the coefficients in B[g] are jointly zero or non-zero.

Inspired by the characterization of proposition 1, the proposal of this paper,
in a vein similar to [6] and [17] is to use

Γ (B) =
n∑
i=1

n∑
j=1

||B̃ij ||2 , (12)
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which forms groups along each edge of the underlying causality graph. The
matrix B is formed from stacking (the transposes of) the lagged coefficient ma-
trices as B = [B(1)B(2) . . . B(p)]T, but it is also natural to imagine stacking
into or out of the page (“depth wise”) the matrices B(τ) to form an (n× n× p)
array, analogous to the adjacency matrix of the underlying graph, so that look-
ing through this array in location ij gives the coefficients B̃ij ∈ IRp of the LSI
filter from process j to process i. It is for this reason that we refer to this struc-
tured regularizer as the depth-wise group LASSO (DWGLASSO) regularizer.
The adjacency matrix G of the causality graph induced by B is given simply by
checking these depth wise filters:

Gij =

{
1 ; ||B̃ji||2 > 0, i 6= j
0 ; otherwise

}
.

In the case where α = 0 (no Frobenius term), it is known that co-linearity in
the data leads to inconsistent estimates in the sense that if xj and xj′ provide
similar information about xi the LASSO estimate will tend to select only one
or the other. This is a serious problem when we want to infer a causality graph.
Adding in the `2 norm term with α ∈ (0, 1) is referred to as the elastic net [18]
and eliminates this problem; the estimator will blend together the influences
from xj and xj′ .

3.2 ADMM for DWGLASSO

In this section we derive an algorithm to solve 11. Our algorithm derives from
the the alternating direction method of multipliers (ADMM) [19] [20], a fast and
flexible technique well suited to our needs. Given two closed, proper, convex,
though not necessarily differentiable functions f and g, the ADMM algorithm
minimizes over B the objective f(B) + g(B) and dictates that we perform the
following updates (after initialization to 0):

Bk+1
x ← proxµf (Bkz −Bku) ,

Bk+1
z ← proxµg(B

k+1
x +Bku) ,

Bk+1
u ← Bku +Bk+1

x −Bk+1
z ,

(13)

where

proxµφ(V ) = argmin
X∈IRn×n

(
φ(X) +

1

2µ
||X − V ||22

) ∆
= argmin
X∈IRm×k

Pφ(X) , (14)

is the proximity operator of some function φ : IRm×k → IR. The parameter
µ tunes the convergence of the algorithm, but it’s careful selection is not of
paramount importance — we note simply that ad-hoc tuning is sufficient, and
that µ should be “small”.

For our purposes, we use the functions
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f(B) =
1

2T
||Y − ZB||2F + λα||B||2F , (15)

g(B) = λ(1− α)
n∑
i=1

n∑
j=1

||B̃ij ||2 , (16)

keeping in mind that the notation B̃ij refers to the depth-wise grouping of
the coefficients of B.

The ADMM algorithm guarantees that 1
n2p ||B

k
x −Bkz ||2F → 0 as k →∞, and

that the value of the objective function f(Bkx) + g(Bkz ) converges towards the
minimum achievable value. Since the objective (11) is strongly convex (as long
as we require λ > 0 and α ∈ (0, 1]), this implies that ADMM is guaranteed to
find the unique global minimizer of our problem.

Proposition 2 (Proximity Operator of f(B) = 1
2T ||Y −ZB||

2
F +λα||B||2F ).

proxµf (V ) = (
1

T
ZTZ +

1 + 2µλα

µ
I)−1(

1

T
ZTY +

1

µ
V ) . (17)

Proof. Since this objective is differentiable and unconstrained, we can easily
solve (14).

∂Pf
∂B

(B) =
1

T
(ZTZB − ZTY ) + 2αλB +

1

µ
(B − V ) .

Applying the first order optimality condition

∂Pf
∂B

(B∗) = 0 =⇒ B∗ = (
1

T
ZTZ +

1 + 2αλµ

µ
I)−1(

1

T
ZTY +

1

µ
V ) ,

and since the objective is strongly convex, we have obtained the unique global
minimizer defining the proximity operator. �

Proposition 3 (Proximity Operator of g(B) = λ(1− α)
∑
i,j ||B̃ij ||2).

proxµg(V ) =
[
P (1) P (2) . . . P (p)

]T
∈ IRnp×n , (18)

where

P (τ)ij =
(

1− µλ(1− α)

||Ṽij ||2

)
+
Ṽ (τ)ij , (19)

and (x)+ = max{0, x}.

Recall that B̃ij denotes the coefficients of the LSI filter from xj to xi. The

notation Ṽij(τ) denotes the τ th component of the analogous arrangement. The
operation in (19) is referred to as group soft thresholding.
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Proof. The objective function separates along Ṽij , so we need only establish (19).

To this end, let φ(x) = λ(1 − α)||x||2 so that g(B) =
∑
ij φ(B̃ij). The Fenchel

conjugate (µφ)∗ of µφ is the convex indicator function of the Euclidean ball
having radius µλ(1− α). That is,

(µφ)∗(x) =

{
0 ; ||x||2 ≤ µλ(1− α)
∞ ; otherwise

.

Thence we obtain,

prox(µφ)∗(Ṽij) =

{
Ṽij ; ||Ṽij ||2 ≤ µλ(1− α)
µλ(1−α)Ṽij

||Ṽij ||2
; otherwise

, (20)

which is simply a projection onto the aforementioned Euclidean ball1. A
fundamental property of the proximity operator is the Moreau decomposition:
proxµφ(x) = x− prox(µφ)∗(x), application of which yields (19). �

Additional details for these types of derivations can be found in [20].

3.3 Computational Considerations

There are a few things to note in regards to practical implementation. Firstly,
the matrix inverse in (17) should not be carried out literally, an LU (or Cholesky)
factorization of ( 1

T Z
TZ+ 1+2µλα

µ I) can be cached and used throughout in solving

the system of equations. Secondly, the matrices ZTZ and ZTY can be formed
from the pairwise covariances of each xi, xj pair at the lags from 0 to p, fur-
ther savings can be had by making use of the block toeplitz structure of ZTZ.
Finally, the matrix Bkz is formed from the soft-thresholding in (19), and hence
will be the sparse solution the algorithm should output upon convergence. The
time complexity is O(n2p2) per iteration, with O(n3p3 +n2pT ) at initialization.
Storage complexity is also on the order of O(n2p2).

For large np, it may be prudent to add two additional parameters σ ≥ 0

and δ ∈ [0, 1) to shrink and regularize the covariance matrix estimate ẐTZ =
(1−δ)ZTZ+δZTZ+σI. However, this is not strictly necessary for the algorithm
to work.

4 Example Application with Canadian Weather Data

As an example application we have used DWGLASSO to infer a Granger-causality
graph from hourly temperature data (from the CWEEDS dataset [11]) between
various Canadian locations. We have used n = 165 time series of hourly tempera-
ture readings of length T = 1600 starting on January 1st 1980. We have chosen to
use temperature data because geographic considerations can give some intuition

1 This is typical, the proximity operator for the indicator function of a set is the
projection onto that set.
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about what the “true” Granger-causality graph should look like, yet the data is
still more realistic than using a synthetic dataset. All of the computational tools
we have used are a part of Python’s scientific computing stack [21].

After interpolating a small number of missing datapoints, and ensuring that
the time stamps of each series are properly aligned with a universal time, we
preprocessed all of the data by filtering out the predictable yearly and daily
temperature variations (and harmonics thereof) via scipy.signal.iirnotch.
This preprocessing step is important as each series should be free from perfectly
predictable variations u(t) as noted in section 2.2. The parameters p = 2, α =
0.1, µ = 0.001 are held fixed.

Fig. 1: λ Sweep from 0.01 to 10

(a) Edge count regularization path. Hor-
izontal axis: λ ∈ (0.01, 10). Vertical
axis: number of edges in graph, range of
(0, 1750).

(b) Edge Intensity

The choice of λ is the key parameter for tuning the sparsity of the result-
ing adjacency matrix Gλ. We have found it to be clear through simulation on
synthetic data, as well as with our present application, that choosing λ based
on cross validation against mean-squared 1-step ahead prediction error leads to
a Gλ matrix which is dramatically denser than is reasonable. As an alternative
to choosing a fixed λ we have swept λ through N = 45 points on a logarithmic
scale in [10−2, 10] and calculated the “edge intensity” of Gλ which we define
by the matrix 1

N

∑
λGλ. The result is shown in figure 2(b). This edge intensity

matrix is an attempt to quantify the importance of each edge and provides one
possibility for weighting each edge as inferred via DWGLASSO.

Further, we note that as λ increases there is a tendency for G to become
sparser, though this regularization path need not be monotonic. This can be
seen in the figure (2(a)) where we plot the edge count against λ on a logarithmic
axis.
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Fig. 2: Inferred causality graph. Direction of each edge from west (left) to east
(right) or from east to west is indicated by color and line style. The transparency
of each edge is weighted by the edge intensity.

Finally, the inferred causality graph is shown in figure 2 where the trans-
parency of the edges is weighted by the edge intensity. It is clear that there is a
great deal of spurious edges with a low intensity (corresponding to small λ) but
edges with a high intensity correspond to weather stations in close proximity, as
would be expected.

5 Conclusions and Further Outlook

The DWGLASSO algorithm of this paper provides an effective means of explor-
ing the interactions between processes that generate time series data. As apposed
to a pairwise testing strategy, our approach considers all n processes jointly, and
the nature of LASSO type regularizers means that our algorithm can naturally
handle a large number of processes, even when given only short samples of data2.
For models with long lags (large p) additional within group sparsity would be
desirable and can in principle be achieved by further adding a ||B||1 term to the
problem formulation of (11). However, this necessitates evaluating the proximity
operator of the norm || · ||1 + Γ (·), for which there is no closed form. But, as
shown by [22], it is still possible to efficiently perform the needed calculation.

The key sparsity inducing parameter of our algorithm is λ and the best
method of fixing this parameter is unclear. What is clear however is that choosing
λ in the standard way via cross validation on the one step ahead prediction task
is not appropriate for inferring a causality graph. But, based on the roughly

2 We remark however that for systems involving 2 or only a handful of processes that
classical methods and statistical tests are more appropriate.
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monotonic decrease in the number of edges as λ increases has lead us to suggest
sweeping λ over a range and inspecting the resultant edge intensity, as described
in section (4).

Combined with the vast literature which seeks to analyze the qualitative
properties of large graphs (e.g. [23]) DWGLASSO may provide a fruitful ap-
proach to investigating large interacting systems in biology, finance, or other
areas, as it is often the qualitative behaviour of such complex systems which
are of ultimate interest. The most obvious downside of our approach in this
context is that the interactions of these systems can be highly nonlinear and
time variant. Although we made no consideration of these issues in this paper,
Granger causality is robust to some non-stationarities, as long as the underlying
causality graph remains constant. Our final remark is that the modeling power
of the DWGLASSO algorithm can be extended via kernel methods in a fairly
straightforward way, though the selection of additional hyperparameters then
becomes a point of significant additional complexity.
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Abstract. Nearest neighbour searches, scaling, and a flow accumulation
method were applied to improve predictions for freshwater deposits from
land surfaces to the ocean for an earth systems model. Runoff, gener-
ated by the Conformal Cubic Atmospheric Model (CCAM), was read at
a coarse resolution and downscaled, whereas digital elevation- and ac-
cumulation values were obtained from the HydroSHEDS database and
upscaled. The accumulation, digital elevation, and runoff values were
matched using a KDTree nearest neighbour algorithm. Starting from a
zero-valued initial water body, CCAM runoff was routed to neighbour-
ing cells. Flow direction was determined with a maximum flow accu-
mulation method whereas the Manning equation was used to calculate
the discharge rate. Inland reservoirs and coastal waters were removed
and added to an outflow term. Mass conservation checks confirmed that
the proposed procedure conserves mass and a 25-year simulation shows
that the relative discharge rates, river routes, and outflow locations were
sufficiently predicted.

Keywords: Long Term Forecasting, Runoff Routing, Earth Systems
Model, K-d tree, Scaling, Manning Equation

1 Introduction

Runoff is the residual water from precipitation after evapotranspiration. This
moisture, not absorbed by soil or plants, results in continental freshwater dis-
charges into the ocean. Water evaporates from the ocean’s surface, is transported
back to the land as atmospheric moisture and reaches the land surface as pre-
cipitation. This process is known as the land-ocean water cycle [3].

Evapotranspiration and precipitation vary spatially but the return of runoff
into the ocean is mostly concentrated at the world’s largest river mouths. This
significant freshwater discharge at mouth locations results in the salinity of
ocean-water to be less within these regions. Salinity differentials, in turn, result

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 853



2 Development of a Routing Procedure to Assist an Earth Systems Model

in regional changes of the ocean’s density [11]. Estimates of freshwater fluxes into
the ocean is therefore needed to study oceanic freshwater budgets. Since stream
discharge can be measured quantitatively, such estimates are also important to
check that earth systems models (ESMs) are adhering to mass conservation and
performing with reasonable accuracy.

The performance of mapping- and prediction methods for the routing of ter-
restrial runoff fields are constantly improved upon. Fekete et al. [6] used river
discharge information from gauging stations from the World Meteorological Or-
ganization Global Runoff Data Centre (GRDC) to calculate annual inter-station
runoff. In addition, they simulated river discharge with a water balance model
(WBM), driven by long-term mean monthly climate data. These WBM simu-
lation results were then weighted by multiplying the value of each simulation
point with the ratio of its discharge to the observed runoff of the corresponding
inter-station region from the GRDC data. Using this method, a set of spatially
distributed runoff fields were created at a 0.5◦ resolution.

Recently, Mizukami et al. [10] developed the routing tool, mizuRoute. MizuRoute
can use both small- and large scale runoff outputs from land-surface models as
input and produces a spatially distributed streamflow at various spatial scales.
It can use both grid- and vector based river networks and applies two different
river routing schemes: kinematic wave tracking and impulse response function-
unit-hydrograph routing [10].

Another, widely used, routing method is a river network model termed the
Routing Application for Parallel Computation of Discharge (RAPID). It was
developed for the National Hydrography Dataset Plus river network for which
lateral inflow is obtained from a land surface model. A matrix-based version of
the Muskingum method is applied to calculate flow and water volumes in all
reaches [4].

However, for water budget analyses in ESMs, only the discharges at coastal
river mouths are of interest. To estimate continental discharge with runoff fields,
a river transport model that routes the terrestrial runoff into the correct river
mouths is required. This study therefore follows a similar approach to that of
Dai et al. [3] who used a river transport model (RTM), developed by Branstetter
et al. [2], to route surface runoff to the ocean. The RTM they used, implemented
a linear advection scheme at a resolution of 0.5◦.

The objective of this work is to update and improve the continental discharge
estimates of CCAM [9] and, in so doing, improve its water budget approximations
and forecasting capabilities. However, ESMs such as CCAM are run at coarse
scales and currently operate at a resolution of 1◦, or marginally higher, for global
simulations [1]. It would be computationally too expensive to run the entire globe
at a resolution high enough to incorporate smaller scale events.

Finding and incorporating accurate but computationally cheap methods for
up- and downscaling as well as mapping non-matching grids therefore form an in-
tegral part of our study: Runoff, generated by CCAM, is downscaled and mapped
to upscaled elevation- and flow accumulation data that are obtained from Hy-
droSHEDS [8]. A matrix based RTM is then used to route the terrestrial runoff
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Development of a Routing Procedure to Assist an Earth Systems Model 3

to the river mouths. In so doing, the freshwater fluxes and locations can be
mapped back to the CCAM grid and used to drive its ocean model.

In the current work, the developed model is applied to the African continent
only, but it should be noted that the procedures, discussed here, can be used for
any landmass.

2 Methods

The modeling procedure, used in this study, is done in three stages and all code is
written in Python 2.7: During the preprocessing stage, a digital elevation model
(DEM)- and flow accumulation (FA) data are read and upscaled to a target
resolution at which routing will be done. Runoff data, obtained from CCAM’s
NetCDF output at a coarse resolution are, in turn, downscaled to the target
resolution and subsequently mapped to the new FA and DEM data locations.
Flow direction is then determined from the upscaled accumulation set.

The second stage entails the routing of the water by utilising the flow direc-
tion information, obtained during the preprocessing procedure.

Postprocessing is done in the third stage: At the end of each simulation
month, water budget results, obtained during the second stage, are written to
a NetCDF file and visualisation of the results is done by opening this file in an
open source, integrated data viewer called Panoply.

A detailed discussion on the procedures underlying each of the aforemen-
tioned modelling stages is given in Sections 2.1 to 2.3.

2.1 Preprocessing: Scaling and Mapping

During preprocessing, FA- and DEM data are obtained from the HydroSHEDS
[8] website. The DEM and FA data coincide spatially and is provided as binary
interlaced (bil) format at a 30′′ (1/120◦) resolution.

FA and DEM data are read as two-dimensional arrays. The value of each
location in the FA array denotes the number of locations that donate water to it.
FA data are derived from DEMs by implementing a method developed by Jenson
and Domingue [7] which calculates flow direction as the direction of steepest
descent from DEM locations. For clarity, an example of such a process is shown in
Figures 1a and 1b. For each (i, j) location in the FA array, the accumulation value
is determined by summing the number of surrounding positions that deposit
water into the particular location. An example of the relationship between flow
direction and an FA is shown in Figures 1b and 1c.

FA and DEM arrays are upscaled to a 0.25◦ resolution. This is done by
utilising a Python implementation of the Geospatial Data Abstraction Library
(GDAL) that is specifically tailored to read and interpret binary geospatial data.
Each bil file is accompanied by a header file that contains information about
the number of rows, the number of columns, the coordinates of the upper left
corner, and the step size between points. For the example used here, Africa, the
upper left coordinates are given by (−18.99583, 37.99583), the step size, for both
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4 Development of a Routing Procedure to Assist an Earth Systems Model

(a) Elevations. (b) Flow directions.

(c) Flow accumulation.

Fig. 1. An example of a flow accumulation derivation from DEM values.

directions, is given as 0.0083
◦

and the number of rows and columns are denoted
by 8760 and 8880, respectively.

The information within the header files is used to construct an array of
latitudes and longitudes. These are subsequently upscaled from 1/120◦ to 0.25◦

by extracting every 30th value. The resulting array lengths are then used to split
the original accumulation matrix into equally sized sub-matrices, of which each
contains 30× 30 entries that signify the values within a 0.25◦ spacial range.

Upscaling of the accumulation matrix is done by following [5] and apply-
ing the Network scaling algorithm (NSA) by using a maximum value operator
to aggregate each of the 30 × 30 grid values, i.e. the maximum accumulation
value within each of the blocks is kept. An example case of the NSA method is
illustrated in Figure 2 for upscaling a 6× 6 to a 3× 3 grid.

The DEM is upscaled in a similar manner, but, instead of keeping the max-
imum value, the average of each of the 30× 30 elevation values is calculated.

Downscaling of routing values begins by reading runoff values in NetCDF
format. Again, a Python library, NetCDF4, is utilised to obtain the data in the
correct format. Each file contains the runoff values for one month at six-hourly
intervals. The average runoff value for each day of the month is computed in
order to have a single daily runoff matrix.
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(a) Original flow accumula-
tion.

(b) Upscaled flow accumu-
lation.

Fig. 2. An example of the NSA to scale a 6 × 6 to a 3 × 3 grid.

Python’s PySAL library [12] is used to construct a k-d tree from the up-
scaled target latitudes and longitudes. The k-d tree is used to map each runoff
value, in equal parts, to its nine nearest neighbours in the FA- and DEM arrays.
The original runoff values are of such a nature that it coincides to one of the
accumulation value coordinates. For clarity, the refinement procedure is shown
in Figure 3.

Fig. 3. An example of grid refinement from 0.5◦ to 0.25◦ resolution.

The preprocessing stage concludes with runoff-, FA-, and DEM arrays that
coincide spatially at a resolution of 0.25◦.

2.2 Routing

The routing procedure is initiated by determining out- and inflow locations for
each coordinate value on the 0.25◦ resolution grid. The indices of each point’s 8
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6 Development of a Routing Procedure to Assist an Earth Systems Model

neighbours are determined and the outflow location is set to the indices of the
neighbour with the highest accumulation value. Each grid location can therefore
deposit its contents to a single neighbouring location only.

Subsequently, it is determined whether a location will receive water. A two
dimensional inflow array is initialised with a size equal to that of the outflow-
location matrix and all values are set to False. If a neighbour’s outflow-location
is equal to the indices of this cell, then the inflow value is changed to True.
Once the Truth condition of each point has been determined, the True values
are isolated by adding their indices to a list of inflow-locations.

At this stage, it is therefore known to where a point deposits its contents and
if it will receive content from neighbouring positions.

The routing procedure starts with initialising a two-dimensional zero-valued
water body array. At the start of each day, runoff-volumes are added to the
water body array. It is assumed that water is equally distributed within the
0.25◦ × 0.25◦ area and the water level within each cell is therefore determined
by dividing the runoff volume V by the area of its host cell.

For each cell the water body slope to its outflow location is calculated as

S =

(
zhostDEM + zhostWL

)
− (zoutDEM + zoutWL)

∆x
, (1)

where S denotes the slope, zhostDEM and zoutDEM , are the elevations of the host
and its outflow location, respectively, whereas, zhostWL and zoutWL denote the water
levels within these locations. The Haversine distance between the cell centres is
given by ∆x.

The discharge from each cell is given by the Manning equation,

Qout =

(
1

n

)
AR2/3

√
S , (2)

where Qout is the discharge rate in m3s−1 and n is Manning’s roughness coef-
ficient, which, following [13], is set to 0.025. The width of the domain through
which water travels is approximated as the square root of its area, D =

√
A,

which allows the hydraulic radius to be expressed asR =
(
DzhostWL

)
/
(
D + 2zhostWL

)
.

The water volume that is discharged during a time step ∆t is calculated as
Vout = Qout∆t. The amount of water deposited from any location on the grid
within ∆t is therefore known at this stage.

To calculate the volume of water Vin that a position will receive, the neigh-
bours of each location, recorded in the inflow-locations list, are examined: For
each neighbour it is determined whether its outflow corresponds to the inflow-
location. If it does, the discharge from this neighbour is added to the inflow
volume of the point that is being analysed.

Once the inflow to- and outflow from each point have been calculated, the
water body values can be updated as

V (t+∆t) = V (t)− V (t)out + V (t)in . (3)
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Finally, the updated water body is examined and water is removed from
locations that either receive water but does not have an outflow location or are
located on the coast.

At the end of each month discharge, water level, water volume, and the total
amount of water that is deposited as outflow are written to binary files.

The routing algorithm is shown in Figure 4.

2.3 Post-Processing

For visualisation purposes, the binary output files are converted to a single Net-
work Common Data Form (NetCDF) file. and an open source software, Panoply,
is used to view results.

The discharge values can then be mapped back to the CCAM grid and used
as input to CCAM’s ocean procedure.

3 Results

A simulation was done for the African continent for a 24-year period spanning
from 1981/01/01 to 2005/03/01. Courant numbers, discharge rates, and water
volumes were recorded for each grid location on a daily basis. To orientate the
reader a map, illustrating the actual locations of the largest African rivers, is
shown in Figure 5. Courant numbers Co for 2005/03/01 are shown in Figure 3
and were calculated as

Co =
|u|∆t
∆x

, (4)

where |u| = Qout/A is the velocity at which water is discharged at time t. Figure
3 shows the discharge rates for 2005/03/01 that were calculated using Eq. 2.

Adherence to mass conservation is checked daily by calculating the total mass
of water on land using two methods: Firstly, a landmass water volume is deter-
mined by the summation of all values within the water body array, located on
land. Secondly, a land mass water volume is calculated by computing the amount
of runoff that has entered the system up to this point in time and subtracting the
amount of water that has left the system as output. The aforementioned output
includes locations that have no outflow but contains water (inland reservoirs) as
well as water within cells that are located on the coast.

Values obtained from these two computations are then subtracted and should
be close to zero if mass conservation is adhered to. Results for mass conservation
are shown in Figure 7.

The solution method used in this model is explicit and therefore the Courant
numbers should be significantly smaller than one. Figure 3 shows that the
Courant number satisfies the aforementioned CFL condition in that the maxi-
mum value is 7.7e − 4. Visual inspection of the discharge rates show that the
Congo yields the highest discharge rate followed by the Nile, Niger, and the
Zambezi. In reality, the Niger should dominate the Nile and the Zambezi. When
comparing the simulation results with the actual positions of the major African
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rivers, shown in Figure 5, it is concluded that the locations of the largest rivers
and their mouths are located at approximately the correct locations.

Output from the original CCAM routing algorithm is shown in Figure 8.
Visual inspection confirms that the updated routing procedure is an improve-

ment on the original since the rivers are now more clearly defined and the severe
growth of inland water bodies has been subdued.

The simulation is computationally cheap: A decade was simulated in less
than two hours on a single processor of a Lenovo laptop with 7.7 GiB Memory
and an Intel Core i7-6500U CPU @ 2.50GHz.

4 Conclusions

A model has been presented for determining the locations and discharges of
rivers into the ocean on a 0.25◦ grid and was applied to the African continent.
The accuracy of predictions for river- as well as river-mouth locations have been
improved upon when the discharge results are compared to the original discharge
output from CCAM, shown in Figure 8. It should be noted that there is a slight
increase in volume of the total water body over a period of 24 simulation years.
Since it is assumed that the density of water is constant, this amounts to a slight
increase in mass. However, the total water volume on land for which a maximal
increase of 0.017 m3 is recorded, is of the order 10e+11. The increase is therefore
comparatively small.

The discharge of the Niger relative to that of the Nile and Zambezi has been
under-predicted. This could be due to the fact that the simulation is started with
a zero water level in that it is forced solely by runoff and the rivers may therefore
not have stabilised after 24 simulation years. The discharge discrepancies could
also be the result of using an incorrect roughness factor in the Manning equation.
Currently, the roughness coefficient is kept constant for all rivers. This may be
an unrealistic assumption and the method used for discharge prediction warrants
further investigation.

Although the algorithm does not take long to run, parallelisation of the
procedure would allow the authors to test its performance for longer simulation
periods at finer spatial and temporal scales.
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Fig. 4. Flowchart for routing.
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Fig. 5. African rivers.

(a) Courant numbers. (b) Discharge rates.

Fig. 6. Courant numbers and discharge rates for 2005/03/01.
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Fig. 7. Total Volume (Mass) conservation check results for 1981/01/01-2005/03/01.

Fig. 8. Original routing output from CCAM simulation.

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 863



12 Development of a Routing Procedure to Assist an Earth Systems Model

References

1. Encyclopedia of Sustainability Science and Technology, chap. Coupled Climate and
Earth System Models. Springer-Verlag New York (2012)

2. Branstetter, M.: Development of a parallel river transport algorithm and applica-
tions to climate studies. Ph.D. thesis, University of Texas, Austin (2001)

3. Dai, A., Trenberth, K.: Estimates of freshwater discharge from continents: Latitu-
dinal and seasonal variations. Journal of Hydrometeorology 3, 660–687 (Jul 2002)

4. David, C., Maidment, D., Niu, G.Y., Yang, Z.L., Habets, F., Eijkhout, V.: River
network routing on the nhdplus dataset. Journal of Hydrometeorology 12, 913–934
(Mar 2011)

5. Fekete, B., Vorosmarty, C., Lammers, R.: Scaling gridded river networks for
macroscale hydrology: Development, analysis, and control of error. Water Re-
sources Research 37, 1955–1967 (Jul 2001)

6. Fekete., B., Vrsmarty, C., Grabs, W.: High-resolution fields of global runoff combin-
ing observed river discharge and simulated water balances. Global Biogeochemical
Cycles 16(3), 15–1–15–10 (2002), http://dx.doi.org/10.1029/1999GB001254

7. Jenson, S., Domingue, J.: Extracting topographic structure from digital elevation
data for geographic information system analysis. Photogrammetric Engineering
and Remote Sensing 54, 1593–1600 (1988)

8. Lehner, B., Verdin, K., Jarvis, A.: New global hydrography derived from space-
borne elevation data. Transactions, AGU 89, 93–94 (2008)

9. McGregor, John L.and Dix, M.R.: An Updated Description of the Conformal-
Cubic Atmospheric Model, pp. 51–75. Springer New York, New York, NY (2008),
http://dx.doi.org/10.1007/978-0-387-49791-4_4

10. Mizukami, N., Clark, M., Sampson, K., Nijssen, B., Mao, Y., McMillan, H., Viger,
R., Markstrom, S., Hay, L., Woods, R., Arnold, J., Brekke, L.: mizuroute version 1:
a river network routing tool for a continental domain water resources applications.
Geosci. Model Dev 9, 2223–2016 (Jun 2016)

11. Nakamura, M.: Effects of ice albedo and runoff feedbacks on the thermohaline
circulation. Journal of Climate 9, 1783–1794 (Aug 1996)

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

13. Zhao, Y.: Modeling of River-flow Routing Using a Muskingum-and-Manning
Method and Application in Basin of Seine. Ph.D. thesis, Pierre and Marie Curie
University, Paris (2006)

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 864



Short-term Stream Flow Forecasting at
Australian River Sites using Data-driven

Regression Techniques

Melise Steyn1,2, Josefine Wilms2, Willie Brink1, and Francois Smit1

1 Applied Mathematics, Stellenbosch University, Stellenbosch, 7600, South Africa,
{melisedt,wbrink,fsmit}@sun.ac.za, http://appliedmaths.sun.ac.za

2 Council for Scientific and Industrial Research, Stellenbosch, 7600, South Africa,
jwilms@csir.co.za, http://www.csir.co.za

Abstract. This study proposes a computationally efficient solution to
stream flow forecasting for river basins where historical time series data
are available. Two data-driven modeling techniques are investigated,
namely support vector regression and artificial neural network. Each
model is trained on historical stream flow and precipitation data to
forecast stream flow with a lead time of up to seven days. The Shoal-
haven, Herbert and Adelaide rivers in Australia are considered for exper-
imentation. The predictive performance of each model is determined by
the Pearson correlation coefficient, the root mean squared error and the
Nash-Sutcliffe efficiency. The performance of our data-driven models are
compared to that of a physical stream flow forecasting model currently
supplied by Australia’s Bureau of Meteorology. It is concluded that the
data-driven models have the potential to be useful stream flow forecast-
ing tools in river basin modeling.

Keywords: Stream Flow Forecasting, Support Vector Regression, Ar-
tificial Neural Networks

1 Introduction

Stream flow is an important component in the hydrological cycle and plays a
vital role in many hydraulic and hydrological applications. Research on model-
generated stream flow is used by river engineers and scientists for the study of
various hydro-environmental aspects, such as the increasing international con-
cern of riverine pollution and the growing flood stages of rivers [5]. The devas-
tating consequences of natural disasters, such as floods, can be lessened or even
prevented through accurate stream flow forecasts [15].

Two main types of stream flow forecasting models can be distinguished, based
on available information: physical and empirical. A physical model consists of
governing partial differential equations that describe the physical laws of a spe-
cific system. Empirical or data-driven models are based on observed data that
characterize the system [16].
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2 Data-driven Stream Flow Forecasting

A physical rainfall-runoff model can be used to transform rainfall estimations
to runoff by modeling the hydrologic processes within a catchment, such as
interception, evaporation, overland and subsurface flow [8]. According to Perrin
et al. [14], it can be challenging to choose an appropriate model structure and
complexity for accurate simulation of hydrological behavior at catchment scale.

During the past few decades, considerable progress has been made in the
study of data-driven models to simulate the rainfall-runoff relationship [16].
Various processes within a river basin are characterized by measurable state
variables, such as stream flow, precipitation, temperature and humidity. A river
basin for which historical time series data are available is therefore a good can-
didate for the implementation of data-driven models.

In this paper the practicality of data-driven models for stream flow forecast-
ing with a lead time of up to seven days are investigated. In particular, two
supervised machine learning models are constructed, namely support vector re-
gression (SVR) and artificial neural network (ANN). Australian river sites are
considered, mainly because of a sufficient amount of available historical stream
flow and precipitation data.

The Bureau of Meteorology (BOM), Australia’s national weather and climate
agency, provides a forecasting service that supplies stream flow predictions at
more than 100 locations across Australia. These forecasts are determined by a
computer based system which uses a rainfall-runoff model known as GR4H as
its main component.3 It determines the total amount of rainfall in a specific
catchment, the fraction of rainfall that ends up as runoff, and the accumulation
of that runoff in downstream rivers [14]. Forecasts are given for a lead time of
up to seven days, and are used for several water management purposes. The
predictive capabilities of our data-driven models will be compared to the BOM
rainfall-runoff model.

2 Overview of SVR and ANN

We proceed with a cursory theoretical overview of the two data-driven prediction
methods considered in this paper.

2.1 Support Vector Regression

Support vector machines were originally developed to solve classification prob-
lems, but have been extended to the task of regression and time series prediction
in the form of support vector regression (SVR). Many hydrological prediction
problems have been addressed using SVR [15].

Consider a training set of n real-valued data pairs {(x1, y1), (x2, y2), . . . ,
(xn, yn)}, where xi is an input vector in some space X, with corresponding
output value yi. A generalized continuous-valued target function f(x) is fit to
the training set, such that a deviation of at most ε is obtained between each true

3 http://www.bom.gov.au/water/7daystreamflow/about.shtml
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ouput and its corresponding predicted value, and that f(x) is as flat as possible
[6]. Assuming f to be linear, we may write

f(x) = 〈w,x〉+ b, (1)

where w ∈ X, b ∈ R, and 〈·, ·〉 denotes a dot product inX. In order to get f as flat
as possible, the orientation parameter (or weight) w should be minimized. Some
of the data pairs might exceed the ε margin of error and cause the optimization
problem to be infeasible. We introduce slack variables, denoted as ξ and ξ∗, to
indicate the vertical distance from each data pair above and below the ε margins.
The convex optimization problem is solved by minimizing

1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ). (2)

The positive penalty parameter C determines the tolerated deviations larger
than ε. The minimization of (2) is a standard constrained optimization problem
and can be solved by applying Lagrangian theory [4]. The weight vector is derived
as

w =

n∑
i=1

(αi − α∗
i )xi, (3)

where αi and α∗
i represent Lagrangian multipliers associated with the training

points above and below the regression line, respectively. The value of b in equa-
tion (1) is computed by exploiting the Karush-Kuhn-Tucker conditions [7, 10],
as explained by Granata et al. [6].

In many applications the relationship between inputs and outputs in the
training data might show complex nonlinear behavior. A kernel function can be
introduced to implicitly map the training points from the original input space
X to a higher dimensional feature space Φ(X), such that a linear relationship
between the variables exist in Φ(X). The support vector expansion of the target
function for linear regression is then applicable in the feature space. Equation
(1) changes to

f(x) =
n∑

i=1

(αi − α∗
i )k(xi,x) + b, (4)

where

k(x,y) = 〈Φ(x), Φ(y)〉. (5)

The radial basis function (RBF) is a widely used kernel in hydrological pre-
diction applications [6], and is defined as

k(x,y) = exp(−γ‖x− y‖2), (6)

where γ > 0 is a kernel-specific hyperparameter. Choosing an optimal value for
λ, as well as for ε and C, is important when training an SVR model to fit a given
dataset [6].
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2.2 Artificial Neural Network

Artificial neural networks (ANNs) are especially suitable when the underlying
functions that describe complex phenomena are unknown [20], and have been
used extensively for hydrological modeling purposes [11].

An ANN contains a set of interconnected nodes that receive, process and
send information to one another over weighted connections. These nodes are
grouped in different layers. Input values enter the model through the first layer
(the input layer). The data is then fed forward through successive hidden layers
until it reaches the final layer (the output layer). The hidden layers enable the
ANN to learn complex relationships between input and output data [16]. An
ANN can be single layered, bilayered or multilayered, depending on the number
of hidden layers.

ANNs are further classified as feed-forward or recurrent, based on the di-
rection of information flow and processing between nodes. Feed-forward ANNs
allow information to travel only from the input layer to the output layer, while
recurrent ANNs allow information to travel in both directions. For each node, an
output is determined by calculating the sum of its weighted input nodes and ap-
plying a nonlinear activation function. According to Maier and Dandy [11], the
sigmoidal-type and logistic sigmoidal-type (such as tanh) activation functions
are frequently used in hydrological applications:

sigmoidal-type: g(z) =
2

1 + exp (−2z)
− 1, (7)

tanh: g(z) =
1

1 + exp (−z)
, (8)

where z represents the weighted sum of a particular node’s inputs. This result
is then used as input for the nodes in a succeeding layer. A linear activation
function is considered for the final hidden layer of regression models [11].

Training is achieved by finding an optimal set of connection weights that
minimize the estimated error between the true output values and the output
values that are determined by the network.

3 Methodology

A description of the procedures to construct SVR and ANN models for stream
flow forecasting at specific river sites follows.

3.1 Study Area and Data

High quality time series of daily stream flow and precipitation data for the
Australian river sites under study were obtained from the Australian Bureau of
Meteorology’s Hydrologic Reference Stations (HRS) and Climate Data Online
(CDO) services, respectively. The HRS network consists of over 200 river sites
that are mostly unaffected by water-related systems, such as dam construction
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and irrigation services, and located in different hydro-climatic regions across
Australia. CDO provides access to precipitation records from the Australian
Data Archive for Meteorology.

Three Australian river sites are considered for this study: the Shoalhaven
River at Fossikers Flat in New South Wales, the Herbert River at Abergowrie
in Queensland, and the Adelaide River at Railway Bridge in Northern Territory.
The Shoalhaven River is located in a temperate climate region and has a catch-
ment size of 4660 km2. The stream flow data for this site were obtained from
gauging station 215207 (150.18◦ E, 34.82◦ S) and the corresponding precipita-
tion from station 068085, 5.3 km away from station 215207. The Herbert River is
in a subtropical climate region and has a catchment size of 7488 km2. Its stream
flow data were obtained from gauging station 116006B (145.92◦ E, 18.49◦ S) and
the precipitation data from station 032091, 8.7 km away from station 116006B.
The Adelaide River is in a tropical climate region and has a catchment size of
638 km2. Its stream flow data were obtained from gauging station G8170002
(131.11◦ E, 13.24◦ S) and the precipitation data from station 014237, 3.3 km
away from station G8170002.

Only uninterrupted time series data were used for training: data from 1
January 2000 to 31 December 2014 for training the data-driven models at the
Shoalhaven and Herbert rivers, and data from 1 January 2008 to 31 December
2012 for the Adelaide river. For all three river sites, data from 5 February 2017
to 5 May 2017 were used as test data.

3.2 Input Selection, Data Preprocessing and Cross Validation

A moving time window is considered for the generation of input and output
data pairs. For each measured stream flow value (which is considered as an out-
put value), a corresponding input vector contains the precipitation and stream
flow values of the preceding p-day and q-day time windows, respectively. For
this study, p ranges from 0 to 2 and q from 2 to 5. P represents precipi-
tation, Q represents stream flow, t refers to the current day and d refers to
the forecasting lead time. An output value Qt+d then has an input vector
{Pt, Pt−1, · · · , Pt−p, Qt, Qt−1, · · · , Qt−q}. For each model that forecasts with a
lead time of d days, an exhaustive search is followed during training to find
optimal values for p and q.

Data preprocessing is implemented by normalizing the values in the dataset
to a range of [0, 1]. This ensures that the influence of large feature values (like
stream flow) does not dominate that of smaller feature values (like precipitation)
during the training process.

As discussed in Section 3.1, the available datasets are split into a training
set and a test set. In order to obtain a model that generalizes well to unseen
data, 10-fold cross validation is introduced, i.e. the full training dataset is split
into 10 folds of equal size. Each fold is considered as a validation set once, while
the remaining 9 folds are combined to form a training set. Ultimately, the model
with the lowest average validation error on all 10 trials is used for forecasting
purposes, and tested on the test set [16].
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3.3 Model Performance Evaluation

Three quantitative indices are considered to evaluate the performance of the SVR
and ANN models, and to compare them to the physically based BOM model.
These are the Pearson’s correlation coefficient (r), the root mean squared error
(RMSE) and the Nash-Sutcliffe efficiency (NSE):

r =

∑m
i=1(yi − y)(fi − f)√∑m

i=1(yi − y)2
√∑m

i=1(fi − f)2
, (9)

RMSE =

√√√√ 1

m

m∑
i=1

(yi − fi)2, (10)

NSE = 1−
∑m

i=1(yi − fi)2∑m
i=1(yi − y)2

, (11)

where yi and fi represent each of the m true and forecasted outputs in the test
set, respectively. The average of all true outputs is represented by y and the
average of all forecasted outputs by f .

Pearson’s correlation coefficient gives the extent to which the input and out-
put values are linearly correlated, and ranges between −1 and 1. A value close
to −1 or 1 shows a strong linear relationship between the two variables, whereas
values close to zero show little to no linear relationship. If the predicted values
of the model increase as the input values increase, a positive r-value is obtained.
If the predicted values decrease as the input values increase, a negative r-value
is obtained.

The RMSE measures the difference between a model’s predicted outcomes
and the true outcomes from the system that is being modeled. The smaller the
RMSE value, the better the performance of the model.

The NSE is used to assess the predictive power of a model and is always less
than or equal to 1. A model with an NSE of 1 corresponds to a perfect match of
predicted outcomes to true outcomes. An NSE of 0 indicates that the model’s
predictive capability is the same as considering the mean true outcome value as
a predictor. An NSE less than 0 occurs when the mean true outcome value would
have been a more reliable predictor than the model [9]. According to Noori and
Kalin [13], a model can be considered “good” if the NSE is above 0.5, and “very
good” if it is above 0.7.

3.4 SVR Hyperparameters

The SVR model with an RBF kernel is considered for this study. Three param-
eters have to be selected, namely C, ε and γ. We pick possible C values ranging
from 1 to 104, ε values from 10−3 to 10−1, and γ values from 10−4 to 1. An
exhaustive grid search is performed to find the combination of parameters with
optimal performance during training and cross validation.

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 870



Data-driven Stream Flow Forecasting 7

3.5 ANN Architecture

According to Maier and Dandy [11], a one hidden layered feed-forward neural
network provides suitable complexity to reproduce the nonlinear behavior of
hydrological systems and has been suitable for forecasting hydrological variables
in various studies.

It can be challenging to choose an appropriate number of hidden nodes within
the hidden layer, as too few might result in a network that cannot capture
the complex relationship between input and output, while too many may cause
overfitting. This study uses two different methods as bounds for the number of
hidden nodes, as proposed by Belayneh and Adamowski [1]. Wanas et al. [18]
determined that the optimal performance of a neural network is obtained with
log(n) hidden nodes, where n is the number of training samples. Mishra and
Desai [12] showed that optimal results are obtained with 2N+1 hidden nodes,
where N is the number of input nodes. Following Belayneh and Adamowski [1], a
trial and error approach can be implemented during training to find the optimal
number of hidden nodes ranging from log(n) to 2N+1.

As discussed, the sigmoidal-type and logistic sigmoidal-type activation func-
tions, given in equations (7) and (8), have been used frequently in hydrological
applications. We implement both, and pick the one that achieves the lowest error
during training and cross validation.

4 Results and Discussion

Results for the optimal input features, hyperparameter combinations for SVR
and architecture for ANN are discussed in the following subsections. The pre-
dictive capabilities of our data-driven models are also evaluated, based on the
criteria listed in Section 3.3.

4.1 Parameter Selection

Different lead times are considered for stream flow forecasting, ranging from 1
day to 7 days in advance. As stated in Section 3.2, the preceding time windows for
stream flow and precipitation that provide an optimal model are found separately
during training for each of the different prediction lead times. For SVR, an
optimal combination of hyperparameters is also determined, whereas for ANN,
an optimal number of hidden nodes and the choice of activation function. Results
are listed in Tables 1 and 2.

It can be observed that, when considering different prediction lead times, the
preceding time windows for stream flow and precipitation and the combination of
model parameters vary. It is also noticeable that only the optimal ANN and SVR
models for 7 day lead time forecasting of the Shoalhaven river site do not consider
any rainfall values. Apart from this particular case, it appears that rainfall is an
important input to the data-driven models for the three considered river sites.
Furthermore, each ANN model achieved the lowest error during training and
cross validation when considering the tanh activation function.
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Table 1. Optimal input features and hyperparameters in the SVR models for the three
gauging stations (C, ε and γ are SVR parameters; the model uses precipitation data
from days t − p to t and stream flow data from days t − q to t to predict stream flow
on day t+ d, with d the lead time).

Lead Shoalhaven Herbert Adelaide
time (d) p q C ε γ p q C ε γ p q C ε γ

1 day 3 2 100 0.001 0.1 5 2 100 0.001 0.1 5 2 1 0.001 1
2 day 2 1 10 0.001 0.1 5 1 1000 0.001 0.1 4 2 1000 0.001 0.01
3 day 2 2 1 0.001 0.1 4 1 10000 0.01 0.1 5 1 10000 0.01 0.01
4 day 3 2 100 0.001 0.001 4 1 10000 0.01 0.1 5 2 10000 0.01 0.01
5 day 3 2 100 0.001 0.001 2 2 1000 0.001 0.001 5 2 10000 0.01 0.01
6 day 2 2 100 0.001 0.01 2 1 10000 0.01 0.1 5 2 10000 0.01 0.01
7 day 2 0 10 0.001 0.1 2 1 10000 0.01 0.1 2 1 10000 0.01 0.1

Table 2. Optimal input features and architecture (number of nodes in the hidden
layer, h) in the ANN models for the three gauging stations.

Lead Shoalhaven Herbert Adelaide
time (d) p q h p q h p q h

1 day 3 2 9 5 2 12 3 2 4
2 day 3 1 5 3 1 8 4 2 6
3 day 5 1 11 5 2 5 5 2 3
4 day 5 2 10 4 1 4 5 2 3
5 day 5 2 10 4 1 4 3 2 8
6 day 2 2 4 4 1 4 5 1 4
7 day 4 0 3 3 1 3 5 2 3

4.2 Performance Evaluation

The efficiency criteria used in this study are the Pearson correlation coefficient,
the root mean squared error and the Nash-Sufcliffe efficiency. Based on these
performance indices, the SVR and ANN models that performed optimally on
the training and validation sets were applied to the (as yet unused) test sets
of the three river sites under study. Results are shown in Tables 3 to 5. For
comparison, prediction accuracies made by the Bureau of Meteorology’s stream
flow forecasting model are also given.

ANN outperforms the SVR and BOM models for stream flow predictions
with a lead time of 1 to 2 days at the Shoalhaven river site. The base flow
as well as the rising and falling limbs of the hydrographs are well represented
by the ANN model. However, the peaks are under- and over-predicted. As the
prediction lead time increases, the accuracy of each model decreases. Figures 1a
and 1b show how the time lag between observed and forecasted peaks increase.
Furthermore, Figure 1c shows that the SVR and ANN models fail to forecast
the rising limbs of the hydrograph for predictions with a lead time longer than
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Table 3. Performance evaluation for stream flow forecasting at the Shoalhaven river
station of our trained SVR and ANN models as well as the physically based model
used by the Australian Bureau of Meteorology (BOM).

Lead r RMSE NSE
time SVR ANN BOM SVR ANN BOM SVR ANN BOM

1 day 0.87 0.90 0.85 541 458 866 0.74 0.81 0.34
2 day 0.74 0.81 0.71 807 629 1357 0.43 0.65 −0.61
3 day 0.71 0.65 0.59 948 826 1601 0.22 0.41 −1.22
4 day 0.66 0.46 0.52 1040 969 1446 0.07 0.19 −0.79
5 day 0.54 0.52 0.28 1118 933 3272 −0.07 0.26 −8.13
6 day 0.39 0.33 0.18 1150 1263 5760 −0.11 −0.35 −27.11
7 day 0.32 0.26 0.18 1195 1094 3957 −0.20 −0.01 −12.17

Table 4. Performance evaluation for stream flow forecasting at the Herbert river sta-
tion of our trained SVR and ANN models as well as the physically based model used
by the Australian Bureau of Meteorology (BOM).

Lead r RMSE NSE
time SVR ANN BOM SVR ANN BOM SVR ANN BOM

1 day 0.93 0.92 0.95 1627 1728 1748 0.85 0.83 0.83
2 day 0.79 0.82 0.90 2721 2525 2152 0.59 0.64 0.74
3 day 0.70 0.73 0.82 3067 2952 3138 0.48 0.52 0.45
4 day 0.59 0.60 0.74 3514 3691 3707 0.32 0.25 0.25
5 day 0.52 0.53 0.28 5996 3936 12911 −0.95 0.16 −8.04
6 day 0.42 0.48 0.12 4154 3982 23648 0.08 0.15 −28.97
7 day 0.38 0.40 0.09 4116 4391 21508 0.10 −0.02 −23.49

Table 5. Performance evaluation for stream flow forecasting at the Adelaide river
station of our trained SVR and ANN models as well as the physically based model
used by the Australian Bureau of Meteorology (BOM).

Lead r RMSE NSE
time SVR ANN BOM SVR ANN BOM SVR ANN BOM

1 day 0.79 0.85 0.84 975 944 925 0.61 0.63 0.65
2 day 0.63 0.67 0.54 1287 1277 1466 0.33 0.34 0.12
3 day 0.53 0.51 0.40 1376 1965 1671 0.21 −0.62 −0.17
4 day 0.41 0.43 0.25 1533 1983 1870 0.00 −0.67 −0.49
5 day 0.38 0.47 0.13 1561 1980 2036 −0.03 −0.66 −0.75
6 day 0.33 0.35 0.16 1567 2188 1856 −0.03 −1.00 −0.44
7 day 0.27 0.26 0.19 1602 2158 1835 −0.06 −0.92 −0.39
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10 Data-driven Stream Flow Forecasting

(a)

(b)

(c)

Fig. 1. Daily stream flow predictions for (a) 1 day, (b) 2 day and (c) 5 day lead time
forecasts, for the Shoalhaven station.

4 days. This can be attributed to the absence of information (such as rainfall
events) when increasing the prediction lead time. For lead times greater than 3
days, the SVR forecasts show the strongest correlation to the observed stream
flow, whereas the ANN generally performs better in terms of RMSE and NSE.
For 6 and 7 day lead time predictions, the NSE of all three models are negative,
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indicating that the mean value of the observed outcomes would have been a more
reliable predictor than the forecasting models.

No single model outperforms the rest on the test set of the Herbert river
station. For instance, the BOM model obtains the strongest Pearson correlation
(0.95) to the observed stream flow when forecasting 1 day in advance, but fails
to determine the peaks as accurately as the SVR model. The BOM model does,
however, show the better performance in forecasting stream flow with a lead
time of 2 days. Similar to the Shoalhaven river models, an increase in prediction
lead time causes a decrease in model performance and an increase in lag times
between observed peaks and forecasted peaks.

The BOM and ANN models show the better performance on the test set of the
Adelaide river station for 1 and 2 day lead time predictions. For instance, as seen
in Table 5, comparable r, RMSE and NSE results are obtained for both models.
The SVR model shows the better forecasting performance for predictions with
a lead time greater than 2 days. Similar to both Herbert and Shoalhaven, the
prediction capabilities of all three models worsen with an increase in prediction
lead time.

5 Conclusion

This study investigated the ability of data-driven modeling for stream flow fore-
casting with a lead time of up to 7 days. SVR and ANN models were employed to
forecast stream flow at the Shoalhaven, Herbert and Adelaide gauging stations.
The predictive capabilities of these data-driven models were compared to that
of a physically based rainfall-runoff model. For 1 day lead time forecasts, each
data-driven model properly modeled the stream hydrograph shape and the time
to peak. However, a noticeable decrease in predictive capabilities with an in-
crease in lead time occurred. The SVR method performed better than the BOM
model for the Shoalhaven station, based on the evaluation criteria. For the other
stations, no single model outperformed the others.

Based on the results obtained for this study, SVR and ANN models have
the potential to be useful tools for short-term stream flow forecasting. They
do not require specialized knowledge of physical phenomena, and are therefore
especially useful when it is difficult to build a physically based model due to a lack
of understanding of the underlying processes. It is also helpful to have modeling
alternatives and to validate results obtained from physically based models to that
of data-driven models. Furthermore, data-driven models are computationally
efficient in the sense that once they are trained, predictions can be made very
quickly. Data-driven models could also be combined with physically based models
to form even more powerful and accurate hybrid forecasting models.

A limitation of data-driven models are, however, that substantial historical
stream flow and precipitation data records should be available. Many of the exist-
ing gauging stations have limited available datasets, or a considerable amount of
missing data. Developing machine learning techniques to address these problems
may be considered in further studies.
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Abstract

In the last decades, the amount of data storage has been increased, and data sets reposi-
tories which can be displayed is in the range of some five hundred thousand data items and
more. However, this information cannot be practically analyzed and utilized on a single com-
modity computer because these data are generated on a massive scale. For this purpose,
the large scale and high dimensionality data that must be acquired and processed requires
high-performance computing facilities. The requirement for significant computation imposed
by an high performance analytical systems have led to an increasing interest in the use of
parallel and distributed environments. This paper develop a distributed environment that
can execute the training process for HMM classifier. We find that an application of HMM
learning algorithm on such large size datasets using the framework for big data MapReduce of
the tool Matlab achieves significant speedups as the system is scaled up in multiprogrammed
environments. As results, a parallel processing can be matched against all tuples of data for
building HMM classifier. Experimental results show that the parallel version of our developed
model could overcome the drawbacks of HMM for large datasets and can efficiently handle
data in reasonable time.

keywords
Hidden markov model(HMM). Supervised learning. Classification. Big Data. MapReduce.

1 Introduction

Recently, The processing large size datasets becomes a research opportunities ahead in the field of
machine learning [7]. The volume of data being retrieved is large and the processing this amount
of information is especially challenging task for learning supervised problems [1,5]. The process
of analyzing large amounts of data in order to build new kind of useful models such as implicit
relationships between input attributes characterize information and the predefined class labels.
Many traditional supervised learning algorithms, such as statistical models, Artificial intelligence
methods and other relatives, become computationally infeasible for very large data sets.

The ability to build a classification models using collected large datasets with high speed is
a pervasive problem that encompasses many diverse applications. However, such big datasets
cannot be practically utilized on a single commodity computer because the data is too large to fit
in memory, or takes more time. Thus, the training task for learning classification models requires
a high capacity evolutionary computation. The storing, manipulation and analyzing of big data,
parallel and distributed architectures allow us to avoid this obstacle and overcome the drawbacks
of traditional techniques analysis [9]. Now, big data applications presents a new way to solve some

1
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exploratory data analysis problems have arisen and becomes a popular useful in many knowledge
discovery related fields [3,4].

The subject of classification is also a major research topic in the fields of statistical learning
and probabilistic modeling is at the heart of the issue in research. The basic idea is to find subtle
relationships in data and infers a Bayesian rules that allow the prediction of results. Conventional
probabilistic classifier models has been used as a tool in supervised classification which can predict
the probability of different class based on various attributes. However, these classification models
cannot managed a large amount of data and the corresponding learning algorithm cannot efficiently
do so. The data is so big it affects the types of algorithms we are willing to execute. This paper
proposes a method to split incoming data into chunk and build classification model based on
parameters resulting from these individual chunks. Our method extends earlier work by introducing
a method for adaptively analyzing the chunk. The objective when applying the algorithm in
practice is to reduce the running time and memory consumption. It also makes it possible to
efficiently optimizing the treatment to get results where the analyzed information remains relevant.

Statistical aspects of the analysis and use of high-dimensional data is the major focus of this
work. We focus on the adaptation of the HMM estimating techniques with massive amount of
information for building the classifier. HMM is the most powerful and stochastically modeling
method in pattern recognition [6]. It has been used to model a dynamical system such as speech
recognition, handwriting and engineering. In recent years, it was applied for estimating the re-
lationships between inputs attributes and the class labels. It was also proposed as a statistical
process for prediction and forcasting such as customer relationship management (CRM) [2,8]. The
basic idea of learning HMM algorithm for large datasets is to estimating partially HMM parameters
by splitting the data into chunks, learning HMM from each chunk, and combining the estimating
of the different parameters to form a overall reliable estimates of all parameters.

HMM learning algorithm for building classification model cannot be directly applied to large
data because it is too slow and require too much memory. The whole process is executed serially by
one machine. HMM learning algorithm for building classification model cannot be directly applied
to large data because it is too slow and require too much memory. The whole process is executed
serially by one machine. MapReduce paradigm based distributed approaches can be used as a way
to an analyst applying predictive models on large datasets and improve the scalability of the data
processed. Thus we improve HMM classifier by using MapReduce. It has many advantages in data
processing can reduce the training time and enhance the speed of classification.

The remainder of this paper is organized as follows: In Section 2, we first briefly present the
basic elements related to HMM discrete states and discrete observations. Then, we introduce the
modeling process of HMM method to build the classification model. Finally, we show experimental
limits of training HMM parameters. Subsequently our scalable approach based on Mapreduce
distributed environment and the decomposition of data sets into several chunks are provided in
Section,3. We present in this section also the experimental results, evaluations and finally, some
concluding remarks are given.

2 HMM classifier model

We first describe the basic algorithm that generates the HMM classifier from incoming of data.
Then we explain how HMM can be utilized to build a supervised learning for classification.

2.1 Discrete States and Discrete observations for HMM

Consider a input data whose members are characterized by a set of independent or predictor
variables called explanatory or exogenous and a set of class labels. Suppose we wish to identify
a model that best fits a relationship between the attribute set and class label. This relationship
might be presented statistically and estimated from a sequence of observations. The simplest

2
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probabilistic form uses posterior probabilities P (X|Y ) and determine the appropriate class of X
based on the input data Y. In this work we follow the hidden Markov model (HMM) approach
taken in Benyacoub et.al and assume that the posterior probability can be described as a function
of observed characteristics Y.

Here we briefly describe a hidden Markov model as given in Benyacoub et.al [2]. In general, the
class label could be any one of N values. Formally, we identify the set of N class labels with the N
units vectors e1, e2, . . . , eN in RN , where ei = (0, . . . , 1, 0, . . . , 0)

′
. We can assume that the finite

state of markov chain is defined by the set S = {e1, e2, . . . , eN} and we have X ∈ S. In fact, taking
inner products notation and turns out that expectations are probabilities in that P (X = ei) =
E[< X, ei >]. We suppose there is a vector Y = (Y 1, Y 2, . . . , Y p) of characteristics which can be
observed and each explanatory variable Y k has a finite state space. Write Sk

Y = {f1k, f2k, . . . , fmkk}
the set of unit vectors that identify this finite state space where fik = (0, . . . , 1, 0, . . . , 0)

′
in Rmk .

Then for each k = 1, 2, . . . , p we have P (Y k = fjk) = E[< Y k, fjk >] where Y k ∈ Sk
Y . We should

apply a discretization method to quantize a continuous state space. The relationship between the
state which represents the class label and each characteristic Y k is then given by E[Y k|X] = CkX,
where C = (cji), 1 ≤ i ≤ N, 1 ≤ j ≤ mk is a matrix.

Define W k = Y k − CkX, thus, the connection between the class labels and the observed
characteristics can be expressed as an observation equation presented in the following:

Y k = CkX
k +W k, k = 1, 2, . . . , p

Those equations can be summarized in this equation Y = CX−W , where C = (C1, C2, . . . , Cp)
′

and W = (W 1,W 2, . . . ,W p)
′
. It can be shown that E[W k] = 0, thus E[W ] = 0.

Multiply this equation by transpose matrix Ct

CtY = CtCX + CtW

Write H = CtC, M is a N ×N symmetric matrix.
If C is a full rank matrix (all columns are linearly independent), we can calculate the matrix

inverse H−1.
let

H−1CtY = X +H−1CtW ·

So we have:

X = H−1CtY −H−1CtW

Now recall that E[W |Y ] = 0, then taking the conditional expectation of this equation given Y,
we obtain

E[X|Y ] = H−1CtY

This system of equations presents a combination linear between conditional probability distri-
butions [1{X=ei}|Y ], i = 1, 2, . . . , N and the observed characteristics (Y 1, Y 2, . . . , Y p), where the
associated coefficients are obtained from the H−1Ct.

2.2 Presentation the classifier model

The process defined below show that the hidden state can be estimated as a linear function of the
observed vector with corresponding coefficient obtained from H−1Ct.

We can use the equation presented below to define the learning algorithm. Firstly, we estimate
the coefficients of matrix Ck, where ckji = P (Y = fjk|Xt = ei), i = 1, 2, . . . , N ; j = 1, 2, . . . ,mk.
Therefore, we have a estimation of the parameters of the model the matrix C. Secondly, we deter-
mine the parameters of the classifier from the calculation of H−1Ct. The above processes show

3
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that the hidden state which represents the class label can be estimated as a linear function of the
observed vector. Finally, the conditional expectation of X given the observation Y can be expressed
as

P (X = ei|Y ) = E[< X, ei > |Y ] =

p∑
k=1

mk∑
j=1

βk
ji < Y k, fjk >, i = 1, 2, . . . , N

In summary, the classifier is now illustrated by these posterior probabilities. The observation
y is assigned to the class that verify the rule:

P (X = ei|Y = y) =
N

argmax
j=1

P (X = ej |Y = y)

where the argmax operator returns the argument i that maximizes the expression P (X = ei|Y = y).
The parameters in our model are the probabilities ckji, i = 1, 2, . . . , N ; j = 1, 2, . . . ,mk for

k = 1, 2, . . . , p. We shall estimate these using the maximum-likelihood method given a sequence of
observations y1 = (y11, y12, . . . , y1p), . . . , yn = (yn1, yn2, . . . , ynp). The results formulas (presented
in [8]) which maximize the function likelihood are

ckji =

∑n
t=1 < Yt, fjk >< Xt, ei >∑n

t=1 < Xt, ei >

where the sequence of X, as they are observed, is denote by {Xt, t = 1, 2, . . . , n}. Using the above
formula and based on the concept of counting event occurrences (presented in [6]) we can give a
method for estimation of the parameters as following:

ĉji(k) =
expected number of transitions from state i and observing symbol fjk

expected number of transitions from state i

This expression will be used to estimate coefficients of matrix C and construct the HMM classifier.

Figure 1: Measurements and performance of the rise in the scale of data sets for HMM.

4
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2.3 The limits of HMM classifier

HMM has made great achievements and proved to be successfully useful in a variety of pattern
recognition such as speech recognition, handwriting and engineering. However, HMM has a very
limited capacity for recognizing complex patterns when being applied to deal with large scale
datasets due to its intensity calculations and consume a lot of computation time for estimating
parameters. It seems to be difficult to directly apply the below training process on a single PC to
build the classifier because the application of HMM training algorithm spend more time to finish
or even cannot be done. In the following, we show the limitations of applying the classifier by
testing the speedup of training process on large scale data.

Experiments described in this work were performed on an ordinary computer, with a processor
of 2.9GHz Intel CORE i7 7th Gen CPU and 8GB RAM memory, using Windows 10 operating
system. Matlab, version 2015a, was used for modeling. Experiments results are obtained by
varying the number of observations (n) and the number of observed characteristics (p).

We use the packages PRtools a Matlab toolbox for pattern recognition to simulate several data
sets with different size. Five number of variables are chosen to determine data sets. For each
number of variables six data sets are generated by a number of samples changed between 5000
and 100000. The scalability of number of samples and size of number of variables is limited and
expensive. The large volume of data generated by PRtools it will be limited by its high size, due
of the insufficient memory to load the data.

3 MapReduce-Based HMM classifier

Mapreduce is a simple programming tool applied for data processing. It is used to divide the
input data in to different blocks. The main task of Mapreduce is to distribute the blocks of data
to DataNodes in order to be exploited by the learning algorithm. In this section, we present a
technique programming which is suitable for estimating HMM parameters and building classifier
based on Mapreduce distributed environment of Matlab. Our methods is divided in three steps.
There are described in the following part.

3.1 Implementation of MapReduce with HMM classifier : MR-HMM

Take a dataset including p independent variables Y = (Y1, Y2, . . . , Yp) and a target dependent
variable X.

Firstly, we use datastore to process the data in small chunks that individually fit into memory.
The large data used in training process is presented separately into many several blocks. Each
block goes through a Mapper which formats the data to be processed. Suppose we have a dataset
D(n×p) = ((y1, x1), (y2, x2), . . . , (yn, xn)) where yi = (yi1, yi2 . . . , yip).

D(n×p) =

⎡⎢⎢⎢⎣
D1

D2

D3

D4

⎤⎥⎥⎥⎦ where : Di = Di
ni×p, ni = block size,

The dataset are decomposed to small blocks Di = {(yi, xi)} with the same size and delivered
together to a Mapper.

Secondly, the technique is composed of a Map phase, which formats the data to be processed
and performs a precursory calculation. Every map task takes as parameters block and apply
the training algorithm. In fact, each map task receives the sub-datasets as input and compute
partially the coefficients of matric Ci correspond to the used block Di. The results matrices Ci

are associated with the key � Keyi � and sent them directly to reduce without any treatment.
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Table 1: Description statistique des deux bases de donnes.

Data set sample (n) feature (p)

MNIST 70 000 784

GISETTE 7000 5000

Thirty, the Reduce phase aggregates all of the results from the Map phase. There is a single
reduce task. The inputs are the set of matrices Ci obtained from the map tasks. The matrix C
of estimated coefficients for training task is constructed with the intermediate matrix Ci collected
from map function. The single C is calculated for this time as follow:

C = C1 + C2 + C3 + C4

C is considered to C final delivered which can be used by the training algorithm to build the
classifier.

Figure 2: Training HMM classifier using Mapreduce

3.2 Credit Datasets Description

Two benchmark data sets are used in the experiment. The data sets are database of handwritten
digits : MNIST and GISETTE. MNIST has a training set images of 60,000 examples, and a test
set images of 10,000 examples. It is a subset of a larger set available from NIST. The labels values
are 0 to 9. The task of GISETTE is to discriminate between to confusable handwritten digits: the
four and the nine. This is a two-class classification problem with sparse continuous input variables.
The data set was constructed from the MNIST data. Table shows description information about
the four benchmark data sets.

6

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 882



Figure 3: Performance measures of HMM with MapReduce for MNIST Data sets

3.3 Results and Analysis

In this section, we evaluate the performance of HMM-MapReduce on the two data sets described
above. The experiments are carried out using the tool MapReduce of Matlab environment The
tree steps presented in section 3.1 are implemented and tested. Thus, we conduct two experiments
using the two datasets to compare the training performance of our contribution.

Figs 3-4 show plots training time associated to each chunks resulted from MapReduce imple-
mentation. As be shown from the two figures, the MNIST data sets are divided to four chunks
and the GISETTE data sets are decomposed to tree chunks. The number of chunks depend to
the size of samples. The time of training process correspond to GISETTE data sets is high than
the MNIST samples and depend heavily to the number of variables. Our model are build up with
a total time 15.7970s for GISETTE and 5.8438s for MNIST. The experimental results prove the
efficiency and scalability of the method over large data. We can conclude that the results presents
a significant challenge to increase processing performance of our training HMM parameters.

4 Conclusion

In this paper, we propose a new method for building HMM classifier for large data sets based on
Mapreduce architecture. The developed approach is able to extract the information from massive
data and estimate the parameters of HMM. We can solve the problem of out memory provided by
the scalability of data and accelerate the learning process. Unlike to increase the performance of
the pc, we can use MapReduce environment to deal with the problem of limitation of memory and
capacity to run the programm in reasonable time. Experimental results show that HMM-classifier
based on Mapreduce is able to train the learning algorithm over huge amount of data.

7
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Figure 4: Performance measures of HMM with MapReduce for GISETTE Data sets
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Abstract. There is an emergent concern on our vigilance for controlling the 

spread of pandemics such as Ebola, Zika etc. Precise and trustworthy prediction 

incidences of these diseases are obligatory for the health authorities to guaran-

tee the suitable action for the control of the outbreak. The dynamics of epidemic 

spread in large-scale populations is very complex. Huge data generated in the 

era of SMAC makes it more complex. Processing of this huge data is very im-

portant for effective descriptive, predictive, preventive and prescriptive analyt-

ics. Effective planning and response strategies must take these complicated inte-

ractions into account. In this paper, we have proposed the use of machine learn-

ing techniques for performance evaluation of time series forecasting of casual-

ties in case of Ebola Outbreak. We have conducted experiments on ten different 

classifiers and selected the better performing random tree classifier for forecast-

ing Ebola casualties. By experimenting without lag creation, we achieved the 

best results in the MAE of 5.39 %, RMSE value of 42.41 %, and Direction Ac-

curacy of 90.95 %.Thus we can conclude that by using these models for fore-

casting epidemic spread and developing public health policies leads the health 

authorities to ensure the appropriate action for the control of the outbreak. 

Keywords: SMAC, Epidemic forecasting, Big data computational epidemiolo-

gy, Time Series Forecasting, Random Tree 

1. Introduction 

Globally infectious diseases are the major cause of human mortality. Moreover, 

just six infections are there which are deadliest- pneumonia, tuberculosis, diarrhoea, 

malaria, measles and HIV/AIDS. Key events related to the history of infectious dis-

eases can be traced as far back as the Middle Ages (see Fig. 1 [1]).
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Fig.1 Disease Outbreaks from middle Ages to 21st Century 

 

Fig. 2 Key Facts on Ebola Disease  
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Table 1 Chronology of previous Ebola virus disease outbreaks 

Year Country Ebolavirus species Cases Deaths Case fatality 

2015 Italy Zaire 1 0 0% 

2014 DRC Zaire 66 49 74% 

2014 Spain Zaire 1 0 0% 

2014 UK Zaire 1 0 0% 

2014 USA Zaire 4 1 25% 

2014 Senegal Zaire 1 0 0% 

2014 Mali Zaire 8 6 75% 

2014 Nigeria Zaire 20 8 40% 

2014-2016 Sierra Leone Zaire 14124* 3956* 28% 

2014-2016 Liberia Zaire 10675* 4809* 45% 

2014-2016 Guinea Zaire 3811* 2543* 67% 

2012 Democratic Republic of Congo Bundibugyo 57 29 51% 

2012 Uganda Sudan 7 4 57% 

2012 Uganda Sudan 24 17 71% 

2011 Uganda Sudan 1 1 100% 

2008 Democratic Republic of Congo Zaire 32 14 44% 

2007 Uganda Bundibugyo 149 37 25% 

2007 Democratic Republic of Congo Zaire 264 187 71% 

2005 Congo Zaire 12 10 83% 

2004 Sudan Sudan 17 7 41% 

2003 (Nov-Dec) Congo Zaire 35 29 83% 

2003 (Jan-Apr) Congo Zaire 143 128 90% 

2001-2002 Congo Zaire 59 44 75% 

2001-2002 Gabon Zaire 65 53 82% 

2000 Uganda Sudan 425 224 53% 

1996 South Africa (ex-Gabon) Zaire 1 1 100% 

1996 (Jul-Dec) Gabon Zaire 60 45 75% 

1996 (Jan-Apr) Gabon Zaire 31 21 68% 

1995 Democratic Republic of Congo Zaire 315 254 81% 

1994 Côte d'Ivoire Taï Forest 1 0 0% 

1994 Gabon Zaire 52 31 60% 

1979 Sudan Sudan 34 22 65% 

1977 Democratic Republic of Congo Zaire 1 1 100% 

1976 Sudan Sudan 284 151 53% 

1976 Democratic Republic of Congo Zaire 318 280 88% 
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The word epidemic was derived from the Greek words: epi (upon) and demos 

(people) meaning “upon people.” It is an event in a population, of cases of a sickness, 

particular health behaviour or other health-related events in a surplus of what would 

be normally possible. A pandemic is an epidemic that spans a large portion of the 

world, such as the H1N1 outbreak in 2009. In contrast, an endemic disease is one 

wherein new infections are constantly occurring in the population.  

The 2014–2016 outbreaks in West Africa were the largest and most complex Ebola 

outbreak since the virus was first discovered in 1976. It has more confirmed cases and 

casualties in this outbreak than the rest combined. It has started from Guinea and 

spread between Sierra Leone and Liberia. Key facts and Chronology of previous Ebo-

la virus outbreaks are given in Figure 2 and Table 1 [2]. 

The Study and its application of distribution and determinants of the events related 

to health across specified populations for description, prediction, prevention and pre-

scription of health problems are defined as Epidemiology [3]. The Main concern of 

Epidemiologists is public health which includes the efficient analytics of descriptive 

public data and maintenance of its collection. They do it by exploring the spatial ex-

tent of the outbreak, progress chart of the disease, mode of controlling the disease, the 

origin of disease and how is it different than the previous outbreaks. 

 

1.1 Big Data Computational Epidemiology  

History of Epidemiology goes long back to 1760.In 1760; Daniel Bernoulli [4] has 

given the first model mathematically and established that inoculation could facilitate 

an increase in the life expectancy in France. A British physician, John Snow analyzed 

a cholera outbreak in London in 1854. He credited it to a supply of polluted water [4]. 

In the current era of SMAC (Social, Mobility, Analytics and Computing) [5,6] plat-

forms, a huge amount of data is getting generated from social networking sites, real 

time streams of outbreaks etc. This huge data makes the computation in Epidemiology 

more complex. This calls for Big Data Computational Epidemiology which is a rising 

interdisciplinary field which makes use of computational models and big data for 

understanding and controlling the spatiotemporal transmission of disease throughout 

populations. Following are the reason for which big data computational epidemiology 

is the need of current era. 

1. Mathematical models have become increasingly complex for which big data ana-

lytics tools are required. 

2. The model representing the affected population creates a complex interaction net-

work. These network models are real scenarios based which makes it more compu-

tational and data costly. As mentioned in [6, 7], the analysis of such data sets re-

quires powerful computing resources and big data analytics tools 

3. New methods of disease surveillance and detection are required for collection of 

huge data generated. Computational methods for data management, including me-

thods to collect, store, clean, organize, search, fuse, and analyze data, are all impor-

tant.  
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4. With the SMAC era, where everyone is connected with the internet, there is a 

growing demand for developing web-based tools that can be accessed by epidemi-

ologists in a pervasive manner. This clearly indicates the role of big data epidemi-

ology [8]. 

1.2 Big Data Analytics in Epidemiology 

From Big Data computational epidemiology, four basic classes of problems arise 

based upon the network created that involves the places where the disease has spread. 

Descriptive Analytics: This includes characterizing the outbreak size, duration of the 

epidemic, and other properties of epidemics. Actual visualization of the spread and 

other related features could be helpful in next step. 

Predictive Analytics: This include problems of determining quantities, such as the 

number of infections over time, or the peak, and identifying the people who might be 

infected, given partial information of the outbreak until some time. Machine Learning 

techniques can be used for efficiently forecasting the spread based on the output of 

the previous step. 

Preventive Analytics: As discussed earlier, the networked SIR model is determined 

by the network, initial conditions, and epidemic model. In general, we may have par-

tial information about some of these components; e.g., edges of the graph might not 

be completely known, or parameters of disease spread are unknown. With the help of 

forecasting result obtained in previous step, we can put a check on the spread. 

Prescriptive Analytics: This includes problems of controlling the spread of epidem-

ics, e.g., by vaccination or quarantining, correspond to making changes in the node 

functions or removing edges so that the system converges to configurations with few 

infections. We could use the result of preventive analytics for an efficient delivery 

model of production, transportation and distribution of vaccines, doctors and other 

resources. 

 

We will discuss about predictive analytics in this paper. 

1.3 Predictive Analytics 

Predictive Analytics includes problems of determining quantities, such as the 

number of causalities, no of suspected cases, no of infections over time etc. Epidem-

ic Forecasting in terms of casualties, location etc is an important rising topic in big 

data computational Epidemiology. It involves collecting and combining data from 

nontraditional sources like Social Media, Wikipedia, and World Health Organiza-

tion’s surveillance systems and processing them with statistical models and machine 
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learning techniques to now cast and forecast the occurrence of diseases in the host 

population. Nsoesie et al. [9] reviewed methods for influenza forecasting proposed 

during previous influenza outbreaks and those evaluated in hindsight. Nishiura [10] 

have given a discrete time stochastic model and applied as a case study to the weekly 

incidence of pandemic influenza in Japan. Ohkusa et al. [11] have demonstrated real-

time estimation and prediction of the entire course of a pandemicof ILI (influenza-

like illness) in Japan. Hall et al. [12] have predicted spread of the H5N1 influenza 

virus in birdsby fitting a mass-action epidemic model to the surveillance data by 

standard regression analysis. Tizzoni et al. [13] have proposed Global Epidemic and 

Mobility Model to generate stochastic simulations of epidemic spread worldwide 

using a Monte Carlo Maximum Likelihood analysis.  Shaman et al. [14-16] have 

used Bayesian ensemble methods to develop surprisingly high-quality forecasts for 

flu prevalence in US regions. Chakraborty et al.[17] has analyzed the generation of 

robust quantitative predictions about temporal trends of flu activity, using several 

surrogate data sources for 15 Latin American countries. 

2 Materials and Methods 

2.1 Data Set 

We have selected Ebola outbreak data from duration 29-08-2014 to 29-12-

2015 that is available in the WHO sitrep [18] which provide updated data for 

countries with an active Ebola outbreak. The Total number of instances are 4112 

that contains details about the cumulative no of confirmed Ebola cases and cumu-

lative no of confirmed Ebola Deaths. Fig 3 describes the statistics of the dataset. 
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Fig.3.Graphical display of distribution of various attributes between the two classes as Cumula-

tive Confirmed Ebola Cases and Cumulative Confirmed Ebola Deaths   

2.2  Proposed Methodologies 

 Experiments are conducted for time series forecasting using 10 different 

machine learning algorithms, which are applied for prediction task. A brief 

description about the best performing algorithm is given in this study under 

prediction protocol section. The flow diagram of the proposed methodology can 

be depicted from the Fig 4. 

 

 
 

 

Fig. 4 Flow diagram of the Proposed Methodology 

2.3 Prediction Protocol 

Random tree was found to be better performing algorithm among all machine 

learning algorithms for the proposed problem prediction. 

 

2.4 Performance Evaluation Metrics 

The relative performance of time series analysis and forecasting through 

different machine learning algorithms is evaluated by using following three me-

trics.  

Mean absolute error (MAE): The MAE evaluates the standard amount of 

the errors in a set of forecasts, without taking into account their direction. It 

gives the accuracy for continuous variables. In other words, it is the average of 

the total values of the differences of forecast and the matching observation. The 

MAE is a linear score which indicates that every individual difference is 

weighted equally in the average. 
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𝑀𝐴𝐸 =
  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙 

𝑁
 

  

Root mean squared error (RMSE): It is a rule based on quadratic score that 

measures the average magnitude of the error. In words, the difference of forecast 

and matching observations are squared each and then average is calculated over 

the sample. Lastly, the square root of the average is noted. RMSE gives a rela-

tively high weight to large errors because the errors are squared before averag-

ing it. Thus RMSE is best used for cases where large errors are undesirable. 

 

𝑅𝑀𝑆𝐸 =
   𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙 2

𝑁
 

 

Direction Accuracy (DA): It gives the percentage of accurately predicted 

positive and negative examples with below formula  

 

    

𝐷𝐴 = 𝐶𝑜𝑢𝑛𝑡 𝑠𝑖𝑔𝑛 𝑎𝑐𝑡𝑢𝑎𝑙_𝑐𝑢𝑟𝑟𝑒𝑛𝑟 − 𝑎𝑐𝑡𝑢𝑎𝑙_𝑝𝑟𝑒𝑣𝑖𝑜𝑠  

=
𝑠𝑖𝑔𝑛 𝑝𝑟𝑒𝑑_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑝𝑟𝑒𝑑_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 

𝑁
 

 

 

The relative measures give an indication of how well the forecaster's predic-

tions are doing compared to just using the last known target value as the predic-

tion. They are expressed as a percentage and lower values (not Direction accu-

racy) indicates that the forecasted values are better predictions than just using 

the last known target values. 

The open source Java based machine learning platform WEKA [19] was used 

to perform all the experiments in this study. 

3 Result and Discussion 

We experimented with ten different algorithms, namely: (1) Linear Regression, (2) 

Multilayer Perceptron, (3) Support Vector Machine for Regression, (4) Ensemble 

Selection, (5) Bagging with Reptree, (6) Random tree, (7) Random Forest (8) Reptree, 

(9) Random tree and (10) Random Forest on the training data and the values of differ-

ent performance metrics for these algorithms are given in Table 2. 

Table 1.Algorithms used in the proposed work 

Linear-

Regression 

Class for using linear regression for prediction. Uses the Akaike criterion 

for model selection, and is able to deal with weighted instances. 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 892



MLP A Classifier that uses backpropagation to classify instances. 

SMOReg 

SMOreg implements the support vector machine for regression. The pa-

rameters can be learned using various algorithms. The algorithm is selected 

by setting the RegOptimizer. The most popular algorithm (RegSMOIm-

proved) is due to Shevade, Keerthi et al and this is the default RegOptimiz-

er.[20,21] 

Ensemble-

Selection 

Combines several classifiers using the ensemble selection method.[22] 

Bagging 
Class for bagging a classifier to reduce variance. Can do classification 

and regression depending on the base learner. [23] 

Random-Forest Class for constructing a forest of random trees. [24] 

RepTree 

Fast decision tree learner. Builds a decision/regression tree using infor-

mation gain/variance and prunes it using reduced-error pruning (with back-

fitting).  Only sorts values for numeric attributes once. Missing values are 

dealt with by splitting the corresponding instances into pieces (i.e. as in 

C4.5). 

Random Tree 

Class for constructing a tree that considers K randomly chosen attributes 

at each node. Performs no pruning. Also has an option to allow estimation of 

class probabilities (or target mean in the regression case) based on a hold-

out set (backfitting). 

Table 2.Performance metrics of time series forecasting using machine learning algorithms 

Machine 

Learning 

Algorithms 
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Linear 

Regression 

473.54 685.26 59.18 518.97 684.44 58.51 

MLP 164.78 317.63 65.94 145.45 300.95 71.74 

SMOReg 300.61 1073.22 66.37 424.76 769.86 60.82 

Bagging-  

Reptree 

125.58 300.12 74.18 120.15 262.64 86.27 

Bagging-

Random Tree 

55.92 181.56 84.20 55.60 159.66 82.90 

Bagging- 

Random 

71.27 208.12 80.88 70.65 179.25 80.72 
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Forest 

Ensemble 

Selection-

Forward 

120.79 297.20 67.79 130.47 299.72 74.54 

RepTree 191.80 397.461 55.52 145.48 339.77 66.74 

Random 

Tree 

5.39 42.41 90.95 6.5824 53.22 85.90 

Random 

Forest 

54.53 131.43 81.16 47.86 128.31 82.15 

We have used both, with Lag formation and without Lag formation to measure the 

performance of various machine learning algorithms. It was also observed that the 

performance of Random Tree was superior to the rest of the 9 other machine learning 

algorithms in terms of the different evaluation parameters. It is clear from the table 2 

and figures 5-8 that Random tree has performed superior in both the cases, i.e. with 

lag creation and without lag creation. The Lag creation allows the user to control and 

manipulate how lagged variables are created. Lagging is the main method through 

which the association of past and current values of a set could be encapsulated by 

propositional learning algorithms. They generate a "window" or "snapshot" above a 

time period.  

 

 
 

Fig. 5 Mean Absolute Error with/without Lag Creation 

 

 
 

Fig. 6Root Mean Squared Error with/without Lag Creation 
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Fig. 7 Direction Accuracy with/without Lag Creation 

 
 

Fig. 8 Comparison of Direction Accuracy with/without Lag Creation 
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Fig. 9 Comparison of MAE, RMSE and DA with/without Lag Creation 

From Fig. 5, 6, 7, it is clear that Random tree has performed in best manner as 

compared to other algorithms. For the experiments conducted on data set, the value of 

MAE and RMSE is lowest in without lag creation category as compared to that of 

with lag creation. Direction Accuracy of Random tree is best in without lag creation 

category with a value of 90.9545 % while with lag creation Random tree has per-

formed with a value of 85.9014 %. From Fig. 8, it is clear that random tree has best 

direction Accuracy of 90.9545 % overall in both with and without lag creation catego-

ry. 

Fig. 9 shows a comprehensive comparison of MAE, RMSE and DA in data set 

with/without lag creation.  

4 Conclusion 

Big data computational epidemiology is a new and exciting multidisciplinary 

area with significant challenges of large data and high-performance computing. There 

are many factors that can affect in achieving the true performance of time series fore-

casting. Predictive analytics of time series data in epidemiology include problems of 

determining quantities, such as the number of casualties, no of infections over time, or 

the peak, and identifying the people who might be infected. In this paper, we have 

applied Machine Learning techniques in time series forecasting for performance eval-

uation. With this result, we could say that performance of time series forecasting 

could be improved with the help of machine learning algorithms. Forecasting of ca-

sualties could help health officials in preparing themselves to encounter this outbreak, 
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supply of medicines, food supply, doctors etc to the location where prediction of ca-

sualties are more. 
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Hidden Markov Models for monitoring Circadian
Rhythmicity in Telemetric Activity Data
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Abstract. Wearable computing devices allow collection of densely sam-
pled real-time information on movement enabling researchers and med-
ical experts to obtain objective and non-obtrusive records of actual ac-
tivity of a subject in the real world over many days. Our interest here is
motivated by the use of activity data for evaluating and monitoring the
endogenous circadian rhythmicity of subjects for research in chronobiol-
ogy and chronotherapeutic healthcare. In order to translate the informa-
tion from such high-volume data arising we propose the use of a Markov
modeling approach which (a) naturally captures the notable square wave
form observed in activity data along with heterogeneous ultradian vari-
ances over the circadian cycle of human activity, (b) solves the problem
of thresholding activity into different states in a probabilistic way while
respecting time dependence and (c) delivers parameter estimates, in par-
ticular probabilities of transitions between rest and activity, that are in-
terpretable, irrespective of the model of measuring device, and important
to circadian research.

Keywords: Hidden Markov models, Accelerometer data, Circadian Rhythm,
Sleep-Wake cycle

1 Introduction

Questions of interest regarding the research of sleep-wake cycles in humans and
mammals are commonly studied by measuring activity through gross motor
movement where accelerometers have become a feasible and affordable way to
obtain objective non-obtrusive recordings of rest-activity rhythms of free liv-
ing individuals over many days [1–3]. Accelerometers measure the acceleration
of the part of the body to which they are attached, often as part of a small
communicative wearable device. The signal is preprocessed by the device to ob-
tain physical activity (PA) counts accumulated over a specified time interval,
called epoch. Time series PA data from such monitoring devices are subject to
circadian rhythms and are of interest to the circadian research community. Ac-

? Corresponding author
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Fig. 1. Example of raw accelerometer data: Activity counts recorded per minute over 4
days with Move3 (Movisens GmbH, Germany) sensor with inbuilt accelerator ADXL345
(Analog Devices, MA, USA) fixed to the chest of a healthy individual

tivity data can now be collected at short epoch lengths, such as every minute or
every 15 seconds, over many days. The sensor used in our study (Move3, Mo-
visens GmbH, Germany) is fixed to the chest and contains a triaxial accelerator
model (ADXL345, Analog Devices, MA, USA). The device produces activity
counts defined as the number of times an accelerometer waveform computed
by the device, according to specifications of the frequency and filters that are
specific to the manufacturer, crosses zero over the specified epoch length of 1
minute. Figure 1 gives an example of PA counts recorded every minute for a
healthy individual over 4 days. Translating information from such high volume
and complex data into interpretable and useful statistics is a challenging task, in
particular if the aim is to perform long term monitoring of an individual. Apart
from visually inspecting time plots the data are generally analyzed by deriving
statistics, termed ’nonparametric variables’ [4, 5], to quantify characteristics of
interest to clinicians, sleep researchers and chronobiologists. These are generally
focused around the intradaily variability, which measures the fragmentation of
the rhythm, and interdaily variability which quantifies the entrainment to the
24 h light/dark cycle. An R-package to compute these alongside other statistics
such as relative amplitude of activity, average activity values of the ten hours
with maximal activity and the 5 hours with least activity, is provided by [6]. Evi-
dence exists in the literature [7, 8] that the intradaily variability is a particularly
important variable that is correlated with decreased sleep quality and cogni-
tive functions as patients with Alzheimer’s disease were found to have higher
intradaily variability values [9]. Furthermore, in a clinical context, a series of
studies [10–13] found that the dichotomy index I<O, which reports the percent-
age of activity epochs when in-bed, whose values were lower than the median
level of activity when out-of-bed, was the most relevant statistic in predicting
survival rates in cancer patients.

While there exist a number of nonparametric statistics to quantify the (mis)-
timing of sleep-wake rhythms, and novel ones continue to be proposed [14], it
remains an open task to quantify their variability and compute confidence in-
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Hidden Markov Models for monitoring Circadian Rhythmicity 3

tervals. This will in particular be important if they are used in assisting with
the decision making process of a health expert about an individual’s therapy.
Furthermore, most nonparametric statistics discussed above rely on being able
to mark the beginning and end of prolonged rest periods. While different algo-
rithms may be devised that identify individual-specific threshold values to clas-
sify between the states of rest and activity, this cannot always be determined
unequivocally and requires hand-tuning, in particular if the subject’s circadian
rhythm is misaligned such as for shift workers.

More complex time series analysis approaches have been proposed, including
spectral analysis and harmonic regression [15] or functional smoothing based on
splines [16] applied to hourly PA recordings. Fourier methods are used to extract
further parameters, namely acrophase, amplitude and period, that are typically
of interest to studies of circadian rhythmicity. Spectral estimation using the
methods proposed in [17] confirms that the activity data for healthy individuals
usually exhibit a strong 24h periodicity as can be expected due the entrained
endogenous circadian rhythmicity endorsed by the timing of the work and social
environment. Although spectral analysis is well able to extract the circadian
period, smooth functional forms, such as harmonic functions or splines, are not
ideal for modelling the abrupt appearance of the transitions between the active
and inactive states and will not detect short bouts of transitions caused, for
example, by daytime naps or active interruptions at night. The data also show
time changing variances in that PA values during the day show a markedly
larger variability than over the prolonged rest period. Here we propose the use
of hidden Markov models (HMMs) which provide the necessary tools to model
the features observed in the data, and deliver estimated parameters that can be
used to quantify the individual’s sleep-wake behavior.

2 Model and Inference

Let Y (T ) = {Y1, . . . , Yt−1, Yt, . . . , YT } denote the observations on activity where
t ∈ {1, ..., T} and T is the sample size. Let St ∈ {1, ...,m} denote the unob-
served activity state at time t. The notation P (·) stands for the probability
mass function or density function, whichever appropriate. We shall use the short
notation for arbitrary X: X(t) = {X1, ..., Xt}. The probabilistic structure of a
HMM is represented a conditional independence graph which is a special case of
a directed acyclic graph (DAG), and is based on the following two assumptions:

(A1) The sequence of states St is a Markov chain satisfying the Markov property:
P
(
St|S(t−1)) = P (St|St−1),

(A2) Conditionally on St, the Yt’s are independent and Yt depends on St only:
P
(
Yt|S(t), Y (t−1)) = P (Yt|St) .

It is straightforward to see that the joint distribution of the observations and
the hidden states of the DAG is

P(Y (T ), S(T )) = P(S1)
T∏

t=2

P(St|St−1)
T∏

t=1

P(Yt|St), (1)
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from which the data likelihood can be obtained by summing over the possible
combination of states (see, for example, [18])

P(Y (T )) =
m∑

s1,...,sT=1

P(S1)
T∏

t=2

P(St|St−1)
T∏

t=1

P(Yt|St)

= δP(Y1|S1)ΓP(Y2|S2)Γ.....ΓP(YT |ST )1′, (2)

where P (Yt|St) ∈ Rm×m is the conditional probability matrix with j−th diago-
nal entries P(Yt|St)j,j = P (Yt|St = j), Γ ∈ Rm×m is the Markov chain transition
matrix with elements Γj,k = P (S = k|S = j), δ ∈ R1×m is the initial state dis-
tribution and 1′ ∈ Rm×1 is a vector of ones. The HMM is hence parametrized
by the non-zero entries in δ,P(Yt|St) and Γ. We shall use ϑ to denote the vec-
tor of those unknown parameters. Given the output observation sequence Y (T ),
the maximum likelihood estimator of ϑ can be efficiently found, either through
direct maximization or based on an expectation maximization (EM) algorithm,
called the Baum-Welch Algorithm [18], for which closed form expressions and
computationally fast steps exist when the observational distribution P(Yt|St) is
Gaussian. However, caution is necessary as the likelihood may have local maxima
and it is advised to test different starting values for the parameters.

3 Application to Activity Data

Data and Data Pre-processing We shall show results of fitting HMMs to PA
count data recorded by the Move 3 sensor for 28 healthy individuals over the time
of 4− 5 days. In addition to activity, this device also provides minute recordings
of the 3D position, via the angles with respect to three orthogonal axes set by
the device and 5-min recordings of the skin temperature. Missing values occur
as the individuals remove the device to avoid contact with water - typically this
happens once a day for around 20 minutes. The missing values can be marked
retrospectively by noting that the contemporaneous temperature records show
a sudden decrease towards room temperature. Generally the missing data ratio
is around 1 − 3% for the healthy individuals in this data set. The estimation
algorithm can be altered in a straightforward way by propagating the transition
matrix corresponding to the last time point preceding the missing values [19].

Collected over many days the data are of considerable size and it is desirable
to be able to apply computationally efficient methodologies. In this study, we will
assume Gaussianity of the observational densities of the square root transformed
5-min mean aggregated PA count data which corresponds to the assumption of
a mixture of non-central Chi-square distributions at the original scale of the PA
counts which can account for the non-negative domain and positive skew.

Number of States An obvious question is how many states m the model
should have. We have estimated 2−6 state models for all 28 individuals, using in-
formation criteria such as Akaike’s information criterion (AIC) and the Bayesian
information criterion (BIC) for model comparison [18]. The AIC tended to prefer
models with 3−6 states while the BIC suggested more parsimonious models with
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2−4 states. The estimation algorithm is sensitive to increasing model complexity
and inconsistencies in interpretation between different individuals arise when 4
or more states are considered. For example, when m = 4, the algorithm may
identify one inactive state during the night and three active states during the
day for some individuals while for others it identifies two states at night and two
for the prolonged active period. We concluded that models with m = 3 states are
preferred for our purposes in that we did not encounter any convergence issues
with the algorithm and the resulting model is simple yet detailed enough for
the purpose of long term monitoring and consistently interpretable across many
individuals.

Parameter Estimates The parameter estimates contain useful interpretable
information about the individual’s sleep-wake behaviour. We shall discuss typ-
ical results of fitting a HMM for two example subjects, A and B, say, with 3
states that can be interpreted as as inactive (IA) for St = 1, moderately active
(MA) for St = 2 and highly active (HA) for St = 3, where St = j; j = 1, 2, 3 also
denotes the entry number of the corresponding state in all vectors and matrices.
The estimated model parameters for subject A are as follows: the transition
probabilities are

Γ̂ =

0.980 0.007 0.013
0.025 0.907 0.069
0.000 0.116 0.884


with conditional observation densities for IA state: Yt|(St = 1) ∼ N(0.92, 0.682),
for MA state: Yt|(St = 2) ∼ N(3.1, 1.112) and Yt|(St = 3) ∼ N(5.37, 0.742) for

HA state. The initial state distribution is δ̂ = (0, 1, 0), i. e. the initial state is
estimated to be MA.

For subject B the estimated model parameters are:

Γ̂ =

0.945 0.055 0.000
0.065 0.859 0.076
0.000 0.140 0.860


with conditional observation densities for IA state: Yt|(St = 1) ∼ N(1.25, 1.262),
for MA state Yt|(St = 2) ∼ N(6.98, 2.232) and for HA state Yt|(St = 3) ∼
N(12.06, 0.922). The initial state distribution is δ̂ = (0, 0, 1), i. e. the initial
state is estimated to be HA.

The results for the transition probabilities in Γ̂ for all 28 individuals are
plotted in Figure 2.

As can be expected the diagonal elements of the transition matrix suggest
a high chance of staying in the current state and this is highest for the IA
state, as estimated by Γ̂1,1, due to the prolonged period of rest at night. The

slightly lower values for Γ̂2,2 and Γ̂3,3, together with the elevated off-diagonal

estimated probabilities Γ̂2,3 and Γ̂3,2, indicate that there is a higher chance of
switching between the two active states. In fact, it is these transitions that
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Fig. 2. Estimated transition probabilities for 28 healthy individuals. The integers 1, 2
and 3 represent the inactive (IA), medium active (MA) and highly active (HA) states,
respectively.

account for the high variability observed in the data during the day due to the
fact that people undertake a variety of physical actions. The transition from
activity to rest is found to happen almost exclusively via the MA state as Γ̂3,1

is estimated to be zero, or very close to zero, for all individuals in the sample.
A transition of interest is from IA to either of the active states with probability
(Γ̂1,2+Γ̂1,3), which is equal to (1−Γ̂1,1) where high values indicates many activity
episodes where the person is likely to have interrupted sleep. For example, it is
estimated to be 0.02 for subject A and 0.055 for subject B, which seems to
indicate that subject B has experienced about twice as many sleep interruptions
as A during the study time. The estimated transition probability from IA to any
active state hence provides an alternative estimator of the nonparametric intra-
daily variability statistic which is suggested and estimated for hourly PA count
data in [4, 7–9]. We note that there is a positive correlation (Figure 3, top left)
between (Γ̂1,2 + Γ̂1,3) and Γ̂2,1, i.e. the transitions into and out of the IA state,
as subjects who often interrupt their IA state will also more often need to get
back to rest. Also, both transition probabilities are positively correlated with the
estimated average probability of being active at night (Figure 3, top right and
bottom right) which was computed for our sample by taking the average of the
estimated P(St = j|Y (T )) for j = 2, 3 during the prolonged IA periods. As can be
expected there is a negative correlation between the estimated dichotomy index
I<O and the average probability of being active at night (Figure 3, bottom left).
These three nonparametric statistics require that the PA data be partitioned into
prolonged IA and active periods. Such a classification is not ambiguous and may
require substantial hand-tuning, in particular for PA data from less rhythmic
individuals, while the estimation of our HMM parameters is unequivocal and
does not require the use of such classification algorithms.

The estimated conditional observation densities confirm our visual impression
that the IA state has a lower variance. The MA state usually is characterized
by a higher variance also in comparison to the HA state. The latter may be due
to the dampening effect of the square root transformation. Figure 4 hence plots
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Fig. 3. Correlations and scatterplots between estimated transition probabilities, di-
chotomy index I < O and probability of being in either of the two active states (MA
or HA) during the night for 28 individuals. Subject A and B correspond to the dots
marked by 16 and 18, respectively.

the mean and central 90% range of the three estimated observational densities
for all 28 individuals, where the results are transformed back to the non-central
Chi-square distribution at the scale of the PA counts. The mean of the highest
state provides an alternative estimator of the amplitude without having to rely
on Fourier methods. The three states identified by the HMM are specific to
each subject and we can see a large variability in the intensity of the two active
states between the individuals which is presumably due to their varying lifestyles.
Naturally, there is small variability between subjects in the mean of the IA state.

Local decoding [18] can be used to estimate the predicted state at time t by

Ŝt = argmax
j=1,...,m

P(St = j|Y (T )),

where the estimated conditional state probabilities P(St = j|Y (T )) are conve-
niently available as part of the inference algorithm. The predicted sequence of
the most likely states for the two example individuals can be seen in the top
panels of Figure 5 and 6, which show that for both individuals the IA state is
predominant at night and that during the day there are many transitions be-
tween the MA and HA states. For an informative visualization we propose to
plot P(St = j|Y (T )) for j = 1, 2, 3 (which add to 1) cumulatively for each t, and
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Fig. 4. Mean and central 90% range (on original scale of PA counts) of the estimated
conditional observation densities for all 28 subjects. Subject A and B correspond to ID
16 and 18, respectively.

associate each state with a different colour (blue for IA, light red for MA, dark
red for HA). We shall refer to the resulting plot as cumulative state probabil-
ity (CSP) plot. The bottom panels of Figure 5 and 6 show the CSP plots for
subjects A and B. These diagrams allow us to quickly assess how probable the
most likely state is and what other states have noticeable probability and give
us visual information on how well a person has rested. In particular if they have
solid blue areas, i.e. rarely move into the active states during night, then we
might deduce that the person has obtained a good night’s rest, as the example
subject A seems to have done. In contrast, subject B (Figure 6) has experienced
many interruptions at night which may be indicative of relatively poor quality
of sleep. Figure 7 compares the CSP plots of the average daily state probabilities
for all 28 individuals where one can identify individuals who have experienced
more or less interrupted rest at night, as well as differences between individuals
who tend to start their night rest earlier or later.

4 Circadian periodicity and Time-varying transition
probabilities

Spectral analysis confirms that the circadian cycle is the most dominant com-
ponent in the spectrum of the PA counts. Although the HMM introduced above
will reconstruct retrospectively the circadian rhythm in the states without any
a-priori modelling assumption of periodicity, it will not reproduce the circa-
dian peak in the spectrum of the PA counts. We can explicitly assume that
the transition probabilities follow a circadian rhythm through adding a periodic
parametric form as covariate. Banachewicz in [20] suggest the following logistic
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Fig. 5. State estimation for example subject A. (a) Top row: time series of activity with
yellow line indicating the mostly likely state using local decoding. (b) Second row: time
series of position (angle with respect to a device-specific X-axis). (c) Third row: CSP
plot, i.e. cumulative plot of P(St = j|Y (T )) for j = 1 (IA, blue), 2 (MA, light red), 3
(HA, dark red). (d) Bottom: CSP plot from HMM estimated with position covariate.

link functional approach

P (St = k|St−1 = j,Xt) =
exp(β0,j,k + β1,j,kXt)∑m
k=1 exp(β0,j,k + β1,j,kXt)

(3)

where Xt is a time varying covariate, here the 24-hour harmonic. Hence, we can
estimate and analyze the circadian variation of each of the transition probabili-
ties in the matrix Γ for each individual. Figure 8 compares for all 28 individuals
the CSP plots with the estimated state probabilities for the fitted HMM with a
circadian harmonic. These give smooth representations of the individual-specific
typical circadian cycle in the transitions between the three states, and one can
clearly distinguish between the various types of circadian rhythmicity such as
early risers (for example individual 19), late types (individual 21) and individ-
uals who experience a lot of interruptions at night (for example subjects 2, 20
and 24). We note that the estimated periodic HMM models provide synthetic
data simulations that appear realistic and indistinguishable from real data. Such
simulations are of practical importance as they can further be used to quantify
the variability of nonparametric statistic of interest such as the I < 0 dichotomy
index for each individual.

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 907
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Fig. 6. State estimation for example subject B. (a) Top: time series of activity with
yellow line indicating the mostly likely state using local decoding. (b) Second: time
series of position (angle with respect to a device-specific X-axis). (c) Third: CSP plot,
i.e. cumulative plot of P(St = j|Y (T )) for j = 1 (IA, blue), 2 (MA, light red), 3 (HA,
dark red). (d) Bottom: CSP plot from HMM estimated with position covariate.

5 Summary and Discussion

In this paper we propose the use of a hidden Markov modeling approach which
can address the challenges of modelling activity data and provides a natural
modelling framework for extracting information from them. The model can cap-
ture the characteristic features discernible in time series of activity measured
over days, such as the notable square wave form with heterogeneous ultradian
variances over the circadian cycle of human activity as well as the polyphasic
nature of the sleep-wake cycle in rodents. The estimated parameters can be used
to characterize the individual pattern of sleep-wake behaviour and to study the
between-individual variability. We introduce the cumulative state probability
(CSP) plot as a visual tool for inspecting the dynamic pattern of state tran-
sitions and their associated uncertainties. The possibility of assuming that the
state transition probabilities may change over time according to covariate infor-
mation and/or periodic functions allows for a wide range of modelling approaches
that has the potential to deal with the multivariate complex and large physio-
logical data sets that may in the near future be acquired regularly and cheaply
due to the rapidly developing technology of wearable devices [21]. Parameter in-
ference via maximum likelihood requires the use of optimization procedures for
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Fig. 7. CSP plots resulting from average daily state probabilities for all 28 individuals
in sample. Subject A and B correspond to ID 16 and 18, respectively.

which computationally accessible methodologies exist at least for some standard
distributional choices. We note that we have assumed Gaussianity for a suitable
transformation of the data and hence our HMM models were relatively easy to
implement in particular since some R packages such as HiddenMarkov and dep-
mixS4 are already available. The results from the analyses of pseudo-residuals
indicate a reasonable model fit and the interpretability of the results are encour-
aging. Care must be taken as convergence of the inference algorithms is affected
by increasing model complexity. Activity counts taken at very short lengths of
epochs display a large proportion of zero and low integer counts during the pro-
longed IA states. Hence the development of estimation algorithms for mixtures
of zero-inflated discrete distributions and Gaussian distributions for the active
states may provide an interesting avenue to pursue in order to deal with shorter
epoch lengths. However, Bai et al. [22] point out that there are significant dif-
ferences in the computation of physical activity counts between manufacturers
and even for new devices from the same manufacturer while wearable devices
are developing rapidly gaining increasing market attention via smart watches,
mobile phones and bracelets where there is currently no consensus about their
quality in assessing activity duration and sleep quality [23]. Activity recordings
mark the beginning of sleep periods by immobility of the subject and therefore
tend to overestimate sleep and underestimate wake time [2, 24] in comparison to
polysomnography (PSG), the current gold standard for measuring sleep, which
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Fig. 8. CSP day profile plots resulting from HMM with circadian harmonic fitted to
all 28 individuals in sample. Subject A and B correspond to ID 16 and 18, respectively.

will mark the onset of sleep through changes of electrical activity patterns in
the brain. Hence, the accuracy of activity recordings obtained by accelerome-
ters in measuring actual sleep continues to be investigated [25, ?]. In a recent
study Migueles et al. [26] review data collection and processing criteria where
they uncover significant effects on data comparability with respect to placement,
epoch length, sampling frequency, frequency setting of the filtering process that
selects the acceleration measured and treatment of missing data (usually due
to removal to avoid contact with water) for different generations of accelerome-
ters devices. Although it cannot address such differences in the quality of data
resulting from different types of measuring device, an advantage of the HMM
approach lies in that fact that it translates the information from the observed
data into probabilities of activity states and thus enables a comparison between
studies although they may be based on fundamentally different ways of measur-
ing activity. Furthermore, it solves the problem of ”thresholding” activity into
different states in an appropriate way through a probabilistic model respecting
dependencies in time and with the possibility of taking into account further data
and additional information. We may in future research wish to include weekend
effects and information about the state of the patient’s disease and therapy. Fi-
nally, the HMM provides a model on the basis of which realistic artificial data
can be simulated to quantify the individual-specific variability of nonparametric
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statistics, such as the I>O, and thus will aid in evaluating the risk associated
with the use of such statistics for therapeutic treatment decisions in clinic.
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Forecasting via Fokker-Planck using conditional probabalilities

Abstract

Using a closed solution to a Fokker-Plank equation model of a time series, a
probability distribution for the next observation is developed. This pdf has one
free parameter, b. Various approaches to selecting this parameter have been ex-
plored: most recent value, weighted moving average, etc. Here we explore using
a conditional probability distribution for this parameter b, based upon the most
recent observation. These methods are tested against some real world product
sales for both a one step ahead and a two step ahead forecast. Significant re-
duction in safety stock levels are found versus an ARMA approach, without a
significant increase in out-of-stocks.

Chris Montagnon
Department of Mathematics, Imperial College, London SW7 2AZ, UK. May
2017.

1. Introduction

When forecasting a time series {Xt, t = 1, .., N}, rather than the ’best’ (e.g.
minimum squared error) prediction of a single value X̂N+1 the expected value
of the next point in the time series, one often requires a probability distribution
of the possible values of X̂N+1. Kantz and Schreiber [1] proposed tackling this
through a Fokker-Planck equation [2] but did not take this further because of
difficulty estimating the parameters. Several more recent papers (eg Refs [3-5])
have sought to use forecasting methods based upon a diffusion model leading to
a Fokker-Planck equation but the solutions have been numerical. References 6,7
and 8 also report difficulties in estimating the parameters in a Fokker-Planck
model. In this paper we use a conditional probability approach to estimate
these parameters.

In Ref [9] we modeled a time series using a drift coefficient D(1) = −γx and
diffusion coefficient D(2) = c− bx2 in a Fokker-Planck equation:

∂W

∂t
= − ∂

∂x
(D(1)W ) +

∂2

∂x2
(D(2)W )

where W (x, t|xN = XN )dx is the probability of finding the actual XN+t in
(x, x+ dx) when the value XN has been observed for xN .

This lead to a differential equation in W:

(c− bx2)Wxx + (γ − 4b)xWx + (γ − 2b)W = Wt . . . (1.1)

The diffusion coefficient should be positive, so c ≥ bX2
max, and one can show

that the variance of W (x, t) increases with increasing c, so c should be as small
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as possible, giving:

c = bX2
max, where Xmax = max (|Xt|, t = 1, .., N) . . . (1.2)

In order to reach a closed solution in Ref [9] we needed the constraint:

γ = 3b . . . (1.3)

This lead to the solution:

Wb(x, t|xn = XN ) =

ebt

2
√
πtb(X2

max −X2
N )

1
2

exp {− 1

4tb
(sin−1(

x

Xmax
)− sin−1(

XN

Xmax
))2} . . . (2)

The two constraints (1.2 and 1.3) on the parameters γ, c, and b mean that
this distribution is dependent only on one free parameter, which in this paper
we choose to be b. This paper explores how our knowledge of previous values
of the time series {Xt, t = 1, .., N} helps select a value or a distribution for b.

2. Definition of the past values of parameter b

We define bτ−j to be the smallest b that makes the observed point Xτ−j+1

just less than the 75% point of the distribution Wb(x, 1|xτ−j = Xτ−j); ie. bτ−j
is the solution to:

∫ Xτ−j+1

Wbτ−j (x, 1|xτ−j = Xτ−j)dx = 0.75 solved for bτ−j . . . (3)

For a given time series, up to point τ , this generates a set of values (b1, b2, ..., bτ−1.
If we consider a discrete set of possible values for b , say b(j) : j = 1 to 31 , we
obtain a distribution of these values similar to that shown in figure 1.

In this paper we explore ways of choosing bτ based upon what has just hap-
pened ie the observed bτ−1 as defined in (3).

3. Method for one step ahead forecasts

We consider first the situation where we want a forecast for tomorrow (ie
D+1) when we are at the end of today (D+0): so we might be placing an order
to meet sales for tomorrow (D+1). Given a time series of sufficient length ( eg.
N > 100 ) and considering a discrete set of possible values for b, as above, we
can form not only the overall probablility distribution for b as in figure 1, but
also set of discrete conditional probability distributions.eg.

p(bτ |bτ−1 = b(k)) . . . (4)
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Figure 1
Probability Distribution for parameter b across all 300 points of the time series

Note:
1. Whenever Xτ+1 is < mean of Wb(x, 1|xτ = Xτ ), then b is given the smallest
value ( in this case 0.001) in solving (4.2). Thus for at least 50% of the points
this should be the value selected.
2. The final b value is the default value used when (4.2) does not solve, so
creating the final probability shown which is really prob( b ≥ 0.059)

Thus for example in an extreme situation we might find that every time the
value b(1) occurred it was always followed by the b value b(31), in which case we
would have :

prob(bτ |bτ−1 = b(1)) = δ(b− b(31))

For the test series we used, each of which had some 300 points, we found that
in practice only b(1), b(2), b(31) occurred sufficiently often to build a conditional
probability distribution as per (4): ie only for k=1,2 or 31 did we have enough
( > ca. 20) points to generate any meaningfull distribution.

With this information on the likely values of bτ that follow a particular
observed value for bτ−1, at least for bτ−1 = b(1), b(2) or b(31) , the method for
generating Wb(x, t|xn = XN ) became:
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(i) If bτ−1 = b(1), b(2) or b(31) then

W (x, 1|xτ = Xτ ) =
1

M
Σ31
j=1prob(b(j)|bτ−1)Wb(j)(x, 1|xτ = Xτ ) . . . (6)

where bτ−1 = b(k) and M is a normalising factor.

(ii) If bτ−1 not = b(1), b(2) or b(31) then

W (x, 1|xτ = Xτ ) =
1

28
Σ7
j=1(8− j)Wbτ−j (x, 1|xτ = Xτ ) . . . (7)

ie. as defined in refs 9 and 10 where this was shown to be one of the best
methods of defining Wbτ (x, t|xn = XN ) . (bτ−j is as defined in (3) ).

(iii) In the situation of (ii) above: ie. bτ−1not = b(1), b(2) or b(31) , we also
tested using using a probability distribution

W (x, 1|xτ = Xτ ) =
1

M
Σ31
k=1prob(b(k))Wb(k)(x, t|xτ = Xτ ) . . . (8)

where prob(b(k)) is the probablity distribution of b(k) unconstrained by the
value of bτ−1, ie similar to the discrete pdf in figure 1.

3.Results for one step ahead forecasts

We applied the above method to the ten test series a defined in ref 11. We
used 200 points for each series. This gave the results in table 1.

Table 1
Results for one step ahead forecasts

from various conditional probablity approaches to bτ in Wbτ (x, 1|xτ = Xτ )

AR Method 1a Method 1b Method 1c
Av Stock 112 101 106 104
stock out % 4.6 9.6 6.5 6.6

Key:
AR: Stock level is 95% pt of a Normal with mean = AR forecast, variance com-
puted from past errors)
Method 1a: Stock level is 95% pt. of Wbτ (x, 1), b chosen as (7) above for all b
Method 1b: Stock level is 95% pt. of Wbτ (x, 1) , b chosen as (6) and (7) above
Method 1c: Stock level is 95% pt. of Wbτ (x, 1) , b chosen as (6) and (8) above

The perfomance of all three versions of method 1 are compared to results
using Normal distribution with mean equal to AR(7) forecast and with the vari-
ance calculated from the forecast errors from past data.
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Using method 1a, ie. when stock level is set at 95% point of Wb(x, 1|xτ =
Xτ) which is chosen as (7) above - but for all values of bτ−1-, gave average
stock level of 101 which is lower than the AR reference of 112 but stock outs
are higher at 9.6%.

Taking note of the value of bτ−1 that has just occurred and using the condi-
tional probabilies as per (i) and (ii) above ( ie. method 1b) average stock level
increased slightly over method 1a, at 106 but was still lower that the reference
AR solution and stock outs were the lowest at 6.5%.

Applying a probability distribution for all bτ−1 using (6) and (8) above ( ie
method 1c) gave the lowest average stock level at 104 but stockouts rose slightly
as as compared to method 1b: 6.6% vs. 6.5%.

Thus from these results we can conclude:
- using method 1a ( computing Wb(x, 1|xτ = Xτ) from a weighted average of
recent values) reduces stock by 10% versus a conventional AR method, but dou-
bles the number of stockouts.
- introducing a ’conditional probability’ approach (methods 1b and 1c) still re-
duces stock versus the AR method by some 6% but now stockouts are only
slightly over the 5% target.

So the conditional probability method of calculating bτ is worth persuing.

4. Method for two step ahead forecasts

In many real world situations the reordering of stock to meet customer de-
mand has to allow time for delivery from the supplying wharehouse. Thus at
the end of day 0 one might calcuate the stock that would need to be delivered
at the end of day 1 in order to meet demand in day 2. We will call this situation
a two step ahead forecast.

In addition to making an estimate of demand in day 2 , one needs to take
a view as to what might have happend in day 1 so as to compute what stock
might be available at the end of day1/start of day 2 before taking into accout
how much be added to this to meet demand in day 2. To do this we need two
pdfs:

Wb′ (x, 1|xτ = Xτ ): the pdf made at the end of day τ for sales in day τ + 1.

Wb′′ (x, 2|xτ = Xτ ): the pdf made at the end of day τ for sales in day τ + 2 .

Thus if S is the stock available at the end of day τ (day 0) after the delivery
has been made that night: ie S is the total stock available for demand in day 1
( day τ + 1). and if W 95

b′′
(2) is the stock required at the start of day 2 ( ie the

level that if achieved would meet 95% of demand in day 2, after the delivery
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that is to be made end day1/start day 2), then the order to be deilvered at end
of day 1 is expected to be:

∫ +|X|max

−|X|max
max { [W

(95)

b′′
(2)− max ((S−x), 0) ] , 0} . Wb′ (x, 1|xτ = Xτ ).dx . . . (9)

5..Results for two step ahead forecasts

In table 2 we see the results of this two step ordering process under various
methods of choosing the values for b

′
and b

′′
.

These are two different AR solutions which are used as a reference. For
the first solution (AR(a)) the pdf for sales in day 1 is taken as Normal with
a mean (m1) = the AR one step forecast and a variance (s21) calculated from
past forecast errors. Also the pdf for sales in day 2 is taken as Normal with
mean (m2) = the AR forecast from regression of Xt on Xt−2, Xt−3, ...Xt−8 and
variance (s22)from the past errors in this 2 step forecast. That is in (9) above:

Wb′ (x, 1|xτ = Xτ ) is replaced by Normal(m1, s21) . . . (10)

and to find W
(95)

b′′
(2)

Wb′′ (x, 2|xτ = Xτ ) is made = Normal (m2, s22) . . . (11)

This reference AR(a) solution generates an average stock level of 112 with a
stockouts at 8.5%.

The second AR solution, (AR(b)), takes the pdf of sales in day 1 as

Wb′ (x, 1|xτ = Xτ ) = δ(W (95)(1)− x).

where W (95)(1) is the 95% point of (10). ie. we use a single value for our
estimate of day 1 sales in calculating this order for delivery end day1/ start

day 2. W
(95)

b′′
(2) is again the 95% point of the Normal distribution (11). This

method gives an average stock level of 160 and stockouts at 3.5%

In method 2a, the first application of our methods to this two step ahead
problem, we take:
- the pdf for day 1, Wb′ (x, 1|xτ = Xτ ), where b

′
is calculated as in method 1b

above
- the pfd for day 2, Wb′′ (x, 2|xτ = Xτ ) where the b′′ are as defined in (3) but of
course the bτ−j are redefined to reflect the ’best’ bτ−j such that X(τ−j)+2 is at
the 75% point of Wbτ−j (x, 2|xτ−j = Xτ )
This method , method 2a, gives an average stock level of 114 but stock outs of
11.4%.
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Table 2
Results for 2 step ahead forecasts

from various conditional probablity approaches to b in Wbτ (x, 2|xτ = Xτ )

ARa ARb Method 2a Method 2b Method 2c
Av Stock 112 160 114 112 109
stock out % 8.5 3.5 11.4 8.4 8.2

Key:
ARa: pdf day 1, Normal ( AR forecast day 1, variance from past),

pdf day 2, Normal (AR forecast day 2,variance from past)
ARb: pdf day 1, Delta (95% point of day1),

pdf day 2 Normal (AR forecast day 2,variance from past)
Method 2a: Wbτ (x, 1), b as method 1b, (2) Wbτ (x, 2), b as method 1a,
Method 2b: Wbτ (x, 1), b as method 1b, (2) Wbτ (x, 2), b as method 1b
Method 1c: Wbτ (x, 1), b as method 1b, (2) Wbτ (x, 2), b as method 1c

In method 2b, we introduce the conditional probablilities p(bj |bk) for k=1,2,or
31, in order to calulate the pdf for day 2: ie.

(i) If bτ−1 = b(1), b(2) or b(31) then

W (x, 2|xτ = Xτ ) =
1

M
Σ31
j=1prob(b(j)|b(k))Wbj (x, 2|xτ = Xτ ) . . . (12)

where bτ−1 = b(k) and M is a normalising factor.

(ii) If bτ−1not = b(1), b(2) or b(31) then

W (x, 2|xτ = Xτ ) =
1

28
Σ7
j=1(8− j)Wbτ−j (x, 2|xτ = Xτ ) . . . (13)

With this we get the results shown in column 5 of table 2 : average stock
level of 112 and stockouts at 8.4%.

Finally, in method 2c, we introduce a discrete probability distribution for all
the bj : ie not only p(bj |bk) for k=1,2,or 31, but p(bj) for all other k. As shown
in column 6 this reduces the average stock level slightly further: now 109, but
stockouts stay much the same at 8.2%

6. Conclusion

Instead of setting reorder stock levels through a conventional approach with
a forecast sales pdf Normal with mean equal to the AR forecast, we have used
a solution to an appropriate Fokker-Planck equation to generate a pdf for sales
Wb(x, t|xτ = Xτ ) which has a free parameter b. Various methods (eg. see ref
9 and 10) have been tried to generate a b that gives a forecast pdf resulting in
a low stock level and a low number of stockouts. In this paper we have used a
conditional pdf for the value of b which depends on the value of the most recent
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b observed. Applying this method to over 2,000 points in a set of test series,
first to a one step ahead reordering system, reduces (when compared to an AR
method) stock levels in these test series by some 7% although stockouts are still
1.6% above the target of 5%. When the reordering system requires orders to
be placed at the end of day 0 for delivery at end of day 1 ( and thus for use
in day 2), using a conditional probablility distribution to select the parameter
b in the probablity distribution for sales in day 2, Wb(x, 2|xτ = Xτ ), gives an
improvement of 3% in average stock level and also an improvement 0.3% points
in stockouts , both compared to to a conventional AR forecasting approach.

Thus one may conclude that selecting b in Wb(x, t|xτ = Xτ ) by a conditional
probablility approach is worth while.
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Abstract. During the last decades it has been observed an increasing trend of
greenhouse gases emissions in the countries. Looking for the environment care,
the United Nations declare the incorporation of principles of sustainability devel-
opment into the policies and programs of the nations.In this context, the forecast
of carbon dioxide (CO2) emissions plays an important role to support the deci-
sion making of government and society. The aim of this work is to improve the
accuracy of the linear model applied for multi-step ahead forecasting of CO2
emissions in the Andean Community. The autoregressive model (AR) is im-
proved through data preprocessing techniques. One is based on simple smoothing
by means of moving average (MA), the second is based on Singular Spectrum
Analysis (SSA), and the third is based on Multilevel Singular Value Decomposi-
tion (MSVD). The effectiveness of the combined models MA-AR, SSA-AR, and
MSVD-AR are evaluated through the time series of CO2 per capita emissions of
the Andean Community (CAN) countries through historical data from 1960 to
2013. The empirical results provide significant evidence about the effectiveness
of the preprocessing data in forecasting. The best combined model MSVD-AR is
extended for multi-step ahead forecasting. Projections are presented for support-
ing the environmental management of government institutions of countries with
similar geographical features and cultural diversity.

Keywords: carbon dioxide· Forecasting· Autoregressive Model·Singular Spec-
trum Analysis·Multilevel Singular Value Decomposition·CO2.

1 Introduction

In recent years there has been interest of citizens, governments and organizations on
environmental degradation. One of the Millennium Development Goals of the United
Nations declares the incorporation of principles of sustainability development into the
policies and programs of the nations. Unfortunately, according to the data located in

? Please note that the LNCS Editorial assumes that all authors have used the western naming
convention, with given names preceding surnames. This determines the structure of the names
in the running heads and the author index.
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2 Preprocessing Techniques

the repositories of the World Bank Group [1]; the carbon dioxide emissions present an
upward trend. In 2011, 32,3 billions of metric tons of CO2 emissions were observed,
which were increased to 48,9 in comparison with the emissions in year 1990.
Several investigations have determined that high CO2 emissions increase the plant pho-
tosynthesis and reduce the transpiration [2]. The studies of Tao et al. [3] shown that the
effects of CO2 vary with the temperature, water availability, and solar radiation. The
simulations shown that in 2020 as effect of the wheat productivity in China the CO2
emissions will increase significantly, while it will decrease by the increase of O3.
In front of the interactive effects of carbon dioxide emissions, an alternative for ob-
taining knowledge about this phenomenon is the forecasting. Some researchers pro-
vide useful projections to support the decision making. For example, Pérez-Suárez and
López-Menéndez [5] present the CO2 forecast of 150 countries based on the Kuznets
environmental curve. The study shows an explained variance over 80% for 78 countries,
including the CAN members (Ecuador, Colombia, Peru and Bolivia), and an Absolute
Average Percent Error near of 7%. On the other hand, Pao And Tsai [4] applied the
Gray model in comparison with the ARIMA model to predict the total CO2 emissions in
Brazil. The study presents MAPEs (Average Absolute Percentage Error) among 2.46%
and 4.22%. Wu et al. [6] presented the forecast of CO2 emissions for BRICS countries
(Brazil, Russia, India, China and South Africa) by means of the Gray model, the study
showed the relationship among the GDP and the energy with respect to the CO2 emis-
sions. The prediction shown an average MAPE of 2.36%.
The current work presents the forecasting of CO2 emissions of the Andean Community,
which is integrated of Ecuador, Colombia, Bolivia, and Perú. The Autoregressive (AR)
model is implemented in conjunction of preprocessing techniques. A simple Moving
Average (MA), Singular Spectrum Analysis, and Multilevel Singular Spectrum Analy-
sis are used to improve de accuracy of the AR model.
Simple Moving Average (MA) based on three points obtains a smoothed time series.
Singular Spectrum Analysis (SSA) is a technique relatively new for time series analy-
sis, this technique was introduced by Broomhead and King [7]. SSA is commonly used
for extracting components from a time series, a trend component, a seasonality com-
ponent, a cyclic component, and/or a noisy component. SSA is implemented in four
steps, embedding, decomposition, grouping, and diagonal averaging. The nature of the
components depends of the processes of embedding and grouping, which are not stan-
dard processes. In this work the processes are implemented for obtaining two kind of
components, one of low frequency and the other of high frequency. On the other hand
Multilevel Singular Value Decomposition is a new method that has demonstrated ef-
fectiveness in forecasting of traffic accidents, it implements hierarchical decomposition
for extracting components of low and high frequency[8].
The document is organized as follows. In Section 2 are described the forecasting method-
ology. Section 3 specifies the efficiency metrics. Section 4 describes the case studies.
Section 5 presents the results and discussion. Finally Section 6 closes the work with the
conclusions.
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2 Forecasting Methodology

The forecasting methodology is presented in two stages, data preprocessing and pre-
diction. Data preprocessing is implemented by means of Moving Average, Singular
Spectrum Analysis, and Multilevel Singular Value Decomposition. Whereas prediction
is developed through the Autoregressive model.

2.1 Data Preprocessing

Smoothing based on Moving Average (MA) Moving average is a smoothing strategy
used in linear filtering to extract the noise of a time series. MA is a mean of a constant
number of observations that can be used to describe a series that does not exhibit a
trend [22]. MA typically is computed through the average of each 3 observed points
observed. A time series of length N is smoothed with next equation:

s̃k =
1
3

k+1

∑
i=k−1

xi (1)

where s̃k is the k-th smoothed signal element, for k = 2, . . . ,N−1, xi is each observed
element of original time series, terms s̃1 and s̃n has the same value of x1 and xN respec-
tively.
The smoothed values given by the average of each 3-points will be used by the predic-
tion model.

Singular Spectrum Analysis The aim of SSA is to decompose a time series in com-
ponents, which could represent trend, a seasonality component, a cyclic component,
and/or noise. SSA consists of four steps: embedding, decomposition, grouping and di-
agonal averaging [23].
The embedding step, maps the time series x of length N, to a sequence of multidimen-
sional lagged vectors. A real matrix H of L×K dimension contains the lagged vectors,
it is shown as follows:

H =


x1 x2 . . . xK
x2 x3 . . . xK+1
...

...
...

...
xL xL+1 . . . xN

 (2)

where xi, . . . ,xN are the elements of the observed time series.
The identification of the effective window length L is developed after the execution of
the second step (decomposition). Therefore, initially the window length for embedding
is set in L = 2.
The Decomposition step consists in the Singular Value Decomposition (SVD) of the
Hankel matrix obtained in the previous embedding step. The SVD of the trajectory
matrix H has the form

H =
L

∑
i=1

√
λiUiV T

i , (3)
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where λi is the ith eigenvalue of the matrix S = HHT and
√

λi is the ith singular value
of the decomposition of H. The singular values are arranged in decreasing order of
magnitudes. U1, . . . ,UL is the corresponding orthonormal system of the eigenvectors
of the matrix S, and Vi = XTUi

√
λi. Standard SVD terminology calls

√
λi the singular

values of the decomposition of H, and Ui and Vi the left and right singular vectors of H,
respectively. The collection (

√
λiUiVi) is called ith eigentriple of H.

Elementary matrices can be represented with

Hi =
√

λiUiV T
i , (4)

The Grouping step arranges the matrix terms Hi. Assume that the two components are
required as result of the grouping step; then I1 = I = i1, . . . , ir and I2 = 1, . . . ,d \ I, where
1≤ i1 < .. . < ir ≤ d. The time series will be separable by decomposition if there exist
a collection of indices I ⊂ i, . . . ,d such that

X (1) = ∑
i∈I

Xi, (5a)

X (2) = ∑
i/∈I

Xi (5b)

The purpose of the grouping step is separation of the additive components of the time
series. The set of indices I1 are considered to obtain the matrix XI1 , therefore XI2 =
H−XI2 .
The matrices XI1 and XI2 are trajectory matrices, then there exist series that can be called
components, cI1 and cI2 such that x = cI1 + cI2 .
This step of Diagonal Averaging is applied for transforming the grouped matrices X (1)

and X (2) into new series of length N.
Let Yj be an L×K matrix with elements yi, j, 1 ≤ i ≤ L,1 ≤ j ≤ K, with L < K, N =
L+K−1, and k = i+ j.
Diagonal averaging transfers the elements of the matrix Yi to the component of low
frequency CL and high frequency CH as it is shown below:

ci, j =



1
k−1 ∑

k
m=1 ym,k−m for 2≤ k ≤ L

1
L ∑

L
m=1 ym,k−m for L < k ≤ K +1

1
K+L−k+1 ∑

L
m=k−K ym,k−m for K +2≤ k ≤ K +L

(6)

Multilevel Singular Value Decomposition The Multilevel Singular Value Decompo-
sition method was proposed by Barba & Rodrguez [8] to decompose a non-stationary
time series into a component of low frequency, and a component of high frequency.
MSVD is implemented through multiple levels of decomposition where the steps of
embedding, decomposition, and unembedding are executed, as it is illustrated in Fig. 1.
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Fig. 1: Multilevel Singular Value Decomposition (a) Detailed processes at each level (b)
General process

Embedding consists of mapping the original time series X = (x1,x2, . . . ,xN) into a
Hankel matrix, of L× (N−1) dimensions, where L = 2(rows). The embedding process
is illustrated below:

H =

(
x1 x2 . . . xN−1
x2 x3 . . . xN

)
(7)

The Decomposition consists of obtaining the subspaces of H, which can be expressed
as follows:

H =
2

∑
i=1

√
λiUiV T

i , (8)

where U is a square matrix of left singular vectors of dimension L, V is a square matrix
of right singular vectors of dimension N−1, and T ia used for transposed matrix. While
λi is the ith singular value of the decomposition of Hi.
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Elementary matrices H1 and H2 can be obtained with:

X (1) = ∑
i∈I

Xi, (9a)

X (2) = ∑
i/∈I

Xi (9b)

H1 =U1×
√

λ1×V T
1 , (10a)

H2 =U2×
√

λ2×V T
2 , (10b)

The Unembedding step is developed for extracting de components from Matrices H1
and H2. The elements are located in the first row and the last columns of each matrix,
consequently the components are obtained with

CL = (h1
11,h

1
12, . . . ,h

1
1(N−1),h

1
2(N−1))), (11a)

CH = (h2
11,h

2
12, . . . ,h

2
1(N−1),h

1
2(N−1))), (11b)

The process is implemented in multiple levels through the component CL, as it is illus-
trated in Fig. 1b. The process ends when the computation of the Singular Spectrum Rate
(δR) reaches its maximum asymptotic value. The calculation of δR is shown below:

δR =
R j−1

R j
, (12)

where R j is the relative energy of the singular values obtained at each decomposition
level j, this computation is developed from the second decomposition level, with respect
to the previous decomposition level. The computation of R j is given by

Rk =
λ1

λ1 +λ2
. (13)

2.2 Prediction

The AR model is implemented to predict the time series. The best combination among
MA-AR, SSA-AR and MSVD-AR are used for extending the model to multi-step ahead
forecasting. The MIMO strategy calculates the multiple horizon forecast in a single step,
and preserves the random relationships between historical values that are being used as
predictors (Wang et al., 2016). The ARMIMO model is expressed as follows:

x̃(n+1), . . . , x̃(n+h)] = f [z(n),z(n−1),z(n−P+1)], (14)

where n is the current time instant, h is the size of the forecast horizon, z is the regressor
vector, and P is the size of the regressor vector. In matrix form the expression is as
follows:

X = β ×ZT , (15)
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where X is the matrix of estimated values, β is the coefficients matrix of the regression
of dimension h×2P, and Z is the matrix of autoregressive values of the low frequency
component and the autoregressive values of the high frequency component. The matrix
Z has dimension Nt2P, where Nt is the number of training samples. The regression
coefficients are estimated using the Least Squares (LS) method:

β = X×Z†, (16)

where Z† is the Moore-Penrose Pseudoinverse matrix (Serre, 2002).

3 Forecasting accuracy metrics

The accuracy of the prediction is computed with the metrics: Mean Absolute Percentage
Error (MAPE), and the modified Nash-Suctlife Efficiency (mNSE).

MAPE =

[
1

Nv

Nv

∑
i=1
|xi− x̂i

xi
|

]
×100 (17)

RMSE =

√√√√ 1
Nv

Nv

∑
i=1

(xi− x̂i)2 (18)

where Nv is the testing sample size, xi is the i-th observed value, and x̂i is the i-th
estimated value.

mNSE = 1− SAE
SAD

. (19)

where SAE and SAD are defined with

SAE =
N

∑
i=1
|xi− x̂i|, (20a)

SAD =
N

∑
i=1
|xi− x|, (20b)

4 Case Studies

The open repositories of the World Bank Group contains development data of several
countries and a variety of topics. Among the time series are those related to carbon
dioxide emissions in metric tons per capita of the countries.
The CO2 emissions per capita of the four countries members of the Andean Commu-
nity: Ecuador, Colombia, Bolivia, and Perú are presented in Fig. 2. The presented values
are calculated by means of the ratio between the total CO2 emissions and the population
of each country. All samples have an annual collection interval, with records from year
1960 to 2013.
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Fig. 2: CO2 per capita emissions of CAN countries

The emissions in the last decade show an upward trend in the four CAN countries.
In the case of Ecuador there is a considerable growth from 1977 with several peaks un-
til 1998. From the year 2000 a more linear behavior, similar to 1960-1976, is observed.
CO2 emissions from Colombia, Peru and Bolivia show similar behavior in terms of
variability, which is most evident in recent decades. Table 1 shows statistical and dis-
persion measurements of the observed data. The highest arithmetic mean of emissions
is observed for Ecuador, followed by Colombia, Peru and Bolivia. The maximum value
is reached by Ecuador with 2,779 metric tons, followed by Peru, Bolivia and Colombia
with 1,961, 1,895 and 1,893 metric tons, respectively. In terms of dispersion measures,
it is observed that Ecuador has a historical behavior of greater variability, with a stan-
dard deviation of 0.737 and a variance of 0.533, followed by Bolivia with a standard
deviation of 0.429 and a variance of 0.181, while Colombia and Peru show a minimum
variance of 0.039 and 0.068, respectively.

5 Results and discussion

The data preprocessing by means of simple smoothing based on MA-3 is presented in
Fig. 3.
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Table 1: Statistical Analysis of Data

Min Max Mean σ σ2

Ecuador 0,325 2,779 1,546 0,737 0,533
Colombia 0,996 1,893 1,479 0,200 0,039

Bolivia 0,272 1,895 0,940 0,429 0,181
Perú 0,812 1,961 1,221 0,262 0,068

Table 2: One-step ahead forecasting Results

MA-AR SSA-AR MSVD-AR
MAPE mNSE MAPE mNSE MAPE mNSE

% % % % % %
Ecuador 7.9260 23.19 1.0582 90.02 5.7e-05 99.9

Colombia 1.7508 78.87 0.3147 96.17 2.97e-02 99.9
Bolivia 2.9110 72.82 0.9017 92.16 3.45e-05 99.9

Perú 1.2544 93.65 0.2872 98.51 1.57e-05 99.9
Min 1.2544 23.19 0.2872 90.02 1.57e-05 99.9
Max 7.9260 93.65 1.0582 98.51 2.97e-02 99.9
Mean 3.4606 67.13 0.6405 94.22 7.45e-03 99.9

The data preprocessing based on SSA is presented in Fig. 4, the effective window length
was identified through trial and error tests in L = 7 for all series. The first elementary
matrix H1 was used to obtain de component of low frequency, whereas the rest of
elementary matrices was grouped for obtain the component of high frequency.
The data preprocessing based on MSVD is presented in Fig. 5. The optimal number of
decomposition levels was set in J = 13, which was due to the curve obtained by plotting
the ∆R parameters, they shown the asymptotic value at J = 13, as shown in Fig. 6. The
low frequency components show long duration fluctuations, while the high frequency
components show short duration fluctuations.

The settings of the order for the AR models in all cases was established in P = 12,
which is due to the information delivered by the Fast Fourier Transform Algorithm
(Hahn and Valentine, 2013), showing relevant periods of 12 years at 5% significance
level. The inputs of the AR model are regressor matrices formed with the values of the
low and high frequency components. The coefficients where computed with the training
sample composed by the 70% of data. The results of the one-step ahead forecast of CO2
per capita emissions by means of all combined models MA-AR, SSA-AR, and MSVD-
AR are presented in Table 2. Fig.7 presents the curves of the observed data versus the
predicted data via MA-AR and testing sample. Fig. 8 presents the curves of the observed
data versus de predicted via SSA-AR and testing sample.

From Table 2, the best results were reached through the combined model MSVD-
AR. The MSVD-AR model is effective for all the analyzed time series. The average
MAPE is of 0.00745 and the average efficiency (mNSE) is of 99.9%. The second best
model is SSA-AR with an average MAPE of 0.6405% and a mNSE of 94.22%, the
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Fig. 3: Smoothing via Moving Average (3)

lowest accuracy was observed through MA-AR with an average MAPE of 3.4606 and
a mNSE of 67.13%.
The best model MSVD-AR was used for multistep-ahead forecasting. The MIMO strat-
egy was implemented and the results are presented in Table 3.

MSVD-MIMO presents good performance for all series (Table 3). The highest ac-
curacy by means of MSVD-ARMIMO was obtained in the multi-step ahead forecasting
of Perú emissions, with a mean MAPE of 0.1089%, and a mNSE of 99.3%. The lowest
accuracy was obtained for the time series of Ecuador with a mean MAPE of 0.4082%
and a mean mNSE of 94.3%.
The observed and predicted values via MSVD-ARMIMO combined model and the pro-
jections for 8-years ahead forecasting are presented in Figs. 9, 10, 11, and 12. From
Figures, a good fit was achieved among the observed data and the predicted data during
the data collection period for all countries.

6 Conclusions

In this work it was presented the forecast of CO2 per capita emissions of four coun-
tries with similar conditions in terms of geographic conditions and cultural diversity
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Fig. 4: Singular Spectrum Analysis Decomposition

Table 3: Multi-step ahead forecasting Results via MSVD-ARMIMO

Ecuador Colombia Bolivia Perú
Horizonte MAPE mNSE MAPE mNSE MAPE mNSE MAPE mNSE

% % % % % % % %
1 5.7e-05 99.9 2.972e-05 99.9 3.45e-05 99.9 1.57e-05 99.9
2 0.0007 99.9 0.0003 99.9 0.0004 99.9 0.0002 99.9
3 0.0048 99.9 0.0018 99.9 0.0029 99.9 0.0013 99.9
4 0.0233 99.7 0.0091 99.7 0.0139 99.9 0.0064 99.9
5 0.0894 98.9 0.0360 99.0 0.0544 99.5 0.0243 99.8
6 0.2813 95.9 0.1195 97.5 0.1781 98.2 0.0795 99.5
7 0.7972 87.6 0.3507 94.6 0.5159 94.5 0.2115 98.8
8 2.0687 72.5 0.9067 88.2 1.2243 83.6 0.5483 96.8

Min 5.7e-05 72.5 2.972e-05 82.2 3.45e-05 83.6 1.57e-05 96.8
Max 2.0687 99.9 0.9067 99.9 1.2243 99.9 0.5483 99.9
Mean 0.4082 94.3 0.1780 97.3 0.2487 96.9 0.1089 99.3
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Fig. 5: Multilevel Singular Value Decomposition
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Fig. 7: One-step ahead prediction curves based on MA-AR, for testing sample
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Fig. 8: One-step ahead prediction curves based on SSA-AR, for testing sample
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Fig. 9: Ecuador CO2 per capita emissions (T)
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Fig. 10: Colombia CO2 per capita emissions (T)
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Fig. 11: Bolivia CO2 per capita emissions (T)
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(Ecuador, Colombia, Bolivia, and Perú). The forecasting methodology combines data
preprocessing techniques and the Autoregressive model. The method was evaluated
through 54-year observations from 1960 to 2013, the sample was separated into two
groups, one experimental (training) with 70% of samples and the other group of testing
with the remaining 30% of samples.
The results obtained with the testing sample demonstrated that the MSVD-AR model
improves significantly the accuracy of the simple AR model in comparison with smooth-
ing by Moving Average (MA-AR) and the combined model SSA-AR. Furthermore,
the best model MSVD-AR extended to multiple horizon forecast via MIMO strat-
egy (MSVA-ARMIMO) has shown improved accuracy level with respect to other ap-
proaches observed in the literature review. The average accuracy achieved for 8-years
ahead forecasting via testing sample was of 0.1089% for MAPE, and 99.3% for mNSE.
The projections for nine years from 2014 to 2021 shown that Ecuador, Colombia, Bo-
livia and Peru, will increase the level of CO2 per capita emissions. According to these
projections, Ecuador will be the country that would present the largest amount of emis-
sions in comparison with the rest of CAN countries.
The results obtained could be a reference for public and private institutions to be ob-
served and incorporated into their work plans for the care and preservation of the envi-
ronment.
Given the effectiveness of the method, new forecasting simulations will be performed
with time series coming from other countries and other areas of knowledge.
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1 Introduction  

With urban growth, the city's energy consumption continues to increase. In France, the 

building sector is the largest consumer of energy with a share of about 45% of which 

73% for heating and air conditioning. This large consumption contributes to the in-

crease in the greenhouse gases emission. Hence, France has committed to reduce the 

energy consumption by 20% and the greenhouse gases emissions by 40% by 2030. In 

order to reach these goals, we need a better understanding of the building thermal be-

havior through exploring sources of energy gain and losses. [1] and [2]. The main ob-

jective of this paper is to study these factors in the buildings sector using smart moni-

toring. The paper presents analysis of series of thermal tests conducted in an occupied 

office in different users’ condition. Analysis shows the influence of the user behavior 

on energy consumption. 

 

2 Methodology 

The study is conducted in an occupied office room in the school of engineering Poly-

tech’Lille in the North of France. One-month measurement series were recorded with 

intensive monitoring of both the temperature and humidity. Analysis of these tests al-

lowed us to understand the temperature repartition in the room and to reduce the mon-

itoring system. Then, tests were conducted with different usage condition to explore the 

influence of these condition on the energy consumption. 
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3 Monitoring System 

Understanding the real conditions inside the building requires monitoring the indoor 

environment. Hence, a new monitoring system was designed to reduce the energy con-

sumption and the monitoring system cost. It is composed of a central unit, wireless 

sensors and friendly users’ interface. 

 

The central unit with a free and open software communicates with sensors using 

radio frequency (RF) protocol ensuring the management of the monitoring system. It is 

formed of a small computer without screen or keyboard, a ‘Raspberry Pi’, which hosts 

the free and open source Linux operating system for data storage, analysis and display. 

A local Wi-Fi network is created by this unit enabling the access to data and infor-

mation stored. 

 

Several parameters were tracked at a chosen time intervals using the wireless sensors 

that are connected to the central unit. The main function of these sensors is the pursuit 

of indoor comfort parameters (temperature, humidity and lighting) and the control of 

doors/windows (open or closed). These parameters are monitored in a multi-parameters 

smart card and sent using one communication system. Sensors used in our experimen-

tation are associated with PanStamp and Inodesign programmable modules. 

 

A web friendly interface was designed to enable users to access easily to all the 

information concerning the indoor environment [3] and [4]. 

 

4 Experimental program  

The experimental study was conducted in an occupied room in building D at the first 

floor in Polytech’Lille. At first, around 90 sensors were installed to follow the thermal 

condition inside the room. Some were placed at the same location to explore the relia-

bility of the monitoring system, others were installed at the three walls, façade, at the 

center (air) and outside (exterior parameters). The façade is formed of well insulated, 

two double glazing windows. The left wall, adjacent to the facade, was equipped by 

three levels of sensors (top, middle and bottom) and by three other spots, for each level, 

each one with a certain distance from the facade (nine sensors at this wall in total). Fig.1 

illustrate this monitoring system. 

After one month of monitoring, a database was built with a time series measurements 

having an interval of five minutes. Analyzing these preliminary allowed us to under-

stand the building thermal behavior. Then, two sets of scenarios were executed to study 

the influence of usage conditions on energy consumption. An air conditioner with an 

adjustable temperature and a power meter was used during these experimentations. The 

first set of testing was executed on a temperature of 17°C, the other one on 20°C. Each 

set of scenario consists of one day of cooling the room at a certain temperature, one day 

with opened windows and cooling and another one with closed stores and cooling.  
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Fig. 1. Monitoring plan for the left wall. 

5 Analysis 

5.1 Preliminary tests 

The reliability of the monitoring system was checked by the comparison of data rec-

orded by sensors located at the same location. These tests showed that data recorded by 

sensors located at the same location are very closed (Figure). These results confirmed 

the reliability of the monitoring system. Analyses were then conducted to study the 

variation of the temperature and humidity in the room in normal operating conditions. 

They showed that the facade was the most influenced by the outside with a difference 

of 2°C in average compared to the wall temperature which has the least impact from 

exterior as we can see in the figure2. The average difference between the wall and the 

air temperatures was 1°C.  

 

Fig. 2. Temperature variation for wall, facade and air. 
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Comparison of the different measurements data with varying the distance of the sensors 

from the facade points to, as before, by approaching the façade the measurements are 

more influenced by the outside conditions. 

Later, comparing the temperature of different levels indicates that the temperature 

increases by 0.4°C in average from bottom to top at three different positions. Then by 

comparing humidity measurements, a difference of 4% in average between top and bot-

tom was found. 

 

Fig. 3. Temperature variation for different levels. 

Due to the variation of these parameters from spot to another in the room, our study 

will focus on the facade where the heating exchange occurs the most. All the thermal 

analysis done here after are deliberated in function of the facade parameters. 

 

5.2  Analysis of experimental scenarios  

Two sets of scenarios were executed to study the impact of occupants’ behavior. For 

the first one, an air conditioner was launched at 17°C for four days. We opened the 

windows for 24h, then analyzed the consumption needed. By comparing the energy 

consumption for closed and opened windows (Figure 4), we noticed an increase by 33% 

in average. This is illustrated by figure 5 where the energy for the two scenarios were 

represented with the sum of the exterior temperature.  

Afterwards, we closed the curtains for 24h and observed the evolution of the con-

sumption. We noticed an increase by 28% in average when the curtains were closed. 

This is represented by figure 6. 

 

We repeated the same experimentations with the air conditioner launched at 20°C. The 

energy consumed was 5 times less than the one consumed at 17°C .When opening the 

windows, we noticed that the consumption increased by 50% in average. 
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Fig. 4. Energy consumption for opened and closed windows with time. 
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Fig. 5. Energy consumption in cases of opened and closed windows with exterior temperature. 

 

Fig. 6. Energy consumption in cases of opened and closed curtains with exterior temperature. 

6 Conclusion  

This paper included an experimental analysis of the influence of the usage condition on 

the building energy consumption using an advanced monitoring system. A preliminary 

study allowed the optimization of the monitoring system by focusing the monitoring 

system on the external wall. 

Analysis of different usage conditions showed that the energy consumption is largely 

influenced by the window’s opening, the interior operating temperature and the use of 

stores. The work continues to develop a prediction model that provided the energy con-

sumption in function of the operating conditions. 
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Abstract

In this paper, we provide an extensive investigation of the ability of a battery of static and dynamic econometric
models to forecast UK national and regional housing prices over the last two decades. Our results suggest that, due
to changes in the set of predictive variables that drove UK house prices during the upturn and downturn in real estate
markets in the 2000s, methods that allow both the underlying model specification and parameter estimates to vary
over time produce more accurate out-of-sample forecasts than methods where the number of predictors is kept fixed.
Furthermore, we find i) that parsimonious forecasting models perform better than models which include a large num-
ber of predictive variables, and ii) that there is no single variable that uniformly outperforms all others in terms of
predictive power. A credit availability indicator, however, appears to be the main driver of UK house prices during
the boom phase of the 2000s.

Keywords: Real House Price Growth; Regional UK Markets; Forecasting; Autoregressive Distributed Lag Models;
Dynamic Models; Structural Housing Models
JEL Classification: C22; C53; E37

1. Introduction
The latest boom and bust episode in housing markets and its decisive role in the Great Recession has generated a vast
interest in the dynamics of house prices, and has led many international organizations, central banks and research in-
stitutes to closely monitor developments in housing markets across the world. For instance, the International Monetary
Fund recently established the Global Housing Watch, the Globalisation and Monetary Policy Institute of the Federal
Reserve Bank of Dallas initiated a project on monitoring international property price dynamics, and the UK Housing
Observatory1 initiated a similar project for the UK national and regional housing markets. At the same time, a substan-
tial empirical literature has emerged that deals with the forecastability of house price movements (for a comprehensive
survey, see Ghysels et al., 2012). Surprisingly, this literature has concentrated almost entirely on the United States,
leaving national and regional markets of other countries mostly unexplored.

A country where house price forecastability is of prime importance is the United Kingdom. Similarly to the United
States, in the United Kingdom, housing activities account for a large fraction of GDP and of households expenditures;
real estate property comprises the largest component of private wealth (excluding private pensions) and mortgage debt
the main liability of households (Office for National Statistics, 2014). Thus, abrupt movements in house prices cause

*We are grateful to Mike Clements, Ivan Paya, David Peel, Mike Tsionas, and seminar and conference participants at the 36th International
Symposium on Forecasting, the 3rd KoLa Workshop on Finance and Econometrics, and the 10th International Conference on Computational and
Financial Econometrics for useful comments and suggestions.

†Correspondence to: Alisa Yusupova, Department of Economics, Lancaster University Management School, Lancaster, LA1 4YX, UK.
a.yusupova@lancaster.ac.uk.

1The UK Housing Observatory is a project of the Economics Department at Lancaster University Management School, available at
http://www.lancaster.ac.uk/lums/economics/research/housing/.
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large variations in households’ wealth and adversely affect households’ ability to borrow and spend, which ultimately
impacts on financial stability and the real economy - as clearly demonstrated by the financial crisis of the 2000s.2

In this paper, we contribute to the existing literature by providing an extensive investigation of the ability of a
battery of econometric models to forecast UK house prices over the turbulent period from 1995:Q1 to 2012:Q4. Due to
the documented heterogeneity of house-price behaviour across time and space (see, e.g., Yusupova et al., 2017, Pavlidis
et al., 2016), we examine both national and regional forecastability and consider both static and dynamic econometric
models. The set of forecasting models considered is mainly motivated by the studies of Rapach and Strauss (2009)
and Bork and Møller (2015) on the US market. The former study focuses on Autoregressive Distributed Lag models,
while the latter employs Dynamic Model Averaging (DMA) and Dynamic Model Selection (DMS). In addition to
these models, we also examine forecasts generated by simple OLS regressions, Bayesian Vector Autoregressions
(BVAR), Time-Varying Parameter models, Bayesian Model Averaging, and Bayesian Model Selection. Two common
characteristics of all of the above models is that, first, they are a-theoretical (in the sense that they do not build on
micro-foundations) and, therefore, are not internally consistent, and second, that they are fitted to a relatively small
number of predictors, which implies that they do not exploit the available information in a data-rich environment such
as the one of the UK housing market. Following the recent macro and forecasting literature, we extend the set of
models used by Rapach and Strauss and Bork and Møller to incorporate a popular housing model, the DSGE model of
Iacoviello and Neri (2010), and a factor-augmented BVAR model estimated using a large macroeconomic dataset for
the UK economy.

In summary, our findings suggest that models that allow both the underlying specification and parameter estimates
to vary over time, i.e. DMA and DMS, produce more (and, in some cases, dramatically more) accurate forecasts
than methods where the number of predictors is kept fixed. DMS, in particular, performs remarkably well. First,
it uniformly outperforms the simple linear autoregressive benchmark for the national and all the regional housing
markets and, second, it captures particularly well the housing boom up to 2004 and the price collapse of 2008. The
superiority of dynamic over static models is consistent with recent evidence that suggests that the relationship between
real estate valuations and conditioning macro and financial variables, such as domestic credit, displayed a complex of
time-varying patterns over the last decades (Aizenman and Jinjarak, 2014).

Our results also demonstrate that, out of the national- and regional-level predictors considered, there is no single
variable that consistently leads to significant improvements in predictive accuracy relative to the benchmark. The key
drivers of house price movements appear to vary considerably across regions, over time and across forecast horizons.
For volatile regions, the index of credit availability and growth in industrial production appear to be the best house price
predictors, particularly during the boom phase. While, for relatively stable property markets, the stock of dwellings is
the main determinant of housing dynamics on the eve of the house price collapse.

The rest of the paper is structured as follows. A description of the housing data and the property price predictors is
presented in Section 2. Section 3 compares the predictive accuracy of the alternative forecasting models, evaluates the
performance of these models over time, and investigates their optimal dimension and the key determinants of future
house price movements. Section 4 provides concluding remarks.

2. Data

2.1. House Prices
We use quarterly mix-adjusted national and regional house price indices for the period 1975:Q1 to 2012:Q4 reported
by Nationwide.3 We follow the classification of UK regions adopted by Nationwide and consider 13 regional housing
markets. To transform the data into real units, we divide nominal property price indices by the Consumer Price Index

2In line with this reasoning, the Bank of England has been assessing the resilience of the UK banking system to house price shocks over the last
few years, and is currently considering a potential sharp downturn in commercial and residential property prices as one of the key elements of its
2017 stress testing scenario (Bank of England, 2017).

3Nationwide is the UK based world’s largest building society and one of UK’s largest mortgage providers. The Nationwide database, which
stretches back as far as 1952, contains data on UK national and regional house prices and housing affordability estimates. Details of the methodology
used to construct regional and national property price indices as well as information about the regional composition are available from the web
page of Nationwide House Price Database: http://www.nationwide.co.uk/ /media/MainSite/documents/about/house-price-index/nationwide-hpi-
methodology.pdf
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(all items) obtained from the OECD Database of Main Economic Indicators. In our application we use the annualised
log transformation of real property price inflation calculated as

Δlrhpr,t = 400× ln

(
Pr,t

Pr,t−1

)
, r = 1, . . . , 14, (1)

where Pr,t stands for the level of the real house price index of market r (either the national or one of the 13 regional)
at time t.

Table 1 presents selected descriptive statistics for the annualised housing price growth rate series over the whole
sample period, as well as over the latest boom (1995:Q1-2007:Q3) and bust (2007:Q4-2012:Q4) episodes. Looking at
the full-sample statistics, we observe large differences in mean growth rates across regions. The highest mean growth
rates have been recorded in the metropolitan and the southern areas, in particular Greater London, where real housing
price inflation was about 3% between 1975:Q1 and 2012:Q4. The midland areas showed relatively moderate house
price growth: East Midlands, West Midlands, Wales and East Anglia recorded an average real property price inflation
of less than 2% over the entire sample period, while the northern regions, including Yorkshire and Humberside and
Northern Ireland, experienced the lowest real house price growth: 1.58% and 1.25% respectively.

[INSERT TABLE 1]

Turning to the subsample statistics (columns 6-13 of Table 1), we observe substantial differences in regional house
price behaviour during the recent boom and bust periods. During the upturn in residential and commercial property
prices, average house price inflation across all regional markets was 8.2%, which is nearly four times larger than the
figure for the entire sample. Northern Ireland was the region with the highest housing inflation (12.2%) and the highest
maximum annualised real property price growth rate (47%) over the period. In the mainland, the five southern areas
(Greater London, Outer Metropolitan, Outer South East, South West and East Anglia) experienced house price growth
that was on average about 20% higher than in the remaining seven regions of the country.

During the recent downturn in real estate prices, all regional markets recorded negative mean growth rates that
varied from -18.2% in Northern Ireland to -3.45% in Greater London. Furthermore, for the national-level data and for
a number of regional markets the full-sample minimum growth rates occurred during the recent bust (e.g., Northern
Ireland, Outer Metropolitan, and Wales). We note that the property markets of metropolitan and southern areas, which
rose the most during the boom phase, experienced higher mean growth rates during the downturn relative to the rest of
the country. Specifically, average housing inflation across the five southern areas was -4.6%, while the corresponding
statistic for the remaining areas was -7.7%. Among all regions under consideration, Northern Ireland was the most
volatile property market during the out-of-sample period, followed by the North and Wales, while the real estate
markets of West Midlands, East Midlands and Outer Metropolitan were relatively stable. Overall, the above statistics
highlight the heterogeneity of UK real estate markets.

2.2. House Price Predictors
For each region in our sample, we consider 10 economic variables as potential predictors of future house price move-
ments: 4 regional-level and 6 national-level predictors.4 The variables measured at the regional level include the
price-to-income ratio, income growth, the unemployment rate, and the growth in labour force. Whilst national-level
predictors consist of the real mortgage rate, the spread between yields on long-term and short-term government securi-
ties, growth in industrial production, the number of housing starts, growth in real consumption, and the index of credit
conditions proposed by Fernandez-Corugelo and Muellbauer (2006). The first 9 variables have been used by Bork
and Møller (2015) to forecast house price movements in the US metropolitan states. The last variable has not been
employed in a forecasting context before but has been shown to be an important determinant of UK regional property
price behaviour in-sample (see Yusupova et al., 2017).5

For evaluating the performance of the factor-augmented Bayesian VAR model, in addition to the ten predictive
variables introduced above, we exploit information from a large dataset of main economic indicators, which contains

4All 10 predictive variables used to forecast UK house price inflation are measured at the national level.
5The reader is referred to the online supplementary appendix to Yusupova et al. (2017) for a detailed description of the methodology, estimation

results and sources of the data.
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97 macroeconomic time-series. The composition of this dataset is motivated by the works of Stock and Watson (2009),
Koop and Korobilis (2009) and Koop (2013) on forecasting macroeconomic series. 6

3. Empirical Results
We begin our empirical analysis by evaluating the performance of the battery of forecasting models7 relative to the
AR(1) benchmark over the entire out-of-sample period, from 1995:Q1 to 2012:Q4. For doing so, we employ the test
for equal predictive accuracy of nested models of Clark and West (2007). The basic idea behind this test is that, under
the null hypothesis that the benchmark model is the true data generating process, the forecasts of larger models are
noisy due to the estimation of parameters whose population values are zero. As a consequence, the mean squared
forecast error (MSFE) of the benchmark model is on expectation smaller than that of the larger model and must be
adjusted. Clark and West (2007) propose the following adjusted MSFE difference

f̂j,t+h = (yt+h − ŷAR1t,t+h)
2 −

[
(yt+h − ŷjt,t+h)

2 − (ŷAR1t,t+h − ŷjt,t+h)
2
]
, (2)

where yt+h denotes the realised value of property price inflation at time t + h, ŷAR1t,t+h and ŷjt,t+h stand for the
forecasts of yt+h made at time t using the AR(1) benchmark model and the candidate forecasting model j respectively,
and h denotes the forecast horizon. The authors show that the distribution of the t-statistic obtained by regressing
f̂j,t+h on a constant is approximately normal in large samples. Thus, the null hypothesis can be rejected in favour of
the one-sided alternative (that the candidate model is able to generate more accurate forecasts) at the 5% significance
level when the statistic is greater than 1.645.

3.1. Comparison of Forecast Accuracy
Table 2 presents ratios of MSFEs of the various forecasting models to the AR(1) benchmark together with the corre-
sponding Clark and West (2007) test statistics for the national and the 13 regional real estate markets, and for a forecast
horizon of one quarter (h = 1).8 The statistics highlighted in bold correspond to rejections of the null hypothesis of
equal predictive accuracy at the 5% significance level.

[INSERT TABLE 2]

It is evident from the table that the DMS0.95, which allows for relatively rapid variation in both underlying model
specification and coefficient estimates, is by far the best model (column 4 of Table 2). This is the only model that
outperforms the benchmark for the national market, and it is also the only model that outperforms the benchmark for
all regional markets. The average improvement in predictive accuracy across regions is about 16%, which is similar
to that for the national market. The smallest improvement is 8.4% for Greater London, and the largest is 22.5% for
Scotland and Outer South East. Comparing these results with those for the DMS0.99 with slow forgetting (column
2 of Table 2), we observe that the MSFE ratios increase with the value of the forgetting factors, and the number of
rejections of the null hypothesis decreases dramatically, from 13 to 4. This a particularly interesting finding because
it suggests that the determinants of UK property prices and their marginal effects vary considerably over time. Put it
differently, UK national and regional housing markets are characterised by substantial instability. Looking at the results
for the other dynamic model that allows for parameter shifts and changes in the underlying specification, the DMA,
we observe that this model fails to match the predictive accuracy of the DMS. For forgetting factors α = λ = 0.95
(column 5 of Table 2), it offers significant forecast gains in only 4 out of the 13 regional property markets; and, for
α = λ = 0.99 (column 3 of Table 2), it does not manage to outperform the benchmark in any of the housing markets
under consideration.

6For a detailed description of all data series, information on the sources of the data and the transformation undertaken to achieve stationarity of
the variables please refer to the online appendix.

7For a detailed description of the alternative forecasting models considered in the paper please refer to the online appendix on the authors’
webpage.

8The four-quarters-ahead results are qualitatively similar and are not reported here. These results are available from the authors upon request.
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The second and third best forecasting methods in our list are the UBVAR and the mean combination of the indi-
vidual ARDL forecasts, ARDL1 (columns 11 and 15 of Table 2). The former method generates significantly more
accurate forecasts than the AR(1) in 10 regions, with an average gain in forecast accuracy of about 11%. The latter
outperforms the benchmark in 8 regional markets with an average improvement of 6%. The results for individual
ARDL models, reported in Table 3, suggest that the performance of ARDL1 is, to a large extent, due to the predictive
content of last period’s property price inflation in neighbouring areas. Specifically, the bottom panel of Table 3 (Con-
tiguous Regions) shows that including house price growth in contiguous regions leads to significant MSFEs reductions
for all regional real estate markets but one, Outer Metropolitan. On the other hand, the evidence for the remaining
core house price predictors (Table 3, National and Regional Variables) is somewhat mixed. All of the predictors offer
significant gains in forecast accuracy for some regional markets, but lead to significant losses for others. For instance,
the inclusion of spread, which is the best performing variable in terms of rejections of the null, improves forecast ac-
curacy by 11.4% for Wales, but worsens forecast accuracy by nearly 13.5% for Outer Metropolitan.9 Thus, similarly
to the findings of Rapach and Strauss (2009) for the US, there is no single predictor that consistently outperforms the
benchmark for the UK housing markets. Furthermore, by comparing the individual ARDLs to each other, we observe
that none of them outperforms all others for all regions. It follows that none of the ten core predictors can qualify as
‘best’. Given the lack of a best predictor and the importance of last period’s house price growth in contiguous regions,
it is not surprising that forecasts combinations yield more accurate predictions than individual ARDL models. This
result is in line with the large empirical literature on forecast combination that has emerged over the years (see, e.g.,
Becker and Clements, 2008, Clemen 1989, Diebold and Lopez, 1996, Fang, 2003, Hendry and Clements, 2002, Hibon
and Evgeniou, 2005, Makridakis and Winkler, 1983, Rapach and Strauss, 2009, Timmermann, 2008).

[INSERT TABLE 3]

Turning to the results for the remaining forecasting models in Table 2, we observe that in general these models
perform poorly. The BMA, the UBFAVAR and the ‘kitchen-sink’ ALL are not able to generate significantly lower
MSFEs than the benchmark for any of the property markets in our sample; and the DMA with time-invariant coeffi-
cients (DMAλ = 1), the SBFAVAR and the TVP-AR-X fail to improve forecast accuracy for all regional markets but
one. This outcome is consistent with Koop and Korobilis (2012) and Bork and Møller (2015), who argue that the use
of a large number of explanatory variables can cause model over-fitting and, as a result, lead to inaccurate predictions.
Finally, we note that the performance of the DSGE model of Iacoviello and Neri (2010) is extremely poor (column 19
of Table 2). Among the various forecasting models, the DSGE model is ranked last in forecasting UK national house
price inflation with an MSFE ratio of 1.38. This finding complements those of Gupta et al. (2011) for the US hous-
ing market. It also complements the study of Edge and Gurkaynak (2011), which shows that standard medium-scale
DSGE models forecast poorly macroeconomic variables.

3.2. Time Evolution of Out-of-Sample Performance
To gain insight into the evolution of the out-of-sample performance of alternative forecasting methods, we follow Bork
and Møller (2015) and compute the cumulative difference between squared predictive errors

CDSFEj,r,t =
t∑

i=1994:Q4+h

(
e2AR1,r,i − e2j,r,i

)
, (3)

where eAR1,r,i and ej,r,i stand for the prediction errors of the benchmark AR(1) model and the jth alternative model
for market r, respectively. Figure 1 plots the sum of the CDSFEj,r,i across all property markets in our sample against
time. This statistic constitutes an overall measure of out-of-sample performance. A positive (negative) value of the
summary statistic at a specific time period implies that model j produces, on average, more (less) accurate predictions
of future house price inflation than the benchmark up to that period; while a positive (negative) change in the value
of the summary statistic unveils periods in which the forecast accuracy of model j is superior (inferior) to that of the
AR(1).

9Interestingly, according to the results of the individual ARDL models, Wales is the housing market with the strongest forecastability: all of the
house price predictors succeeded in significantly reducing the forecast error of the benchmark model in this region.
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[INSERT FIGURE 1]

Examination of Figure 1 reveals the superiority of the DMS0.95 over the other forecasting models for h = 1. We
observe that the DMS0.95 consistently produces more accurate forecasts than the other predictive techniques during the
first decade of the recent house price boom, from the start of the evaluation period until around 2004. Furthermore, the
DMS0.95 is doing remarkably well in capturing the property price downturn of 2008. On the other hand, the predictive
power of the model, as that of all other models, drops in 2004:Q3. This is a period during which all regional property
markets experienced a sharp reversal in house price growth rates. Annualised property price inflation figures dropped
by more than 31% at the national level, by 63% in Yorkshire & Humberside, by 54% in East Midlands, and by 53% in
Scotland. Similarly to 2004:Q4, all forecasting models perform poorly at the start of the bust phase and in the end of
2008 - beginning of 2009, when again all regional housing markets experienced a few consecutive quarters of negative
property price inflation.

3.3. Best House Price Predictors Over Time and Across Regions
A conclusion that emerges from our empirical analysis so far is that models that include the entire set of predictive
variables and do not allow for time variation in the number of predictors tend to perform poorly. Dynamic models,
on the other hand, demonstrate superior predictive ability. In light of these findings two research questions that are
interesting to examine are: 1) What is the optimal size of the forecasting model at each point in time? 2) Which are
the most important predictors at each point in time? To answer these questions, we follow Koop and Korobilis (2012)
and look at the estimated probability weights in the DMA.10

Let Sizek,t denote the number of predictors (excluding the intercept and the lags of the dependent variable) of
model k (with k = 1, . . . , 1024), and πt|t−1,k stand for the probability that model k should be used for forecasting at
time t. Then the expected number of predictors used to construct the DMA forecast at time t is given by

E(Sizet) =
K∑

k=1

πt|t−1,kSizek,t. (4)

Figure 2 plots the median E(Sizet) across regional markets for the DMA with α = λ = 0.95. It also plots the
corresponding 16th and 84th percentiles to provide a measure of regional variation in E(Sizet). By looking at Figure
2, we observe, first, that the median value of E(Sizet) hovers around 4 predictors throughout the sample period and,
second, that the 16th and 84th percentile band is narrow, which implies that there is small regional variation. Thus, the
DMA results advocate parsimonious forecasting models for all regional markets when the forecast horizon is short.

[INSERT FIGURE 2]

Turning to the second question, the DMA probability weights, πt|t−1,k, can also be used to cast light on which
variables are important for predicting future property price movements, and examine how the best house predictors
vary over time, across regional markets, and across forecast horizons. Following Koop and Korobilis (2012), for each
predictor in our dataset, we scan through the 1024 models of the DMA and select those, which contain that specific
predictor. The probability that the DMA assigns to these models is called the posterior inclusion probability, and
reflects the importance of including the predictor in forecasting.

[INSERT FIGURE 3]

Figure 3 plots the median, the 16th percentile and 84th percentile of the estimated inclusion probabilities for
one-quarter-ahead horizon. The figure illustrates in a clear manner why predictive methods that allow changes in the
underlying model specification tend to produce more accurate forecasts than methods that keep the set of predictors
fixed. With the exception of the price-to-income ratio, the mortgage rate and the spread (for which inclusion proba-
bilities are virtually constant over time and across regions), it is not the same set of predictors that is driving house

10Alternatively, one could employ the DMS model size and predictors. The DMS approach yields qualitatively similar results, which are not
reported here but are available from the authors upon request.
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prices during periods of upswing and downturn, and across real estate markets. The prime example is the indicator
of credit availability. According to the results displayed in Figure 3, the median posterior inclusion probability for
this predictor increased from around 40% at the start of the sample period to above 80% during the boom phase of
2000s, and then collapsed back to their original levels. It is worth noting that, for some regional markets, the posterior
inclusion probability for this variable reached almost 100% during the first part of 2000s.

3.4. Best House Predictors and the Volatility of Housing Markets
As a final exercise, we investigate how the set of house price predictors varies with the volatility of regional real estate
markets. Figure 4 shows the posterior probabilities of including various house price predictors in the DMA forecasting
exercise for each of the three most volatile and three most stable property markets in our sample. Diagrams on the
left display the posterior inclusion probabilities for Northern Ireland, the North and Wales. Diagrams on the right
show which predictors are important in the relatively stable property markets of West Midlands, Outer Metropolitan
and East Midlands. For illustration purposes, we chose to report the three most important information variables for
each regional real estate market, classifying a predictor with the highest posterior inclusion probability during the
out-of-sample period as important.

[INSERT FIGURE 4]

Looking at the results, displayed in Figure 4, we cannot identify a single predictive variable that consistently has
a higher inclusion probability. In two out of the three volatile regions (Wales and the North), credit availability is
the key house price predictor during the recent boom. The probability of including the index of credit conditions
increases from around 0.4 in 1995 to almost unity in 2004, reflecting the important role of credit liberalization in
house price changes during this period. Growth in industrial production is another variable that plays an important
role in predicting future house price movements in two volatile property markets, Northern Ireland and the North.
Interestingly, the probability of including this variable in the forecasting model of Northern Ireland, which is the most
volatile region in our sample, is around 0.8 for most of the evaluation period: from the mid-90s until the end of 2006.
The predictive ability of industrial production starts to decline in the first quarter of 2007, when house price inflation
started to slow down, and falls to 0.5 by 2009, following the sharp downturn in property prices in the area. Lastly,
we observe that the mortgage rate is another important predictor of house price inflation in Northern Ireland and the
North, however the probability of including this variable in the forecasting exercise is only marginally above 0.5.

Moving on to the graphs for the stable housing markets of West Midlands, Outer Metropolitan and East Midlands
(Figure 4), we note that there is no single information variable that turns out to be equally important in all three
markets. The gap between yields on long-term and short term gilts, the housing stock and the credit availability
indicator stand out as main determinants of future house prices in two stable regional markets out of three. In West
Midlands and Outer Metropolitan the spread is an important predictor during the bust phase. The two other predictors
(the housing stock and the credit availability indicator), on the contrary, are important during the recent upswing in
real estate prices. The index of credit availability is the key determinant of property price inflation in the midland areas
at the start of the boom phase, from the first quarters of 2001 until the end of 2004. While, the stock of dwellings has
the greatest predictive power in the second half of the upturn period, from the last quarters of 2004 until the collapse
of property prices. Similarly to the volatile property markets, the remaining predictors show mixed predictive ability.

The main conclusion that emerges from the above empirical analysis is that there is considerable variation in
the choice of house price predictors over time and across regions. This provides an explanation of why forecasting
strategies that allow changes in the underlying model specification tend to produce more accurate forecasts of future
house price movements.

4. Conclusion
In this paper, we provided an extensive evaluation of the forecastability of property price movements in the national
and the 13 regional real estate markets of the UK over the past few decades. For doing so, we employed a rich
macroeconomic dataset and a battery of static and dynamic econometric methods, including ARDL, BVAR, BFAVAR,
TVP, BMA, BMS, DMA and DMS, as well as the structural DSGE model of Iacoviello and Neri (2010).
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In summary, our results indicate that dynamic models that allow for changes in both the parameter estimates and
the underlying model specification deliver more accurate forecasts than models in which the set of house predictors
is kept fixed. Among the various models, the DMS with low values of the forgetting factors performs best in terms
of forecast accuracy, outperforming the benchmark AR(1) for all real estate markets. By examining the performance
of the methods over time, we found that dynamic models are doing remarkably well in capturing the upswing in real
estate markets in the late 1990s - early 2000s as well as part of the latest price collapse of 2008:Q1-2008:Q3 and
2009:Q1-2009:Q3.

The estimation results of the DMA enabled us to shed light on the optimal number of predictors included in the
forecasting model and on the best economic variables for predicting future house price movements. Two important
conclusions with regard to model dimensionality are, first, that parsimonious models are preferred to models with a
large number of predictive variables and, second, that the number of property price predictors is, generally, stable over
time and across regions. With regard to the best predictors, the probabilities of including different economic variables
in the forecasting exercise reveal that there does not exist a single predictor that is consistently chosen by the dynamic
models as the key determinant of future property price movements. The credit availability indicator, however, was
found to be a particularly important determinant of property price inflation for the majority of regional markets during
the boom phase of the 2000s.

As a final exercise, we examined how the set of house price predictors varies with the volatility of regional real
estate markets. By looking at the three most volatile and three most stable property markets in our sample, we
found that the main predictors in volatile regions generally differ from those in stable housing markets. Our findings
suggest that the index of credit availability and the growth in industrial production were the key drivers of house price
inflation in volatile regions, particularly during the boom phase; while in relatively stable property markets, the stock
of dwellings was the main determinant of housing dynamics on the eve of the house price collapse.
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Figure 1: Out-of-Sample Performance Over Time

Notes: The figure plots the cumulative difference between the squared forecast errors of the AR(1) model and each of the rival models j,
∑13

r=1 CDSFEj,r,i,
where r is a regional index, for the forecast horizon h = 1. For illustration purposes, we only show CDSFE statistics for the DMA and DMS models with
α = λ = 0.95, and we omit the results for models that fail to beat the benchmark in at least one regional real estate market (see Table 2).

Figure 2: Expected Model Dimension

Notes: The figure shows the time evolution of the expected number of house price predictors used to generate the DMA0.95 h-step-ahead forecasts: E(Sizet) =∑K
k=1 πt|t−1,kSizek,t, where Sizek,t = 1, . . . , 10 denotes the number of information variables included in model k with k = 1, . . . , 1024 (Koop and

Korobilis, 2012). The diagram illustrates the median of the DMA expected dimension across the 13 UK regional property markets, together with the 16th and 84th
percentiles.
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Figure 3: Posterior Probabilities of Inclusion

Notes: The figure plots the time evolution of the posterior inclusion probability of each of the 10 core house price predictors in the DMA0.95 forecasting exercise.
Blue solid lines show the median posterior inclusion probability across the 13 regional UK housing markets. Grey dashed lines display the corresponding 16th and 84th
percentiles.
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Figure 4: Posterior Probabilities of Inclusion for Volatile and Stable Property Markets

Table 1: Descriptive Statistics of Annualised Real Property Price Growth Rates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1975:Q1-2012:Q4 1995:Q1-2007:Q3 2007:Q4-2012:Q4

Mean Std.dev Min Max Mean Std.dev Min Max Mean Std.dev Min Max

East Anglia 2.09 15.27 -45.78 52.74 7.99 11.59 -17.36 33.30 -5.41 12.46 -27.21 20.70

East Midlands 2.06 13.21 -28.32 59.23 7.51 10.57 -15.88 32.87 -5.69 9.72 -25.16 7.86

Greater London 3.05 14.11 -30.77 37.70 9.76 10.63 -21.00 29.96 -3.45 13.14 -24.79 17.67

N Ireland 1.25 17.33 -59.86 46.91 12.19 14.63 -17.22 46.91 -18.21 19.68 -59.86 29.67

North 1.85 13.76 -33.36 41.46 7.45 14.99 -24.32 40.99 -6.43 9.06 -26.17 10.56

North West 2.13 12.10 -27.11 37.69 7.05 10.77 -26.66 33.54 -6.69 9.68 -24.51 15.96

Outer Met 2.56 13.12 -32.12 41.72 8.25 8.86 -9.61 27.06 -4.23 12.06 -32.12 15.72

Outer S East 2.43 13.91 -30.25 40.47 8.68 9.71 -10.78 33.24 -4.92 12.30 -30.05 16.31

Scotland 1.69 11.23 -33.11 33.16 6.72 10.76 -19.31 33.16 -6.09 9.75 -26.68 14.45

South West 2.36 14.13 -37.38 57.19 8.46 9.94 -14.29 36.00 -5.26 11.57 -34.07 18.63

West Midlands 1.91 13.51 -47.44 63.29 7.27 9.29 -10.91 31.68 -5.79 9.45 -23.14 11.01

Wales 1.68 14.50 -35.91 52.31 7.39 13.52 -27.70 35.24 -6.26 13.82 -35.91 27.44

Yorks & Hside 1.58 14.19 -37.73 47.26 7.57 12.36 -13.19 39.66 -6.69 10.43 -23.24 8.93

UK 2.12 11.39 -26.98 39.08 8.19 7.99 -11.29 29.28 -5.65 10.29 -26.98 13.11

Notes: The table reports descriptive statistics of national and regional annualised log real house price growth rates over the whole sample (1975:Q1-2012:Q4), the
housing boom (1995:Q1-2007:Q3) and the housing bust (2007:Q4-2012:Q4) periods. Annualised housing price inflation is computed as Δlrhpr,t = 400 ×
ln

(
Pr,t

Pr,t−1

)
, where Pr,t, Pr,t−1 stand for current and last period’s level of Nationwide house price indices deflated by the Consumer Price Index (all items),

r = 1, . . . , 14.
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Impact of weather forecasting accuracy over  
the electric demand predictions quality 

 

Paula Cernuda, Eduardo Caro1, Jesús Juan 
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Abstract 

Technical literature is rich in references pertaining to short-term electricity demand fore-
casting. These algorithms usually require the information of some variables such as: meteor-
ological data, information about holidays, etc.  Among all these variables, the temperature is 
the most relevant information from the perspective of electricity demand forecasting. This 
work analyzes the effect of the weather forecasting inaccuracies over the electric demand 
predictions. It has been performed a complete case study using real-world data from the 
Spanish mainland system, withdrawing statistically sound conclusions.  

Keywords: electricity demand forecasting, weather predictions, forecasting accuracy. 
 
Introduction 

Technical literature is rich in references pertaining to short-term electricity demand fore-
casting. To compute the 24 next-day hourly forecasts, these algorithms usually require the 
information of some variables such as: meteorological data, information about “holidays” or 
“non-working days”, hour-changing days, etc.  Among all the aforementioned variables, the 
temperature is the most relevant information from the perspective of electricity demand fore-
casting. 

In this study, we analyze the effect of the weather forecasting accuracy over the quality 
of the electricity demand predictions. Specifically, the Spanish mainland system is analyzed.  

Temperature forecasts 

The weather forecasting database employed for this study provides 10 day-ahead tem-
perature predictions for some geographical locations throughout Spain. The electricity demand 
forecasting algorithm makes use of the following locations: Madrid, Barcelona, Málaga, Bilbao, 
Zaragoza, Valencia, Cáceres, Murcia, Oviedo and Sevilla, as indicated in Figure 1. 

1 Corresponding author: eduardo.caro@upm.es  
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Figure 1. Geographical locations used by the electricity demand forecasting software. 

To evaluate the numerical accuracy of the weather forecasts, the one day-ahead pre-
diction is used as a reference, and the relative error e is computed as: 

� = ���,� � ��,�	 /  ��,� 
where ��
�  corresponds to the temperature forecasting for the day D+K, computed the 
day D. The MSE (mean squared error) is computed for the ten above-mentioned locations, 
from K = 2 to K = 10, and the obtained results are depicted in Figs. 2 and 3: the MSE for 
each horizon is plotted in Fig. 2, as well as its 95% confidence intervals; the MSE for each 
horizon and location is plotted in Fig. 3. 

 

Figure 2. MSE for each horizon 

 

Figure 3. MSE for each horizon 
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From Figs. 2 and 3, it can be observed:  

� Higher values of K produce higher values for MSE, i.e., the quality of the weather 
forecasting is impoverished for larger horizons, as expected. 

� The increment of MSE is higher from lower horizons: for example, from K = 2 to 
K = 3, the weather forecast quality is impoverished more than from K = 9 to 
K = 10. 

� Coastal cities (such as Barcelona or Málaga) usually exhibit higher weather 
forecasting accuracy.  

 
Case Study 

In this section, we have studied the influence of the weather forecasting accuracy over 
the demand predictions. The electricity demand forecasting software has been used, varying 
the weather database and observing the resulting forecasted demand results. 

This forecasting software computes the 24 next-day hourly predictions at 10.00 am: i.e., 
ten values are computed using one-step forecast, and fourteen values are computed using two-
steps forecasts. 

The demand to be forecasted corresponds to the Spanish mainland electric power system, 
from January 1st, 2016, to December 31st, 2016. In this case study, this software has been 
employed using weather forecasts for the following using the following horizons: 1, 3, 5, 7 and 
10. The demand forecasting quality is measured in terms of MSE, and  

  
Figure 4. MSE of demand forecasts for each hour and horizon. 
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Figure 5. MSE of demand forecasts for each horizon. 

From Figs. 4 and 5, it can be observed:  

� A significant effect of weather forecasting accuracy is observed from 10h to 24h. The 
effect of weather forecasting accuracy from 1h to 9h is negligible.  

� The higher effect of weather forecasting accuracy is observed at hours 17h to 19h, 
which provokes a MSE increment of 73% approximately. 

� The MSE of demand accuracy is incremented around 25% from K = 1 to K = 3.  
There are no significant differences over demand quality for K values from 5 to 10. 

 
Conclusions 

This work analyzes the effect of the weather forecasting inaccuracies over the electric 
demand predictions. A complete case study using real-world data has been carried out, de-
noting that: the mean squared error of the weather forecasts can achieve a 0.21% (0.13% for 
coastal cities, 0.34% for interior locations) for larger prediction horizons; whereas the mean 
squared error of the electric demand forecasts vary from 1.4% to  2.0%. 
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A New Approach for Time Series Decomposition and 

Prediction 

Yading Yue, Guangan Zhuang, Rong Zhang, Jianchun Zhao, Lichun Liu 

Tencent Inc., Shenzhen, China 

adenyue@tencent.com 

Abstract. We proposed an approach to decompose a univariate time series into 

a set of sine functions whose frequencies are not necessarily integers as the dis-

crete Fourier transform, and designed an efficient algorithm of linear time com-

plexity to calculate the parameters of the sine functions. We also used such a 

decomposition to make predictions into the future, and showed the prediction 

accuracy is comparable with other approaches especially in cases of quasi-peri-

odic time series. 

Keywords: Time series, decomposition, prediction, forecasting, algorithm, 

Fourier. 

1 Introduction 

The decomposition of time series involves deconstructing a time series into several 

components, each representing one of the underlying categories of patterns. There are 

two principal types of decomposition [1]: decomposition based on rates of change, typ-

ically into trend component, cyclical component, seasonal component and irregular 

component, and decomposition based on predictability. Typically, discrete Fourier 

transform (DFT), discrete wavelet transform (DWT), Hilbert–Huang transform 

(HHT)[2], and Singular Spectrum Analysis (SSA)[3] are often used.  

DFT converts a sequence of N complex numbers in the time domain into an N-peri-

odic sequence of complex numbers. DWT has extra advantage over Fourier transforms 

in temporal resolution: it captures both frequency and location information (location in 

time).  

HHT decomposes a time series into intrinsic mode functions (IMF) along with a 

trend, and obtain instantaneous frequency data. It is designed to work well for non-

stationary and nonlinear data. Specifically, HHT uses the empirical mode decomposi-

tion (EMD) to decompose a signal into a finite and often small number of components. 

In contrast to other common transforms like the Fourier transform and wavelet trans-

form, HHT is more like an empirical approach applied to a data set, rather than a theo-

retical tool.  
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DFT, DWT, and EMD are not able to predict the time series directly, unless their 

constituents are modeled to make predictions individually before the predicted values 

are integrated into a final prediction into the future. 

SSA aims to make a decomposition of the original series into the sum of a small 

number of independent and interpretable components such as a slowly varying trend, 

oscillatory components and a structureless noise. SSA involves a singular value decom-

position (SVD) operation which is quadratic in time complexity [4] [5]. SSA can be used 

directly to predict the future values with limited horizon. 

In this paper we propose an alternative method, named quasi Fourier (QF), in salu-

tation to the great mathematician Joseph Fourier, for decomposition of time series with 

linear time complexity, while the frequencies of the component sine functions need not 

be integers, and prediction can be naturally done by extrapolation of the constituent 

sine functions. 

 

2 Our Approach 

Assume the variation of a time series with values at equal intervals can be represented 

by the addition of a set of sine functions (cosine functions will do too, equivalently, but 

in the paper we use sine functions only) and a constant (intercept) which accounts for 

the non-zero average values. We need to determine the parameters (amplitude, fre-

quency, and phase) of each of the sine functions. 

Suppose there is a time series {rj}, j=1, 2, …, M. We wanted to find a function 

 

𝑦j = 𝑟𝑎 + ∑ 𝑎𝑖 ∗  sin (𝑏𝑖  
𝑁
𝑖=1 𝑥𝑗 + 𝑐𝑖)                                   (1) 

 

to approximate the original time series such that a loss function (e.g., a metric in terms 

of MSE) can be as minimum as possible, where N is the order of the decomposition 

and also the number of sine functions, ra is the average of historical data values, i.e., 

𝑟𝑎 =  ∑ 𝑟𝑗 𝑁⁄𝑗 , xj is the independent variable taking the values of 1, 2, …, M, and ai, bi, 

ci are the parameters to be determined. The above equation is also the formula for re-

construction and prediction of the time series. 

For efficiency, we can get the parameters of sine functions incrementally, that is, 

after the intercept ra is obtained, we first determine {a1, b1, c1} to minimize the residues 

zj
(1) = (rj – ra) - a1 sin(b1 xj + c1)) in terms of MSE, then determine {a2, b2, c2} to minimize 

the residues zj
(2) = zj

(1) – (a2 sin(b2 xj + c2)) in terms of MSE, …, and finally determine 

{aN, bN, cN} to minimize the residues zj
(N) = zj

(N-1) – (aN sin(bN xj + cN)). The detailed 

algorithm is given next. 
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2.1 Algorithm 

The pseudo code for the QF algorithm follows. 

 

Input: original time series rj , j = 1,…, M; the average of the historical values ra . 

Output: ai, bi, ci , i = 1,…, N, where N is typically 10, 30, 100, or more.  

1.    for (i = 1 to N) 

2.            if (i = 1) then residues zj = rj - ra ; else zj = zj–ai-1 sin(bi-1 xj + ci-1) 

3.            assign E = one big number (e.g., 1020) 

4.            for each b ∈ [bmin, bmax] 

5.       fix the value of a temporally; 

6.       find the best c, denoted as c*; 

7.       find the best a, denoted as a*; 

8.       if (E’(a*, b, c*) < E) 

9.            E = E’;  b* = b; 

10.     {ai, bi, ci} = {a*, b*, c*}. 
 

where E’ is the MSE of the sine curve approximating the current residues zj, dependent 

on determined a*, b, c*. Let us give more explanations.  

Line 4: for each b∈ [bmin, bmax]. We divide the interval [bmin, bmax] into multiple 

intervals of equal width, such that b takes one dimensional search interval by interval. 

Usually we assign [bmin, bmax] = [π/(2*M), π/2], to cover a broad range of possible fre-

quencies, and the number of intervals m can be thousands. 

Line 5: fix the value of a temporally, which can be any value, usually 1.0. It can be 

verified that the magnitude of value a fixed here does not affect the calculation of other 

parameters later. 

Line 6: find the best c, denoted as c*.  

We do this by trying each of the 3 values of c: {0, π/2, π}, to get the MSE of each of 

the 3 sine curves approximating the residues zj, denoted as e1, e2, e3 respectively, as 

shown in figure 1. 

 
 

Fig. 1. Error Curve: e vs. c. 
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It is not difficult to prove that e is a sine function of c, so the 3 solid circles on the 

above figure are on one sine curve. Assume this sine curve is expressed as  

 

e = p + q sin(c − c∗ −
𝜋

2
)                                           (2) 

 

where p, q, and c* need to be determined, and we know that e* corresponding to c* is 

the lowest point on the sine curve. Substituting the three c values into the above equa-

tion, with necessary manipulations, we get  

 

e1 = p − q cos(c∗) 

e2 = p − q sin(c∗)                                                 (3) 

e3 = p + q sin(c∗) 

 

We can easily get: p = (e2+e2)/2, and c* = arctg((e2-p)/(e1-p)). Then q can also be 

obtained with any of the above three equations in (3) if needed. Thus c* is obtained. 

Line 7: find the best a, denoted as a*. Once b and c* are known, a* can be obtained 

by least square method:  

 

a∗ = argmina  ( L ≡  ∑ (𝑧𝑗 − 𝑎 sin(𝑏 ∗ x𝑗 + 𝑐∗)
2𝑀

𝑗=1 )                      (4) 

 

or more specifically, by setting ∂L / ∂a = 0 and solving the resulting linear equations.  

 

2.2 Complexity Analysis 

If we try to get the {ai, bi, ci} by brutal force, such as a grid search in 3 dimensions, 

each having m intervals, then the time complexity is O(M*N*m3), where M is the num-

ber of data points being modeled, N is the order of decomposition, and m is the number 

of intervals in each dimension. But our approach is only O(M*N*m), since we only 

need to search for the best b one dimensionally and the other two parameters a and c 

are derived analytically, which is a remarkable reduction in time complexity. 
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3 Applications 

The QF algorithm that we proposed can be used in all cases where previous ap-

proaches were applied. We give some experiments below. 
 

3.1 Prediction of sunspots 

To make comparisons with other time series prediction approaches, we take the sun 

spots data and build QF model. The monthly smoothed Sunspot time series has been 

obtained from the SIDC (World Data Center for the Sunspot Index) [6]. Sunspot series 

from November 1834 to June 2001 (2000 points) are selected and scaled between [0, 

1]. The first 1000 samples of time series are selected to train and the remainder 1000 

samples are kept to test the one-step prediction accuracy. The orders of the decompo-

sition N = 300, and the number of intervals in [bmin, bmax] is m=3000. The prediction 

error is measured in NMSE [14]. 

Comparison of the prediction errors reported in the literature and the proposed ap-

proach (1000 Sunspot time series test samples) is given in table 1. It can be seen that 

our approach is the third best among the all being compared.  

 

Approaches Prediction error 

(NMSE) 

Wavelet Packet, Neural Networks [7] 1.25E-01 

Approximation and Correction, McNish–Lincoln [8] 8.00E-02 

Nonlinear Dynamical System, Sello [9] 3.40E-01 

Interpolation of Waldmeier's Standard Curves [9] 5.60E-01 

Geomagnetic Index as Precursor Model [10] 1.85E-00 

Neural Networks, RBF-OLS [11] 4.60E-02 

Neuro-Fuzzy, LLNF-LoLiMot [11] 3.20E-02 

Evolving Recurrent Neural Networks [12] 2.80E-03 

Multi-layer perceptron (MLP) [13] 9.79E-02 

Elman–NARX Neural Networks [14] 5.90E-04 

The proposed: QF 5.67E-03 

Table 1. Comparison of Prediction Error for Sunspot Data 
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To check how prediction errors depend on the algorithm parameters, figure 2 

shows that the NMSE decreases with the number of orders of decomposition N, and 

with the number of segments in b’s range m, but too big an m does not help further in 

reducing the prediction error. 

 

 

Fig. 2. Prediction Error Affected by N, m. 

We note in figure 3 that bigger N leads to smaller NMSE, showing no over-fitting 

problem. However, too big an N does not help reduce prediction error further. 

 

 

Fig. 3. Prediction Error for Bigger N. 
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3.2 Daily revenue prediction 

Given the daily transaction volume data of an online digital product A in Tencent 

Inc., the lifetime of which spaned from very early years up to September 30 of one year, 

we were asked to predict the daily values in the next 31 days in October. These data 

usually demonstrated a weekly fluctuations (quasi-periodic) since users tend to buy 

more on weekends, and also high values on the first 7 days of October, which are the 

National Holidays in China.  

At the end of October we compared the real values (blue) with the predicted values 

(orange), as in figure 4, and the predictions followed the real values closely, with 

MAE=9.1%, which impressed the business unit and gave them confidence on our model 

for more later applications. 

 

 

Fig. 4. Prediction of the Future 31 Days, Product A. 

 

3.3 Estimation of revenue loss due to system failure 

One online game B was affected when some of the servers were out of service during 

November 13 – 21 (9 days), we were asked to estimate the revenue loss.  

First we built a QF model to check its backtracking prediction accuracy, and we got 

the results for the days just before November 13, that is, October 27 – November 12, in 

figure 5. The predicted values (orange) are very close to the real values (blue), with 

MAE as small as 1.43%, thus the model is deemed workable for the case. 
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Fig. 5. Validation of the Prediction Model, Game B. 

 

Then, we updated our model to predict the values during November 13 – 21 (9 

days), in figure 6, and took the predicted as what should be if there were no system 

failure. By adding the differences of the “would-be real values” (orange) and the real 

values (blue), we got the total revenue loss in the 9 days as RMB 1,521,342 yuan. 

 

 

Fig. 6. Prediction Result for Calculating the Revenue Loss, Game B. 
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4 Conclusions 

In this paper we proposed an efficient univariate time series decomposition and predic-

tion approach similar to discrete Fourier transform in that it approximates the time se-

ries by a set of sine functions, but the frequencies of which do not have to be integers 

like the discrete Fourier transform. Its time complexity is linear rather than higher or-

ders of polynomials if brutal force approaches is adopted, and it is simple to implement 

with an incremental learning algorithm.  

The approach presented here is by no means a universal function approximator, but 

a speciation for the case of time series represented as a function of time t. The approach 

is apparently not applicable to time series which increases monotonously to possible 

infinity. Fortunately most times series in industry are bounded in a finite range.  

The experiments showed its accurate predictions and how it was used in several real 

applications in industry. Further work could be extension to multivariate cases or in-

corporated with other approaches to form hybrid models for a better result.  
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Abstract. Short-term time series forecasting technique based on Padé
interpolants and adaptive internal smoothing is presented in this paper.
Adaptive corrections of time series data in the window of observation al-
lows to construct near-optimal Padé extrapolant. Computational exper-
iments with real world time series are used to demonstrate the efficiency
of the proposed approach.

Keywords: time series, forecasting, Padé interpolant, internal smooth-
ing

1 Introduction

Time series forecasting is and important technique used in a large variety of
applications in different areas of science, engineering, finance and economics in
general. The basic idea of any time series prediction algorithm is to identify a
mathematical model generating the analyzed series and project this model into
the future. Many different time series forecasting models and techniques have
been developed during the recent decades. Conditionally, there methods can be
classified into long-term and short term time series forecasting algorithms [1].

Time prediction horizon correlates with this classification – usually only short
predictions suffice for short-term time series. It is true that predictors with even
one time step forward horizons are important in a variety of applications [1].
Such techniques are widely used in finance [2–4]; electricity demand and the
associated price forecasting problem [5–7]; wind power; passenger demand [8]
and many others.

One time step forward prediction algorithms are usually based on the ex-
trapolation of the available data. It is well known that Padé interpolants can
be used for generating mathematical models of complex nonlinear processes [9].

? Corresponding author.
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Padé functions, defined as ratios of univariate polynomials of, in general, dif-
ferent orders, have classically been used to approximate smooth functions with
known Taylor series [10]. Padé functions have also been applied in split-step ap-
proximations of the solutions to differential equations [11–13], approximation of
elliptic-type functions [14], generalized Euler transforms [15] and cosmographic
analysis [16].

Significant attention has been recently devoted to Padé interpolation schemes.
Padé-type rational and barycentric interpolation is considered in [9]. A rational
interpolation scheme with a superpolynomial rate of convergence that reduces
the Runge effect and can be used on discontinuous functions has been devel-
oped in [17]. A robust and efficient implementation of the rational interpolation
scheme can be found in [18].

Padé approximants have also been applied to time series analysis and fore-
casting, primarily as a tool for the construction of ARMA models. In [19], the
Padé approximation is used to accomplish the LS identification of an unstable
ARMA equations. A method to identify the order of an ARMA time series model
and to compute its coefficient based on the Padé approximant is presented in
[20]. These methods have been applied to real-life time series in the field of
economics [21, 22].

The main objective of this article is to present a new application of Padé-
type methods in short-term time series forecasting. This paper is organized as
follows: internal smoothing of algebraic is discussed in Section 2; an overview
of Padé interpolants in presented in Section 3; the pre-processing algorithm
of time series data is given in Section 4; the fitness function construction is
discussed in Section 5; computational experiments are discussed in Sections 6
and 7; concluding remarks are given in the last section.

2 Internal smoothing of algebraic interpolants –
preliminaries

Internal smoothing of an algebraic interpolant has been introduced in [23]. The
main idea of this smoothing procedure is based on a projection of the recon-
structed algebraic model into the future. However, instead of trying to make a
straightforward projection of the model, a conciliation between the variability
of the algebraic interpolant and the smoothness of moving average time series
estimates is considered. We will use the standard industrial moving average al-
gorithm to smooth the time series:

MAt =
1

s

s−1∑
j=0

xt−j−1, (1)

where MAt is a smooth value at time moment t; s is the averaging window.
In general, the width of the averaging window should be preselected for each
time series is not related to the length of the observation window used for the
algebraic interpolant.
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Padé interpolant scheme for short-term time series forecasting 3

Now, time series elements in the observation window are individually per-
turbed by corrections ε1, . . . , εM . It is clear that additional constraints for the
corrections are required in order to make this extrapolation problem well-posed.
A fitness functions for the set of corrections ε1, . . . , εM can be maximized in or-
der to reconstruct a near-optimal algebraic skeleton representing the underlying
dynamics in the observation window [23]:

F (ε1, . . . , εM ) =
1

α
M∑
j=1

|εj |+ |x̃t −MAt|

, (2)

where x̃t is an exact algebraic extrapolant constructed over the perturbed ele-
ments of the time series in the observation window; the parameter α > 0 deter-
mines the penalty proportion between the sum of corrections and the difference
of forecast produced by algebraic extrapolant and moving average. It is clear
that the target function would be unbounded at all zero corrections if algebraic
extrapolant constructed over non-perturbed elements of the time series would
coincide to moving average prediction.

The objective of this paper is to employ Padé interpolants for the algebraic
prediction of the time series evolution and to enhance the intelligent perturbation
of the analyzed time series.

3 Discrete Padé approximation scheme

Traditionally, Padé approximations are used to approximate a smooth function
with a Taylor series expression by means of a rational function. In this paper,
we apply the Padé approximant to time series data.

Suppose the time series (t1, x1) , . . . , (tM , xM ) is given; tk denotes the time
variable and xk denotes the measurement taken at time tk. Note that for time
series where the length of the time interval is unknown, it can be taken that
tk = k, k = 1, . . . ,M with no impact on the approximation.

The order (m,n) Padé function reads:

[m/n]x (t) :=

m∑
j=0

ajt
j

1 +
n∑

j=1

bjt
j

; aj , bj ∈ R. (3)

It is recommended to select m ≥ n [10]. The function (3) applied to the time
series data yields the following system of linear equations with respect to the
parameters a0, . . . , am, b1, . . . , bn:

[m/n]x (tk) = xk; k = 1, . . . ,M. (4)
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Inserting (3) into (4) and simplifying yields:

m∑
j=0

ajt
j
k − xk

n∑
l=1

blt
l
k = xk; k = 1, . . . ,M. (5)

The system (5) can be rewritten in matrix form:

Wp = x, (6)

where

W =

1 t1 . . . tm1 −x1t1 . . . −x1tn1
...

...
. . .

...
...

. . .
...

1 tM . . . tmM −xM tM . . . −xM tnM

 ; (7)

and

p =
[
a0 . . . am b1 . . . bn

]T
; x =

[
x1 . . . xM

]T
. (8)

Let us denote N = dimp = m + n + 1 the total number of parameters in (3).
Noting that W is nonsingular if tk 6= tl, xk 6= xl; k 6= l (which is always satisfied
for time series, since tk < tl for k < l) yields the unique least-squares solution
to (6) for N ≤M :

p =
(
WTW

)−1

WTx. (9)

Note that for N = M , the interpolant is obtained. However, this is impractical
for time series analysis, because of the large number of parameters required and
the negative impact of the Runge effect [24].

4 Pre-processing algorithm

The pre-processing algorithm of the time series data is given below. This algo-
rithm normalizes the time series and selects optimal parameters for the Padé
extrapolant using full sort.
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Algorithm 1: Time series pre-processing

Input : x1, . . . , xM – time series;
M – maximum number parameters in Padé function (3);
L – number of time-forward steps for RMSE evaluation.

Output: x̃1, . . . , x̃M – time series normalized to the range of [−1, 1];
(m∗, n∗) – parameters of optimal Padé function for given time

series.
1 Normalize time series:
2 for k = 1, . . . ,M do

3 x̃k =
2xk −max1≤l≤M xl −min1≤l≤M xl

max1≤l≤M xl −min1≤l≤M xl
;

4 end
5

6 Minimize RMSE (m,n) using full sort:

7 for j = 2, . . . ,M do
8 for N = 2, . . . ,M do
9 for m = bN2 c, . . . , N − 1 do

10 n = N −m− 1;
11 form W,x with n,m and xM−j+1, . . . , xM ;

12 obtain parameters: p =
(
WTW

)−1

WTx;

13 compute Padé forecast for L forwards steps: x̂M+1, . . . , x̂M+L;

14 compute error: RMSE (m,n) =
1

L

√√√√ L∑
k=1

(
xM+k − x̂M+k

)2
;

15 end

16 end

17 end
18 Choose parameters with smallest error: (m∗, n∗) = arg min

m,n
RMSE (m,n).

5 The construction of the fitness function

An evolutionary strategy is used in [25] to identify the algebraic skeleton se-
quence in the observation window of the predicted time series by removing the
unknown additive noise. The idea is based on the assumption that the time se-
ries comprises some sort of deterministic skeleton describing the dynamics of the
time series which is contaminated by the additive noise.

Let us denote x̃k = xk − εk; k = 1,2,3,. . . as the corrected values of the
sequence (εk are unknown corrections). The F-measure as in [26] becomes the
fitness measure of a genetic algorithm that identifies predictive patterns in the
sequence of events [27].

The F-measure consists of two parts that embody different objectives: PRE-
CISION, the model precision, requires from the model that it faithfully recon-
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Fig. 1. Schematic diagram illustrating the proposed Padé method, where dots denote
the original time series; squares denote the corrected time series; P ε the Padé forecast-
ing for corrected time series; P forecasting for original time series.

struct the last known time series values and RECALL requires that the predic-
tion repeats past dynamical behaviour:

F (ε1, ε2, . . . , εM ) =

(
γ2 + 1

)
· PRECISION ·RECALL

γ2 · PRECISION +RECALL
. (10)

In equation (10) the value γ controls the relative importance of precision to
recall. If γ = 0 then the fitness function evaluates only the PRECISION part. If
γ =∞ then the fitness function evaluates the RECALL values only. In our case
we build PRECISION and RECALL functions in such a way that the minimal
value of the fitness function is reached when the corrections are small and the
improved Bernstein extrapolation (through points x̃k) is close to the moving
average prediction (also based on x̃k):

PRECISION =
1

M − 1

M∑
i=1

|xi − x̂i| , (11)

RECALL = α
M∑
i=1

|εi|+ β
∣∣MAM+1 − P ε

M+1

∣∣ ;α > 0, β > 0, (12)

where an array ε0,ε1,. . . ,εM represents near-optimal corrections of the original
time series; MAM+1 stands for the moving average through the last s time series
values; P ε

M+1 stands for the Padé extrapolation through last M values of x̃k;
parameter α determines the penalty proportion between the sum of weighted
corrections and the difference of forecasts based on MAn+1 and P ε

M+1. Fig. 1
illustrates this technique.
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To calibrate the fitness function in order to obtain optimal forecasts, an
analysis on the impact of parameters α, β, γ to the fitness function must be
performed. As shown in Fig. 5, the prediction results are closest to the original
time series elements for α = 1, β = 0.5, γ = 2 (RMSE = 0.0480). The parameter
values obtained in this computational experiment are fixed for the subsequent
computations.

Fig. 2. Plots of the prediction accuracy for different values of the fitness function
parameters α, β, γ.

6 Forecasting strategy for the Dow Jones time series

In previous section the optimal parameters of fitness function were selected.
We apply this forecasting model with preselected fitness function parameters to
real world time series: Dow Jones Industrial Average (DJIA) time series (data
range provides 1896-05-26 to 2013-08-27 monthly index observations made up
of 11 US stocks) [29]; DJIA time series is normed into the range [−1; 1]. The
pre-processing is executed for {x0,. . . ,x30}. The Padé model is built using the
initial 21 observations; RMSE is computed for the last 10 observations. Padé
polynomial parameters read: M = 20, m = n = 4. Results of the prediction for
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these parameter values are displayed in Fig. 3. It can be noted that this model
can be improved by taking into account dynamical nature of the Dow Jones time
series.

0 25 50 75 100 125 150
t

0

0.2

0.4

0.6

0.8

1

RMSE =0.0965

x(t)

Fig. 3. Dow-Jones time series forecasting.

7 Adaptive forecasting of the Dow Jones time series

In this section, a strategy of adaptive selection of parameters M,m,n is proposed
and used to predict different parts of time series. The proposed analysis is based
on the idea of algebraic segmentation of short nonstationary time series [28]. The
error level δ = 0.9 is the key parameter that is preselected before the prediction
is done. The prediction of the Dow Jones time series is shown in Fig. 4 (A); Fig.
4 (B) is the error plot for the prediction displayed in Fig. 4 (B).

Note that in the time interval [31; 49], the time series has been predicted using
Padé extrapolation with parameters M = 20, n = m = 4. In the interval [50; 53],
parameters M = 20, n = m = 9 have been used. In the next time series segment
[54, 96] optimal predictions are obtained for parameter values M = 20,m =
5, n = 6; for segments [97; 99], [100; 106], [107; 117] the parameters values read
M = 11,m = 9, n = 1; M = 15,m = 8, n = 4; M = 20, n = m = 4 respectively.
For the remaining segment of the series, parameter values M = 7, n = m = 1
have been used. This parameter selection scheme has enabled the reduction of
forecasting error down to RMSE = 0.0707.

8 Concluding remarks

Time series forecasting technique based on adaptive one step forward extrapo-
lation of Padé extrapolants with internal smoothing is presented in this paper.
Special optimization problem is developed for the identification of a near-optimal
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Padé interpolant scheme for short-term time series forecasting 9
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| x(t)|

B

Fig. 4. Adaptive forecasting Dow Jones adaptive time series: part (A) is the time series
forecast; part (B) is the error between the forecast and original time series values.

set of corrections used for the identification of the algebraic model in the obser-
vation window of the analyzed time series. Such an approach enables to unleash
the power of Padé interpolants by ensuring the optimal smoothness of the ex-
trapolant. Computational experiments with Dow Jones time series demonstrate
the efficiency and the applicability of the proposed techniques for the prediction
of real-world time series.
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bridge University Press (1996)

11. Michael, D., Collins, A.: Split-step Padé Solution for the Parabolic Equation
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Abstract. There exists different mechanisms to induce the cross-correlation
in the bivariate integer-valued autoregressive processes of order 1 (BI-
NAR(1)). Some papers considered constrained processes where the inter-
relation between the two series is induced by correlated innovations
only while in the unconstrained models an additional cross-correlation is
borne by the relation between the observations from one series with the
previous-lagged observations of the other series. However, in some un-
constrained processes, some researchers have considered only a one-way
cross-correlation by assuming the innovation series are mutually inde-
pendent. This paper provides an analytical review of the two forms of
unconstrained processes under the Poisson innovation assumptions and
in particular under non-stationary moments. Monte Carlo simulations
are implemented to compare the different BINAR(1) processes. These
two unconstrained models are also applied to analyze real-life series of
day and night accidents in Mauritius.

Keywords: Constrained, Unconstrained, BINAR(1), Poisson, GQL.

1 Introduction

In the recent decades, several bivariate integer-valued autoregressive of order 1
(BINAR(1)) processes were introduced in the literature. They differ mainly in
the way their corresponding innovation series were specified. Originally, Pedeli
and Karlis [3, 4] developed the BINAR(1) with Poisson and NB innovations re-
spectively where the cross-correlation between the two series were only induced
by the correlated innovation terms, thus making the model constrained. Later
these authors proposed the full or unconstrained model with Poisson innovations
that considers cross-correlation borne by the innovations and the relation of the
current responses from one series with the previous-lagged observation of the
other series [5]. In the same manner, Ristic et al. [6] and Nastic et al. [2] defined

⋆ Please note that the LNCS Editorial assumes that all authors have used the west-
ern naming convention, with given names preceding surnames. This determines the
structure of the names in the running heads and the author index.
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another form of unconstrained BINAR(1) process with Geometric marginal but
with innovation terms independent. Interestingly, in these unconstrained models,
the corresponding marginal series exhibit same over-dispersion. Moreover, the
model proposed by Ristic et al. [6] shows superior Akaike Information Criterion
(AIC) than the constrained and unconstrained models of Pedeli and Karlis [3–5].
Overall, all these models were developed only under the stationary assumption,
that is, under constant moments.
As for the non-stationary BINAR(1) processes, Mamode Khan et al. [1] and
Sunecher et al. [7] developed the constrained BINAR(1) process with Poisson
and NB innovations respectively. However, as at date, there is no unconstrained
non-stationary BINAR(1) with Poisson innovations developed yet. Based on the
findings of Nastic et al. [2], this paper aims at developing the non-stationary BI-
NAR(1) with Poisson innovations under the two forms of unconstrained set-up.
The parameters in these two processes are estimated via the GQL approach.
The paper is laid out as follows: In Section 2, the marginal and joint moments of
two unconstrained non-stationary BINAR(1) with Poisson innovations are de-
rived. In Section 3, three GQL equations are developed to estimate the regression
and dependence parameters. In the same section, we derive the forecasting equa-
tions. This section is followed by a numerical evaluation where the performance
of the GQL is assessed on the two unconstrained non-stationary BINAR(1) pro-
cesses. In Section 5, the two BINAR(1) models are applied to analyze the day
and night accidents along the motorway connecting the International Airport of
Mauritius and tourist zone Grand-Bay in Mauritius. The conclusion is provided
in Section 6.

2 The Unconstrained Non-Stationary BINAR(1) Process
with Poisson Innovations (M1)

Consider

Y
[1]
t = ρ11 ∗ Y [1]

t−1 + ρ12 ∗ Y [2]
t−1 +R

[1]
t (1)

Y
[2]
t = ρ21 ∗ Y [1]

t−1 + ρ22 ∗ Y [2]
t−1 +R

[2]
t (2)

where ρkj ∈ (0, 1) and ρkj∗ are mutually independent binomial thinning oper-

ators such that ρkj ∗ Y
[k]
t−1 =

∑Y
[k]
t−1

i=0 Zi where Zi ∼ Bernoulli(ρkj). In the first

instance, let us consider Corr(R
[1]
t , R

[2]
t ) = α12,t where (R

[1]
t , R

[2]
t ) is bivariate

Poisson with R
[k]
t ∼ Poisson(λ

[k]
t ), where

λ
[1]
t = (µ

[1]
t − ρ11µ

[1]
t−1 − ρ12µ

[2]
t−1) > 0 (3)

λ
[2]
t = (µ

[2]
t − ρ21µ

[1]
t−1 − ρ22µ

[2]
t−1) > 0 (4)
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with μ
[k]
t = E(Y

[k]
t ). Under these assumptions,

Var(Y
[1]
t ) = ρ11(1− ρ11)μ

[1]
t−1 + ρ211Var(Y

[1]
t−1) + ρ12(1− ρ12)μ

[2]
t−1 + ρ212Var(Y

[2]
t−1)

+ 2ρ11ρ12Cov(Y
[1]
t−1, Y

[2]
t−1) + λ

[1]
t

= μ
[1]
t + [2ρ11ρ12Cov(Y

[1]
t−1, Y

[2]
t−1) + ρ211(Var(Y

[1]
t−1)− μ

[1]
t−1) + ρ212(Var(Y

[2]
t−1)− μ

[2]
t−1)]

(5)

Var(Y
[2]
t ) = ρ21(1− ρ21)μ

[1]
t−1 + ρ221Var(Y

[1]
t−1) + ρ22(1− ρ22)μ

[2]
t−1 + ρ222Var(Y

[2]
t−1)

+ 2ρ21ρ22Cov(Y
[1]
t−1, Y

[2]
t−1) + λ

[2]
t

= μ
[2]
t + [2ρ21ρ22Cov(Y

[1]
t−1, Y

[2]
t−1) + ρ222(Var(Y

[2]
t−1)− μ

[2]
t−1) + ρ221(Var(Y

[1]
t−1)− μ

[1]
t−1)]

(6)

Cov(Y
[1]
t , Y

[2]
t ) = (ρ11ρ22+ρ12ρ21)Cov(Y

[1]
t−1, Y

[2]
t−1)+ρ11ρ21Var(Y

[1]
t−1)+ρ22ρ12Var(Y

[2]
t−1)+Cov(R

[1]
t , R

[2]
t )

(7)
From the above, the corresponding formula for the second form of the uncon-
strained process may be derived easily (M2). Note that the variance of the count-

ing series Y
[k]
t is greater than the expected mean which indicates that Y

[k]
t is

over-dispersed. Moreover, the marginal distribution of Y
[k]
t based on equations

(5) and (6) is rather difficult to identify.
As for the lag-covariances, they are computed similarly as in Pedeli and Karlis

[5], where Σh,t =

[
Cov(Y

[1]
t , Y

[1]
t+h) Cov(Y

[1]
t+h, Y

[2]
t )

Cov(Y
[1]
t , Y

[2]
t+h) Cov(Y

[2]
t , Y

[2]
t+h)

]
. In this paper, μ

[k]
t =

exp(x
′

tβ
[k]), where xt = [xt1, xt2, . . . , xtp]

′
is a p × 1 vector of covariates in-

fluencing both Y
[1]
t and Y

[2]
t with corresponding regression coefficients β[k] =

[β
[k]
1 , β

[k]
2 , . . . , β

[k]
j , . . . , β

[k]
p ]

′
.

3 Estimation Methods

The estimation of the regression parameters is performed using the GQL equa-
tion

D
′

βΣ
−1
β (f − μ) = 0 (8)

where the score vector f = [f1,f2, . . . ,f t, . . . ,f t+h, . . . ,fT ], with f t = [Y
[1]
t , Y

[2]
t ]

′

and μ is the corresponding expected score. The tth row of Σβ is expressed as

c(Σt−1,1,Σt−2,2, . . . ,Σ0,t, . . . ,Σ
′

t+h−t,t, . . . ,Σ
′

T−t,t) where

Σt,h =

[
Cov(Y

[1]
t , Y

[1]
t+h) Cov(Y

[1]
t+h, Y

[2]
t )

Cov(Y
[1]
t , Y

[2]
t+h) Cov(Y

[2]
t , Y

[2]
t+h)

]
and [.]

′
is the transpose matrix.

The derivative componentDβ = [D1,D2, . . . ,Dt, . . . ,DT ]
′ whereDt = diag(

∂μ
[1]
t

∂β[1] ,
∂μ

[2]
t

∂β[2] )
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with
∂μ

[k]
t

∂β
[k]
j

= μ
[k]
t x′

tj . Using these component matrix, equation (8) is solved using

the Newton-Raphson (NR) as in Mamode Khan et al. [1]. It is shown that (β̂−β)

is asymptotic normal with mean 0 and covariance matrix [D
′

βΣ
−1
β Dβ ]

−1[D
′

βΣ
−1
β (f−

μ)β(f − μ)
′

βΣ
−1
β Dβ ][D

′

βΣ
−1
β Dβ ]

−1 [1, 8, 9].
On the other hand, the estimation of the dependence coefficients ρ̂11, ρ̂12, ρ̂21
and ρ̂22 is performed using the GQL equation

D∗
ρ

′
Σ∗

ρ
−1

(f∗ −m) = 0, (9)

where the score function is re-defined as f∗ = [f∗
1|0,f

∗
2|1, . . . ,f

∗
t |t−1, . . . ,f

∗
t+h|t+h−1

, . . . ,f∗
T |T−1],

where f∗
t |t−1 = [Y

[1]
t

2
|Y [1]

t−1, Y
[2]
t−1, Y

[2]
t

2
|Y [1]

t−1, Y
[2]
t−1]

′
and m is the corresponding

expected score. The tth row of Σ̂
∗
ρ is expressed as c(Σ∗

t−1,1,Σ
∗
t−2,2, . . . ,Σ

∗
0,t, . . . ,Σ

′

t+h−t,t

∗
, . . . ,Σ

′

T−t,t

∗
)

where

Σ∗
h,t =

[
Cov(Y

[1]
t

2
, Y

[1]
t+h

2
|Y [1]

t−1, Y
[2]
t−1, Y

[1]
t+h−1, Y

[2]
t+h−1) Cov(Y

[1]
t+h

2
, Y

[2]
t

2
|Y [1]

t−1, Y
[2]
t−1, Y

[1]
t+h−1, Y

[2]
t+h−1)

Cov(Y
[1]
t

2
, Y

[2]
t+h

2
|Y [1]

t−1, Y
[2]
t−1, Y

[1]
t+h−1, Y

[2]
t+h−1) Cov(Y

[2]
t

2
, Y

[2]
t+h

2
|Y [1]

t−1, Y
[2]
t−1, Y

[1]
t+h−1, Y

[2]
t+h−1)

]
(10)

The entries of the above matrices are computed using the ’working’ multi-
variate normality assumption as in Sunecher et al. [7]. The derivative matrix

D∗
ρ = [D∗

1,D
∗
2, . . . ,D

∗
t , . . . ,D

∗
T ]

′ where D∗
t =

⎡⎣⎛⎝ ∂m
[1]

t|t−1

∂ρ11

∂m
[1]

t|t−1

∂ρ12

⎞⎠ ,

⎛⎝ ∂m
[2]

t|t−1

∂ρ21

∂m
[2]

t|t−1

∂ρ22

⎞⎠ ⎤⎦
The entries of the derivative matrix are

1.
∂m

[1]

t|t−1

∂ρ11
= Y

[1]
t−1 − 2ρ11Y

[1]
t−1 − μ

[1]
t−1 + 2(ρ11Y

[1]
t−1 + ρ12Y

[2]
t−1 + μ

[1]
t − ρ11μ

[1]
t−1 −

ρ12μ
[2]
t−1)(Y

[1]
t−1 − μ

[1]
t−1)

2.
∂m

[1]

t|t−1
)

∂ρ12
= Y

[2]
t−1 − 2ρ12Y

[2]
t−1 − μ

[2]
t−1 + 2(ρ11Y

[1]
t−1 + ρ12Y

[2]
t−1 + μ

[1]
t − ρ11μ

[1]
t−1 −

ρ12μ
[2]
t−1)(Y

[2]
t−1 − μ

[2]
t−1)

3.
∂m

[2]

t|t−1
)

∂ρ21
= Y

[1]
t−1 − 2ρ21Y

[1]
t−1 − μ

[1]
t−1 + 2(ρ21Y

[1]
t−1 + ρ22Y

[2]
t−1 + μ

[2]
t − ρ21μ

[1]
t−1 −

ρ22μ
[2]
t−1)(Y

[1]
t−1 − μ

[1]
t−1)

4.
∂m

[2]

t|t−1
)

∂ρ22
= Y

[2]
t−1 − 2ρ22Y

[2]
t−1 − μ

[2]
t−1 + 2(ρ21Y

[1]
t−1 + ρ22Y

[2]
t−1 + μ

[2]
t − ρ21μ

[1]
t−1 −

ρ22μ
[2]
t−1)(Y

[2]
t−1 − μ

[2]
t−1)

The estimation of the cross-correlation parameter α12,t is performed using:

D
′

α12,t
[Var(Y

[1]
t Y

[2]
t |Y [1]

t−1, Y
[2]
t−1)]

−1
(1×1)[(Y

[1]
t Y

[2]
t )(1×1)−(E(Y

[1]
t Y

[2]
t | Y [1]

t−1, Y
[2]
t−1))(1×1)] = 0

(11)

The multivariate normality structure is used to approximate Var(Y
[1]
t Y

[2]
t |Y [1]

t−1, Y
[2]
t−1)

and
∂E(Y

[1]
t Y

[2]
t |Y [1]

t−1Y
[2]
t−1)

∂α12,t
=

√
λ
[1]
t

√
λ
[2]
t . The overall algorithm works as follows:

for an initial value of β̂
[k]
j , ρ̂kj and α̂12,t, we apply the first iterative equation
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to obtain an updated estimate of the regression parameters and this updated
estimate is used to estimate ρ̂kj using the second iterative equation. Using this

updated ρ̂kj and β̂
[k]
j , we estimate α̂12,t using the third iterative equation and

then, a new set of regression parameters is re-evaluated using these updates and
then this cycle continues until convergence of the three sets of parameters.
The forecasting equations are derived as follows:
By using the model in Section 2, we first write

Y
[1]
t+1 = ρ11 ∗ Y [1]

t + ρ12 ∗ Y [2]
t +R

[1]
t+1 (12)

Y
[2]
t+1 = ρ21 ∗ Y [1]

t + ρ22 ∗ Y [2]
t +R

[2]
t+1 (13)

and for given Y
[k]
t , the forecasting function is expressed as

E(Y
[1]
t+1|Y

[1]
t , Y

[2]
t ) = µ̂

[1]
t+1 + ρ̂11(Y

[1]
t − µ̂

[1]
t ) + ρ̂12(Y

[2]
t − µ̂

[2]
t ) (14)

E(Y
[2]
t+1|Y

[1]
t , Y

[2]
t ) = µ̂

[2]
t+1 + ρ̂21(Y

[1]
t − µ̂

[1]
t ) + ρ̂22(Y

[2]
t − µ̂

[2]
t ) (15)

and

V ar(Y
[1]
t+1|Y

[1]
t , Y

[2]
t ) = ρ̂11(1−ρ̂11)Y

[1]
t +ρ̂12(1−ρ̂12)Y

[2]
t +µ̂

[1]
t+1−ρ̂11µ̂

[1]
t −ρ̂12µ̂

[2]
t

(16)

V ar(Y
[2]
t+1|Y

[1]
t , Y

[2]
t ) = ρ̂21(1−ρ̂21)Y

[1]
t +ρ̂22(1−ρ̂22)Y

[2]
t +µ̂

[2]
t+1−ρ̂21µ̂

[1]
t −ρ̂22µ̂

[2]
t

(17)

4 Numerical Evaluation

In this section, we generate the BINAR(1) data using the models derived in
Section 2, by using the following 2× 1 time-dependent covariate matrix, where
the first covariate is:

xt1 =

−1 + t (t = 1, . . . , T/4),
rnorm(1, 0, 1) (t = (T/4) + 1, . . . , 3T/4),
1 + t (t = (3T/4) + 1, . . . , T ),

xt2 =

 (1/t) (t = 1, . . . , T/4)
(−1/t) (t = (T/4) + 1, . . . , 3T/4)
t (t = (3T/4) + 1, . . . , T )

The data are generated assuming (ρ11, ρ22) = [0.3, 0.9] and ρ12, ρ21 = 0 with

dependence coefficient α12,t = [0.3, 0.9] and β
[k]
1 = 0.3 and β

[k]
2 = 0.7. (R

[1]
t ,R

[2]
t )

are simulated using the codes developed by Mamode Khan et al. [1]. 5000 sim-
ulated runs are performed for each combination for T=100, 500 and 1000.
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α12,1 ρ11 ρ22 T Models β̂
[1]
1 β̂

[1]
2 β̂

[2]
1 β̂

[2]
2 ρ̂11 ρ̂22 ρ̂12 ρ̂21 α̂12,1

0.3 0.9 0.9 100 M1 0.2824 0.2862 0.6829 0.6856 0.8815 0.8860 0.0042 0.0094 0.2899
(0.0978) (0.0904) (0.0982) (0.0980) (0.1152) (0.1118) (0.1108) (0.1154) (0.1285)

M2 0.2820 0.2809 0.6818 0.6827 0.8811 0.8844 0.0055 0.0098 0.2860
(0.0990) (0.0910) (0.0992) (0.0988) (0.1167) (0.1130) (0.1119) (0.1170) (0.1296)

500 M1 0.2924 0.2932 0.6924 0.6951 0.8940 0.8945 0.0017 0.0040 0.2937
(0.0530) (0.0522) (0.0575) (0.0507) (0.0610) (0.0660) (0.0662) (0.0681) (0.0759)

M2 0.2914 0.2920 0.6911 0.6938 0.8927 0.8933 0.0025 0.0031 0.2926
(0.0550) (0.0536) (0.0590) (0.0522) (0.0619) (0.0675) (0.0673) (0.0693) (0.0750)

1000 M1 0.2982 0.2990 0.6978 0.6994 0.8954 0.8974 0.0005 0.0011 0.2980
(0.0139) (0.0145) (0.0132) (0.0113) (0.0274) (0.0231) (0.0259) (0.0232) (0.0354)

M2 0.2970 0.2981 0.6965 0.6978 0.8941 0.8960 0.0010 0.0020 0.2966
(0.0150) (0.0159) (0.0148) (0.0128) (0.0290) (0.0244) (0.0275) (0.0246) (0.0363)

0.3 0.3 0.9 100 M1 0.2888 0.2814 0.6838 0.6850 0.2866 0.8868 0.0020 0.0043 0.2826
(0.0910) (0.0965) (0.0921) (0.0977) (0.1136) (0.1179) (0.1152) (0.1112) (0.1264)

M2 0.2875 0.2810 0.6831 0.6845 0.2857 0.8855 0.0031 0.0052 0.2817
(0.0902) (0.0956) (0.0910) (0.0961) (0.1124) (0.1163) (0.1140) (0.1103) (0.1252)

500 M1 0.2919 0.2958 0.6929 0.6936 0.2950 0.8916 0.0010 0.0016 0.2923
(0.0545) (0.0527) (0.0536) (0.0510) (0.0654) (0.0661) (0.0670) (0.0647) (0.0740)

M2 0.2910 0.2949 0.6919 0.6926 0.2940 0.8910 0.0018 0.0023 0.2914
(0.0560) (0.0535) (0.0547) (0.0520) (0.0669) (0.0674) (0.0682) (0.0660) (0.0758)

1000 M1 0.2997 0.2984 0.6982 0.6985 0.2960 0.8993 0.0001 0.0003 0.2955
(0.0181) (0.0142) (0.0173) (0.0133) (0.0278) (0.0260) (0.0204) (0.0225) (0.0306)

M2 0.2930 0.2960 0.6940 0.6949 0.2951 0.8945 0.0011 0.0009 0.2932
(0.0195) (0.0161) (0.0184) (0.0147) (0.0293) (0.0275) (0.0220) (0.0241) (0.0322)

0.3 0.3 0.3 100 M1 0.2851 0.2811 0.6802 0.6830 0.2819 0.2811 0.0068 0.0076 0.2824
(0.0961) (0.0997) (0.0944) (0.0923) (0.1175) (0.1114) (0.1108) (0.1151) (0.1245)

M2 0.2840 0.2805 0.6800 0.6824 0.2807 0.2801 0.0080 0.0089 0.2815
(0.0973) (0.0999) (0.0956) (0.0930) (0.1186) (0.1127) (0.1121) (0.1165) (0.1259)

500 M1 0.2950 0.2959 0.6966 0.6933 0.2919 0.2920 0.0038 0.0041 0.2952
(0.0526) (0.0531) (0.0540) (0.0575) (0.0662) (0.0672) (0.0661) (0.0609) (0.0734)

M2 0.2940 0.2944 0.6952 0.6920 0.2910 0.2911 0.0045 0.0049 0.2939
(0.0538) (0.0542) (0.0554) (0.0588) (0.0676) (0.0686) (0.0670) (0.0619) (0.0747)

1000 M1 0.2980 0.2978 0.6979 0.6950 0.2977 0.2956 0.0010 0.0013 0.2977
(0.0121) (0.0192) (0.0123) (0.0129) (0.0238) (0.0215) (0.0224) (0.0247) (0.0336)

M2 0.2970 0.2966 0.6969 0.6941 0.2970 0.2945 0.0016 0.0018 0.2967
(0.0133) (0.0199) (0.0137) (0.0147) (0.0250) (0.0227) (0.0243) (0.0260) (0.0348)

0.9 0.9 0.9 100 M1 0.2884 0.2821 0.6825 0.6831 0.8896 0.8891 0.0090 0.0074 0.8816
(0.0916) (0.0933) (0.0945) (0.0947) (0.1158) (0.1196) (0.1130) (0.1171) (0.1256)

M2 0.2870 0.2810 0.6812 0.6817 0.8840 0.8855 0.0098 0.0088 0.8804
(0.0940) (0.0950) (0.0959) (0.0963) (0.1170) (0.1199) (0.1147) (0.1185) (0.1269)

500 M1 0.2912 0.2956 0.6941 0.6958 0.8962 0.8968 0.0056 0.0055 0.8910
(0.0558) (0.0536) (0.0530) (0.0580) (0.0620) (0.0641) (0.0646) (0.0673) (0.0796)

M2 0.2904 0.2940 0.6931 0.6941 0.8953 0.8949 0.0071 0.0068 0.8902
(0.0574) (0.0550) (0.0545) (0.0592) (0.0631) (0.0656) (0.0658) (0.0684) (0.0810)

1000 M1 0.2997 0.2982 0.6975 0.6973 0.8981 0.8977 0.0011 0.0026 0.8998
(0.0123) (0.0169) (0.0129) (0.0152) (0.0231) (0.0220) (0.0243) (0.0234) (0.0348)

M2 0.2988 0.2970 0.6966 0.6960 0.8972 0.8968 0.0020 0.0035 0.8983
(0.0140) (0.0180) (0.0142) (0.0160) (0.0244) (0.0233) (0.0252) (0.0247) (0.0360)

0.9 0.3 0.9 100 M1 0.2896 0.2820 0.6824 0.6895 0.2886 0.8852 0.0080 0.0098 0.8815
(0.0947) (0.0925) (0.0908) (0.0919) (0.1173) (0.1116) (0.1163) (0.1151) (0.1274)

M2 0.2880 0.2808 0.6820 0.6885 0.2875 0.8841 0.0091 0.0099 0.8806
(0.0959) (0.0940) (0.0922) (0.0933) (0.1185) (0.1130) (0.1177) (0.1164) (0.1289)

500 M1 0.2912 0.2945 0.6951 0.6956 0.2904 0.8923 0.0060 0.0070 0.8918
(0.0522) (0.0550) (0.0524) (0.0544) (0.0633) (0.0671) (0.0627) (0.0688) (0.0710)

M2 0.2905 0.2932 0.6941 0.6940 0.2901 0.8916 0.0075 0.0083 0.8910
(0.0536) (0.0567) (0.0530) (0.0554) (0.0642) (0.0680) (0.0636) (0.0695) (0.0720)

1000 M1 0.2993 0.2981 0.6977 0.6984 0.2962 0.8991 0.0031 0.0037 0.8989
(0.0121) (0.0122) (0.0105) (0.0130) (0.0255) (0.0250) (0.0259) (0.0259) (0.0343)

M2 0.2980 0.2971 0.6968 0.6972 0.2955 0.8979 0.0040 0.0052 0.8975
(0.0130) (0.0136) (0.0116) (0.0144) (0.0263) (0.0261) (0.0275) (0.0269) (0.0351)

0.9 0.3 0.3 100 M1 0.2882 0.2821 0.6831 0.6812 0.2824 0.2845 0.0095 0.0083 0.8841
(0.0912) (0.0930) (0.0961) (0.0955) (0.1145) (0.1115) (0.1126) (0.1119) (0.1295)

M2 0.2871 0.2811 0.6815 0.6802 0.2820 0.2833 0.0099 0.0095 0.8830
(0.0920) (0.0944) (0.0970) (0.0960) (0.1150) (0.1133) (0.1141) (0.1129) (0.1299)

500 M1 0.2950 0.2913 0.6927 0.6912 0.2952 0.2907 0.0070 0.0065 0.8959
(0.0589) (0.0558) (0.0563) (0.0511) (0.0660) (0.0675) (0.0633) (0.0678) (0.0728)

M2 0.2940 0.2909 0.6919 0.6905 0.2944 0.2901 0.0080 0.0079 0.8950
(0.0598) (0.0565) (0.0570) (0.0525) (0.0675) (0.0686) (0.0640) (0.0689) (0.0736)

1000 M1 0.2979 0.2992 0.6980 0.6982 0.2937 0.2946 0.0033 0.0041 0.8990
(0.0114) (0.0195) (0.0159) (0.0138) (0.0231) (0.0215) (0.0217) (0.0248) (0.0320)

M2 0.2970 0.2985 0.6969 0.6972 0.2930 0.2940 0.0045 0.0053 0.8982
(0.0125) (0.0199) (0.0175) (0.0147) (0.0239) (0.0226) (0.0231) (0.0258) (0.0329)

Table 1. GQL estimates of the parameters and standard errors under non-stationary
BINAR(1) process, based on 5000 Monte-Carlo replications for each combination
ρ11, ρ22.

Fron the above, the GQL estimates under both M1 and M2 are consistent
with M1 yielding lower standard errors (s.e) than M2.
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5 Application

We analyze the number of day and night accidents along the motorway connect-
ing the International Airport of Mauritius to the tourist zone Grand-Bay. Data
were collected from 1st February 2015 to 31th December 2015, which makes a
total of 334 paired observations and four explanatory variables that influence
the two series were also collected: number of policemen (NP) deployed in this
area monthly for patrol, number of speed cameras (NSC), number of traffic lights
(TL) and number of roundabouts (RA). The figures below display the time series
plots of the two data:
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Fig. 1. Time series plot for day acci-
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Fig. 2. ACF plot for day accidents

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Observation number

N
um

be
r 

of
 n

ig
ht

 a
cc

id
en

ts

Fig. 3. Time series plot for night acci-
dents
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Fig. 4. ACF plot for night accidents

Day accident has a mean (variance) of 1.2754 (1.4314) and 1.3832 (1.4983)
for night accident. Hence, both series are slightly over-dispersed with a cross-
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correlation of 0.1164. Based on the ACF plots, we observe that the lag-1 auto-
correlation is the most highly significant compared to lag-3, lag-15 and lag-18
for the accident data, which justify the application of the BINAR(1) model.
We therefore fit the two unconstrained structures M1 and M2 and the GQL is
applied to estimate the regressions effects and dependence parameters and the
results are given in the table below:

Model Intercept TL NSC NP RA ρ̂12 ρ̂21 ρ̂11 ρ̂22 α̂12,1

Y
[1]
t 2.0067 -0.0315 -0.1151 -0.1213 0.0672 0.1178 0.0757 0.0759
s.e (0.2043) (0.1272) (0.1018) (0.0531) (0.1489) (0.0761) (0.0851) (0.1166)

M1 p-values 0.1231 0.0158 0.0037 0.0093 0.0258

Y
[2]
t 1.1411 -0.0458 -0.0953 -0.1114 0.0874 0.1289 0.1956
s.e (0.1873) (0.1438) (0.0860) (0.0464) (0.1356) (0.0627) (0.0979)

p-values 0.1729 0.0288 0.0106 0.0033 0.0118

Y
[1]
t 2.1581 -0.0430 -0.1212 -0.1265 0.0742 0.1270 0.0880
s.e (0.2170) (0.1285) (0.1035) (0.0550) (0.1499) (0.0775) (0.0872)

M2 p-values 0.1266 0.0190 0.0069 0.0115 0.0281

Y
[2]
t 1.1244 -0.0491 -0.0987 -0.1165 0.0944 0.1298 0.1970
s.e (0.1883) (0.1474) (0.0884) (0.0488) (0.1376) (0.0650) (0.0990)

p-values 0.1788 0.0296 0.0130 0.0066 0.0135

Table 2. Day and Night Accidents: Estimates of the regression and dependence pa-
rameters.

From the above estimates, M1 yields slightly better standard errors than M2.
In the model M1, the day accidents reduces by an average of 10.9 percent, while
the night accidents decreases by 9.1 percent if more speed cameras are installed.
Similarly, if more Policemen are deployed, the expected decrease in the number
of day accidents turns around 11.4 percent, while the number of night accidents
decreases by 10.5 percent. Next, the RA estimates show that more roundabouts
may induce further accidents, namely an expected increase of 7 percent for day
accidents and 9.1 percent for night accidents. As for the traffic lights, its values
are rather small and contribute less to the decrease in the number of accidents.
Hence, more traffic lights tend to cause an expected decrease of 3.1 percent in
the number of day accidents and 4.5 percent in the number of night accidents.
Using the forecasting equations (14) and (15), we compute the one-step ahead
in-sample prediction and the root mean square errors (RMSE) are presented in
the table below for the two models:
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Model RMSE RMSE

Y
[1]
t Y

[2]
t

M1 0.2031 0.1826

M2 0.2045 0.1839
Table 3. RMSE in-sample values for number of day and night accidents.

6 Conclusion

This paper firstly treats the modelling of a non-stationary BINAR(1) series
with Poisson innovations under unconstrained structures M1 and M2. Under
M1, both cross-correlation structures were considered whilst under M2, we as-
sume the inter-linkage between the two series was only borne by cross-correlation
between the counting series. Parameter estimation under both models was con-
ducted using some GQL equations which under some scores specification requires
the multivariate normality ’working’ structure. The outcomes of the simulation
experiments and real-life study show that M1 provides slightly more efficient
estimates with slightly lower RMSE than M2. However, in some complex bi-
variate time series process, the cross-correlation between the innovation terms

may be ignored. In this situation, we still have the random vector {Y [1]
t , Y

[2]
t }

consist of correlated random variables. Besides, this may yield some parsimony
in estimating the parameters.
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Abstract. Comparing things like objects, tasks, texts or audio is a com-
mon task in computer science. To do so, first a definition for similarity
is required. In many fields of application, common and generic distance
measures like the Minkowski distance or more specific measures like Dy-
namic Time Warping to compare temporal sequences are already defined
and used. Based on our state of knowledge, there is no applicable mea-
surement for calculating the similarity between time interval data sets
in a manlike understanding.
In this paper, we present a novel method to compare time interval data
sets while using an adapted distance measurement. With our approach
we look at the data sets as the disjoint parts of a bigraph, such that we
can use methods from graph theory. In particular, our solution provides
the opportunity to take dynamic changes (like rescaling or time-shifting)
into account and thus allows the comparison of real data in humanoid
fashion. Hence, it allows to compare real data with e.g. scale models.

Keywords: time interval data set, TIDA, similarity analysis, graph the-
ory, temporal displacement

1 Introduction and Motivation

Nowadays, process optimization is an essential feature in many areas of manu-
facturing [1]. The stability of these optimized processes is particularly important
because continuous deviance could lead to aberration within the process man-
agement regarding its optimized parameters. This may result in unwanted time
delays and additional costs as, due to the increasingly frequent on-demand pro-
duction, there are no products in storage [2]. Today’s optimized and timed pro-
cedures are more susceptible to irregularity, as a result of which, in addition to
the optimization, the deviations themselves become more and more superficial.
Since these deviations cannot always be avoided, a strategy for faster responses
must be available.

At the moment, workers recognize deviations based on their experience and
start appropriate counter measures. This procedure resembles a similarity anal-
ysis regarding past processes. Recognitions like these are not often part of the
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computer-aided similarity analysis because at the moment there are only few lim-
ited possibilities to quantify interval similarities. Examples for specific similarity
analysis already exist within certain scientific research areas. Those methods in-
clude the area of text or image processing, where similarity analysis is used to
optimize search algorithms [3], within biology to compare genes or gene groups
([4] and [5]) or as a tool of audio recognition methods [6]. To our knowledge, ba-
sic considerations of similarities regarding time intervals are missing up to now.
However, research regarding time interval data sets gained importance over the
past years ([7] - [12]). While the similarity in the mentioned publications was
derived from a sequence analysis and studies the existing data sets as a whole,
we deduce the similarity of the data set from the individual similarities between
the underlying intervals in our approach.

Therefore, we concentrate solely on the time intervals and at first construct
a similarity measure to compare intervals with each other. This method allows
for a detailed view on specific characteristics of the records saved in the time
interval data set and a comparison even under big time offsets is possible. With
this approach we are able to measure the similarity of two data sets with well
known methods from graph theory [13]. To achieve our goal, we interpret the
comparative data sets as the disjoint parts of an bigraph where each time interval
is represented by a node within these parts and the weight of each edge represents
the similarity measure of the corresponding intervals.

2 Related Work

One work regarding time interval data sets [7] compares two data sets in relation
to the correlation of the intervals within the respective data set. Within this
method, a difference regarding the interval length is not considered as long as it
does not effect the correlation between the two intervals. The authors introduce
seven interval correlations, which they used for their comparison (cf. figure 1).
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q
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q
p match q

p

q
p overlap q

p

q
p contain q

p

q
p left-contain q

p

q
p right-contain q

p

q
p follow q

Fig. 1. Interval relation within a data set defined by Kostakis et al. [7]
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Further authors [8] differentiate the similarity analysis into three distances,
which are later combined to form the similarity measure. These distances are
determined at a specific time t and are the following:

1) ’temporal order distance’ compares the number of active intervals at time t.
2) ’temporal measure distance’ matches the ’value’ of all intervals at time t.
3) ’temporal relation distance’ analyzes the relation of all intervals at time t.

This approach takes into account the lengths of the individual intervals, but only
considers the data set for each evaluation at a certain point in time. Therefore,
even small time shifts in one of the datasets are fully changing the outcome of
the analysis.

The previously mentioned methods can be described as static comparisons,
as depicted in Figure 2, yet global changes (like temporal displacements) are
not regarded. Here, our method has a decisive advantage as we are able to
allow global changes to be incorporated into the model by matching individual
intervals.

p1

p2

q1

q2

p1

p2

q1

q2

t∗
0 1 2 3 4 5

time t
0 1 2 3 4 5

time t

Fig. 2. left: time-based view on data sets by Meisen [8]; right: our interval approach

3 Similarities Between Time Intervals

In order to make sure that two time intervals are comparable, we take a closer
look at the construction of these intervals. They consist of a start point and an
end point and any amount of metadata, such as device class or hourly cost to run
e.g. a specific process. In this paper, we assume that the metadata is available
in mathematical form and is thus comparable (cf. chapter 3.2). We consider the
following form for an interval p:

p := (sp, ep,Mpi | i ∈ N)

or in short form p := (sp, ep)

where

sp := start point of the interval

ep := end point of the interval

Mpi := i-th metadata of the interval
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The analysis is divided into three parts. At first, the geometrical data of each
interval, such as length or position on the time axis, is compared to generate
geometrical distances between two intervals. In the second part, the metadata
as well as the possibility to address deadlines or earliest starting time is added
into the interval similarity. In the end, all of these information define a similarity
measure for two time intervals.

3.1 Geometrical Analysis

In the first step, we use the information for each interval to generate several
distances with the possibility to evaluate each characteristic differently. For two
intervals p = (sp, ep) and q = (sq, eq) as well as a norm || · ||, we conclude the
following geometrical attributes.

1) Start point distance:

DS(p, q) :=
||sp − sq||

||max {ep, eq} −min {sp, sq} ||
(1)

2) End point distance:

DE(p, q) :=
||ep − eq||

||max {ep, eq} −min {sp, sq} ||
(2)

3) Lengths distance:

DL(p, q) := 1− min {||ep − sp||, ||eq − sq||}
max {||ep − sp||, ||eq − sq||}

(3)

4) Overlap:

DO(p, q) := 1− ||p ∩ q||
min {||ep − sp||, ||eq − sq||}

(4)

with the interval

p ∩ q =

{
(max {sp, sq} ,min {ep, eq}) for max {sp, sq} < min {ep, eq}
0 else

5) Gap:

DG(p, q) :=

{
min{||sq−ep||,||sp−eq||}
||max{ep,eq}−min{sp,sq}|| for ||p ∩ q|| = 0

0 else
(5)

Example 1. To visualize the geometrical attributes, we take a closer look at the
intervals p := (0, 10) and q := (3, 7) and calculate their attributes:

1) ||p|| = 10, ||q|| = 4 and ||max {ep, eq} −min {sp, sq} || = 10
2) p ∩ q = (3, 7) and therefore ||p ∩ q|| = 4
3) ||sp − sq|| = 3, ||ep − eq|| = 3 and DG(p, q) = 0
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p
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||sp − sq|| p ∩ q ||ep − eq||

0 1 2 3 4 5 6 7 8 9 10
time t

Fig. 3. Visualization of two intervals with their geometrical attributes

3.2 Metadata and Dealing With Deadlines

Like stated in the beginning, it is assumed that the metadata related to the
considered time intervals p and q are in mathematically comparable form. That
means that for every metadata i there is a continuous distance DMi

with 0 <
DMi

(p, q) < 1 available. The metadata is used to identify, if two intervals are
comparable or not. If e.g. machine classes are considered, it measures whether the
machines used within the intervals have equivalent functions and are therefore
comparable.

A termination criterion regarding interval deadlines is also added, which
means that, if interval p is compared with q, we want to make sure that in-
terval q does not end after p has ended. The same goes for a start condition.
Therefore, we defined the following two distances.

DEND(p, q) : =

{
min {1, ||eq − ep||} for eq > ep

0 else
(6)

DSTART (p, q) : =

{
min {1, ||sp − sq||} for sp > sq

0 else
(7)

3.3 Similarity of Two Time Intervals

With the introduced distances, a distance measure for two time intervals is
defined, where every characteristic is individually weighted. This measure is then
used in chapter 4 two calculate the similarity between two data sets.

Definition 1 (distance between time intervals). For two intervals p and
q, the distance between them is measured by calculating the weighted sum of
distances:

S(p, q) :=
∑
i∈I

λi ·Di(p, q) (8)

Thus, the more similar the two intervals p and q are to each other, the smaller
the value of S(p, q) is. In the next step, two time interval data sets are compared
and the similarity using this approach is evaluated.
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4 Similarity Analysis Regarding Time Interval Data Sets

In this section, two interval data sets P and Q are compared. At first, the same
cardinality for both P and Q is assumed, that means the number of intervals in
each data set is the same. In Chapter 4.2, a procedure for dealing with different
cardinalities is introduced. Furthermore, the intervals in P are specified with pi
and qi for Q. For the remainder of the paper, data sets are considered as disjoint
partial sets of a complete, weighted bipartite graph (cf. figure 4), in which the
edge weight between two nodes corresponds to the interval similarity measure
S.

p1 p2 p3 p4

q1 q2 q3 q4

S(p1, q1)

Fig. 4. Representation as a bipartite graph

Hence, the similarity of time interval data sets (STIDes) is equivalent to a
perfect matching with minimal weight within our constructed bipartite graph.

Definition 2 (STIDes approach). Let P and Q be two time interval data sets,
pi ∈ P , qi ∈ Q and |P | = |Q| = n. Furthermore, Π is the set of permutations of
a set with n elements and π ∈ Π. The similarity between P and Q is determined
by the following distance measure

S(P,Q) := min
π

{
n∑
i=1

S(pi, qπ(i))

}
π∈Π

(9)

Such minimization problems in bipartite graphs can be solved within poly-
nomial time by using for example the Hungarian algorithm [13]. Our approach
is therefore capable of calculating a similarity measure within polynomial time
while being able to prioritize certain characteristics and measure similarities even
with existing time shift. In the next part, we expand this static approach for a
dynamic similarity search, which also includes rescaling and shifting possibilities.

4.1 Dynamic Changes Within One Data Set

Until now, the previous static approach has difficulties in determining realistic
similarities as soon as one of the time interval sets has big temporal shifts. In
Figure 5 we recognize, that the pattern of p1 and p2 is the same as the pattern of
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p1

p2

q̃1
q̃2

q1

q2

0 1 2 3 4 5 6 7 8 9 10
time t

Fig. 5. Similarity regarding big temporal shifts

q1 and q2. Our static approach would determine Q̃ = {q̃1, q̃2} as more similar to
P = {p1, p2}. A comparison with true-to-scale model data sets is not provided in
the basic configuration either, e.g. in Figure 6 the Set Q = {q1, q2} is exactly like
P = {p1, p2}, only compressed by factor 1

2 . The static algorithm would choose

Q̃ = {q̃1, q̃2} like before. However the construction of the interval distances
allows an extension of the desired properties. Therefore, we define two kinds of
operations.

p1

p2

q̃1

q̃2
q1

q2

0 1 2 3 4 5 6 7 8 9 10
time t

Fig. 6. Similarity regarding true-to-scale model data sets

Definition 3. Let p = (sp, ep) be an time interval in short form. Furthermore,
let v ∈ R be a shift parameter and s ∈ R+ a scaling factor. The functions

p+ v : = (sp + v, ep + v) (10)

s · p : = (s · sp, s · ep) (11)

map an interval onto a new interval, hence we can integrate these functions into
our similarity measure.

For the similarity analysis of our data sets, this means that we have to solve
the following minimization problems:

Definition 4. Let P and Q be two time interval data sets, pi ∈ P , qi ∈ Q and
|P | = |Q| = n. Furthermore, let Π be the set of permutations of a set with n
elements, π ∈ Π, v ∈ R a shift parameter and s ∈ R+ a scaling factor. The
degree of similarity taking into account global displacement (12) or global scaling
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8 Similarity Analysis of Time Interval Data Sets

(13) can then be calculated with

S(P,Q+ v) : = min
π,v

{
n∑
i=1

S(pi, qπ(i) + v)

}
π∈Π,v∈R

(12)

S(P, s ·Q) : = min
π,s

{
n∑
i=1

S(pi, s · qπ(i))

}
π∈Π,s∈R+

(13)

Before dealing with an efficient solver of the above minimization problems,
the solubility must be ensured. Therefore, the following is stated.

Lemma 1 (Existence of the Minimum).
Let the conditions of definition 4 be satisfied. The following functions are then
continuous with a global minimum.

F1(v) : = min
π

{
n∑
i=1

S(pi, qπ(i) + v)

}
π∈Π

(14)

F2(s) : = min
π

{
n∑
i=1

S(pi, s · qπ(i))

}
π∈Π

(15)

Proof. For πk ∈ Π we define

f1πk
(v) :=

n∑
i

S(pi, qπk(i) + v) (16)

Analogous we define f2πk
(s).

Continuity:

We concentrate on the functions f1∗ , f2∗ are valid analogously.

1) Let Π = {π1}. F1(v) = f1π1
(v) is then continuous because it is a sum of

continuous distance measures D∗(pi, qπ1(i) + v).
2) Let Π = {π1, π2}.

F1(v) = min
{
f1π1

(v), f1π2
(v)
}

=
f1π1

(v) + f1π2
(v)− |f1π1

(v)− f1π2|(v)

2
(17)

is then continuous as a combination of continuous functions.
3) Let F1(v) be continuous for |Π| = n, then |Π| = n+ 1 holds:

F1(v) = min
{
f1π1

(v), . . . , f1πn+1
(v)
}

(18)

= min
{
f1π1

(v), . . . , f1πn−1
(v),min

{
f1πn

(v), f1πn+1
(v)
}}

(19)

and therefore F1(v) is continuous for |Π| = n+ 1
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Similarity Analysis of Time Interval Data Sets 9

That means F1(v) and F2(s) are continuous functions.

Existence of a minimum:
To show the existence of a minimum, the well known extreme value theorem
of Weierstrass1 is used. The continuity of the functions F1(v) and F2(v) was
already shown. The last step is to show that there exists an interval [vu, vo] (or
[su, so]) for which the values of the function F1(v) (or F2(s)) outside the interval
are greater than at least one within. These intervals for both functions are now
constructed.
For F1(v) we define

vu = −||max
i

(eqi | qi ∈ Q)−min
j

(
spj | pj ∈ P

)
|| (20)

as well as

vo = ||max
i

(epi | pi ∈ P )−min
j

(
sqj | qj ∈ Q

)
|| (21)

Because of the construction of the geometrical distances, that means for every
v > vo (or v < vu):

F1(v) ≥ F1(vo) (or F1(v) ≥ F1(vu) ) (22)

For F2(s) we define

su = min

{
min {||pi||}
max {||qi||}

,
mini (spi | pi ∈ P )

maxj
(
eqj | qj ∈ Q

)} (23)

as well as

so = max

{
max {||pi||}
min {||qi||}

,
maxi (epi | pi ∈ P )

minj
(
sqj | qj ∈ Q

)} (24)

And analogously F1(v) ≥ F1(vo) (or F1(v) ≥ F1(vu) ) holds for s > so (or
s < su). That a minimum for F1(v) (or F2(s) ) exists and is located within the
interval [vu, vo] (or [su, so]) is then shown by the extreme value theorem. ut

4.2 How to Deal With Different Cardinality

If the two disjoint parts of the bipartite graph do not have the same cardi-
nality, the smaller of the two sub-sets is filled with additional nodes, dubbed
”dummy nodes”. Here, the edge weight of all nodes of the larger subset with
the dummy node is set to the maximum occurring edge weight. With the help
of this construction, we are able to use the Hungarian algorithm to find the
perfect matching within our data sets. In this matching, all intervals which are

1 A continuous function on an interval [a, b] is bounded on that interval
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10 Similarity Analysis of Time Interval Data Sets

connected to a dummy node, are not included in the perfect matching. In order
to be able to use this result completely in the similarity analysis of time interval
data sets, the distance measure must be adapted since the maximum distance
measure of all interval pairs has been incorporated into the similarity measure
by each dummy node. For convenience, these additional summaries are initially
removed from the similarity measure.

p1 p2 p3 p4

q1 q2 q3 d1

*

*S(p4, d1) = maxi,j {S(pi, qj)}

Fig. 7. Bigraph example with one dummy node d1

In figure 7 we show an example with one dummy node. The adjusted calcu-
lation with the STIDes approach then is

S(P, {Q ∪ {d1}}) := min
π

{
n∑
i=1

S(pi, qπ(i))

}
π∈Π

− | {d1} | ·max
i,j
{S(pi, qj)} (25)

The extent to which unmatched intervals influence the similarity measure
must be considered according to the individual case and must be adapted ac-
cordingly. Another possibility to use data sets with different cardinality and
therefore work with rectangular matrices within the Hungarian algorithm, is the
algorithm presented by F. Bourgeois and J-C. Lassalle [14].

5 Discussion and Outlook

The STIDes approach is capable of processing different kinds of similarity views
because of the capability to set different weight parameters λi according to each
specific use case. However, this results in an additional effort in the basic setting
of the method since the parameters must be set separately for each application.
In addition, the creation of dummy nodes allows a determination of the similarity
of two unequal data sets, but the remaining intervals do not yet influence the
computation of similarity. Our approach incorporates the possibility to apply
global changes (e.g. scaling or time shifts) to one of the data sets and we showed
that for both scaling and shifting a optimal factor exists, such that the similarity
between the two data sets is then optimal.
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In the future, we will focus our research on these global changes like time
shifts and scaling. We need to research, if the computing time regarding both
defined functions 12 and 13 is still polynomial and how the solution can be
computed efficiently. We will also investigate the combined effect of both time
shifts and scaling. This combined influence can be represented by the structure of
the method as a multidimensional function. However, to what extent this affects
the complexity of the calculations must also be examined. The possibility to
apply different shift and/or scaling factors to different groups of intervals within
one data set is also an interesting case, which will be studied in future research.
Within the future research, differences in the cardinality of the data sets will
again be looked upon to be able to set influence parameters for the similarity
measure.

6 Conclusion

At the beginning of this work, it was determined that in today’s optimized
production processes deviations can lead to unwanted time delays and additional
costs. It turned out that a re-recognition of similar deviations from the past
leads to a faster and more effective reaction possibility. In order to allow a
quantification of similar situations, a similarity criterion on the basis of time
interval data sets has been derived in this work, which compares the intervals
themselves. For this purpose, a new similarity measure between two intervals
was defined, which was transferred to a similarity measure of two data sets in a
further step.

In this paper, a similarity measure depending on the relation of the intervals
to each other was introduced. For this purpose, the properties of the intervals,
such as the size of the overlap, start and end point distances were defined. From
these properties distance values were derived, which in a weighted sum form
the similarity measure of two intervals. This allows to individually weight each
interval characteristic. On the basis of the weighted sum, the STIDes approach
was defined, which compares two time interval data sets with one another. For
this purpose, the minimum sum of the individual similarities is calculated over
all possible interval pairs, which results in the defined similarity measure. An
interval pair consists of an interval of each of the two considered time inter-
val data sets. The possibility to weight each interval property is retained by
this approach in the extended similarity measure of two data sets. In order to
compensate for a possible cardinality difference between the data sets, dummy
nodes were introduced, so that each interval can be assigned one partner from
the other set and therefore the STIDes approach can be applied. The desired
similarity measure of the possibly modified data sets is determined by the Hun-
garian algorithm in polynomial time (O(n3)). The introduced methodology for
identifying similarities also made it possible to incorporate global changes in the
intervals of one data set into the analysis. In this context, it has been shown that
the defined functions have a global minimum in order to be able to apply the
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12 Similarity Analysis of Time Interval Data Sets

above described approach, but the complexity changes with the implementation
of global changes is not yet researched.

Overall, the approach considered provides a versatile method for describing
similarities, in which all properties of the intervals are included in the similarity
analysis and, moreover, various types of dynamic changes within the data sets
can be mapped. Due to the general representation of this methodology, the
similarity analysis can be applied to a variety of problems and thus meets the
goal of a general description of similarities between time interval data sets.
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Abstract

By using a new data based procedure of Simultaneous Structural Model De-
sign this paper gives empirical evidence for the existence of a financial accelerator.
Hence, credit to firms, asset prices and aggregate investments simultaneously inter-
act over the business cycle in an empirical model of a dynamic economy. Moreover,
in this model the interdependency between credit and asset prices creates a mecha-
nism by which the effects of shocks persist and amplify. However, while innovations
to credit and asset prices cause short run movements in investments – and vice versa
– credit does not independently impinge upon the real trajectory of investments in
the long run. A lasting asset price shock on the other hand will have long-term
real consequences due to a Tobins Q effect. Besides contributing to reconcile the
two opposing views in the literature related to real economy effects of the financial
structure, these findings corroborate earlier findings indicating the existence of a
long run causal link between asset prices and the business cycle.
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1 Introduction

The idea that credit market conditions may have important effects on an economy’s
business cycle is today widely accepted, see e.g. Bernanke et al. (1999) and Hubbard
(1998). A number of authors do in this context even talk about the existence of a
financial accelerator where macro economic effects of shocks to credit conditions may be
amplified at the macro economic level, see e.g Kiyotaki and Moore (1997) and Bernanke
and Gertler (1989). Spurred by these theories, a growing empirical literature has provided
evidence supporting the existence of a link between indicators of credit availability and
macroeconomic fluctuations, suggesting that credit market conditions tend to impact
significantly on measures of real activity over the business cycle (for a recent survey see
for instance Silvestrini and Zaghinib (2015)).1

However, from a theoretical point of view one may ask why credit should matter in the
first place? After all, in a Modigliani and Miller (1958) world with perfect information and
no credit constraints, the financial structure should both be indeterminate and irrelevant
to real economic outcomes. A natural answer to such an objection would be the lack
of realism in the premises of the Modigliani-Miller theory itself. Obviously, in the real
world there is nothing like perfect information, and credit constraints are more or less
omnipresent. However, to come to Modigliani and Miller’s rescue one may plead that
the standard assumption of financial structure irrelevance never has had the intention of
being fully realistic and that it only must be viewed as a simplification, not to be taken
too literally for the short-run evolvement of the economy. In the long run, however,
when frictions in financial and credit markets play a significantly more subdued role, its
relevance should be more compelling. To be able to test the long run relevance of the
Modigliani-Miller theorem one should therefore resort to methodologies that explicitly
aims at distinguishing between the short- and long-run outcome of a model.

A Financial Accelerator mechanism would necessarily involve the potential existence
of mutual causal links between a set of real and financial variables.To unveil such a mecha-
nism would therefore necessitate resorting to a fully simultaneous and structural modeling
procedure where the simultaneous causal structure is taken properly into account from
the very outset on. However, in doing so, it is important to be aware of some potential
pitfalls. For instance in the case of estimating simultaneous equation models that have
been exactly identified through e.g. imposing a priori restrictions on their contemporary
causal structure and assuming a diagonal structural covariance matrix, one certainly risks
inducing a simultaneity bias in estimation through imposing an improper causal structure
that does not lie in the data. The reason for this is related to the habit of adding the exact
identifying restrictions on parts of the system with a significant bearing on its intrinsic
causal structure and the fact that one can never test for the exactly identifying restric-

1These works are largely based on general equilibrium models pertaining to the Real Business Cycle
literature (RBC), see e.g. Kydland and Prescott (1982) and Hartley et al. (1998). To some extent finan-
cial accelerator mechanisms have also been implemented in so-called New Keynesian DSGE models, see
Smets and Wouters (2007) and Christensen and Dib (2008). Few attempts have been made to incorpo-
rate such a mechanism in so-called structural macro-econometric models. An exception is Hammersland
and Træe (2014), where two reciprocal and interacting financial accelerator mechanisms are implemented
in a macro econometric model (B̊ardsen and Nymoen (2009)) to study the effect of different types of
shocks to the financial stability of the Norwegian economy.
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tions of a structural model in the first place.2 The case where the system is made up of
equations that have been individually designed by a process of single equation reductions
in a preliminary step – before possibly being put together as a system – bear on the other
side witness to the fact that the estimated simultaneous equation model might be the
outcome of a design process that is by itself plagued by an intrinsic simultaneity bias.
The idea of getting rid of a potential simultaneity bias by putting individually designed
equations together in a system and then to re-estimate them simultaneously – after they
have found their final form – apparently suggests that the single equation design process
itself must have been affected by a simultaneity bias in the first place. Otherwise, there
would be no need trying to get rid of it at a later stage.

To address some of the empirical issues raised in the above and to help us in the search
for a potential Financial Accelerator mechanism, this paper advocates the use of a prag-
matic – and in some sense pluralistic – data based approach where theory and data is set
to play harmoniously together in an attempt of identifying the economic structure best at
reconciling the information contained in the two independent sources of model design and
construction. Theory by contributing to put up an extended theoretical possibility set,
and data by playing the role of a judge in choosing among the various alternatives in this
possibility set. In the process of model construction this approach is then coupled with a
fully simultaneous structural model design procedure, occasionally referred to in the fol-
lowing as the procedure of Simultaneous Structural Model Design (SSMD)(Hammersland
and Jacobsen (2008)). In this procedure the preferred simultaneous equation model not
only is estimated simultaneously, but is itself the outcome of a fully simultaneous and
structural reduction, or design process, where the causal structure of the data has been
taken properly into account from the very onset on. It is worth noting that this amounts
to an approach where all the behavioral or structural equations of a structural system
are reduced and designed jointly. This is therefore an exercise that differs from the less
involved one-equation-at-the-time general to specific approach associated with the LSE
school of econometrics (see e.g. Hendry (1993, 1995) and Ericsson and Tran (1990)), or
for that sake from a SVAR approach where little room is left for design beyond what is
implied by the process of exact identification.

Admittedly, the outcome of such a process of Simultaneous Structural Model Design
will involve an element of arbitrariness in that it will depend on how the structural model
was exactly identified in the first place. To add to the reliability of the final outcome it is
therefore prudent to give credence to the identification scheme being used and in doing so,

2When talking about structural models and shocks in the following I am not restricting my models
to be derived from an explicit utility maximizing rational representative agent (RA) framework. This
means that a structural model, its constituent behavioral equations and shocks are given a far wider
interpretation than is given to these concepts in modern micro-based macro theory and refer in principle
to theory-driven structural representations in general; be that structures based on more old fashioned
type of macro-informed models, models based on emerging macro properties or structures informed by
a combination of theory and common sense, including in this structural representations based on an
explicit representative agent utility maximizing framework. A consequence of this is that the concept of
being structural loses its un-ambiguity as several types of models and shocks can rightly be claimed to
have a structural interpretation, though the way they are defined or interpreted as structural will differ
across models. This also contributes of course to dilute the proper meaning of the world behavioral, as it
makes structural relations based on relational and descriptive macro theories juxtaposed to micro based
structural relations. Despite this fact I have in the text chosen to use the word behavioral throughout,
keeping in mind that a more appropriate connotation perhaps would have been relational.
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not only to the restrictions being imposed, but also to the extent that the auxiliary tools
being used to exactly identify the system makes sense, in the sense of having arguably a
structural or behavioral interpretation.3In any case, to explicitly describe how the system
was identified is clearly associated with a couple of distinct advantages: not only does
it serve to guarantee against sweeping the problem of identification under the carpet,
but also provides us with a test for over-identifying restrictions that later can be used
to inform the structural design process and, in this respect, the imposition of causal
restrictions in particular. This stands in contrast to what is common practise in e.g. the
SVAR literature where a priori restrictions on the contemporary causal feedback matrix
are used to exactly identify the model, often based on some a priori perceived view of
delayed reaction. As there is no way to test for these exactly identifying restrictions this
necessarily introduces a significant trace of arbitrariness in model design and specification.

To improve on such an obvious short coming this paper advocates resorting to a clas-
sical identification scheme that renders importance to a much wider set of identification
sources than what is common practise in e.g. the SVAR literature. As far as identifi-
cation is concerned, such an idea is rooted in a firm belief that one never should rule
out any kind of information - extrinsic or otherwise - relevant for the exact identification
of a system on purely a priori grounds. Rather, as long as it does not interfere with or
directly impede on the ability of coming up with an unbiased analysis, one should in my
view seek to throw as much information there is at the problem of resolving the issue
of exact identification, and then to subject the outcome based on a given and specific
identification scheme to a thorough robustness test where it’s validity is tested against
alternative ways to accomplish the aim of exact identification.

Some might object that such a strategy is as arbitrary and dependent on the exact
identifying restrictions as the procedure I aim at criticizing. However, though I am aware
of the fact that there is no such thing as a free lunch when it comes to how one goes about
to exactly identify a simultaneous equation model, it is nevertheless my firm belief that
ignoring additional and extrinsic information, when it exists, is clearly disadvantageous to
using it when it comes to exact identification of structural representations. In particular,
such a strategy will help us avoid laying the exact identifying restrictions on information
laden parts of the model – like the contemporaneous feedback matrix – and instead leave
such kind of restrictions at the discretion of the data. An eventual issue with arbitrariness
may in this context be sought alleviated by demonstrating the models’ robustness to
alternative identification schemes.

To study the mutual interplay between financial variables and the real economy and
in this respect to see whether it is possible to identify a financial accelerator, a simulta-
neous structural equation model is constructed on Norwegian aggregate data using our
SSMD procedure.4 In doing so, particular emphasis has been placed on investigating (i)

3It is in this context important to emphasize that the procedure promoted in this paper is a fully
simultaneous structural reduction process with the scope of ending up with an over-identified and par-
simonious structural representation. As such, this should render the problem related to ambiguity less
of an issue as it directly combines the process of exact identification to the initialization of a search
process rather than to the scope of directly ending up with an a priori predetermined final structural
representation.

4I have chosen to focus on Norway, which happens to be my country of origin and thus the country I
know best, both institutionally and otherwise. This choice, however, is also related to the fact that the
SSMD procedure advocated in this paper is cumbersome and involved, not to say downright complex,
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whether a financial accelerator mechanism has empirical relevance and – if so is the case
– (ii) whether it is possible to reconcile such a mechanism with a long run structure that
renders the financial structure all but irrelevant for the real economic outcome of the
model. To be able to utilize the SSMD procedure advocated herein I have in this respect
been forced to keep the dimension of the model down to a minimum due to a relatively
few number of observations. The model is thus necessarily simple, and my analysis should
therefore be viewed as an attempt to obtain qualitative insights based on data, rather
than to provide an empirical description of real financial interactions that aims at being
fully realistic.5None the less, in the case of Norway, it turns out that to illustrate the
working of a financial accelerator in the setting of a fully simultaneous equation model
that adequately and congruently portrays the evolvement of the real economy one can
do with a surprisingly small information set.6 In fact, in addition to real investments,
the information set that forms the basis of my preferred structural vector error correc-
tion model comprises only stock prices (domestic as well as global), an indicator for,
respectively, domestic credit and the repurchasing cost of capital, interest rates and oil
prices.

As regards the outcome of my procedure of Simultaneous Structural Model Design
it contributes to reconcile the two opposing views of the literature. In particular I do
find evidence of a financial accelerator that is amplified by a credit-asset price spiral in
the short run. However, while temporary innovations to asset prices and credit do cause
short run movements in production, and vice versa, credit do not independently impinge
upon the real trajectory of investments in the long run. A lasting asset price shock on
the other hand will have long term real consequences as a result of a Tobins Q effect
in the relation pertaining to the long-run investment relationship. Noteworthy, this is
in accordance with Beaudry and Portier (2005, 2006), where shocks to stock prices have
lasting long-run effects on the US and Japanese real economy.

The remaining sections of the paper are structured as follows. In Section 2, in addition
to give some background information, I present some stylized facts related to a potential
link between financial variables and the real economy. Section 3 is devoted to a critical
discussion of the procedure that these days more or less has got the status of a come-il-
faut when it comes to how to proceed when exactly identifying structural representations.
This is a discussion that has clear implications for the line of approach chosen in the data
based design procedure advocated in this paper. In Section 4 I then set up the empirical
model framework and run through a modeling exercise with the aim of illustrating the
potential of a data-based structural model design procedure and demonstrating how it
can be used to shed light on the sources of economic fluctuation, both in the long and
short run. Finally, Section 5 offers some concluding comments.

due to a complete lack of automatic structural model reduction procedures. Analyzing another country
utilizing the procedure advocated herein, would therefore surely require a non-negligible effort, if not a
separate analysis on its own.

5However, having said this, one must bear in mind that one of the main purposes of this analysis is
illustrative in the sense of aiming at illustrating how to use a particular method of structural modeling
and design. To get the point across this often requires making certain sacrifices on the altar of realism.

6To my knowledge this is the first analysis to confirm such a mechanism on Norwegian data us-
ing a fully simultaneous structural modeling framework (for a further discussion on this point see e.g.
Hammersland and Træe (2014)).
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2 Background, Stylized Facts and the Data

2.1 Theoretical Background

It has long been recognized in the literature that in an environment with informa-
tional asymmetries, internal finance has a cost advantage over external finance for an
entrepreneur considering undertaking a project. Hence, the Modigliani and Miller (1958)
theorem does not apply, as internal funds, new debt or equity finance are not perfect
substitutes. Lenders who are less informed about e.g. borrower types, borrower action or
project quality, will demand a premium when providing uncollateralized loans. This ex-
ternal finance premium will be increasing in the size of the uncollateralized loan, causing
financing costs to be higher than if the loan was fully collateralized. Since the agency prob-
lem raises the costs of external finance, it will affect wealth-constrained entrepreneurs’
willingness to undertake projects. If increased borrower net worth renders possible more
internal finance to the funding of the project and/or to raise collateral, then agency costs
will be curbed. Thus, a positive shock to net worth will reduce the agency problem and
may in turn lower financing costs and increase investments. This inverse relationship
between net worth and agency costs of investment finance has a decisive role for many
theoretical model predictions. Bernanke and Gertler (1989) develop an overlapping-
generations model with costly state verification as in Townsend (1979). The asymmetry
of information between lender-investors and borrower-entrepreneurs creates an agency
problem where the optimal financial contract is characterized with a deadweight loss due
to agency costs. A positive shock to borrower net worth reduces agency costs and in-
creases physical investment. This induces a persistent investment upturn which is not
present in the first-best perfect-information case. As a positive shock to net worth is
likely to be procyclical, a financial accelerator effect emerges: The positive shock to net
worth stemming from a business cycle upturn amplifies the boom.

Other theoretical studies have identified a financial accelerator mechanism where the
accelerator - as described in the previous paragraph - is amplified through the working
of a credit-asset price spiral. This last feature refers to a mechanism where higher asset
prices spur higher credit which in turn leads to still higher asset prices and so forth, due
to procyclical asset prices and the behavior of credit constrained investors when given
the opportunity to take on more credit. Important contributions in this respect are the
seminal articles by Kiyotaki and Moore (1997) and Bernanke et al. (1999).

Summarizing, the models in Bernanke and Gertler (1989), Kiyotaki and Moore (1997)
and Bernanke et al. (1999) are all modified real business cycle models where a financial
accelerator mechanism may cause large and persistent business cycle fluctuations. In the
following, I will refer to the financial accelerator as the mutually reinforcing interaction
between asset prices, credit and economic activity. I investigate whether a financial accel-
erator has empirical relevance, using Norwegian quarterly data for the past twenty years.
More specifically, I examine the possibility of interdependence between net worth, credit
and investments using classical estimation methods not imposing a priori restrictions
(distributional or otherwise) on the model parameters. In doing so I draw heavily on the
general to-specific- principle of Hendry (1993), though the design scheme has been cast
in a new and fully structural and simultaneous framework. The variables I use are real
domestic share prices (an Oslo Stock Exchange index), total credit to non-financial firms

6

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1012



in mainland Norway and real investments mainland Norway. In the analysis I also include
an indicator for the repurchasing cost of capital, real oil prices in Norwegian Kroner and
a global stock market index, the last two variables commonly seen as being important
for developments at the Oslo Stock Exchange. The repurchasing cost of capital, together
with the global stock market index and oil prices are all treated as exogenous in the
empirical analysis. I search for long-term relationships within the framework of a multi-
variate cointegration analysis, and I aim to identify a structural, dynamic Simultaneous
Equations Model.

2.2 Stylized facts and the data

As already noted, the empirical analysis comprises the following variables: Real credit to
non-financial firms, real share prices, an indicator of real replacement costs, investments
in mainland Norway, banks’ lending rate and real oil prices in Norwegian currency. This
section illuminates a few stylized facts. Figure 1, panel a, below shows developments in
real total credit to non-financial firms and a real Oslo Stock exchange index in the period
from 1986 to 2014, while Figure 1, panel b, shows the real investment level in mainland
Norway and real credit to non-financial firms over the same period. In Figure 2 on the
other hand, the evolvement of investments and the real share price index are compared
to, respectively, the ratio of share prices to an indicator of repurchasing costs (panel a)
and to the real oil price in Norwegian kroner and a global share price index (panel b).
Figure 3, panel a and b, illustrates the co-variation between real share prices, real credit
and investments measured as percentage change over four quarters.

The Norwegian credit market was deregulated in the early and mid-1980’s while inter-
est rates were politically controlled at fairly low levels until end-1986. Not surprisingly,
this spurred a sharp rise in credit growth and asset prices. Without discussing causal
factors, the fact remains that the government had to deal with a severe banking crisis
only a few years later. The banking crisis in the early 1990’s coincided with a substan-
tial downturn in the Norwegian economy. After a sharp drop in interest rates following
the ERM-crisis in 1992 and breakdown of the fixed exchange rate regime, the economy
eventually started to pick up. This was also reflected in rising share prices from 1992,
and after a period of economic revival, firms started to increase their debt markedly from
end-1996 onwards. As the dot.com bubble burst, Norwegian stock prices fell from 2000
and credit growth stabilized. In 2003, interest rates started to decline to a very low level,
and economic activity and share prices boosted until we got the Bear Stearns Bankruptcy
early in 2008 and later the financial crisis. Credit to non-financial firms also picked up
from 2005 onwards and did not change tack before the financial crisis fully struck with
the outbreak of the Lehman Brothers bankruptcy in September 2008. The financial crisis
that began in 2008 caused a significant decline in the global real economy and as shown
in Figures 1 and 2, took a heavy toll on Norwegian investments which fell by nearly 40
percent from the start of the crisis in early 2008 until the beginning of 2010. By way
of comparison, credit only made a knee-jerk correction. After a sharp drop in interest
rates, expansionary fiscal policy and a return to growth among Norway’s trading part-
ners, investments and the overall economy eventually started to pick up again, but only
to be replaced by a violent contraction in oil investments later on by the end of 2013,
beginning of 2014. With the subsequent precipitous fall in oil prices from mid-2014 until
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early 2016, this is a process that has been going on until our days, though higher oil
prices and somewhat improved prospects indicate that Norway might see brighter times
ahead.

Overall, the figures above indicate a positive correlation on the one hand between share
prices and credit to firms and between investment and credit on the other. However, the
co-variation of investment and credit seems to be much weaker than the one that applies
to share prices and credit, and looking at Figure 2, panel a, one can easily get the
impression that the first correlation could be the result of the last, as investments are
highly correlated to the ratio of share prices to the repurchasing costs of capital (Tobins
Q). Also, though there evidently is a relationship between share prices and credit, Figure
2, panel b, suggests that there are considerably more to share prices than credit, as oil
prices and the global share prices seem to capture much of the variation in the Norwegian
share price index over time.

My preferred measure of credit to firms and investment relates to mainland-Norway.
However, the Oslo Stock Exchange index I use in the empirical analysis also includes
offshore activities. Due to the structure of the Norwegian economy, oil prices in addition
to a global trend for shares prices, are commonly seen to have a significant bearing on
developments at the Oslo Stock Exchange. In addition to a global share index I have
therefore chosen to include oil prices denominated in Norwegian kroner as an exogenous
variable in my analysis. Figure 3, panel a and b, shows the annual percentage changes
in real credit, the Oslo Stock exchange price index and investment. The figure displays a
clear and positive correlation between all the time series, though based on pure eyeballing
it is difficult to draw any definitive conclusions as regards the causal relationship between
the variables. The exceptionally high credit growth in 2000, pictorial in Figure 3, is due
to extremely large loan-raisings by two Norwegian firms (Telenor and Norske Skog).

3 Data vs. a priori information in model design

These days a priori information has more or less completely got the upper hand on data in
the process of structural model identification and design. For instance, in the structural
vector autoregressive (SVAR) and simultaneous equation (SEM) model literature it has
been, and still is, common to exactly identify the system by combining the imposition
of a diagonal structural form covariance matrix of the errors with either (non-testable)
a priori restrictions on the contemporaneous feedback matrix or analogous restrictions
on the matrix of parameters that characterizes the long run solution of the system.7

Often these kind of restrictions imply a lower or upper block triangular contemporaneous
feedback matrix which gives importance to the ordering of the variables in the block
diagonal part of the system in that the short run responses implied by the lower or upper
triangularity should be in accordance with some perceived a priori view of ”delayed”

7There is a huge and growing literature in this area and to render justice to all of its contributors
is clearly outside the scope of this paper. However, not to mention Sims (1980) seminal paper where
he introduces the idea of exact identification through recursive identification would indisputably have to
be characterized as an oblivion. Papers that deserve mention for the introduction of restrictions on the
systems long run properties are, respectively, Blanchard and Quah (1989), Shapiro and Watson (1988)
and Gali (1992).
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reaction.8 In general little attention is paid in this literature to the issue of model design
beyond what is implied by this process of identification. That is, when the model is
exactly identified it has also more or less found its final form.

The inherent problem of structural model design is that there is no way to test for
the exact identifying restrictions of a structural or simultaneous equation model. As long
as the exact identifying restrictions reflect subjective a priori information of substantial
interest and consequence for the properties of the model, this introduces necessarily a
significant trace of arbitrariness in model design and specification. In fact, in some cases
one might even speak of design where the outcome is more or less fully driven by the
researcher’s a priori subjective belief or wishful thinking.

Moreover, though imposing the covariance matrix of the structural model’s distur-
bances to be diagonal is theoretically substantiated, the matter presents itself quite dif-
ferently when constructing empirical models on real data as there is little to suggest that
the empirical covariance matrix of an estimated structural form model should inherit the
stochastic properties of its theoretical counterpart. This follows both as a consequence
of utilizing empirical proxies for theoretical variable constructs and due to the fact that
empirical models in most cases are linear approximations of non-linear theoretical equiv-
alents. Add to this the inherent problem of omitted variables and the fact that theories,
after all, are revised in light of ongoing scientific theory, there should be no lack of reasons
to substantiate why one should be careful with laying the identifying restrictions on the
covariance matrix of the disturbances of an empirical model. When all comes to all such a
practise would contribute to impair the possibility of developing a data congruent model
as it contributes to make the model less elastic when confronted with data. In particular
the price paid for securing a structural interpretation of shocks ex ante in this respect
could be unduly high in terms of miss-specification and lack of congruency.

To reduce the degree of arbitrariness inherent in structural modeling the procedure
advocated in this paper strikes a blow for classical identification techniques aimed at
giving more emphasis to data in the process of structural model specification and design.
The strategy is based on the idea of making the models ”more elastic” when confronted
with data and thus to avoid laying the exact identifying restrictions on information laden
parts of the model and on parts that would make it harder to come up with an admissible
and congruent deterministic structure, like the covariance matrix. The advantage of such
a strategy should be obvious as after the system is exactly identified tests for over-
identifying restrictions are at ones disposal and one can enter into a design process where
the data are allowed to speak, i.e. a process where both the ordering of the variables and
the contemporaneous structure of the model is the outcome of a testable dialog with the
data and not a priori information. As regards the covariance matrix, this advocates a
strategy where the structural shock restrictions are tested for and potentially imposed ex
post, i.e. after the deterministic part of the model has found its final structural form.

Ruling out the use of the contemporaneous feedback matrix and the covariance matrix
of the disturbances as sources of exact identification limits the set of ways to exactly
identify the system. However, it is important to point out that several alternatives still

8Notably there are authors that have tried to avoid the recursive identification scheme, see e.g.
Bernanke (1986) and Blanchard and Watson (1986) among others who introduced non-recursive restric-
tions on the contemporaneous interactions among variables for identification. For sign restrictions see
e.g. Paustian (2007) and Uhlig (2005).
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remain at our disposal. A classical approach to the problem would for instance imply
that one puts to use exogenous information and information about structural breaks. In
addition one might utilize information – inferential or otherwise – regarding the long run
feedback structure of a model. A priori assumptions related to the lag structure of the
structural model is another option (Hammersland (2008)). As regards the first of these
alternatives – and to help us with the exact identification part of the model building
process in this paper – we have in particular chosen to utilize additional and exogenous
information with only a minor qualification; that this information should be structural,
in the sense of having a ”behavioral” information content or interpretation. To legitimate
this being the case one often has to resort to some ad hoc reasoning, a fact that clearly
illustrates that there in general is no such thing as a free lunch when it comes to exact
identification. Whether one combines the imposition of a diagonal covariance matrix
with SVAR-like restrictions on the contemporaneous feedback matrix or utilizes extrinsic
exogenous information in the form of structural breaks and exogenous variables one will
never be able to fully free oneself from the curse of arbitrariness. However, to ignore using
identification promoting exogenous information when it exists, is clearly not optimal in
this respect and would represent a huge disservice to the aim of constructing models
informed by data. In particular, such kind of extrinsic information would enable us to
avoid laying the exact identifying restrictions on information laden parts of the model,
and to leave such kind of restrictions at the discretion of the data. A potential problem
with ambiguity should in this respect be addressed by requiring that a final structure
should be robust as to alternative ways of how to accomplish exact identification.

4 Simultaneous Structural Model Design

To save space I will in this part seek to illustrate the potential of my so-called data
based Simultaneous Structural Model Design procedure by running through an explicit
modeling exercise, aimed at revealing the structural interplay between real and financial
variables. However, before starting on this I will first give a rough outline of the steps
involved.

4.1 The procedural steps

The first step of the procedure starts out with the specification of a congruent reduced
form VAR model of all model endogenous variables, contingent on a set of exogenous
variables, some of which may conceivably be given a structural interpretation in the
sense of having a structural rationale related to a subset of the equations of the structural
model. To help with the transformation of the reduced form model to a simultaneous
equation model or structural form representation later on, a subset of these - so-called
structural dummies - are here included in the information set.9 The next step of the

9Whether a dummy or a variable can be characterized as a carrier of structural information is related
to whether the information on which it is based can be regarded as something that is intrinsic to the
structural equations of which it is intended to inform, a corollary of this being that a structural variable
can only inform a subset of the endogenous variables in a structural form model. As far as the structural
dummies used in the analysis are concerned their economic rationale is in this sense related to one and
only one of the equations of the structural form. Though not stated explicitly in the above, a defining
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procedure then consists of reducing this general reduced form representation down to a
parsimonious model and then to use this to identify and estimate the long-run structure
of the model. Given this long-run structure the reduced form version of the model is then
transformed into an exactly identified simultaneous structural system version thereof,
more precisely a Structural Vector Equilibrium Correction Model (SVECM), utilizing
restrictions on the feedback matrix related to long-run equilibrium imbalances and/or on
exogenous variables as instruments of exact identification, possibly in combination with
restrictions on the structural dummies included in the first step of the procedure.

In the last step this exactly identified SVECM is so used as the point of departure for
what I believe to be a new design procedure. That is, a kind of simultaneous structural
general to specific design process where the entire structural model is reduced down to a
parsimonious and over-identified structural specification within a fully simultaneous and
structural model framework. As distinct from one-equation-at-the-time model design
procedures this final process of reduction takes on a fully simultaneous and structural
perspective where all the structural equations are reduced and designed jointly, a corol-
lary of this implying a constant search for uncovering whether identified reduced form
relationships reflect direct structural causal links in themselves or are the consequence of
effects feeding through via contemporaneous structural causal links between the model
endogenous variables. Naturally, in such a context, a restriction imposed on a parameter
belonging to one of the behavioral equations in the system would potentially spill over
and have consequences for parameters belonging to all or some of the other behavioral
equations in the system. A restriction imposed early on may also have clear implications
for the type of restrictions it would be possible to impose at a later stage in the reduction
process. In the process of model design this kind of simultaneous interdependence there-
fore involves a substantial degree of trial and error, a feature that contributes to make
the process of model design time consuming as well as involved, not least due to the fact
that it has been undertaken by hand.10

characteristic of a structural dummy is also that the information on which it is based comes from sources
outside the system under consideration. A structural dummy should thus in principle neither be caused
by any of the model endogenous variables nor be correlated with the structural errors of the equations
it is intended to structurally inform, the last requirement hinting at an additional absence of so-called
nonsense correlations due to omitted variables, like e.g. variables intercepting anticipatory movements
(for a discussion of how to get rid of a potential potential bias in estimation due to endogenous and
anticipatory movements in single equation conditional models see e.g. Romer and Romer (2004) and
Romer and Romer (2010)).

10The fact that this procedure of reduction is highly informed by theory and a desire of ending up with
a model with good interpretable properties is what makes it difficult to automatize. As one reduction
imposed early on in the process might turn out to have dire consequences for the possibility of ending
up with a model with the desired properties, the process of design will necessarily imply a lot of back
and force searching with theory and interpretation as the rule of conduct. Also, as I in the process of
reduction have given priority to theory and interpretation, I have occasionally had to resort to brute
force, in the sense of accepting partial reductions that would otherwise have been marginally rejected if
one exclusively gave priority to the outcome of tests or information criteria. This further complicates
the use of automatic reduction procedures as it involves a great deal of judgement as to whether the
end justifies the means in some of the individual steps considered in the reduction process. However,
what is important to realize in this context is that the structural model I eventually end up with - the
so called final structural representation - should lie in the space spanned by its exactly identified point
of departure, in the sense of not being rejected by the overall test of over identifying restrictions.
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4.2 Structural Model Design: an illustrative example

As regards my illustrative example, I have chosen as a point of departure the error
correction version of the vector autoregressive model written in reduced form. In the
general case this can be given the following representation:

ΔXt = ΠYt−1 +
k−1∑
i=1

ΓiΔXt−i + ΦDt + εt, (1)

where Xt represents a p× 1 vector of endogenous variables, Yt = (X ′
t, Z

′
t)
′ a (p+ q)× 1,

vector where Zt is a q × 1 vector of exogenous variables and k the order of the VAR.
Dt is a vector composed of contemporaneous and lagged differences of the model exoge-
nous variables, Zt, deterministic variables like dummies, a trend and a constant. εt is a
Gaussian white noise term with covariance matrix Ω. The rank of the Π matrix gives us
information about the cointegration properties of the model, and in the case the rank, r,
is less than full, i.e. less than p, the Π matrix may be written as the product of a p× r
matrix, α, and a (p + q) × r matrix, β, with full column rank equal to r < p. The level
term in equation (1) can then be written as ΠYt−1 = αβ′Yt−1 where β′Yt−1 represents
the r cointegrating linear combinations of the variables while the α matrix has got the
interpretation of a coefficient matrix with error correction coefficients or loadings. The
cointegration analysis in connection with the preparation of the SVECM11 is based on a
three dimensional conditional VAR of order 3,12 where all the variables are specified as
logarithms of the original level series and a trend restricted to lie in the space spanned
by the α matrix.13 Since I am utilizing unadjusted data centered seasonal dummies were
specified to enter unrestrictedly together with a constant and dummies for certain impor-
tant historical events. As will be evident from the subsequent discussion, some of these
dummies can arguably be considered as carriers of structural information in the sense
of informing one and only one of the behavioral equations.This is what motivates their
role as auxiliary tools of exact identification in the following, though it is important to

11To distinguish the type of structural model developed in this paper from the SVAR model type I
have chosen to use the term Structural Vector Equilibrium Correction Model interchangeably with the
statistical concepts of a structural form and a simultaneous equation model (SEM).

12The VAR of order 3 amounts to a valid reduction of a data congruent VAR of order 6. In this
VAR(3) none of the individual equation hypotheses for normality or absence of autocorrelation and
heteroscedasticity are rejected at conventional significance levels. The system diagnostics of the VAR(3)
model, given below, where the figures in parentheses are the respective tests’ significance probabilities,
do neither give rise to any concern.

Vector AR 1-5 test: F (45, 113) = 1.2211[0.1990]
Vector Normality test: χ2(6) = 5.4893[0.4893]
Vector Heterosc. test: F (96, 222) = 1.0327[0.4166]

The F-test statistic for the elimination of all lags greater than 3 from the model is
F(63,84)=1.2966[0.1325], where the figure in parenthesis is the test’s significance probability. Nor where
any of the partial reductions of the model reduction scheme - from a VAR of order 6 down to a VAR of
order 3 rejected.

13The VAR is conditional in the sense that the model is contingent on the real Norwegian krone price
of oil, a global equity index, real interest rates and an indicator of repurchasing cost of capital being
exogenous
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emphasize that the final structural model in no way is dependent upon these for exact
identification. The VAR was then estimated by full maximum likelihood.14

As regards the historically motivated dummies, several of these turns out to have a
potential structural interpretation in the sense of being related structurally to one of the
behavioral equations. For instance if we look at the ”behavioral” credit equation, the
dummy, D2000Q3, is fairly straight-forward in this respect as it represents the influence
on the full amount of credit provided to firms of two extraordinary big corporate credit
expansions in the third quarter of 2000 (see Section 2 for details). Accordingly, it takes
the value of one in 2000Q3 and zero otherwise.15,16Likewise, as far as the aggregate asset
price equation is concerned it is hard to disregard two obvious candidate identification
instruments, respectively the Bear Stearns bankruptcy on March 17, 2008, and the sub-
sequent collapse of Lehman Brothers only six months later, on September 15. Though
the effect of both of these events to a certain extent can be said to already have been
taken into account by including a global share price index in our analysis, the possibility
of asymmetric responses across countries could be taken to legitimize the inclusion of two
distinct dummies with a potential structural interpretation for the purpose of exact iden-
tification.17 Respectively, a dummy that is 1 and -1 in respectively the first and second
quarter of 2008 and an impulse dummy that is one in the fourth quarter of 2008, the -1
in the second quarter of 2008 representing the effect of the subsequent stock market rally
when it later was learned that Bear Stearns had been rescued by J.P. Morgan Chase.
As regards the second dummy we have chosen to place the event in the fourth quarter
of 2008 despite the fact that the Lehman Brothers debacle happened in the end of the
third, the reason for this being the fact that the index we use represents averages based
on daily close values and not end of quarter close values. In principle it is much harder
to find shocks with a clear structural origin when dealing with real economy variables
like investments or production. However, in the case of Norway I happen to know of an
extraordinary big revision made to the original figures due to the sale of used aircrafts
abroad in the first part of 2002. To be able to take this into account, I have included a
dummy which equals 1 in the second quarter of 2002 as an auxiliary identification tool.

As regards the line of reasoning being used to legitimize whether a dummy is to be

14In this context it is, as pointed out by Johansen (2006), worth noting that there is a price paid by
using maximum likelihood in estimating VARs. Namely that the model must fit the data in the sense
of constituting a congruent representation of the data generating process (DGP). However, in light of
Footnote 12, this requirement does not seem to represent any cause for concern in this case.

15There is little to indicate that this credit expansion was related to the dot.com crisis in early 2000,
a contingency that would have clear negative implications for its use as a valid identification instrument.

16In this paper I have not tried to identify separate equations for credit supply and demand, the
main reason for that being a lack of specific aggregate supply and demand data. Admittedly I could
have circumvented this problem by utilizing the procedure advocated in this paper on the sub structure
related to the provision of aggregate credit. However, as this - not least due to a limited number of
observations - would have complicated matters considerably without necessarily leading to new insights
as far as the relevance of the financial accelerator is concerned, I have deliberately left this for future
research. As a consequence I cannot tell whether the dummy, D2000Q3, has a structural interpretation
in the sense of being related either to the supply or demand of credit. It could be related to both.

17Alternatively one could choose to impose the identifying restriction on the global share index directly,
restricting it to only inform the structural asset price equation. Based on the final structural model in
(4) this turns out to be a restriction that would amount to a valid alternative to using the two structural
dummies.
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considered as a carrier of structural information I have no problem admitting that it in a
couple of the instances referred to above, is rather ad hoc. I therefore want to stress the
importance of looking at the possibility of supplementing – or even substituting – the use
of extrinsic information in terms of structural dummies with other kind of identification
promoting restrictions, like e.g. restrictions placed on the long-term feedback- or even
lag structure - of the system or on exogenous variables with a definite structural inter-
pretation. After all – and a point I implicitly seek to convey in this paper – one should
in my opinion never on a priori grounds rule out any kind of information, extrinsic or
otherwise, relevant for the exact identification of a system. Rather, as long it does not
directly interfere with or directly impede on the ability of coming up with an unbiased
analysis, one should seek to throw as much information there is at the problem of re-
solving the issue of exact identification, not least to be able to test for a potential path
dependency later on. In other words, in the presence of a perceived threat to the validity
of the outcome of the analysis this stresses the importance of testing for the robustness of
the identification scheme being used, be it whether one uses structural dummies or not.

Compared to alternative approaches, it is important to be aware of the fact that the
exact identification procedure advocated in this paper comes with an advantage. That
is, it renders possible formal tests of causal restrictions without resorting to the impo-
sition of incredible restrictions on either the structural empirical covariance matrix or
the contemporaneous feedback matrix. Put differently, by resorting to what amounts
to no less than a purely classical identification scheme utilizing various kinds of extrin-
sic information, we have been able to move the act of exact identification to a higher
level in the design process, rendering possible data informed testing and design of the
model’s contemporaneous causal structure without resorting to un-testable restrictions
on information laden parts of the model.

Based on the discussion used to legitimate the appropriateness of the auxiliary tools
used to help with the exact identification of the structural representation of this paper, I
therefore move on to a structural analysis, feeling rather confident that the identification
scheme being proposed would represent a contribution to the goal of revealing impor-
tant aspects of the true underlying causal structure. However, before doing so, I will
first return to the reduced form analysis and the identification of the model’s long-run
structure.

The results of the reduced form cointegration analysis is given in Table 1 and Table 2
and give unambiguous support for the existence of three cointegrating vectors. Moreover,
the F-test for the number of over-identifying restrictions in Table 2, shows that the identi-
fied system, consisting of three cointegrating relationships, constitutes a valid restriction
of a corresponding exactly identified long-run structure.18

The first of the structural long-run relationships in Table 2 implies that aggregate

18As indicated by the final and over-identified log-run structure, the long-run structure can in principle
be exactly identified in many alternative ways without compromising the final outcome of our long-run
analysis. A relatively uncontroversial set of exactly identifying restrictions in this respect is the following:
1) to assume that real equity or asset prices only affect investments as far as a change in equity prices
represents a change relative to the replacement costs of capital and that there is no effect of global equities
on investments. And 2) to assume that credit in the long run is neither driven by the repurchasing cost
of capital or the foreign equity price index. And finally 3) to assume that asset prices in the long run are
homogeneous of degree one in oil prices and global equity prices, at the same time as there is no direct
effect of replacement costs on asset prices.
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Table 1: Johansen’s test for the number of cointegrating vectors

VAR order: 3, constant and trend restricted to lie in the α space, unrestricted centered seasonal

dummies. Estimation period: 1990 Q4 to 2013 Q3.

Trace Eigenvalue test:

H0 H1 Values of test statistics

r=0 r ≤ 3 130.22[0.000]**
r ≤ 1 r ≤ 3 63.771[0.000]**
r ≤ 2 r ≤ 3 27.599[0.000]**

1) The values in parentheses are the respective tests’ significance probabilities.
2) * and ** signify that the test is significant at a level of 5 and 1%, respectively.

investments in the mainland part of the Norwegian economy behave in accordance with
the Tobin’s Q theory. Accordingly, for a given interest rate, an increase in the ratio
of equity prices to the replacement cost of capital is identified to affect investments
positively, a one percent increase estimated to lead to an aggregate increase in investments
of approximately 0,34 percent. The investment equation also identifies a separate real
interest rate effect. For a given Q, a one percentage point increase in the real interest
rate is here estimated to lead to an investment decline of about 4 per cent.19

The second cointegrating relationship implies on the other hand that a weighted ratio
of domestic credit of enterprizes to equity prices is constant over time, which due to
the logarithmic specification and a small abuse of terminology amounts to saying that
a percentage increase in the equity price feeds into an increase in domestic credit of
enterprizes in the long run, estimated to 0,7 per cent.To substantiate what was here
hinted at, namely that the causal link between credit and equity prices goes from equity
prices to credit, requires a full-fledged structural analysis. However, before starting on
such a task one may get some idea as to how the causal structure might look like by
taking a closer look at the error correction coefficient matrix, α, of the reduced form. I
will return to this immediately after having discussed the third long-run cointegrating
relationship.

Finally, the third cointegrating relationship is a long-run asset price relationship ho-
mogeneous of degree one in real Norwegian krone oil- and global equity prices and with
a separate negative real interest rate effect. A one percent increase in real oil prices for
a given level on the global equity price index is in this equation estimated to lead to an
increase in equity prices of approximately 0,67 per cent, leaving the effect of a similar
change to the global equity index - keeping oil prices fixed - at 0,33 per cent. A one
percentage point increase in the real interest rate is in this equation estimated to lead
to a decline of 5,6 per cent in equity prices. Given the significant role played by oil in

19It is worth noting that the output gap, as estimated in this way, is fairly similar to that presented in
Norges Bank (2006) from 1996 up until 2006 (See Inflation Report 1/06 on http://www.norges-bank.no/.
It is also almost identical to the output gap relationship estimated in Hammersland (2008), using a slightly
different information set.
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Table 2: The identified system of cointegrating linear combinations given r=3,
the loading matrix and a test of overidentifying restrictions 1)

The identified long run structure given 3 cointegrating relations:

β̂′
(

Yt

TRENDt

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
it + 0.043RRt − 0.34 {s− rc}t

(0.005)
ct − 0.7 st

st + 0.056RRt − 0.33mscit + 0.67 poilt
(0.007) (0.002)

⎞⎟⎟⎟⎟⎟⎟⎠
Error correction coefficient matrix:

Δi
Δc
Δs

:

⎛⎝ α̂11 α̂12 α̂13

α̂21 α̂22 α̂23

α̂31 α̂32 α̂33

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
−0.24 0.037 −0.047
(0.02) (0.06) (0.05)
0.087 −0.142 −0.035
(0.021) (0.023) (0.018)
0.04 0.037 −0.265
(0.07) (0.064) (0.062)

⎞⎟⎟⎟⎟⎟⎟⎠
LR-test of overidentifying restrictions: χ2(12) = 20.150[0.0643] 1) The value in parenthesis

under each coefficient is the estimated coefficient’s standard error while the value in parenthesis

following the test of over-identifying restrictions refers to the test’s significance probability. Note that

the test of over-identifying restrictions refers to the restrictions one will have to impose on an exactly

identified structure to arrive at the final structure given by the system’s right hand side. The variables

it, ct, st, mscit, rct and poilt stand for, respectively, real mainland investments, real domestic credit

to enterprizes, real equity prices, a global equity index, the repurchasing cost of capital and the real

price of oil in Norwegian kroner, lower case letters indicating that all the quantities are logarithmic

transformations of the original variables referred to in the text. RRt stands for the real interest rate

and has not been transformed logarithmically. The vector to the left of the loadings matrix and before

the colon refers to the individual equations in the corresponding reduced form VECM representation.

As usual the Δ symbol stands for the first difference operator.

the Norwegian economy, the fact that oil price fluctuations contribute significantly to
explain the evolvement of Norwegian equity prices should hardly be surprising, neither
the importance of the global equity price index.

As regards the loading matrix, most of its entries are significantly estimated. This
contributes to hamper its usefulness as a device to come up with qualified guesses as to
the shaping of the contemporaneous feedback matrix of the model’s structural form in the
following. However, the fact that the second error correction term does not seem to enter
the reduced form real investment equation could be taken to indicate that the direction
of contemporaneous dynamic causality goes from activity towards credit and not vice
versa. Otherwise we do observe that the first error correction term enters with positive
coefficients in the reduced form equations of both credit and asset prices, the positive
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coefficient indicating that the output gap could be playing an independent behavioral role
in both equations, another alternative being that it only enters in one of the behavioral
equations and feeds into the other variable’s reduced form equation through a contempo-
raneous causal link. As regards the causal link between credit and asset prices, the fact
that the second cointegrating vector (the ratio of credit to asset prices) is insignificant in
the reduced form asset price equation at the same time as the deviation of asset prices
from its own long-run relationship is found to affect aggregate credit, suggest a one-way
causal dynamic relationship between credit and asset prices, going from asset prices to
credit and not vice verse. Notably, this would be in accordance with the kind of causal
structure hinted at when interpreting the long run cointegrating relationship between as-
set prices and credit earlier on. However, despite these presumptive deliberations I have
chosen to upheld the possibility of a fully simultaneous and unfettered causal structure
as a starting point when designing my structural model in the following.

The model that so far has been analyzed is a reduced form representation of the
variables in our information set. To be able to explicitly address the topic of dynamic
contemporary causality and to construct a model that is more in accordance with the idea
of economic data generating processes by nature being simultaneous and structural, we
will now move on and, on the basis of the reduced form analysis, develop a simultaneous
structural equation model for our three model-endogenous variables. However, before
presenting the results of this modeling exercise I will first turn to a brief discussion of the
scheme being used to exactly identify the structural system.

The structural form or SEM representation of the reduced form is obtained by multi-
plying (1) by a contemporary response matrix B. This results in the simultaneous equation
system:

BΔXt = BΠYt−1 +
k−1∑
i=1

BΓiΔXt−i + BΦDt + Bεt,

or after having set BΠ = Bαβ′ = α∗β′, BΓi = Γ∗i , BΦ = Φ∗ and Bεt = ut

BΔXt = α∗β′Yt−1 +
k−1∑
i=1

Γ∗iΔXt−i + Φ∗Dt + ut (2)

Given the three previously estimated long run relationships and the fact that the cointe-
gration analysis was undertaken on a VAR(3), (2) will have the representation given by (3)
where we have normalized the contemporary response- or feedback matrix such that the
coefficients along the main diagonal is equal to one. Furthermore, in (3) we have split the
exogenous variable vector, Dt, into two parts. One containing exclusively the structural
dummies used to help with the exact identification of our structural model and another
one, D̃t, containing contemporaneous and lagged differences of the exogenous variables
and a couple of non-structural historic dummies.The constant and seasonal dummies have
been suppressed for expositional purposes.20 As regards the two non-structural historical
dummies these are, respectively, D1992Q4 and D2003Q1, the first one representing a
dummy for the collapse of the ERM exchange rate system in the fourth quarter of 1992

20In the continuation I will refer to the matrices

⎛⎝λ∗
11 λ∗

12 λ∗
13 λ∗

14

λ∗
21 λ∗

22 λ∗
23 λ∗

24

λ∗
31 λ∗

32 λ∗
33 λ∗

34

⎞⎠ and
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and the second one a dummy for the abrupt change in monetary policy at the end of
2002, beginning of 2003. Both of these dummies take the value 1 in the quarter when
the event actually took place.

⎛⎝ 1 b12 b13
b21 1 b23
b31 b32 1

⎞⎠⎛⎝Δit
Δct
Δst

⎞⎠ =
2∑

i=1

⎛⎝γ∗11.i γ∗12.i γ∗13.i
γ∗21.i γ∗22.i γ∗23.i
γ∗31.i γ∗32.i γ∗33.i

⎞⎠⎛⎝ Δit−i
Δct−i
Δst−i

⎞⎠

+

⎛⎝ α∗11 α∗12 α∗13
α∗21 α∗22 α∗23
α∗31 α∗32 α∗33

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝

it + 0.043RRt − 0.34 {s− rc}t

ct − 0.7 st

st + 0.056RRt − 0.33mscit + 0.67 poilt

⎞⎟⎟⎟⎟⎟⎟⎠
t−1

(3)

+

⎛⎝φ∗1,1 φ∗1,2 φ∗1,3 φ∗1,4 φ∗1,5 φ∗1,6 φ∗1,7 φ∗1,8 φ∗1,9 φ∗1,10 φ∗1,11 φ∗1,12 φ∗1,13 φ∗1,14
φ∗2,1 φ∗2,2 φ∗2,3 φ∗2,4 φ∗2,5 φ∗2,6 φ∗2,7 φ∗2,8 φ∗2,9 φ∗2,10 φ∗2,11 φ∗2,12 φ∗2,13 φ∗2,14
φ∗3,1 φ∗3,2 φ∗3,3 φ∗3,4 φ∗3,5 φ∗3,6 φ∗3,7 φ∗3,8 φ∗3,9 φ∗3,10 φ∗3,11 φ∗3,12 φ∗3,13 φ∗3,14

⎞⎠ D̃t

+

⎛⎝λ∗11 λ∗12 λ∗13 λ∗14
λ∗21 λ∗22 λ∗23 λ∗24
λ∗31 λ∗32 λ∗33 λ∗34

⎞⎠
⎛⎜⎜⎝

D2000Q3
D2002Q2
ID2008Q1
D2008Q4

⎞⎟⎟⎠+

⎛⎝ u1t

u2t

u3t

⎞⎠
However, as regards estimation of (2) and (3), there evidently is a puzzle to resolve as

neither of the two representations are identified – in the sense of representing a one-to-one
mapping of the corresponding reduced form – without imposing further restrictions.21 In
the SVAR literature this problem is solved by assuming: i) a lower or upper triangular
response matrix and ii) a diagonal empirical structural covariance matrix. However, as
already mentioned in Section 3, there is an inherent and insuperable problem associated
with imposing exactly identifying restrictions on a structural form in this way as the
exactly identifying restrictions never can be tested for. Thus, one evidently runs the
risk of imposing a dynamic contemporary structure that is not supported by data. This⎛⎝φ∗

1,1 φ∗
1,2 φ∗

1,3 φ∗
1,4 φ∗

1,5 φ∗
1,6 φ∗

1,7 φ∗
1,8 φ∗

1,9 φ∗
1,10 φ∗

1,11 φ∗
1,12 φ∗

1,13 φ∗
1,14

φ∗
2,1 φ∗

2,2 φ∗
2,3 φ∗

2,4 φ∗
2,5 φ∗

2,6 φ∗
2,7 φ∗

2,8 φ∗
2,9 φ∗

2,10 φ∗
2,11 φ∗

2,12 φ∗
2,13 φ∗

2,14

φ∗
3,1 φ∗

3,2 φ∗
3,3 φ∗

3,4 φ∗
3,5 φ∗

3,6 φ∗
3,7 φ∗

3,8 φ∗
3,9 φ∗

3,10 φ∗
3,11 φ∗

3,12 φ∗
3,13 φ∗

3,14

⎞⎠ in (3)

as, respectively, the Λ and Φ matrix. D̃t=(Δpoilt, Δpoilt−1, Δpoilt−2, Δmscit, Δmscit−1, Δmscit−2,
ΔRRt, ΔRRt−1, ΔRRt−2, Δrct, Δrct−1, Δrct−2, D1992Q4, D2003Q1) (See Table 2 for a definition of
all the variables involved).

21Note that if we multiply (2) with an arbitrary non-singular F-matrix, the corresponding reduced
form will still be equal to (1). This illustrates that there in general does not exist a one-to one mapping
between the reduced form and a SEM, or structural form representation. Only in the case where the
only admissible transformation matrix, F, is equal to a diagonal matrix, or in the case of (3) where we
have normalized the coefficients along the main diagonal of the feedback matrix to be equal to one, the
identity matrix, will the simultaneous equation system be identified.
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advocates a strategy where one leaves the parts of the system perceived to be of minor
importance for the purpose of exact identification and then to consider over-identifying
restrictions to test for restrictions on more information laden parts of the model and parts
that would make it harder to come up with an admissible and congruent deterministic
structure, like, respectively, the feedback- and the covariance matrix.

To help out with the exact identifying part of the modeling building process this paper
resorts to classical identification techniques where additional and extrinsic information in
the form of structural breaks and exogenous variables – possibly coupled with restrictions
on the long-run feedback structure of the system – plays the role as auxiliary tools of
exact identification. By initially limiting ourselves to look at the case where we only
resort to structural breaks this means that restrictions are exclusively placed on the
coefficients of the Λ matrix in (3) and in such a way that the dummies only affect the
behavioral equation of which they are intended to structurally inform. Given the set of
four structural dummies specified in (3) and the fact that we have chosen to stick to the
2000Q3 and 2002Q2 dummies both being genuinely structural in the sense of informing,
respectively, only the structural credit and investment equation, this gives us two different
ways to exactly identify our SVECM. The first one using the first three-tuple of dummies
(D2000Q3, D2002Q2, ID2008Q1) and a second one where the dummy for the Bear Stearns
bankruptcy in the first quarter of 2008, ID2008Q1, is substituted with the dummy for
the Lehman Brothers debacle on September 15 2008, D2008Q4. In line with such an
identification scheme and using the first three-tuple of dummies, an exactly identified
SEM representation is given by a version of (3) where the Λ matrix is restricted such

that it equals

⎛⎝ 0 λ∗12 0 λ∗14
λ∗21 0 0 λ∗24
0 0 λ∗33 λ∗34

⎞⎠.22,23,24
As already mentioned, the structural status of some of the dummies referred to above

is rather unclear. Combined with an imminent danger of rendering the identification
scheme weak, not least due to a general lack of break observation periods, this makes it
prudent to look for alternative and supplementary sources of exact identification, like e.g.
the long-run feedback structure of the system and some of its exogenous variables. As
far as the first of these sources is concerned there are often good reasons to believe that
error correction is a structural property, in the sense of representing a mechanism that is
specific to one -or at least not more than to a limited subset- of the structural equations
involved. For example in the error correction structure identified in Table 2 there is much

22The alternative way to exactly identify the system using structural dummies, beyond the one used

as a default would have given a Λ matrix equal to

⎛⎝ 0 λ∗
12 λ∗

13 0
λ∗
21 0 λ∗

23 0
0 0 λ∗

33 λ∗
34

⎞⎠.

23This statement is related to the order condition. However, the claim that the system is exactly
identified hangs evidently on the rank condition also being fulfilled, which thus is tacitly and implicitly
assumed in this assertion.

24To anticipate events somewhat I may already at this point mention that the final outcome of
my procedure of Simultaneous Structural Model Design by chance turns out to be robust as to both
identification schemes just mentioned. That, is whether the first or second alternative referred to above
is used to exactly identify my system the final outcome will nonetheless be the same and accepted by
the test of over-identifying restrictions. More importantly, and an issue to which I now wish to draw
the reader’s attention, the final model also turns out to be robust with respect to many other ways to
achieve exact identification
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to indicate that the last cointegrating vector should pertain to the structural asset price
equation only, while the second one in principle could be related to both the structural
credit and asset price equation, but not the structural investment equation. The status
of the first cointegrating vector is, however, more questionable in this respect due its
alternative interpretation of an output gap.

In conformity with such an arrangement I present an alternative identification scheme
where the process of exact identification is sought accomplished through a combination
of imposing restrictions on the long-run feedback structure of the system and on the
coefficients of some of its exogenous variables. As far as the long-run cointegration struc-
ture is concerned I have restricted the second and third cointegrating vector to only
enter the structural equations to which they – on a priori grounds – are supposed to
structurally inform. To be more explicit this means that I have imposed the third coin-
tegrating vector to only enter the structural asset price relationship while the second
one in principle is allowed to inform both the structural credit and asset price rela-
tionship. To avoid wavering a direct testing of the structural property of the output
gap effect in the reduced form asset price relation I have at the outset tried to avoid
laying any restrictions on the feedback structure related to the first cointegrating vec-
tor.25Combined with a zero restriction on one of the φ coefficients related to the dynamic
effect of contemporary changes to global equity prices in the credit equation, these re-
strictions should be sufficient to accomplish exact identification of respectively the first
and second structural relationship in (3). What remains is to identify the last equa-
tion as a linear combination containing the two first equations still will be illegible as
a candidate structural equity price equation without further restrictions being imposed.
However, a close look at the partially identified structure reveals that we may overcome
such a problem by simply imposing some additional restrictions on the third row of
the Φ matrix, implying e.g. that the lag structure of the repurchasing costs variable
does not affect the structural equity price relation directly. Hence, by combining the
imposition of restrictions on the coefficients related to some of the exogenous variables
with restrictions on the long-run feedback structure of the system we have in this way
been able to exactly identify the system without resorting to structural breaks. The
exactly identified SVECM representation would in this case be given by a version of (3)
where the α matrix has been restricted to be lower diagonal and the Φ matrix equal to:⎛⎝φ∗1,1 φ∗1,2 φ∗1,3 φ∗1,4 φ∗1,5 φ∗1,6 φ∗1,7 φ∗1,8 φ∗1,9 φ∗1,10 φ∗1,11 φ∗1,12 φ∗1,13 φ∗1,14
φ∗2,1 φ∗2,2 φ∗2,3 0 φ∗2,5 φ∗2,6 φ∗2,7 φ∗2,8 φ∗2,9 φ∗2,10 φ∗2,11 φ∗2,12 φ∗2,13 φ∗2,14
φ∗3,1 φ∗3,2 φ∗3,3 φ∗3,4 φ∗3,5 φ∗3,6 φ∗3,7 φ∗3,8 φ∗3,9 0 0 φ∗3,12 φ∗3,13 φ∗3,14

⎞⎠.
Based on different varieties of the two exactly identified example structures referred

to above where the two sets of exactly identifying restrictions might be combined and
amended in a number of different ways, we are now ready to get down to the process
of reducing our exactly identified simultaneous equation model down to a parsimonious
structural representation of the information contained in our data set. The fact that

25As the final results will illustrate I could alternatively have utilized a more stringent set of a priori
restrictions related to the long-run feedback structure of the system, one of these implying that there
should be no feedback effect in the asset price equation related to long-run disequilibrium investment
imbalances. For that matter this is also suggested by the fact that the error correction coefficient asso-
ciated with the first cointegrating vector (the output gap) in the reduced form equity price relationship
-though correct sign - is not significantly estimated.
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we by resorting to restrictions on the long-run feedback matrix and on exogenous vari-
ables with a plausible structural interpretation, possibly in combination with the use of
structural dummies, have managed to avoid laying the exactly identifying restrictions on
the contemporaneous response matrix – or for that sake the covariance matrix– implies
that we by way of tests for over-identifying restrictions now are in full command when
designing the contemporaneous causal structure of the model. The result of this process
of simultaneous structural model design is our preferred parsimonious structural model,
given by (4).

The first thing to notice in (4), and as already alluded to in the second last paragraph,
is that the final structural model is robust to many different ways of how to initiate the
structural design or search process, including in this the three alternative example schemes
explicitly referred to in the text. As far as the three example schemes are concerned
this follows as a consequence of the fact that the union of the identifying restrictions
imposed when resorting exclusively to structural breaks (including both alternatives) or
a combination of restrictions on the long-run feedback structure with restrictions on the
exogenous variables, by chance happens to be fully contained in (4).26Combined with the
totality of restrictions imposed on the dynamic structure of our final structural model
representation in (4), this contributes to make the final outcome of our SSMD procedure
robust against a fairly big set of alternative ways to initiate the structural design process,
or put differently, of how to exactly identify our structural model in the first place.

Furthermore, it is important to bring attention to the fact that the test of the over-
identifying restrictions does not reject the null hypothesis of the final parsimonious si-
multaneous equation model in (4) constituting a valid reduction of an exactly identified
version of the model.The system diagnostics given below my preferred structural repre-
sentation also indicate that the system describes data fairly well, as none of the stan-
dard vector tests indicate presence of autocorrelation, non-normality or heteroscedasticity.
Moreover, the single equation and vector stability tests in an accompanying note to this
paper demonstrate that the system as such is relatively stable over the estimation period
as in fact none of the recursive tests breaks a test level of 1%. Moreover, when estimating
the model on data up to and including 2007 Q2 and using it to simulate dynamically 23
periods ahead, Figure 4 demonstrates that the model performs surprisingly well given the
fact that the structural dummies related to the financial crisis both were taken out before
running the simulations. In particular the model is able to foresee both the unexpectedly
strong drop in asset prices following in the aftermath of the Lehman Brothers default on
September 15 2008, and the subsequent recoil from 2009 and onwards.

In the SVECM model of (4) another important thing to note is that the contempo-
raneous feedback matrix is neither upper nor lower triangular. Given that the structural
covariance matrix is far from diagonal this gives implicit support to the invalidity of
an identification scheme where these kind of restrictions are used to initialize the design
process. In particular, the contemporaneous feedback matrix reveals in this context a con-

26In particular, looking at the final over-identified structural model in (4), we see that all the struc-
tural break dummies enter the system in accordance with their a priori structural intention or rationale.
For instance the dummies D2008Q1 and D2008Q4, earlier being both characterized as carriers of struc-
tural information related to the process governing equity prices, do only enter the structural equity price
equation. Likewise, the dummies characterized as carriers of structural information related to, respec-
tively, investments, D2002Q2 , and credit, D2000Q3, do only enter the structural investment and credit
equation in the final model setup.
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temporaneous two-directional causal link between credit and real activity as measured by
investments. Accordingly, a productivity shock that momentarily leads to higher invest-
ments and activity, will feed into a contemporaneous increase in credit growth. Higher
credit growth will on the other hand spur further growth in investments, a feature that
reveals a mechanism through which the initial shock to productivity is amplified. Ev-
idently, (4) is thus characterized by the existence of a financial accelerator mechanism
in the very short run. Furthermore, in (4) growth in real domestic credit to firms is
contemporaneously affected by growth in equity prices, at the same time as equity prices
are affected by credit growth. The dynamic interaction between credit and asset prices
thus turns out to be a transmission mechanism by which the effects of shocks could per-
sist and amplify. This is a feature that is given some support by looking at the impulse
responses to shocks in the accompanying note to this paper. The impulse response anal-
ysis demonstrates moreover that the model implies cyclical fluctuations and persistence
that gradually dies out in the long term in the wake of shocks. Independent innovations
to borrower net worth27 are thus initiating sources of real fluctuations. This stands in
contrast to the perfect information case, but is consistent with a model where agency
costs introduces cyclical fluctuations into an environment which is not rigged to exhibit
such a feature in the long run, when agency costs are not present(see e.g. Bernanke and
Gertler (1989)).28As regards the long-run structure of our model there is as we have seen
no long-run link between credit and investment. Hence, while temporary innovations
to stock prices and credit do cause short run movements in investments, credit do not
independently impinge upon the real trajectory of investments in the long run. A lasting
asset price shock on the other hand will have long term real consequences as a result of
the Tobins Q effect in the investment relation pertaining to the long run outcome of the
model.29

27And which in the wake of induced changes to agency costs, would lead to a redistribution of income
between borrowers and lenders.

28Noteworthy, in the wake of sequential shocks to borrower net worth, the credit-asset price spiral
reinforced financial accelerator of our SVECM would for some time contribute to bring the economy
further and further away from its equilibrium path. However, as the process goes on, eventually the
economy would reach a crossroads where the equilibrium correcting forces start to dominate the forces
that until then have contributed to drag the economy still further away from its equilibrium path. From
then on the disequilibrium position will start to unwind, well supported by a financial accelerator put in
reverse. As suggested by the impulse responses, this unwinding of former excesses will not necessarily
happen through a smooth reversal to the long run equilibrium path of the economy, but go through an
interim period where the economy undershoots its long run equilibrium path before converging towards
it in the long run.

29Furthermore, looking at the error correction coefficients we do see that the ”output gap” does not
play a structural role in the asset price relation. The positive though insignificant output gap coefficient of
the reduced form asset price equation in Table (2) is therefore confirmed to be due to a contemporaneous
causal link between credit and asset prices and not a separate structural effect originating from the asset
price relation per se. Otherwise, according to (4) higher oil prices affects credit negatively in the short
run, only mitigated partially by its positive effect on asset prices. Such an effect of higher oil prices on
credit is interpreted to represent a cost effect. In the long-run, however, the effect of higher oil prices on
credit comes exclusively via its effect on asset prices and is strongly positive. In fact a one percent rise
in oil prices is estimated to increase credit in the long run by just below 0.5 per cent.
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System diagnostics and test of restrictions
LR-test for over-identifying restrictions: χ2(52) = 49.723[0.5639]
Vector test for autocorrelation of order 1-5: F(45, 184) = 1.1040[0.3187]
Vector test for normality: χ2(6) = 3.9178[0.6878]
Vector test for heteroscedasticity: F(198, 203) = 0.80135[0.9625]
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Figure 4: ”Ex ante forecasts” of Investments Mainland Norway,i, real domestic credit to
enterprises, c, and real equity prices, a, 23 quarters ahead from 2007Q4. Logarithmic
scale. 2007Q4 to 2013Q2

5 Conclusion

This paper addresses how to enhance the role of data in structural modeling by propos-
ing a procedure of Simultaneous Structural Model Design. In this procedure particular
emphasis is placed on handling the inherent problem of a potential simultaneity bias in
design by resorting to an approach where all the behavioral equations of a system are
reduced and designed jointly. A central ingredient of such a procedure is the use of ex-
trinsic information and admissible long-run feedback structures as auxiliary tools of exact
identification. This renders possible a design process where data are allowed to speak, i.e.
a process where both the ordering of the variables and the contemporaneous structure
of the model is the outcome of a testable dialog with the data and not the imposition of
non-testable restrictions.

In general, the outcome of such a process of Simultaneous Structural Model Design
will involve an element of arbitrariness in that it depends on how the structural model
was exactly identified in the first place. To add to the reliability of the final outcome
it is therefore imperative to give credence to the identification scheme being used. In
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so doing, not only to the restrictions being imposed, but also to the extent that the
auxiliary tools being used to exactly identify the system makes sense in the sense of
having a potential structural interpretation. To legitimate this being the case I have in
this paper had to resort to some ad hoc reasoning, a fact that clearly illustrates that
there is no such thing as a free lunch when it comes to exact identification. Whether
one combines the imposition of a diagonal covariance matrix with SVAR-like restrictions
on the contemporaneous feedback matrix or utilizes extrinsic information in the form of
structural breaks and assumptions related to the long-run feedback structure, one will
never be able to fully free oneself from the curse of arbitrariness. However, to ignore
using identification promoting extrinsic information when it exists, is clearly not optimal
in this respect, as it would represent a huge disservice to the aim of constructing models
informed by data. In particular, such kind of information would enable us to avoid laying
the exact identifying restrictions on information laden parts of the model, and to leave
such kind of restrictions at the discretion of the data. Of no less importance, by rendering
possible a series of tests aimed at revealing the robustness related to the outcome of a
structural search process based on an arbitrary and specific set of exactly identifying
restrictions, it would also make it possible to explicitly address the issue of arbitrariness.

To illustrate the procedure and to study the simultaneous interplay between financial
variables and the real side of the economy, a simultaneous equation model is constructed
on Norwegian aggregate quarterly data. As far as the results are concerned the model
substantiates the leading indicator properties of the financial variables through the iden-
tification of a financial accelerator that is amplified by a credit-asset price spiral in the
short run. In the long run, however, the model is driven by a simultaneous structure
where asset prices are driven by a set of model exogenous variable at the same time as
credit is related to asset prices through a one-directional causal link and investments
driven by a Tobins Q effect. The fact that credit is related only to asset prices in the
long run means that there is no long-run link between credit and investment. Thus, while
temporary innovations to stock prices and credit cause short-run movements in invest-
ments - and vice versa - credit does not independently impinge upon the real trajectory
of investments in the long run. A lasting asset price shock on the other hand will have
long-term real consequences due to the Tobins Q effect. As mentioned in the introduc-
tion to this paper this corroborates the results in Beaudry and Portier (2005, 2006) -
where they demonstrate that shocks to stock prices may have a lasting long-run effect
on the US and Japanese real economy. The results also contributes to reconcile the two
opposing views of the literature in the sense that the short run outcome of the model is
characterized by a financial accelerator while the financial structure, as represented by
credit, is irrelevant for the model’s real trajectory in the long run.

References

B̊ardsen, G and R Nymoen (2009), Macroeconometric modeling for policy, Vol. 2,
Palgrave-Macmillan, pp. 851–916.

Beaudry, P. and F. Portier (2005), ‘The ?news? view of economic fluctuations: Evidence
from aggregate Japanese data and sectoral U.S. data’, Journal of the Japanese and
International Economies 19(4), 635–652.

26

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1032



Beaudry, P. and F. Portier (2006), ‘Stock prices, news and economic fluctuations’, Amer-
ican Economic Review 96(4), 1293–1307.

Bernanke, B. (1986), ‘Alternative explanations of the money-income correlation’,
Carnegie-Rochester Conference Series on Public Policy 25, 49–99.

Bernanke, B. and M. Gertler (1989), ‘Agency costs, net worth, and business fluctuations’,
American Economic Review 79(1), 14–31.

Bernanke, B., M. Gertler and S. Gilchrist (1999), The financial accelerator in a quan-
titative business cycle framework, in J.Taylor and M.Woodford, eds, ‘Handbook of
Macroeconomics ’, Vol. 1, Elsevier Science B.V., pp. 1341–1393.

Blanchard, O.J. and D. Quah (1989), ‘The dynamic effects of aggregate demand and
supply disturbances’, American Economic Review 79, 655–673.

Blanchard, O.J. and M.W. Watson (1986), Are Business Cycles all alike?, Chicago, Uni-
versity of Chicago Press, pp. 123–156.

Christensen, I and A. Dib (2008), ‘The financial accelerator in an estimated new keynesian
model’, Review of Economic Dynamics 1, 155178.

Doornik, J. A. and D.F. Hendry (2001), PcGive 10: Empirical Econometric Modelling
using PcGive, London, Timberlake Consultants Press.

Ericsson, N.R. and H.A Tran (1990), ‘Pc-give and David Hendry’s econometric method-
ology’, Revista de Econometrica 10, 7–117.

Gali, J. (1992), ‘How well does the IS-LM model fit postwar U.S. data?’, Quarterly
Journal of Economics 107(2), 709–738.

Hammersland, R. (2008), ‘Classical identification: A viable road for data to inform struc-
tural modelling?’. Statistics Norway, Discussion Papers. No. 562.

Hammersland, R and C Bolstad Træe (2014), ‘The financial accelerator and the real econ-
omy: A small macroeconometric model for norway with financial frictions’, Economic
Modelling 36, 517–537.

Hammersland, R. and D.H. Jacobsen (2008), ‘The financial accelerator: Evidence using
a procedure of structural model design’. Discussion Paper No. 569, Statistics Norway.

Hartley, J, K. Hoover and K. D. Salyer (1998), Real business cycles: a reader, Routledge.

Hendry, D.F. (1993), Econometrics: Alchemy or Science? Essays in Econometric
Methodology, Oxford, Blackwell Publishers.

Hendry, D.F. (1995), Dynamic Econometrics, Oxford, Oxford University Press.

Hubbard, R.G. (1998), ‘Capital market imperfections and investment’, Journal of Eco-
nomic Literature 36, 193–225.

27

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1033



Johansen, S. (2006), Confronting the economic model with the data, in D.Colander, ed.,
‘Post Walrasian Macroeconomics: Beyond the Dynamic Stochastic General Equilibrium
Model ’, Cambridge University Press, pp. 287–300.

Kiyotaki, N. and J. Moore (1997), ‘Credit cycles’, Journal of Political Economy
105(2), 211–248.

Kydland, F. E. and E. C. Prescott (1982), ‘Time to build and aggregate fluctuations’,
Econometrica 50(6), 13451369.

Modigliani, F. and M. Miller (1958), ‘The cost of capital, corporation finance, and the
theory of investment’, American Economic Review 48, 261–297.

Paustian, M. (2007), ‘Assessing sign restrictions.’, The B.E. Journal of Macroeconomics
(Topics) 7(1), 1–37.

Romer, Christina D. and David H. Romer (2004), ‘A new measure of monetary shocks:
Derivation and implications’, American Economic Review 94(4), 1055–1084.

Romer, Christina D. and David H. Romer (2010), ‘The macroeconomic effects of tax
changes: Estimates based on a new measure of fiscal shocks’, American Economic
Review 100(3), 763–801.

Shapiro, M.D. and M.W. Watson (1988), Sources of Business Cycle Fluctuations, Cam-
bridge, MA: MIT Press.

Silvestrini, A. and A. Zaghinib (2015), ‘Financial shocks and the real economy in a
nonlinear world: From theory to estimation’, Journal of Policy Modeling 37(6), 915929.

Sims, C. A. (1980), ‘Macroeconomics and reality’, Econometrica 48, 1–48.

Smets, F. and R. Wouters (2007), ‘Shocks and frictions in us business cycles: A bayesian
d sge approach’, American Economic Review 97(3), 586606.

Townsend, R. M. (1979), ‘Optimal contracts and competitive markets with costly state
verification’, Journal of Economic Theory 21, 265–293.

Uhlig, H. (2005), ‘What are the effects of monetary policy on output? results from an
agnostic identification procedure’, Journal of Monetary Economics 52(2), 381–419.

28

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1034



Logical Comparison Measures in Classification of
Data

Kalle Saastamoinen?

Department of Military Technology, National Defence University,
P.O. Box 7, FI-00861 Helsinki, Finland

kalle.saastamoinen@mil.fi http://www.puolustusvoimat.fi/en/

Abstract. Traditionally measures used for comparison have been metric
based similarities. In this approach we will present logical comparison
measures that have been created using t-norms and t-conorms, which
are compensated with generalized means.

We will use classification task as our test bench for the suitability of
these measures created. We will compare results achieved with these
new measures to the ones achieved with pseudo equivalences and show
that these new measures tend to give better results.
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Classification

1 Introduction

In this article we will present how previously presented results in [1] can be im-
proved by the use of simple logic based combined comparison measures presented
in this paper.

It is a common belief that measures for comparison should hold true for some
properties of metric spaces. This belief originates from the blinkered view that
the comparison of objects should always have something to do with distance. This
has been questioned in many papers [2–6]. In practice, it seems that properties
of distance have little or no affect at all on the results that can be achieved from
the use of different comparison measures. This becomes empirically clear when
one looks at the test results presented in this paper.

Much of the fuzzy set theory’s original inspiration and further developments
originate from the problems of pattern classification and cluster analysis. Es-
sentially, this is the reason why classification is chosen to be the test bench for
many valued logic based comparison measures in this article. In classification,
the question is not whether a given object is or is not a member of a class,
but the degree to which the object belongs to the class. This means that most
classes in real situations are fuzzy in nature [7]. This fuzzy nature of real world

? I feel gratitude to the National Defence University which have given me time to do
my research.
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classification problems may shed some light on the general problem of decision
making [8].

Motivation for this article is to suggest a general definition for comparison
measure and show how previous results presented in article [1] achieved with
pseudo equivalences can get better.

Article is organized as follows. In the first section, logical comparison mea-
sures, combined comparison measure (CCM) (4) and a little theory behind them
is presented. The second section presents classification schemata and data sets
used for testing. The third section presents results achieved and these results are
compared vs. to the previous results achieved. In the fourth section conclusions
are done and some future directions are given.

2 Logical Comparison Measures

Definition 1. A set function g defined on X, where X is a fuzzy set and has
the following properties is called a fuzzy measure:

1. g (∅) = 0, g (X) = 1
2. If A,B ∈ X and A ⊆ B then g (A) ≤ g (B)

3. If An ∈ B, A1 ⊆ A2 ⊆ . . . ⊆ An−1 ⊆ An then lim
n→∞

g (An) = g
(

lim
n→∞

An

)
A general definition is given below of what in this paper is meant by a

comparison measure.
It is suggested here that the comparison measures used in fuzzy sets, where

comparison is done feature by feature and then these comparisons are aggregated,
could actually be any measures which fulfil the following properties:

Property 1. 1. The comparison measure used has a clear logical structure e.g. it
is an Archimedean t-norm or t-conorm (like Frank (1), (2)) or S-equivalence
[1].

2. The comparison measure is monotone. This condition ensures that a de-
crease (or increase) in any values that are to be compared cannot produce
an increase (or decrease) in the comparison result.

3. The comparison measure is associative. This guarantees that the final com-
parison results are independent of the grouping of the arguments and that
one can expand these comparison to more than two arguments.

4. The comparison measure is continuous. This guarantees that one can safely
compute with the values that are to be compare.

The idea behind using logical structures instead of, for example, simple dis-
tances lies in the fact that logical structures always have some kind of linguistic
content inside them. For example t-norms and t-conorms can be seen as cor-
responding to the words ”and” and ”or”, equivalence as corresponding to the
expression ”if and only if”. One can see that just by using these logical measures
it is possible to give some linguistic meaning to the comparison procedure.
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Some criteria for comparison measures are suggested here. The following
criteria are almost the same as Lowen gives for aggregation operators [9] and
originally they are presented by Bellman-Giertz [10]. It has also been suggested
that not all of these criteria are necessary [11]. One can, however, see that the cri-
teria by Bellman R. and Giertz M. also applies well to the comparison measures
presented in this article.

Criterion 1 1. Axiomatic strength. It is suggested here that the operator is
better if the axioms the operator satisfies are less limiting, this is equivalent
to Lowen [9]. It is seen that depending on the choice of the logical structure
used this will fit well with the definition given in (1).

2. Flexibility. Through the flexibility three things are met that are of an empir-
ical fit, adaptability and compensation. Adaptability comes from the fact that
all comparison measures created in this article are parameterized. Compen-
sation property follows from the use of a generalized mean to combine the
different values. Empirical fit follows then from the three things and these
are the use of logical structures, adaptability and compensation. Empirical
fit can naturally only finally be proven by empirical testing, as is done in this
article.

3. Numerical efficiency. Some operators such as min and max are numeri-
cally more efficient than, for example, Frank’s t-norm and t-conorm. In large
problems this will always be problematic to some degree. However, it is grad-
ually becoming less of problem as computers computing power is constantly
increasing.

4. Range of compensation. In general, the larger the range of compensa-
tion the better the compensatory operator. In some comparison measures
presented in this article the range of compensation has been increased by
combining t-norms and t-conorms and in all comparison measures a gener-
alized mean has been used.

5. Aggregating behavior of the comparison measure. Aggregating behav-
ior can in the comparison measures presented here, be adjusted by the use of
proper mean value in the generalized mean. For example, if a parameter value
of 0 is used with a generalized mean a geometric mean will be obtained, which
is to say that one attains the product of the values and subsequently each value
”added” normally decreases the resulting aggregate degrees of membership.

6. Required scale level of membership functions. Comparison measures
presented in this article have very little restrictions concerning scale levels.

2.1 T-norms and T-conorms as the Measures for Comparison

In the paper [12] measures have been defined based on the use of the generalized
mean, weights, t-norms and t-conorms. Below these results are added to the
definition of the combination measure of the t-norm and t-conorm.

Connectives play an important role when trying to model reality by equa-
tions. For example, when linguistic interpretations such as ”AND” or ”OR” are
used for connectives in conjunction and disjunction, quite often this does not
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require or mean crisp connectives, but that these connectives are only needed to
some degree. In such cases connectives called t-norms or t-conorms may be used.
The t-norm gives minimum compensation, while the t-conorm gives maximum
compensation. This means that t-norms tend to give more value for the low val-
ues, while t-conorms give more value for the high values in the interval in which
they are used. In practice, neither of these connectives fit the collected data
appropriately. There is still a lot of information that is left in between of these
two connectives. An important issue when dealing with t-norms and t-conorms
is the question of how to combine them in a meaningful way, since neither of
these connectives alone give a general compensation for the values where they
are adapted. For this reason one should use a measure that somewhat compen-
sates this gap in between values of these two norms. Article [13] shows how the
generalized mean works as the compensative connective between minimum and
maximum connectives. The scope of aggregation operators is demonstrated in
Figure (1).

Fig. 1. Compensation of t-norms and t-conorms

The first researchers to try the compensation of t-norms and t-conorms were
Zimmermann and Zysno in [14]. They used the weighted geometric mean in
order to compensate the gap between fuzzy intersections and unions. When one
uses the geometric mean equal compensation is allocated to the all values, and
problems might occur if some of the values combined are relatively very low or
high.

Created Comparison Measures From T-norms and T-conorms The
following is a brief representation of the algebraic equations that can be created
by combining weights into some important t-norms and t-conorms and then
the combining values are given that were achieved by aggregating them with a
generalized mean. Archimedean t-norms and t-conorms are a good choice since
they are continuous and monotonic [15].

The comparison measure (4) has been tested by combining it with the follow-
ing comparison measures (1) and (2). The measure (4) has been tested without
weights ωci and ωdi, since the weighting process was too time consuming with
differential evolution. All the comparison measures mentioned in this sub-chapter
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have been tested in classification tasks. T-norms and t-conorms are tested with
weights, where a generalized mean has been used to aggregate and compensate
the values.

Parameterized families of t-norms and t-conorms are used here. Families
tested in classification were the Dombi family [16], Frank family [17], Schweizer-
Sklar family [18], Yager family [19] and Yu family [20]. The Frank and Schweizer-
Sklar families of t-norms are also copula families [21] so they have some good
statistical properties see Fisher 1997 [22].

From the Frank family we have created the following comparison measures.

Definition 2. Measure based on Frank (1979) [17] class of t-norm with gener-
alized mean and weights:

TF 〈f1 (i) , f2 (i)〉 =

(
n∑

i=1

ωci

(
logp

[
1 +

(
pf1(i) − 1

) (
pf2(i) − 1

)
p− 1

])m) 1
m

, (1)

where p > 0, p 6= 1 and i = 1, . . . , n.

Definition 3. Measure based on Frank (1979) [17] class of t-conorm with gen-
eralized mean and weights:

SF 〈f1 (i) , f2 (i)〉 =

(
n∑

i=1

ωdi

(
1− logp

[
1 +

(
p1−f1(i) − 1

) (
p1−f2(i) − 1

)
p− 1

])m) 1
m

,

(2)
where p > 0, p 6= 1 and i = 1, . . . , n.

Definition 4. Combined comparison measure (CCM) based on the t-norm and
t-conorm with a generalized mean and weights [30]:

C 〈f1, f2〉 =
( n∑
i=1

(
wiT

p
i 〈f1 (i) , f2 (i)〉+ (1− wi) (Sp

i 〈f1 (i) , f2 (i)〉)
)m) 1

m

(3)

where i = 1, . . . , n, p is a parameter combined to the corresponding class of fuzzy
intersections Ti and unions Si and wi are weights and i = 1, . . . , n.

3 Classification

Many time there are given a set of data which is already grouped into classes
and the problem is then to predict which class each new data belongs to. This is
normally referred to as classification problem. First set of data is referred to as
training set, while this new set of data is referred to as test set [23]. Classification
is seen as comparison between training set and test set.
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3.1 Description of the Similarity Based Classifiers

Objects, each characterized by one feature vector in [0, 1]n, is classified into dif-
ferent classes. The assumption that the vectors belong to [0, 1]n is not restrictive
since the appropriate shift and normalization can be done for any space [a, b]n.
The comparison measures can be used to compare objects to classes. Below is
the used classifier in the algorithmic form:

SIMILARITY BASED CLASSIFIER

Require: data
scale data between [0, 1]

Require: test,learn[1...n],weights,dim
for i = 1 to n do
idealvec[i] = IDEAL[learn[i]]

maxcomp[i] =
(

1
dim

)1/m(dim∑
j=1

weights [j] (CCM (idealvec [i, j] , test [j]))
m

)1/m

end for
class = arg maxi maxcomp[i]

In the algorithm, the combined comparison measure (CCM) with a general-
ized mean is used. IDEAL is the vector that best characterizes the class i and
here the generalized mean vector of the class as an IDEAL-operator has been
used.

When we choose to use randomized weights (RW) instead on using differen-
tial evolution (DE), we achieve a significant saving in computing time. RW is
approximately 150000-times faster.

Evolutionary algorithm is used because of its diversity and robustness to find
weights in classification process, information about evolutionary algorithms in
general can be found for example from [24], [25], [26] and [27]. Obviously, other
optimizers can be used as well. Evolutionary algorithm used here is based on
differential evolution [28]. DE is a simple population based stochastic function
minimizer. The objective of DE is to iterate each member of the population
and compare its value to the trial member value, and the superior member
stays for the next iteration. The evolution strategy defines the way in which a
trial member is generated. DE tries to seek weights that will give the maximal
similarity compared to the values set by experts. This is done so that DE tries
to minimize the value of the objective function with trial member values. The
objective function is the total difference between classification defined by experts
and the classification defined by similarity used here for all learning data sets.
Finally, DE gives the optimal weight values. The basic action of used differential
evolution is demonstrated in figure (2).

The classification task has been described more clearly in the flowchart (3).
Here classification procedure uses part of the data (learning) for weight opti-
mization either using differential evolution or randomized weights depending of
the choice. After this rest of the data (test) is used for classification and then
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Measurement data

Interpolation of measurement
data

Fuzzyfication of interpolated
data Generate random population

Classifier with optimal
weights

Classification

Select next member from
population

Do mutation and crossover

Test classification

Better member stays for next
generation

Still need to continue
evolution?

yes

no

Fig. 2. Simplified computational model for DE

this result is saved, now if loop is done N -times max, min and mean values are
saved and then this same classification procedure is done from the beginning for
the next parameter value p. After all p-values have been done we start from the
next mean value the loop again.

3.2 Data sets

We tested our measures with three different data sets which are available from
the [29]. The data sets chosen for the test were: Ionosphere, Iris and Wine. These
sets differ greatly in the magnitude of instances and the number of predictive
attribute values.

Ionos: This is radar data, where the targets were free electrons in the iono-
sphere. Here are two classes: ”Good” and ”Bad”. ”Good” radar returns are those
showing evidence of some type of structure in the ionosphere. ”Bad” returns are
those that do not; their signals pass through the ionosphere. The number of
instances is 351. The number of attributes is 34 plus the class attribute.
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Iris: Perhaps the best-known database to be found in the pattern recognition
literature. The number of attributes is 4 and the class. The data set contains 3
classes of 50 instances each, where each class refers to a type of iris plant.

Wine: The data is the result of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars. The analysis
determined the quantities of 13 constituents found in each of the three types of
wines. The number of instances: class 1 59, class 2 71, class 3 48.

4 Results

In our classification tasks we have tested tested five different types of combined
comparison measures (CCM), with t-norms and t-conorms from Dombi, Frank,
Schweizer-Sklar, Yu and Yager families [30]. In all these tested families combi-
nation of Frank norms always managed to give the best results. From the table
(1) one can see comparison between the previous best true positive classification
results with many-valued pseudo equivalences [1] vs. to the best true positive
classification results with CCM presented here. We tested our classifications
in both with weights that were randomly selected 200 times (RND) and with
weights that were optimized 10 times (DE) for each p- and m-value.

Table 1. Mean (Av), Maximum (Max) Classification Results with different compari-
son measures (CM) Optimized (DE) and Randomized (RND) Weights and Variances
(VAR) vs. previous best results with pseudo equivalences

CM IonoAv IonoMax IrisAv IrisMax WineAv WineMax

Frank CCMDE 83.68% 94.89% 91.68% 100% 90.47% 100%

Frank CCMRND 79.86% 94.32% 71.61% 100% 87.22% 100%

Frank CCMV AR 0 0.0075833 0 0.022331 0.00013855 0.022344

Equivalences 80.16% 93.75% 98.84% 100% 96.35% 100%

Table 1 shows the mean and maximum of the classification results from
all combinations of weights and parameters. Results were better with Iono-
sphere data set than when we used pseudo equivalences for the classification.
All the other results were also comparable. Variances with this new measure
were also relatively low indicating that combined comparison measure (4) with
Frank norms (1, 2) is also quite stable.

5 Conclusions

In classification and the development of expert systems, the problem of choos-
ing the right functions for comparison is often faced. When data has different
dependencies, different operators should be used. Usually the simplest operators
are selected, which are not normally the optimal choice. As a solution to this
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problem this paper has offered combined comparison measure 4 that combines
with generalized mean t-norm and t-conorm. This measure is on a logically sound
basis. It has been shown that these comparison measures give reasonable results.

It has been shown that the comparison measures introduced in this article
consistently give good and stable results in classification, which can be seen from
the following table (1). Combined comparison measure (4) based on Frank type
of t-norm (1) and t-conorm (2) gave the best classification results, which are the
same or better than those attained from the pseudo equivalences. One can also
see that the improvements in classification results due to changing to the right
comparison measures were quite significant.

From the tested combined comparison measures (4) use of a combination of
Frank type t-norm and t-conorm is recommended.

These new comparison measures can be used in, for example, pattern recog-
nition, clustering, expert systems, medical diagnosis systems, decision support
systems, fuzzy control etc. Classification results were not only good but also
stable, which makes these comparison measures usable.
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Fig. 3. Simplified Flow Chart of the Classification Procedure

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1046



Macroeconomic Forecasting using Approximate
Factor Models with Outliers

RAY YEUTIEN CHOU, TSO-JUNG YEN, YU-MIN YEN.

Institute of Economics, Academa Sinica. Address: 128 Academia Road, Section 2,
Nankang, Taipei 115, Taiwan.

rchou@econ.sinica.edu.tw
Institute of Statistical Science, Academia Sinica. Address: 128 Academia Road,

Section 2, Nankang, Taipei 11529, Taiwan.
tjyen@stat.sinica.edu.tw

Department of International Business, National Chengchi University, 64, Sec. 2,
Zhi-nan Road., Wenshan, Taipei 116, Taiwan.

yyu min@nccu.edu.tw

Abstract. Approximate factor models assume the mean of the data
generating mechanisms is a linear combination of the relevant common
factors and error terms. They can extract useful information from a large
number of relevant variables. Due to this flexibility, approximate factor
models and their extensions are popular in economic analysis and fore-
casting [10, 3, 7]. [9] list advantages on using approximate factor models.
For example, approximate factor models can fit macroeconomic data
well. The structure of latent factors embedded in approximate factor
model obeys theories in dynamic macroeconomic models, which makes
it validate to be used on macroeconomic forecasting and impulse analy-
sis. Some statistical learning methods, such as the lasso, can also handle
regression models with a large number of candidate predictors. Using
such statistical learning methods relies on the assumption of sparsity in
the candidate predictors. However, using approximate factor models does
not need to impose the special assumption. This is one of the reasons
why approximate factor models are the main tool used for big data in
macroeconomics [9]. In terms of forecasting important macroeconomic
variables, a completed survey conducted by [6] shows that approximate
factor models indeed have a superior performances on forecasting ex-
change rates and inflation than other methods.
Approximate factor models usually assume common factors are non-
observable. As a result of that, an important goal in estimating the
approximate factor models is to identify the latent common factors and
their factor loadings. Methods for carrying out this task include the maxi-
mum likelihood estimation (MLE), Markov Chain Monte Carlo (MCMC)
and Principal Component Analysis (PCA). Econometricians often esti-
mate the approximate factor models with high dimensional data, and in
this circumstance the PCA method is more preferred as it is less com-
putational intensive than the MLE and MCMC.
By using the PCA method on estimating approximate factor models, the
latent common factors can be viewed as a linear combination the original
predictors. When the number of original predictors becomes large, this
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kind of cross sectional linearly combination can reduce estimation errors
in the estimated latent common factors. More accurate estimated latent
common factors makes approximate factor models an efficient method
on empirical applications.
Although the PCA method has the aforementioned advantages, it may
fail to provide a correct estimation on the latent factors and factor load-
ings when data are sucject to large and sharp spikes [5]. To overcome this
difficulty, we present a simple and efficient method for estimating approx-
imate factor models with data containing such large and sharp spikes.
We call the proposed estimation method “P-PCA method” (Penalized
least squares plus PCA method). This method formulates the estimation
problem as a penalized least squares problem in which a norm penalty
function is imposed on those large and sharp spikes. Such a formula-
tion allows us to model both the latent common factors and the sharp
and large spikes, and therefore can reduce estimation biases in the la-
tent common factors and their factor loadings. To solve the estimation
problem, we decompose it into two optimization problems: a Principal
Component Analysis (PCA) problem and a one dimensional shrinkage
estimation problem. We then develop an algorithm to iteratively solve
the two problems. This algorithm can deliver reliable numerical esti-
mates and is flexible in incorporating methods for selecting the number
of common components.
There exist different approaches to formulating and estimating the ap-
proximate factor models. [8] proposed a multilevel factor model for large
panel data with between-block variations and idiosyncratic noise. They
developed an estimation procedure which can identify block-level shocks
and genuinely common factors, and therefore achieve dimension reduc-
tion. [1] proposed a multifactor model with a large number of observable
factors and unobservable common and group-specific pervasive factors.
Their estimation procedure for such a model can simultaneously select
relevant observable factors and determine the number of common and
group-specific unobservable factors. [4] developed a factor model in which
both factor loadings and number of factors can have a structure break.
They adopted a shrinkage estimation that can consistently identify the
number of common factors before and after the structure break. Their
estimation procedure can be implemented by solving a convex optimiza-
tion with the principal components of data matrix as input.
As compared with the aforementioned research, our method focuses on a
situation in which data are subject to large and sharp spikes. For exam-
ple, observations may occasionally be blurred by extreme large signals,
like asset price jumps in financial data. It is different from the situations
in which data generating mechanisms are broken by a permanent change
of common factors or factor loadings. Indeed, under suitable assump-
tions on the idiosyncratic uncommon components [2, 10], the factors and
factor loadings might still be consistently estimated by using the PCA
method. However, in term of finite sample efficiency, we show that the
proposed P-PCA method can outperform the conventional PCA method
on estimating the latent common factors. We demonstrate such advan-
tages by carrying out intensive simulations under a wide range of model
settings. We then use the proposed method performs on predicting yearly
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growth of important macroeconomic variables and find that it can de-
livery comparable performances as the traditional methods. Throughout
these works, we believe the proposed method can serve as a complemen-
tary tool for robust estimations rather than a competitive approach to
those established approximate factor models.

Keywords: Approximate Factor Model, Forecast, Norm Penalty, Prin-
cipal Component Analysis
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Testing Granger-causality on macroeconomic

time series: a bootstrap approach

Matteo Farné, Angela Montanari
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Abstract. In this short paper, we present a bootstrap test for Granger-
causality in the frequency domain, particularly suitable for short macroe-
conomic series. In particular, we improve upon the testing approach of
Ding et al. (2006) proposing a bootstrap test for comparing unconditional
and conditional Granger-causality. This allows to test the relevance of
a conditioning variable in respect to the causality structure. A relevant
application to the study of co-movements of money stock and GDP in
the Euro-Area is described, in order to provide some answers about the
effectiveness of the ECB monetary policy before and after the financial
crisis of 2008.

Macroeconomic time series often have a quarterly frequency, which may re-
sult in a very short sample size T . In this short paper, we describe a bootstrap
testing approach for Granger-causality (GC) in the frequency domain, specifi-
cally thought for short series. We discuss the rationale behind this method and
we show a relevant application on the study of the mutual relationship between
GDP and money stock (both M3 and M1 aggregate) in the Euro area, before
and after the financial crisis of 2008.

Causality measures in the frequency domain were first proposed in Pierce
(1979) as R2 measures for time series. In Geweke (1982) and Geweke (1984)
the concept of unconditional and conditional Granger-causality in the frequency
domain was introduced. Its measures were extended in Hosoya (1991) and Hosoya
(2001) respectively. In Breitung and Candelon (2006), a test for Granger-causality
in the frequency domain is proposed. Its very elegant formulation in the VAR
and cointegrated VAR context presents two shortcomings for our analysis: the
convergence rate is O(T−1/2) and the power is decreasing as the distance of the
frequency of interest from π

2 increases. These drawbacks may lead to misleading
conclusions in presence of a small sample size.

For this reason, the inference on Granger-causality spectra in the frequency
domain is still an open problem. Differently from the time-domain quantities, the
limiting distribution for unconditional and conditional spectra is unknown (see
Barnett and Seth (2014), par. 2.5). In Ding et al. (2006) bootstrap thresholds are
derived for Geweke’s unconditional and conditional GC measures in the context
of neurological data. A further extension of that approach can be found in Wen
et al. (2013), and relevant applications in the neurophysiological context include
Brovelli et al. (2004), Roebroeck et al. (2005) and Dhamala et al. (2008), where
explicit VAR estimation is avoided by a nonparametric approach.
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In order to test the significance of Granger causalities at each frequency, a
possible approach is to retain the maximum across frequencies as in Ding et al.
(2006), and to build the bootstrap distribution generating stationary bootstrap
time series as in Politis and Romano (1994), from which it is possible to draw
the desired quantiles. We stress that unconditional and conditional spectra must
be assessed separately, because their magnitude can in general be different.

In Ding et al. (2006), the comparison between unconditional and conditional
Granger causalities is performed using the t-test on the bootstrapped series
of the peak across frequencies. This approach can be suitable for their case,
where they deal with psychological/neurological data: on the contrary, in the
economic context, we can not assume that the two populations are normal and
independent. For this reason, we propose to take the signed maximum difference
in absolute value for each run. Then we have a bootstrap distribution of the
signed difference. We can test the observed difference between unconditional
and conditional Granger-causality spectra at each frequency comparing it with
the bootstrap quantiles computed over all the runs returning only stationary
VAR models. This approach works on both directions, and is suitable both for
two-tail and one-tail tests.

The key innovation in our approach is now explained. If the unconditional GC
at a particular frequency is significant, we can say that the cause variable causes
the effect variable. If the conditional GC at a particular frequency is significant,
we can say that the cause variable causes the effect variable once the effect of
the conditioning variable has been removed. Nevertheless, we can not say in
any case that the conditioning variable has a relevant impact on the causality
structure in absence of a specific test. Since unconditional and conditional GC
at the same frequency have unknown and dependent distributions (we are in a
time-dependent data context) we can not use the comparison test of Ding et al.
(2006), which works for serially independent data. Our proposed test fills this
gap, allowing to determine if the conditioning variable has a significant impact
on the causal relationship (amplification-annihilation) or not.

The described method allows to make statistically founded considerations
on the nature of the relationship between economic output and money stock in
the Euro Area, even taking into account further series like the unemployment
rate (UN) and the inflation rate (HICP). Our analysis focuses on the period
2001-2014, when the monetary union has become effective. Our data come from
the ECB Real Time Database, where all figures are harmonized respect to the
changing composition of the Euro Area across time (see Giannone et al. (2012)
for the details).

We have conducted GC analysis separately for time periods 2001-Summer
2008 (31 quarters), Autumn 2008-2014 (25 quarters) in order to obtain locally
mean and covariance stationary series (Box et al., 2015). In fact, pre-crisis and
post-crisis samples have extremely different characteristics, so that we must con-
duct the analysis separately for the two periods.

Unconditional spectra show that one significant relationship is the causal
relationship from M3 to GDP in the pre-crisis sample. Its characteristic period
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is around 1 year. Another one is the causal relationship from M1 to GDP in the
post-crisis sample. In that case, the significance is on a wide period range, from
3 to 8 quarters approximately.

If we remove the effect mediated by HICP, any causal relationship between
M3 and GDP disappears, while the causal relationship from M1 to GDP is
weakened as it is still present only for a period of 4/5 quarters approximately.
We have evidence of causal relationship from GDP to M1 both in the pre-crisis
and in the post-crisis sample at very high frequencies (period 2 quarters), thus
proving that money stock can also react to shocks in the economic output in
the short run. If we remove the effect mediated by UN any significant causality
disappears for both settings (M1-GDP and M3-GDP).

We have evidence of strong difference between unconditional and conditional
spectra only in two cases, both in the post-crisis sample: the unconditional
causality from GDP to M1 is significantly smaller than the same causality condi-
tional on HICP, and the unconditional causality from M1 to GDP is significantly
larger than the same causality conditional on UN. We can note that the strength
of the effect of GDP to M1 is amplified removing the indirect effect of HICP,
while the strength of the effect of M1 to GDP is annihilated removing the indirect
effect of UN.
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An implied rating software system 

Ventsislav Nikolov 

Abstract. The paper presents a mathematical approach to create credit rating 

scale and to classify financial institutions by it which is implemented as a model 

in a software system. The presented model is based on competitive trained neu-

ral network working in model building and classification stages. Thus an indi-

vidual point of view can be provided for any institution according to their avail-

able data.  

Keywords: Implied rating, Classification, Self-organizing map. 

1 INTRODUCTION 

The credit ratings evaluating the credit worthiness of different obligators [2] are im-

portant data for the business and governments. When there is a financial and econom-

ic crisis the importance of the ratings produced by the rating agencies even raises 

because they influence the investors’ decisions and corporate operations toward a 

given direction. The ratings determine the interest rate for the borrower which leads to 

different prices of loaning money. Here a method for automatic building of a credit 

ratings scale based on specific corporate and government data as well as determina-

tion of the credit rating of a given borrower is described. The method is implemented 

as a software module which can be integrated in a variety of software products. 

The need of new methods for credit rating determination emerges because of the fol-

lowing reasons. 

• The reaction of the rating agencies often is too slow and the market is dynamic. 

Sometimes even a default occurs of a company or institution while their rating is 

still classified as high one. 

• The ratings are determined in long time intervals. Ratings available on daily basis 

could be a significant advantage. 

• Sometimes the rating agencies are criticized of conflict of interests. They analyze 

the political environment, regulations, the ability to return already borrowed loans, 

etc. If the ratings are determined based extensively on the statistics they would be 

more accurate. 

• Every market participant could produce its own rating scale to classify the other 

participants. Thus independent credit rating estimation could use its own data and 

the distributed overall assessment could increase the quality of the taken decisions. 
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2 SOLUTION 

The stages of the proposed system are shown in fig. 1. The first stage is choosing the 

grades of the rating scale. Different agencies work with different scales which contain 

upper and lower alphabetical letters combined with positive or negative signs and 

sometimes digits. Some rating agencies use different scales for the long and short 

term rating. In our system only one scale is used. The information for the scale is the 

first needed information because it determines the number and order of the rating 

grades which define the model building step. 

 
Fig. 1. The stages of implied rating system working 

In the next step the available data should be collected in order to determine the centers 

and boundaries of the grades. In our approach this data comprises of the levels of 

Credit Default Swap (CDS) spread curves, Credit Default Swap Index (CDX) spread 

indices [1], share prices and bond prices which theirself contain information reflecting 

the current worthiness of the participants represented by such data. The working of 

the automated rating determination system relies on the reverse task of the upper data 

determination.  

Thus by given data the credit rating of a participant should be calculated by mathe-

matical approaches. The spread curves and indices could be considered similar to 

assurance which means that the higher their values are the higher the risk of the de-

fault is for the participant they represent. 

The data used for the scale building are in fact a set of time series for a given histori-

cal time period. Every time series represent a market participant. The time horizon 

should be the same for all series. If the values do not coincide by dates then interpola-
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tion is performed to make them for equal dates. The more data collected the more 

accurate rating scale will be build. 

The grades centers and bounds determination is performed by a mathematical model 

composed by a self-organizing features map [7] with one-dimensional output lattice 

which is described in more details below. Once the scale is built it could be saved in a 

database for use after that. Periodically the scale must be built and saved again. Thus 

the whole scale with all grades fluctuates over time according to the state of all partic-

ipants which series are used in the scale building. This means that if for example a 

crisis happens then the series of the most participants would move upward because 

the interest rates increase but this occurs correlated for them and thus most partici-

pants could also preserve their rating. 

The scale building is based on ranges determination from the given data. In fact the 

series may overlap one another in some time periods but the grades boundaries are 

finally precisely specified. The degrees are determined by their centers. Having these 

centers the boundaries between them are calculated as their averages. When a new 

series is classified it could crosses some of the boundaries but this should not hinder 

from finding the nearest degree center to the series. The simple or decayed Euclidean 

distance is used in this case as it is shown to be d1 and d2 in fig. 2 where the new 

series center is shown in yellow and it is between the grades AA and A. 

 

 

Fig. 2. Classification of a new obligator series by measuring the distance 

All data values in every degree are considered as a set and their probability distribu-

tion are built supposing normal distribution. To do this first the normal distribution 

parameters μ (mean) and σ (standard deviation) are estimated for every degree and 

then the theoretical histogram is graphically shown [3] [4]. The new series together 

with its degree center and boundaries are shown in fig. 3. 

3 THE MATHEMATICAL MODEL 

3.1 Model building 

The mathematical model used in our approach is based on self-organizing map used 

for clustering and classification of time series. Its input and output layers are shown in 

fig. 4. This self-learning mathematical model determines the parameters of its internal 

 

АА A BBB 
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АА A 
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structure based on the input data. The topological ordering of the output nodes is one-

dimensional in our case because the grades are ordered one-dimensionally. The spa-

tial shape of an output unit is chosen to be a square. Every output node corresponds to 

a group which represents a rating scale degree. Each input node corresponds to a sin-

gle historical time series value. Thus in the learning stage of the self-organizing map 

the time series are classified into groups based on both their magnitude and historical 

behaviour. The learning is an iterative process in which all time series are subsequent-

ly used as input and the output nodes prototypes change their positions. In the begin-

ning of the learning the changes are greater and with the time it decays non-linearly 

doing fine correction until the end. 

 

 

Fig. 3. A new series (in black color) shown together with its degree and the second nearest 

degree 

When the groups and their centers are determined the grades bounds are calculated 

based on the groups’ centers which correspond to the output nodes prototypes. The 

greater the rating is the smaller the prototype magnitude is. The prototypes are shown 

in figure 4 in the output layer nodes as small curves in the squares. The prototypes are 

considered as grades centers so groups’ bounds are calculated to be the average of the 

neighbors’ prototypes which can be seen in figure 3 where the center of the group 

representing the grade A is shown in pink and the center of AA in blue. Thus if the 

width of two neighbor grades is not the same then the prototype will not be in the 

center of the grade after its bound determination. 

The grades determination is followed by their reordering according to the mean of 

their prototypes. This is needed because the self-organizing map weights are initial-

ized with random values and the grades must always be sorted in the same way. When 

the group determination should be repeatable the random generation is set appropri-

ately. Thus the groups are sorted descending after the learning stage. 
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Fig. 4. The self-organizing map based model 

3.2 Using the model for classification of a new series 

The prototypes of the output nodes are used not only for the determination of the 

grades but also for classification in the next stage. When the rating scale is determined 

the next stage is to use it in order to classify a new series. In this way the rating cate-

gory of a participant is determined. This is performed by comparing the new series 

with each prototype of output node and finding the nearest one which is chosen to be 

the rating grade. In the classification stage not only the best matching grade is found 

but also the second nearest one which is considered as the tendency grade with a giv-

en confidence. The confidence is calculated as closeness between the new input series 

and the prototypes of the rating (nearest) and tendency (second nearest) grades using 

(1) – (3). 

trs   (1) 
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t
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where 

r – distance between the time series and the nearest (rating) prototype; 

t – distance between the time series and the second nearest (tendency) prototype; 

vr – confidence of the rating; 

vt – confidence of the tendency; 
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3.3 Using of decay factor 

An important fact is that the model is built not only giving an account of the data 

magnitude but also of their historical behavior. The more recent data however should 

be considered as more important in both the grades determination and for the classifi-

cation stage. That is why a decay factor is used when the distance is calculated be-

tween a data time series and a grade prototype using (4). 


 








N
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ii

iN

N

1i

1i

yx
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     (4) 

where 

λ – a decay factor; 

N – time series size; 

x – time series; 

y – grade prototype; 

 

The decay factor values vary from 0 to 1. When a decay factor is used in the grades 

determination stage the entire set of time series in the grade tend to be within the 

grades bounds at their end. In fig. 5 in the left a grade is shown with time series with-

out using a decay factor and in the right the grade is shown using it. It can be seen that 

at the end of the X axis the series tend to be between the grade bounds only if the 

decay is used. Otherwise the series scatter also outside of the grade bounds through all 

their length. 

 

 

Fig. 5. The effect of the using of the decay factor during the grades determination stage 

The decay factor could also be used for the mean calculation of a series. The effect 

can be seen in fig. 5 where the red dashed line is the mean with decay giving more 

weight to the last values in the series and with blue dashed line the mean is shown 

calculated without a decay factor. 
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Fig. 6. Calculation of mean of a series with decay factor (dashed red line) and without it 

(dashed green line) 

4 CONCLUSIONS AND FUTURE WORK 

 The prototype of the software system realizing the described approach is 

developed in Java. Its computational part is implemented as a JAR library which can 

be used either as a directly used module in business layer logic of other software sys-

tems or as service operations. 

Below some examples of classification of new series are shown. The grades are or-

dered from AAA that is the best credit rating to D that is default. In fig. 7 the new 

series is classified as CC and despite of the fact that its trend is increasing its tendency 

is shown to be CCC because some part of the history has been in that grade. 

 
Fig. 7. The implemented prototype 

 In fig. 8 the series is classified as the best rating AAA with tendency to be 

AA. There could not be other tendency grade because there is no better credit rating 

than AAA. That is why in such cases the most important information is to what ex-

tend the tendency is to be AA. 
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Fig. 8. The implemented prototype 

In fig. 9 the series is classified to be BB but is moving too near to the board between 

BB and BBB. In the history it has been in the neighbor BBB grade. 

 

Fig. 9. The implemented prototype 

An interesting series is shown in fig. 10 where the series starts from B moves in BB 

and finishes in BBB. The decay factor here shows the importance of the last values in 

such cases. Moreover the tendency is shown to be A even though the series has been 

from the other side of the scale and never in A. 

 

Fig. 10. The implemented prototype 
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Fig 11 also shows a case when the decay is important for the right classification. The 

series is determined to be in BBB thought in his historical movement it changes from 

B to A. 

 

Fig. 11. The implemented prototype 

The experiments show that the system is robust especially regarding the ability to 

classify according to the more actual data. Thus the historical values are taken into 

account but not so important than the last ones. And such a system could be used on 

daily basis and with individual settings that are good advantages not only for experi-

mental but also for practical uses. 
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Abstract

The 2008–2009 financial crisis has shaken the beliefs about how macroeconomic
policy should be conducted. Central banks in G7 countries shifted to unconven-
tional policy measures in the aftermath of the Financial Crisis, when faced with
economic slack, financial instability and fiscal trouble. Governments were swift in
saving the banking system, and the economy as a whole, from collapse. This shift
ended a spell of rules-based time consistent policy that started in the mid-1980s
in many industrialised economies. Changes in policy regimes occur in response to
economic or political events. These changes are often modelled by estimating the
respective policy rules with Markov Switching (MS) techniques. One important
pitfall in these estimations is the endogeneity of explanatory variables. When the
explanatory variables are endogenous, MS estimates are inconsistent. We account
for this endogeneity with a novel MS test of a fiscal rule. Results show that the sta-
ble mix of policies during the Great Moderation has given way to a mix of ’passive’
monetary and ’active’ fiscal policies since the mid 2000s.

Keywords: fiscal regimes, Markov Switching, endogenous variables, IV
JEL: E62, E65, H11, H62
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1 Introduction

The 2008–2009 financial crisis has shaken the beliefs about how macroeconomic policy
should be conducted. Governments have been swift in saving the banking system, and
the economy as a whole, from collapse. These bail-outs have come at the cost of a
substantial increase in government debt. Central banks too have implemented uncon-
ventional monetary policies by providing unlimited credit at near zero interest rates.
This policy mix of fiscal and monetary stimuli has prevented an economic meltdown.
However, a return to stability oriented policies for the long term — characterised by
stable government debt and inflation — may require a set of unorthodox policies in the
short term. Central bankers may announce changes in policy regime to mold beliefs by
agents on future policy actions (Davig & Leeper, 2006). Bianchi (2013) and Bianchi
and Melosi (2014) show that governments can also determine the monetary/fiscal pol-
icy mix by guiding beliefs through announcements of future actions. In these studies,
empirical characterisation of past changes in regimes is based on the properties of the
macro-economic series included in the model by estimating policy rules with Markov
Switching techniques.

In this study, we start with developing a simple and static fiscal policy rule for the US
during the period 1966–2014, that describes how a fiscal variable — the primary deficit
— responds to the current state of government debt and the business cycle (Favero &
Monacelli, 2005; Davig & Leeper, 2006; Afonso, Claeys, & Sousa, 2010). One important
issue that to the best of our knowledge has not been adressed properly, is the possible
problem of endogenous explanatory variables in the specification of the fiscal policy rule.
We test for endogeneity with a simple Instrumental Variables (IV) based regression,
using a common set of instruments suggested in the macroeconomic literature. Not
surprisingly, statistical tests indicate the existence of endogenous variables.

This paper is structured as follows. In section 2 we overview the literature on fiscal
policy rules, build the baseline model and discuss the methodology of regime switching
models where we account for the endogeneity of policy action. Section 3 describes the
data. Section 4 discusses results for models with and without endogeneity. A final
section concludes.

2 Methodology

2.1 Defining a fiscal rule

A vast amount of macroeconomic research has been dedicated to the specification of so
called policy rules. At the base of this literature are the seminal articles of Kydland and
Prescott (1977) and Barro and Gordon (1983). Perhaps the most well-known example of
these policy rules is the so-called Taylor-rule, named after James Taylor’s specification
of a monetary policy rule for the U.S. (Taylor, 1993). In this study we focus our analysis
on the specification of a fiscal policy rule. This type of policy rule typically relates a
fiscal indicator of choice to a multitude of macroeconomic indicators that might influence

2
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the behaviour of fiscal policy makers. Fatás and Mihov (2003) stress the importance of
these rules as an effective way to restrict discretionary fiscal policy.

A large part of the literature on fiscal policy rules is dedicated to the assessment of
the cyclical behaviour of fiscal policy. Gali and Perotti (2003) decompose fiscal policy
in (i) a cyclical or non-discretionary component and (ii) a structural or discretionary
component. The first is considered to be out of direct control of the policy makers and
often described as the automatic stabilisers in fiscal policy theory (e.g. changes in tax
revenues for given tax rates or changes in unemployment benefits). The latter can be
viewed as the value of the fiscal indicator if output were at its potential level. A typical
rule to test the cyclicality of fiscal policy regresses the fiscal indicator on an indicator of
the current state of the business cycle (see for example Fatás and Mihov (2001)).

A second driver of the behaviour of the fiscal policy maker is the willingness to pursue
a debt-stabilisation motive (a.o. Bohn!).

2.2 Specification of the model

We summarise the behaviour of fiscal policy makers with a reaction function that de-
scribes how a fiscal indicator ft changes in response to government debt and to the
business cycle. Assume the government has some long-term fiscal target f∗ and that it
decides to adjust this target at time t to control the deviation of debt bt from some target
level b∗. Given the structure of spending and taxation, the fiscal target will also fluctuate
in response to expected deviations of output from some desired target output level y∗.
The output response of the budget includes two components. In an economic boom,
as output rises above its long-term level, unemployment benefits and transfer payments
fall or tax receipts rise. In addition to these automatic stabilisers, the elasticity of these
budget items with respect to output captures also systematic discretionary interventions
of the government to steer the economy. The government may wish to lean against the
wind during an economic crisis by cutting taxes or raising expenses. The fiscal reaction
function for this time-varying target surplus f̂t can then be summarised as follows:

f̂t = f∗ + γ(yt − y∗) + θ(bt − b∗) (1)

Given that the budgeting process is typically characterised by long implementation lags,
we include a smoothing component to allow for a gradual adjustment towards the target.
In contrast to previous studies (Favero & Monacelli, 2005; Afonso et al., 2010) and
because the budgeting process is only executed once a year , we argue that a lag of four
quarters is more suitable than a single quarter lag. Equation (2) presents this simple
feedback rule:

ft = ρft−4 + (1− ρ)f̂t + vt (2)

Substitution of (1) into (2) gives the following non-linear relation between the fiscal
indicator and public debt, and is the baseline fiscal rule we test:

ft = ρft−4 + (1− ρ)[κ+ γxt + θbt] + vt (3)

3
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In (3), the output gap is given by xt. The constant term κ can be interpreted as a
long-term fiscal indicator: it adjusts the target surplus for the deviation between the
government’s output target and long-term potential output, and for the government
debt target. Deviations from the rule, which are captured by the residual term, are
discretionary changes in systematic fiscal policy. We allow the reaction coefficients γ
and θ in (3) to vary over time. We moreover follow Favero and Monacelli (2005) and
substitute debt bt for the debt-stabilising primary deficit dt in (3). This non-linear
fiscal rule implicitly controls for the time-varying effects of interest rates and growth
on the debt service component of the deficit that are not under direct control of the
government itself. The interpretation of our specification of the fiscal rule (3) is quite
straightforward and is compatible with the distinction that has typically been made in
the literature between policies that pursue a debt-stabilising motive and those that do
not (Sims, 1994). Leeper (1991) classifies a policy that pursues debt-stabilisation as
‘passive’ and as ‘active’ when it does not. In this case, fiscal policy is passive when
the coefficient associated to the debt-stabilising primary deficit dt is not statistically
different from one. In addition, the constant term κ should not be statistically different
from zero. A non-zero surplus would imply trend growth in debt. In contrast, fiscal
policy is active if θ = 0 and κ 6= 0. We assume that the reaction coefficients in (3)
can change between different policy regimes. We estimate the fiscal rule with a Markov
Switching (MS) model in which the probability of each different regime — indicated by
the state mt — can vary endogenously over time:

ft = ρ(mt)ft−4 + (1− ρ(mt))[κ(mt) + γ(mt)xt + θ(mt)dt] + vt(mt) (4)

3 Data

We compile a new dataset covering the period between 1966Q1 and 2014Q4. The data
are retrieved from NIPA Table 3.2 as calculated by the Bureau of Economic Analysis and
from the FREDII database from the Federal Reserve Bank of Saint Louis. The primary
deficit to GDP ratio ft is calculated as the difference between Federal Government
Current Receipts and the Federal Government Current Expenditure — net of Interest
Payments — divided by the GDP. The output gap xt is calculated as the percentage
difference of real GDP and potential real GDP — as estimated by the Congressional
Budget Office. The debt-stabilising primary deficit dt is calculated following Favero and
Monacelli (2005) and is depicted in figure 1.

4 Results

4.1 Testing for endogeneity

Before we estimate the MS model outlined above, we address the possible existence of
endogenous explanatory variables. A large part of the literature suggests that, at least in
the short run, fiscal policy does have an effect on output growth (Jaimovich & Panizza,

4
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Figure 1: Debt-stabilising deficit vs. primary deficit in the US

2007). Under the existence of endogenous explanatory variables, it is not possible to
consistently estimate MS models by applying the standard Hamilton (1989) filter (Bae,
Kim, & Kim, 2012).

We first test for the hypothesis of endogeneity by using the standard Durbin and
Wu-Hausman test after instrumenting xt and dt with their four-period lags. We apply
the test on xt and dt individually as well as on the combination the two variables. Table
1 presents the p-values for the three possibilities as well as the results of a test for weak
instruments.

Test statistic xt dt xt and dt

Durbin score .0000 .0000 .0000
Wu-Hausman .0000 .0000 .0000

Minimum eigenvalue statistic 73.8143 48.8165 21.9101

Table 1: Durbin and Wu-Hausman tests of endogeneity

In either specification, we reject the null hypothesis of exogenous variables, which
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confirms our a priori expectations about the existence of endogenous explanatory vari-
ables. The minimum eigenvalue statistic indicates that the chosen instruments should
not be considered as weak.

4.2 Markov Switching estimates of the fiscal rule

In contrast to papers that only test the change in the debt response, or the symmetry
of the cyclical response, we test for stochastic changes over time in all coefficients of
(4). Additionally, we allow the variance of the shocks to switch between regimes. We
start by estimating a two-regime MS model of (4) by maximum likelihood, using the
Expectation-Maximization (EM) algorithm. Table 2 exhibits the results for estimation
of the fiscal rule. First of all, and in contrast to previous work, our results indicate
that for none of the regimes we find a parameter estimate for dt that is not statistically
different from one. According to the specification of the fiscal rule, we can not conclude
that the US government pursued a debt-stabilising fiscal policy for the period covered.
The transition probabilities for the basic model are given by figure 2.

State mt Var Coef. Std. Err. t-ratio 95% Conf. Interval

State 1 ft−4 .665 .043 15.33 .580 .750
xt -.204 .040 -5.06 -.283 -.125
dt -.357 .084 -4.23 -.523 -.192
κ -.012 .001 -10.81 -.015 -.010

State 2 ft−4 .629 .050 15.51 .530 .727
xt -.326 .044 -7.39 -.413 -.240
dt -.583 .097 -6.01 -.773 -.393
κ .004 .001 2.82 .001 .007

Table 2: Estimation results: Standard MS model

4.3 Accounting for endogeneity in MS models

However, as mentioned before the previous results should be evaluated with care because
the endogeneity of the regressors leads to inconsistent estimators. To account for the
endogenous character of the explanatory variables in this MS framework, we propose
the same two-step MLE procedure as pioneered in Kim (2004) and further developed by
Psaradakis, Sola, and Spagnolo (2006), Kim (2009) and Bae et al. (2012).

To be completed

5 Conclusion

The 2008–2009 financial crisis has shaken the beliefs about how macroeconomic policy
should be conducted Central banks in G7 countries shifted to unconventional policy

6
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Figure 2: Transition probabilities of standard MS model

measures in the aftermath of the Financial Crisis, when faced with economic slack,
financial instability and fiscal trouble. Governments were swift in saving the banking
system, and the economy as a whole, from collapse. This shift ended a spell of rules-
based time consistent policy that started in the mid-1980s and in many industrialised
economies. Changes in policy regimes occur in response to economic or political events.
We show that expectations on policy regimes cause the effects of policy actions to be
anticipated by households. Their subjective expectations are modified by policy actions
that make policy likely to move in one direction. We account for this endogeneity with a
novel Markov Switching test of a fiscal rule. Results show that the stable mix of policies
during the Great Moderation gave way to a mix of ‘passive’ monetary and ‘active’ fiscal
policy since the mid-2000s.

7
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Abstract. This paper proposes a robust estimation method of the sam-
ple autocovariance and autocorrelation functions in the presence of addi-
tive outliers. The robustness property is achieved by replacing the stan-
dard Fourier transform by its robustified version obtained by substituting
the least square procedure in the harmonic regression by the non-linear
M-regression. Simulation experiments are conducted to assess the per-
formance of the estimators under contaminated and non-contaminated
scenarios.

Keywords: Autocovariance Function; Outliers; M-periodogram; Esti-
mation

Atypical observations (outliers) are present in time series of diversified ori-
gins. It is well known that outliers significantly destroy the correlation structure
of a time series even when only one atypical observation is present, see, for ex-
ample, [1–3] and the references therein. As a possible approach for solving this
problem, [4] proposed a highly robust estimator of the autocovariance function
(ACOVF) and autocorrelation function (ACF), denoted by 𝛾𝑄(.) and 𝜌𝑄(.), re-
spectively. These estimators are based on the 𝑄𝑛(.) scale estimator proposed by
[5], whose asymptotic properties were studied by [6] for univariate time series.

As noticed by [4], their robust ACOFV estimator does not provide a non-
negative definite sample covariance matrix. Although this is an undesirable prop-
erty for an autocovariance function estimator, the highly robust performance of
𝛾𝑄(.) motivated its adoption by [3] to obtain an estimator of the spectral density
function which is robust against additive outliers.

In addition time series analysis in the frequency domain is based on the
study of the spectral density function from which the periodogram is an estima-
tor. As demonstrated by [3], the periodogram lacks robustness properties against
outliers. Therefore, robust methods to minimize the effect of outliers on the esti-
mation of periodogram have to be considered. In this direction, different robust
periodogram methods have been proposed by the literature, see, for instance,
[7–11], among others.
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It is known that the periodogram can be obtained directly from a least
squares estimates of the Fourier coefficients and is hence sensitive to outliers
in data. Thus, to mitigate this problem, one may consider the use of robust re-
gression methods, e.g., a robust M-regression, instead of the standard approach.
Recently, this approach has been considered by [10] and [11] providing good re-
sults in the estimation of the coefficients of PARMA models and the fractional
parameter of ARFIMA models, respectively.

In addition, the sample autocovariance function and periodogram are related
by means of the Fourier transform. Thus, this work considers the estimation
of the sample autocovariance and autocorrelation functions from the robust M-
periodogram. The approach consists in fitting a robust harmonic regression to
obtain a robustified version of the discrete Fourier transform. That is, at each
Fourier frequency, a sine and cosine coefficients are fitted using M-regression.
Then, the ACOVF and ACF are obtained by taking the inverse of the squared
robust Fourier transform.
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1 Introduction 
 

Oscillations of frequency range 60-200 Hz, called high gamma, have been proposed to play a role in the 
dynamic organization of neuronal assemblies in large-scale brain networks responsible for cognition and other 
brain functions [1-3]. Oscillatory activity arising from one subnetwork is hypothesized to have a causal influence on 
activity of another subnetwork. These causal influences are expected to occur with different strengths and 
directionalities, reflecting the changing functional demands on cortical networks during task performance and 
thereby identify network nodes crucial for function.  

On the other hand, high frequency oscillations (HFOs) of same frequency range and higher, have been 
observed within seizure onset zone [4-5]. Seizures are understood to arise from epileptogenic networks across 

Abstract. Event Related Causality (ERC), a model-free method based on the concept of Granger 
causality, employs multivariate autoregressive model (MVAR) to investigate dynamics of directed 
interactions among neural networks. ERC is designed to determine the direction and intensity of 
neural activity propagation, and to selectively indicate only direct propagations. Short-time event-
related changes are followed using an adaptive approach to stochastic non-stationary signals 
analysis. The statistical method accounts for a non-stationary baseline as well. Application of ERC 
to human electrocorticographic recordings (ECoG) shows the dynamics of high gamma activity flow 
among cognitive networks, as well as high frequency oscillations (HFOs) propagation in epileptic 
pathology. Moreover, ERC identifies networks' nodes, which may help to discriminate cognitive vs. 
epileptogenic neural networks when planning for epilepsy surgery. 
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which ictal activity is propagated and sustained. The pattern by which high frequency activity is propagated may 
help elucidate epileptogenic networks, and thereby identify network nodes relevant for surgical planning [6]. 

To capture the dynamics of such functional and pathological brain interactions, their directions, intensities, 
spectral characteristics, as well as networks’ nodes, of both functional and pathological activity propagation, 
event-related causality (ERC) method is proposed. 

The rest of this paper is structured as follows. Section 2 introduces the Event Related Causality (ERC) method and 
presents its effectiveness in identifying patterns of activity flows in simulated models. Section 3 shows examples of ERC 
applications to human cognitive and epileptogenic neural networks. Section 4 concludes advantages of ERC. 

 

 

2 Event Related Causality 

 

ERC method is a multichannel extension of the Granger causality concept [7], which states that an observed time series 
y(t) causes another time series x(t), if knowledge of y(t)'s past significantly improves prediction of x(t) (Fig. 1).  

 

 

 

 

 

 

 

Unfortunately, nonzero values of multichannel Granger causality between two signals do not necessarily imply 
that the causal influences between counterpart recording sites are direct. Multichannel Granger causality 
represents a linear combination of causal influences along all causal pathways – direct and indirect – originating 
from one signal-site and terminating at another. The influence may be mediated by another site or by several sites. 
To overcome this limitation, a previous multichannel extension of Granger causality was combined with partial 
coherence.   

In a multivariate autoregressive (MVAR) model, recorded signals can be expressed:  

 

         (1) 

Fig. 1. Granger causality 

x t
j 1

p

A j x t j e t
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where Aj is a MVAR coefficients matrix, e(t) is a zero-mean uncorrelated residual noise vector, and p is the model 

order. The model order can be obtained from Akaike information criterion [8]. 

After transformation to the frequency domain, a transfer matrix H of the multivariate process can be obtained 
[9]: 

 

             (2) 

By combining elements hkl of transfer matrix H with the partial coherence we have [10]:  

                  (3) 

the short-time direct directed transfer function (SdDTF) is defined in the form [11]: 

                (4) 

SdDTF (Fig.2 far right, and Fig. 3 - far right) gives an estimate of the intensity and direction of activity 
propagation between recording sites as a function of frequency. This measure is designed to selectively index only 
direct relationships. A newly introduced standardization procedure makes it possible to compare estimates of 
information flow across subjects [11]. 

 
 
 
 

kl f
c kl f

c kk f c l l f

kl f
hkl f kl f
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hkl f 2

kl f 2
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j 0

p

A j e
i2 j f t 1

Fig. 2. Top: Schematic of simulated model of activity flows. 1st time interval; all signals contained the same spectral 
components ~90 Hz, and different white noise, but no flow (no causal relations) between channels was simulated. 2nd 
interval; ~90 Hz flows from channel 1 to 2 (1�2), and from 2 to 3 (2�3). 3rd interval; ~110 Hz components, but no flow. 4th 
interval; ~110 Hz flows 3�2 and 2�1 were simulated.  

Bottom: Cross-spectra, coherences, SDTFs, and SdDTFs of multivariate MVAR model of the simulated signals. In each plot, 
horizontal axis - time, vertical axis - frequency, colorscale - value of calculated functions (blue - minimum, red - maximum). 
SDTF and SdDTF matrices are not symmetric; each plot shows flows from the channel labeled above the plot to the channel 
labeled to the left of the plot. SdDTF measures only direct activity flows. 
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To follow the temporal course of brief changes in neural activity propagation between different brain regions, 

an algorithm introduced by Ding [12] was used for MVAR coefficient estimation in multichannel signals recorded 
during multiple repetitions (trials) of the same process. This enables the analysis of nonstationary signals such as 
ECoG activity accompanying cognitive processes.  

To evaluate the statistical significance of event-related changes in SdDTF, i.e. event-related causality (ERC), a 
new statistical methodology was developed for comparing pre-stimulus (baseline) with post-stimulus SdDTF 
values. Both the baseline and post-stimulus epochs are treated as non-stationary. Bivariate smoothing was 
applied, using a penalized thinplate spline model, to construct a joint 95% confidence interval [13], while the 
Family-Wise Error Rate (FWER) was controlled using the Bonferroni correction. The implicit null hypothesis was 
that: 

 

HT
0: or ... or                (5) 

with the corresponding alternative 

HT
A: and ... and               (6) 

Ft denotes the SdDTF baseline probability distribution at time t, with 1≤t≤t0 where t0 is the start of the last 

time-window within the baseline. Similarly, GT denotes the SdDTF probability distribution at time T after stimulus, 

with 1≤T≤T0 where T0 is the start of the last post-stimulus time-window. The means of the probability distributions 

Ft and GT, are respectively denoted by �(Ft) and �(GT). This test rejects HT
0 if zero is not contained in one of the 

confidence intervals.  

 

 

3 Neural networks 

 

3.1. ERC reveals dynamics of high gamma activity propagation during cognitive processes  

The utility of the ERC method has been demonstrated through its application to human electrocorticographic 
signals (ECoG) recorded during simple language tasks [11]. ERC analysis revealed frequency-dependent 

F 1 G T 0 F t 0
G T 0

F 1 G T 0 F t 0
G T 0

Fig. 3. Left: schematic of another simulated model of activity flows. Center: cross-spectra. Right: SdDTF. 
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interactions, particularly in the high gamma frequency range (80-100 Hz), between brain regions known to 
participate in the language processes. The temporal evolution of these interactions is consistent with the putative 
processing stages of this task (Fig. 4).  

 

3.2.  Divergence of ERC flows identifies nodes of language network, characterized also by prominent changes 
in signal energy  

ERC analyses of ECoG signals recorded during a bimodal word production task, when responses were spoken 
or were gestured in American Signed Language (ASL), revealed that the language cortex interacts with different 
areas of the sensorimotor cortex during spoken vs. signed responses (mouth/tongue areas vs. hand and arm areas, 
Fig 5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Left: ERC matrix of ECoG recorded during auditory word repetition. Colorscale (min to max) - to right of array. Black 
indicates time-frequency points with no significant difference between SdDTF after stimulus and SdDTFs for baseline. 
Yellow-green-blue show event-related decreases of poststimulus SdDTF. Orange-red-brown show event-related increases. 
Right: Integrals of ERC for high gamma frequency 82–100 Hz calculated for three stages of auditory word repetition task: 
auditory perception, response preparation, and verbal response. Arrows indicate directionality of ERC, width and color 
represent the value of ERC integral. Colorscale at the left. For clarity, only integrals for event-related flow increases are 
shown [11]. 

Fig. 5. Integrals of ERC flows at 70–115 Hz calculated for two sequential time intervals of picture naming task with spoken 
(top panels) vs. signed responses (bottom panels).  
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Furthermore, it has been shown that the sites from which the most numerous and prominent causal 
interactions originated, i.e. sites with a pattern of ERC “divergence”, were also sites where high gamma power 
increases were most prominent and where electrocortical stimulation mapping interfered with word production. 
(Fig 6).  

 
 
 
 
 
 
 

 
 
 
 
 
 

 
These findings suggest that the number, strength and directionality of event-related causal interactions may 

help identify network nodes that are not only activated by a task but are critical to its performance [14]. 
 

3.3. Divergence/convergence of high-frequency epileptic activity identifies nodes of epileptogenic networks. 
Locations of these nodes correspond to locations of seizure foci identified by epileptologists  
 

Analyses of ECoG ictal recordings (i.e. during epileptic seizures), as well as interictal recordings, revealed 
prominent divergence and convergence of high frequency activity propagation at sites identified by epileptologists 
as part of the ictal onset zone (Fig. 7). In contrast, relatively little propagation of this activity was observed among 
the other analyzed sites. This pattern was observed in both subdural and depth electrode recordings of patients 
with focal ictal onset, but not in patients with a widely distributed ictal onset.  

These patterns elucidated epileptogenic networks, and thereby identified network nodes relevant for surgical 
planning [15].  
 
 

Fig. 6. Comparison of event-related causal interactions vs. functional activation during picture naming with spoken and 
signed responses. Top-left - relative magnitudes of ERC outflows from each site during picture naming with spoken 
responses. The radius of each circle is proportional to normalized sum of statistically significant event-related increases in 
causal interactions directed outwardly from the site. Bottom left - power changes shown by matching pursuit (MP) in the 
time-frequency plane for the same task.  
Right: Comparison of event-related causal interactions (top-right) vs. functional activation (bottom-right) during picture 
naming with signed responses [14]. 
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ERC analyses have been successfully applied to EEG recordings from human scalp [16], as well as in group 

analyses of several patients [16-17]. 
 
 
4 Conclusions 
 

• ERC is a sensitive method for determining dynamics of causal interactions among cognitive and epileptic 
networks. 

• ERC identifies nodes of functional and pathological networks.  
• ERC may help to discriminate cognitive vs. epileptogenic networks when planning for epilepsy surgery. 
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Abstract We study sieves estimators for a class of functional autoregressive pro-
cesses when the parameter operator belongs to classes of Hilbert-Schmidt operators.
We then show the almost sure convergence, almost complete convergence, exponential
bounds and obtain rates of convergence of the sieves estimators in each class. We also
present the same results of convergence for the sieves predictors. The rates of conver-
gence are deeply depend on smoothness of the sieves and decay rate of the eigenvalues
of the parameter operator. Numerical simulations illustrate the behavior of the sieves
predictors.

Keywords : Functional Autoregressive Processes ; Sieves Estimators ; Exponential
Bounds ; Sieves Predictors ; Rates of Convergence.

1 Notations and Results

Let (H,H) be a real separable Hilbert with inner product < ., . >, the norm ‖.‖.
Let L (H) be the space of linear bounded operators on H, ‖.‖L the norm of linear
bounded operators. A H-valued Gaussian white noise (εn, n ∈ Z) with zero mean and
covariance operator Cε, is a Gaussian sequence of i.i.d. H-valued rv’s. A H-valued
process X = (Xn, n ∈ Z) is said to be an Hilbertian autoregressive process if

Xn = ρ(Xn−1) + εn (1)

where the parameter ρ ∈ L (H) such that ‖ρ‖L < 1.
The parameter ρ ∈ Θ a parameter space which will be an Hilbert space of the

space S2(H) of Hilbert-Schmidt operators on H and will be specified later. Let Xn =
(X0, ...Xn) be observations of (1), Pn,ρ = PX0

(X1,...,Xn,ρ)
is the conditional probability

law of (X1, ..., Xn) given X0 and Pn,ε is the probability law of (ε1, ..., εn). We denote

f(Xn, ρ) := dPn,ρ

dPn,ε
the derivative of the absolute continuous part of Pn,ρ with respect to

Pn,ε. The probability law of X = (Xn, n ∈ Z) is denoted by Pρ. We consider the sieves
estimators of Grenander (or projection method). A sequence {Sk, k ≥ 1} of subsets of Θ
is called a sieves if Sk is a compact set, {Sk} is increasing sequence and

⋃
Sk is a dense

set in Θ. A sequence of estimators {ρ̂n,k} is called a sieves estimators corresponding to
{Sk} if it satisfies

f(Xn, ρ̂n,k) = sup
ρ∈Sk

f(Xn, ρ) (2)
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For a sieves {Sk, k ≥ 1} of Θ, we introduce the following notations :
1. ρ

k
is the orthogonal projection of ρ on Sk .

2. Let β > 0, Un,k = nβ(Sk − ρ
k
) and for u ∈ Un,k, let Zn,k(u) = log[f(Xn, ρ

k
+

u/nβ)/f(Xn, ρ
k
)] be the likelihood process.

3. For x ∈ H, aj(x) =< x, ej > denotes the Fourier coefficient of x with respect to
ej and [a] is the largest integer less than or equal to a ∈ R .

Let {ej, σ2
j , j ≥ 0} be the eigen-elements of the covariance operator Cε of ε0 such that

σ2
j > 0. We set the following condition on the eigenvalues {σ2

j , j ≥ 0}.
A0. min(infr≥0

σ2
r

σ2
r−1

, infr≥0
σ2
r

σ2
r+1
) > 0, max(supr≥0

σ2
r

σ2
r−1

, supr≥0
σ2
r

σ2
r+1
) <∞ with σ−1 =

σ0

We introduce two classes of parameters.
First Class : the parameter space Θ̃ is defined by

Θ̃ = {ρ ∈ S2(H) / ρ is symmetric and commutes with Cε}.
The space Θ̃ is a separable Hilbert space of S2(H) with inner product < ρ1, ρ2 >2=∑
j≥0 λj(ρ1)λj(ρ2) where {λj(ρ), j ≥ 0} are the eigenvalues of ρ and norm ‖.‖2.
We define the sieves {Sk, k ≥ 1} in the parameter space Θ̃ : for q > 0

Sk = {ρ ∈ Θ̃ / ρ =
k∑

j=0

< ρ, sj >2 sj,

k∑
j=0

< ρ, sj >
2
2 ≤ k2q}.

Second Class : the parameter space Θ̃∗ is the kernel operators space acting on the
functions space L2

[0,1]. An operator ρ in Θ̃∗ is defined for θ ∈ L2 = L2
[−1,1] by

ρf(t) := ρθf(t) =

∫ 1

0

θ(t− s)f(s)ds. (3)

The parameter is now the kernel θ. We suppose that the eigenfunctions of Cε are the
trigonometric base : e0 = 1, e2j(t) =

√
2 cos(2πjt), j ≥ 1, e2j+1(t) =

√
2 sin(2π(j+1)t),

j ≥ 0, t ∈ [−1, 1] and eigenvalues {σ2
j , j ≥ 0} ∈ l1.

We make the following conditions on the kernel θ :
A1. θ is a continuous periodic function, of period 1 and ‖θ‖L2 < 1.
A2. θ is an even function.
A3. θ is an odd function.

We introduce the sieves {Θk, k ≥ 1} and {Θ∗k, k ≥ 1} of L2
[−1,1] : for q > 0,

Θk = {θ satisfies A1 and A2 / θ =
∑k

j=0 < θ, ej > ej,
∑k

j=0 a
2
j(θ) ≤ k2q}.

Θ∗k = {θ satisfies A1 and A3 / θ =
∑k

j=1 < θ, ej > ej,
∑k

j=1 a
2
j(θ) ≤ k2q}.

and their respective sieves estimators θ̂n,k, θ̂
∗
n,k of θ.

For the two classes we have the expressions of the sieves estimators.

2
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Theorem 1.1 .
1. Let ρ ∈ Θ̃ and q > 0. Then the sieves estimators are given by : for all n, s,

ρ̂n,[ns]x =

[ns]∑
j=0

λ̂j < x, ej > ej, x ∈ H (4)

where for 0 ≤ j ≤ [ns], λ̂j =
∑n

i=1 aj(Xi)aj(Xi−1)

2μσ2
j+

∑n
i=1 a

2
j (Xi−1)

and μ > 0 is the Lagrange multiplier

such that
∑[ns]

j=0 λ̂
2
j = [ns]2q.

Theorem 1.2 .
Let ρ ∈ Θ̃∗ and defined by (3) and mn = 2[ns/2].
1. Suppose A1 and A2. Then for all t ∈ [0, 1],

θ̂n,mn(t) =
√
2

mn∑
j=1,j, even

r̂jej(t) + r̂0e0(t)

where r̂0 =
∑n

i=1 a0(Xi)a0(Xi−1)

2μσ2
0+

∑n
i=1 a

2
0(Xi−1)

and for 2 ≤ j ≤ mn, j even,

r̂j =

∑n
i=1

aj(Xi)aj(Xi−1)

σ2
j

+
∑n

i=1

aj−1(Xi)aj−1(Xi−1)

σ2
j−1

2μ+
∑n

i=1

a2
j
(Xi−1)

σ2
j

+
∑n

i=1

a2
j−1

(Xi−1)

σ2
j−1

and μ > 0 is the Lagrange multiplier such that
∑mn

j=0, j even r̂
2
j = m2q

n .
2. Suppose A1 and A3. Then for 0 ≤ t ≤ 1,

θ̂∗n,mn
(t) =

mn∑
j=1,j odd

√
2r̂∗j ej(t)

where for 1 ≤ j ≤ mn, j odd,

r̂∗j =

∑n
i=1

aj(Xi)bj(Xi−1)

σ2
j

−∑n
i=1

aj+1(Xi)bj+1(Xi−1)

σ2
j+1

2μ+
∑n

i=1

b2
j
(Xi−1)

σ2
j

+
∑n

i=1

b2
j+1

(Xi−1)

σ2
j+1

μ is the Lagrange multiplier such that
∑mn

j=1,j j odd(r̂
∗
j )

2 = m2q
n and

bj(x) =< x, ψj > where the base (ψj) is a base in H.

For the first class Θ̃, we have a.s. convergence, exponential bounds and rates for
the sieves estimators.

Theorem 1.3 . Let ρ ∈ Θ̃. Then the sieves estimators {ρ̂n,k} defined by (2) satisfy :
i) ρ̂n,[ns] →n→∞ ρ, Pρ− a.s.
ii) ∀h > 0, ∃N = N(ρ, h) > 0 such that ∀n > N,

Pρ{‖ρ̂n,[ns] − ρ‖2 > h} ≤ exp(−Cn1−sh2)

where 0 < s < 1/2 and the constant C > 0 depends only on ρ.

3
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Theorem 1.4 . Let ρ ∈ Θ̃ , 0 < β < 1/2 and 0 < s < 1−2β
2

.

If nβ(
∑+∞

j=[ns]+1 λ
2
j(ρ))

1/2 →n→∞ 0, then we have :

i) nβ‖ρ̂n,[ns] − ρ‖2 →n→∞ 0, Pρ− a.s.
ii) ∀h > 0, ∃N = N(ρ, h) such that ∀n > N ,

Pρ{nβ‖ρ̂n,[ns] − ρ‖2 > h} ≤ exp(−Cnbh2)

where b = 1− 2β − s and the constant C > 0 depends only on ρ.

For the second class Θ̃∗, the following results give the a.s. convergence, exponential
bounds and rates for the sieves estimators.

Theorem 1.5 . Let β > 0, 0 < s < 1/2 and mn = 2[ns/2].
a. Under A1 and A2 we have :
i) ρθ ∈ Θ̃.
ii) ‖θ̂n,mn(s) − θ‖L2 →n→∞ 0, Pθ-a.s.
iii) ∀h > 0, ∃N = N(θ, h) > 0 such that ∀n > N,

Pθ{‖θ̂n,mn(s) − θ‖L2 > h} ≤ exp(−Cnbh2)

where b = 1− s the constant C > 0 depends only on θ.
b. Under A0- A1 and A3, we have
i) ρθ ∈ Θ̃∗.
ii) ‖θ̂∗n,mn(s)

− θ‖L2 →n→∞ 0, Pθ-a.s.

iii) ∀h > 0, ∃N = N(θ, h) > 0 such that ∀n > N,

Pθ{‖θ̂∗n,mn(s) − θ‖L2 > h} ≤ exp(−Cnbh2)

where b = 1− s and the constant C > 0 depends only on θ.

Theorem 1.6 . Let 0 < β < 1/2 and 0 < s < 1−2β
2

.

a. Under A1 and A2 and if nβ(
∑+∞

j=mn(s)+1 < θ, ej >
2)1/2 →n→∞ 0,

then the results a.ii) and a. iii) of Theorem 1.5 hold with the rate of convergence
nβ and b = 1− 2β − s.

b. Under A0- A1 and A3 if nβ(
∑+∞

j=mn(s)+1 < θ, ej >
2)1/2 →n→∞ 0,

then the results b.ii) and b.iii) of Theorem 1.5 hold with the rate of convergence
nβ and b = 1− 2β − s.

Remark . The condition nβ(
∑+∞

j=[ns]+1 λ
2
j(ρ))

1/2 →n→∞ 0 of Theorem 4, gives the

rate of convergence nβ of the sieves estimators which is determined by the smoothness s
of the sieves and the decay rate of the eigenvalues of the parameter operator. Examples
satisfying this condition are in section simulations.

The best probabilistic predictor of the random variable Xn+1 is ρ(Xn). We may
define a statistical predictor ρ̂n,[ns](Xn) (or ρ̂

∗
n,[ns](Xn)) corresponding to the two sieves

estimators. We have the following results for the two sieves predictors.

Theorem 1.7 Under the conditions of Theorem 1.3 and Theorem 1.5 we have respec-
tively for the two sieves predictors, under Pρ :
‖ρ̂n,[ns](Xn)− ρ(Xn)‖2 →n→+∞ 0 and ‖ρ̂∗n,[ns](Xn)− ρ(Xn)‖2 →n→+∞ 0

4
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2 Numerical Simulations

In this section, we carry out numerical simulations to illustrate the behavior of
sieves estimators when the operator ρ belongs to the second Class and when H =
L2[0, 1]. A strong white noise is generated by its Karhunen-Loeve expansion where
σ2
k = 1/(k + 1)2, k ≥ 0 and {ek(t), k ≥ 0} is the trigonometric base of L2([0, 1]) deve-
loped by J. Damon and S. Guillas available at R-package far. Then we generate 310
observations of the ARH(1) process, each trajectory is calculated at m=20 values of
the corresponding interval. To show the behavior of the sieves estimator we divided
[0, 1] into 100 parts, we take s = (1/2) − 0.01 and the Lagrange multiplier μ = 5. We
consider two cases : even kernel and odd kernel.

Example 1. We take a kernel integral operator ρθf(s) =
∫ 1

0
θ(s− t)f(t)dt where θ

is an even continuous function, periodic on R with period 1.

The true kernel is defined on [0, 1] by

θ(t) = cos(2πt)

The following graphic shows the oscillations of the Sieves estimator (blue curve) for
one realization around the true function θ (red curve) for different sample values n .

Example 2. We take a kernel integral operator ρθf(s) =
∫ 1

0
θ(s− t)f(t)dt where θ

is an odd continuous function, periodic on R with period 1.

The true kernel is defined on [0, 1] by

θ(t) = sin(2πt)

The following graphic shows the oscillations of the Sieves estimator (blue curve) for
one realization around the true kernel θ (red curve) for different values of n .

5
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We may observe that the graphics show a good behavior of the sieves estimators in
the two cases as n increase.
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1 Introduction 

Modeling lies at the heart of time series analysis. The registered data contain hidden 

information about the process under investigation. They reflects complexity of the 

phenomenon and its important features, e.g.: power law distributions, nonlinear dy-

namics, multifractal structure or long range correlations. Non-regularity of many nat-

ural data induces us to accept the assumption about stochastic basis of  time series, so 

the registered data can be treated as realizations of stochastic processes. In order to 

describe mathematically these processes different stochastic models were applied and 

tested. Procedures of reconstruction of a chosen model from time series are necessary 

for modeling in practice. In the case of linear ARMA models very good reconstruc-

tion procedures were elaborated. However, a proper description of many processes 

requires nonlinear models. The Langevin equation introduces nonlinearity in drift and 

diffusion terms and leads to a wide class of distributions; from Gaussian to inverse-

power. Moreover, following the well-known correspondence of the Langevin and the 

Fokker-Planck equation, Siegert et al. [1] introduced the procedure of reconstruction 

of the standard Langevin equation, which was based on numerical estimations of the 

joint distribution function (i.e., histograms). The method was then developed in other 

papers (e.g., [2 – 6]). Both the models, linear ARMA and nonlinear Langevin, have 

their merits and demerits. ARMA models can describe Markov time series of order m, 

but the linearity is limiting their usefulness. On the other hand, the Langevin model is 

nonlinear, but it can describe only Markov processes (of order 1). 

     In this work we introduce the generalized discrete Langevin equation for some 

class of non-Markov processes, namely for persistent time series of order p.  The 

standard reconstruction procedures fail in this case, therefore, we propose a new 

method of reconstruction of the generalized Langevin equation from data. This work 

is a significant extension of our previous approach [7] in which persistent processes of 

order p = 1 were taken into account. 
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2 The generalized discrete Langevin equation 

For persistent processes non-local effects must be considered. We assume that the 

next state y(t + t) of the process is dependent not only on the present state y(t) but 

also on signs stk of p previous jumps  y = y(t - (k - 1)t) - y(t - kt), where k = 1, 2, 

..., p. To this aim, the standard discrete Langevin equation  is modified by introducing 

a new random function c(st, rt; d) which determines the sign of the diffusion term, i.e.,  

                     ||))(();,())(()()( tt ttybrcttyatytty  dst
                (1) 

The function c(st, rt; d) depends on vector random variable st = [st1, st2, …, stp], random 

scalar variable rt  and on vector persistence parameter d = [d1, d2, …, d2
p] . The func-

tion can be equal 1 or  –1 randomly, according to rules which describe a complex 

persistence of time series.  For persistent processes of order p the function c(st, rt; d) is 

keeping the tendency of increase/decrease of y(t) in the next step according to given 

probabilities pi = 1- di, where i = 1, 2, …, 2p.   When all pi = 1/2 then Eq. (1) reduces 

to the standard Langevin equation without the modification.  

3 Reconstruction procedure 

The standard procedure [1] of reconstruction of the Langevin equation from time 

series leads to the proper estimation of the diffusion function b(y)  but to the wrong 

reconstruction of the drift function a(y) in the case of  generalized equation (1).  To 

estimate the deviation in the drift we propose the modified reconstruction procedure. 

The algorithm can be summarized in three steps as follows:  

   Step 1.  First reconstruction of a(y).  

The first using of the standard procedure to the input persistent time series leads to the 

first reconstruction a1(y) of function a(y) and b1(y) of function b(y): 

 

                                          
),()()(

 ,)()()(

1

11

ybybyb

yyaya

R 

 
                                                  (2)    

whereis the deviation.                             

   Step 2. Estimation of parameter d. 

A direct method of estimation of parameters pi from data is based on histograms PH of 

the joint probability P(st2
p

,… ,st3, st2, st1, c).  

 

Step 3. Final reconstruction of a(y).  

Time series generated by the modified Langevin equation (1), with parameter d esti-

mated in Step 2 and reconstructed functions a1(y) and bR (y), is treated as the input to 

the second use of the standard procedure. At the result, function a2(y) is reconstructed, 

where  

                                               .)()()( 212 yyaya                                                  (3) 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1090



                                                         

Assuming that deviation |(y)| << |a(y)| and then (y)  (y) we obtain 
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             (4) 

 

The reconstructed modified Langevin equation has a form of Eq. (1) with a(y) = aR(y), 

b(y) = bR(y) and parameter d estimated in Step 2.  

     It should be underlined that for the case p = 1 the following correct analytical for-

mula was derived for the deviation in reconstruction of the drift function [7]:  

 

                                )(')(2
21

111 ybya
d







                                       (5) 

The expression depends on the estimated persistence parameter d and on first recon-

structions a1(y) and b1(y) given by the standard procedure.    

4 Testing of the modified  reconstruction procedure 

In order to test an efficiency of the procedure we generate time series by using the 

modified Langevin equation (1) with different functions a(y) and b(y), different val-

ues of the parameter d, different time increments t and considering different time 

series lengths N. This enables to compare the input parameters and functions to the 

reconstructed ones. 

Figure 1 and 2 show how the procedure is working for the case: a(y) = - (1 - 2y)/2, 

b(y) = y2, d1 = d2 = 0.65, d3 = d4 = 0.60, d5 = d6 = 0.55, d7 = d8 = 0.5, N = 1000000, t 

= 0.01. The Step 1 of the procedure leads to first reconstructions, a1(y) and b1(y). 

They are represented by least-square fits (long-dashed lines) to a cloud of points in 

Fig. 1 and Fig. 2, respectively. We note that b1(y) is a good estimation of the input 

diffusion function, it coincides with the input b(y) = y2. In Step 2 we estimate the 

parameters d and we find: d1 = d2 = 0.646, d3 = d4 = 0.599, d5 = d6 = 0.547, d7 = d8 = 

0.499.  Then, according to Step 3, we generate a new time series by using the modi-

fied Langevin equation (1) with reconstructed functions a1(y) and bR(y) = b1(y) and 

estimated parameter d. We apply again the standard procedure to obtain a2(y) (repre-

sented by the dashed line fitted to a cloud of ‘+’ signs, see Fig. 1). Relation (4) leads 

to the final reconstruction aR(y) (continuous line in Fig. 1). We can note that the re-

construction is very close to the input a(y) (thick continuous line). 
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Fig. 1. Reconstruction of the drift function. The final reconstruction aR(y) (continuous line) is 

close to the input function (thick continuous line). Long-dashed  line and dashed line represent 

intermediate reconstructions of drift function, a1(y) and a2(y),  respectively.  

 

 

Fig. 2. Reconstruction of the diffusion function. The final reconstruction bR(y) = b1(y) (long-

dashed line) fits very well to  the input function b(y) = y2.  
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Abstract. Several bootstrap algorithms for prediction intervals have
been considered to construct confidence intervals for the conditional den-
sity function in Markov processes. These methods are: Model-Free Boot-
strap, Predictive Model-Free, Limit Model-Free, Nonparametric Autore-
gression with fitted and predictive residuals, Local Bootstrap and Boot-
strap based on estimates of the transition density (see [3], [5], [4], [6], [7]
and [8], respectively). However, to achieve good coverage of confidence
intervals, it is of utmost importance to use an appropriate bandwidth se-
lector to estimate the conditional density function. In this sense, rule of
thumb and cross validation smoothing parameters have been considered.
Furthermore, smoothed stationary bootstrap (see [1]) has been used to
obtain a new bootstrap bandwidth selector for conditional density es-
timation via working out a closed expression for the mean integrated
squared error. This is very useful since Monte Carlo approximation is
no longer needed. Finally, a simulation study has been carried out to
compare empirically the performance of these methods considering the
aforementioned smoothing parameters.

Keywords: conditional density, kernel method, model-free bootstrap,
confidence interval, mean integrated squared error, smoothed station-
ary bootstrap, markov processes

1 Introduction and bootstrap confidence intervals

Bootstrap methods for time series have been extensively studied during the last
three decades. To a deeper insight on the topic, a recent review of the state of
the art of literature was given by Kreiss and Paparoditis (see [2]).

In particular, our aim is to construct confidence intervals for the conditional
density function in the setting of Markov processes. In this context, two well-
known methods have been already proposed:

1. The bootstrap method based on kernel estimates of the transition density of
the Markov processes, proposed by Rajarshi (see [8]).
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2. The Local Bootstrap for Markov processes of Paparoditis and Politis (see
[6], [7]).

Moreover, in terms of establishing prediction intervals, Pan and Politis (see
[3], [5]) proposed several bootstrap algorithms: the model-free bootstrap for
Markov processes, the predictive model-free bootstrap and the limit model-free
bootstrap. Furthermore, the model-free bootstrap algorithm has been discussed
by Politis (see [5]) to construct confidence intervals for the conditional expecta-
tion function as well.

In addition, considering a nonparametric autoregression model, Pan and Poli-
tis (see [4]) proposed two bootstrap methods fitting the model via kernel smooth-
ing, assuming iid errors:

1. Forward bootstrap with fitted residuals.
2. Forward bootstrap with predictive residuals.

In this work, the aforementioned bootstrap algorithms are empirically com-
pared when constructing confidence intervals for the conditional density function
for Markov processes.

2 Bandwidth selection for nonparametric conditional
density estimation

Consider a probability density K on R2, a 2-dimensional random sample coming
from a Markov process of order 1, {(X1, Y1), . . . , (Xn, Yn)}, and two positive
bandwidthds h1, h2 to construct the kernel conditional density estimator, given
by

f̂(y|x) =
f̂h1,h2(x, y)

f̂h1(x)
, (1)

where f̂h1,h2(x, y) = 1
(n−1)h1h2

n∑
i=2

K
(

x−Xi−1

h1
, y−Yi

h2

)
, x, y ∈ R and f̂h(x) =∫

f̂h1,h2(x, y)dy.

As can be seen in (1), the estimator strongly depends on the choice of the
smoothing parameters h1, h2. Consequently, different bandwidths selectors have
been considered when carrying out the simulation study. Rule of thumb and
cross validation procedures have been considered.

On the other hand, let us consider a 2 × 2, symmetric and positive-definite
matrix of bandwidths, H, given by
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H =

(
h2
1 h1h2

h2h1 h2
2

)
,

and the 2-dimensional kernel joint density estimator:

f̂H(x, y) =
1

n

n∑
i=1

KH(x−Xi, y − Yi),

being KH(x, y) = |H|−1/2K
(
H−1/2(x, y)T

)
. Thus, in this case, the kernel con-

ditional density estimator is given by:

f̂(y|x) =
f̂H(x, y)

f̂h1(x)
. (2)

Considering an approximation of the estimator given in (2), our goal is to
work out a closed expression for the smoothed stationary bootstrap, namely SSB,
(see [1]) version of the mean integrated squared error, so as to obtain a bootstrap
bandwidth selector by minimizing it. As a matter of fact, this smoothing param-
eter is really useful since Monte Carlo approximation is not needed to compute
it. The new bootstrap smoothing parameter is also used in the simulation study.
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Forecasting with Functional Time Series
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Abstract. We introduce a conditional median estimator of a scalar re-
sponse given a random variable taking values in a semi metric space.
We establish its strong consistency, with rate, when the sample is an α-
mixing sequence. Then, a real data set study illustrates the performance
of our methodology with respect to other known estimators.

Keywords: Functional data, Local linear estimation, Strong consistency,
α-mixing.

1 Introduction

Since the pioneer works in [5], several studies dealt with the nonparametric func-
tional estimation. This research field is motivated by the fact that several data
collected in practice, are given in the form of curves and that the progress of the
digital computing tools allows the treatment of such observations.
In the previous reference, only the kernel method has been considered. Later,
the local linear method has been extended to the functional framework, for the
first time, in [2]. Then, other local linear nonparametric estimators has been
investigated in some papers as [4] and [7].
Moreover, observed data can exhibit a dependence form. A large studied exam-
ple in Time Series is the case of the α-mixing dependence. We cite [1] and [6]
for papers dealing with such functional dependent data.
This work takes place within this field. We establish the almost complete con-
vergence (stronger than the almost sure one) of a local linear nonparametric
estimator of the conditional distribution function of a scalar response variable
given a random variable taking values in a semi metric space (the functional
variable) when the collected observations are α-mixing. Then, we derive the
consistency of a conditional median estimator which is a prediction tool. Fi-
nally, a real data study shows that our estimator performs well with respect to
other known conditional median estimators.

2 Estimation and hypotheses

Let us consider n pairs of random variables (Xi, Yi)i=1,...,n identically distributed
as the pair (X,Y ) which is valued in F × R, where F is a infinite-dimensional
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2 Sara Leulmi and Fatiha Messaci

space equipped with a semi-metric d.
We first estimate the conditional cumulative distribution function F x(y) =
P (Y 6 y | X = x), from which we derive a new tool in order to make fore-
casting.
Following [2], we propose a local linear estimate F̂ x(y) of F x(y) given by

F̂ x(y) =

∑n
i,j=1Wij(x)1]−∞,y](Yj)∑n

i,j=1Wij(x)

(
0

0
:= 0

)
, (1)

with

Wij(x) = β(Xi, x) (β(Xi, x)− β(Xj , x))K(h−1d(Xi, x))K(h−1d(Xj , x)),

where β(., .) is a known operator from F×F into R such that, ∀x ∈ F , β(x, x) =
0, the function K is a kernel and h := hn is a sequence of strictly positive real
numbers which plays a smoothing parameter role.
Remark that a double kernel local linear estimator is introduced in [7] and stud-
ied for independent data.
As the conditional quantile of order α (α ∈ (0, 1)) is tα(x) = inf{y ∈ R, F x(y) >
α}, we deduce from F̂ x a natural conditional quantile estimator as,

t̂α(x) = inf{y ∈ R, F̂ x(y) > α}. (2)

Recall that t1/2(x) is the so called conditional median.

For easy reference, we recall the following definitions.

Definition 1 Let {Zi, i = 1, 2, ...} be a strictly stationary sequence of random
variables, F ki (Z) denotes the σ-algebra generated by {Zj , i ≤ j ≤ k}. Given a
positive integer n, set

α(n) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F k1 (Z) and B ∈ F∞k+n(Z), k ∈ N∗}.

The sequence is said to be α-mixing (strongly mixing) if the mixing coefficient
α(n)→ 0 as n→∞.

Many processes do satisfy the strong mixing property, see for example [3] for
more details.

Definition 2 Let (Zn)n∈N∗ be a sequence of real random variables (r.r.v.). We
say that (Zn)n∈N∗ converges almost completely to some r.r.v. Z, and we note

Zn
a.co.7−→ Z, if and only if

∀ε > 0,
∞∑
n=1

P (|Zn − Z| > ε) <∞.
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Moreover, let (un)n∈N∗ be a sequence of positive real numbers going to zero; we
say that the rate of the almost complete convergence of (Zn)n∈N∗ to Z is of order
(un) and we note Zn − Z = Oa.co.(un), if and only if

∃ ε0 > 0,
∞∑
n=1

P (|Zn − Z| > ε0un) <∞.

It is clear, from Borel Cantelli lemma, that this convergence is stronger than the
almost-sure one.
Let x be a fixed point in F . For any positive real h, B(x, h) := {y ∈ F/ d(x, y) ≤
h} is a closed ball in F of center x and radius h. We also denote Φx(r1, r2) :=
P (r1 ≤ d(X,x) ≤ r2), where r1 and r2 are two real numbers and Nx stands for
a neighbourhood of x.
To study the asymptotic behaviour of the local linear estimator F̂ x, we need the
following assumptions.

(H1) For any h > 0, Φx(h) := Φx(0, h) > 0.
(H2) There exist δ > 0, C > 0, b > 0 such that: ∀x′ ∈ Nx, ∀y ∈ [tα(x)−δ, tα(x)+

δ], |F x(y)− F x′(y)| ≤ C(db(x, x′)).
(H3) The function β(., .) is such that: ∃ 0 < M1 < M2,∀x′ ∈ F ,

M1d(x, x′) ≤ |β(x, x′)| ≤M2d(x, x′).

(H4) The kernel K is a positive and differentiable function on its support [0, 1]
and ∃ C,C ′ such that

0 < C1[0,1](t) ≤ K(t) ≤ C ′1[0,1](t) <∞.

(H5) The sequence (Xi, Yi) is a stationary α-mixing sequence with coefficient α(n),
moreover (H5a) and (H5b) are satisfied, where
(H5a): ∃ C > 0, ∃a > 3,∀n ∈ N;α(n) ≤ Cn−a,

(H5b): ∃ C,C ′ > 0 such that: C ′ [Φx(h)]
a/(a−1)

< ψx(h) ≤ C [Φx(h)]
a/(a−1)

,
with ψx(h) := ψx(0, h) and ψx(h1, h2) := P (h1 ≤ d(X1, x) ≤ h2, 0 ≤ d(X2, x) ≤ h2).

(H6) The bandwidth h satisfies

∃ n0 ∈ N,∀n > n0,
1

ψx(h)

∫ 1

0

ψx(zh, h)
d

dz

(
z2K(z)

)
dz > C > 0

and

h2
∫
B(x,h)

∫
B(x,h)

β(u, x)β(t, x)dP(X1,X2)(u, t)

= o

(∫
B(x,h)

∫
B(x,h)

β2(u, x)β2(t, x)dP(X1,X2)(u, t)

)
,

where dP(X1,X2) is the joint distribution of (X1, X2).

(H7) limn→∞ h = 0 and ∃ 0 < η0 <
a−3
a+1 ,∃ C1 > 0 such that C1n

3−a
a+1+η0 ≤ Φx(h).
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4 Sara Leulmi and Fatiha Messaci

Hypotheses (H1) and (H3) have been used in the independent case in [2]. (H2) is
a standard regularity condition allowing to deal with the bias. (H4) is a technical
condition. (H5a) means that (Xi, Yi) is arithmetically mixing and is extensively
used in the literature as in [5] and in [6]. (H6) is of the same kind as (H6) together
with (H7) in [2]. The choice of bandwidth is given by (H7), in particular it implies
that lnn/nΦx(h)→ 0 as n→∞.

3 Results

Our first result concerns the asymptotic behaviour of F̂ x(y).

Proposition 1 Under assumptions (H1)–(H7), we have

sup
y∈[tα(x)−δ,tα(x)+δ]

|F̂ x(y)− F x(y)| = O(hb) +Oa.co.

(√
lnn

nΦ(h)

)
.

It is easy to see that the proof of Proposition 1 is a direct consequence of the
standard decomposition given, for all x by

F̂ x(y)− F x(y) =
1

F̂ xD

[(
F̂ xN (y)− EF̂ xN (y)

)
−
(
F x(y)− EF̂ xN (y)

)]
− F x(y)

F̂ xD
(F̂ xD − 1),(3)

where,

F̂ xN (y) =
1

n(n− 1)EW12(x)

∑
i6=j

Wij(x)1{Y j6y}, F̂ xD =
1

n(n− 1)EW12(x)

∑
i6=j

Wij(x),

and of the following lemmas whose proofs are relegated to the Appendix.

Lemma 1 Assume that hypotheses (H1)–(H6) hold, then

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣∣F x(y)− EF̂ xN (y)
∣∣∣ = O(hb).

Lemma 2 Under assumptions of Theorem 1, we obtain that

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣∣F̂ xN (y)− EF̂ xN (y)
∣∣∣ = Oa.co.

(√
lnn

nΦx(h)

)
.

Lemma 3 If assumptions (H1),(H3)–(H7) are satisfied, we get∣∣∣F̂ xD − 1
∣∣∣ = Oa.co.

(√
lnn

nΦx(h)

)
and

∞∑
n=1

P

(
F̂ xD <

1

2

)
<∞.

To obtain the consistency of the conditional quantile estimator, we add the fol-
lowing assumption.
(H8): F x is differentiable with a continuous density fx satisfying fx(tα(x) > 0.
A known method can be applied to derive the following result from Proposi-
tion 1, see for example the proof of Theorem 3.1 in [6].
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Theorem 1 Under the hypotheses of Proposition 1 and if (H8) is satisfied, we
obtain ∣∣t̂α(x)− tα(x)

∣∣ = O(hb) +Oa.co.

(√
lnn

nΦx(h)

)
.

4 Real data application

In this section, a real data set will permit us to illustrate the efficacy of our
studied estimator t̂1/2 with respect to other conditional median estimators: The
kernel one (denoted KM) studied in [5] and the local linear estimator (denoted
LLM) introduced in [7].
The KM (resp. LLM) estimator is computed with the same parameters as at
subsection 12.4 in [5] (resp. at section 4 in [7]). For the computation of the esti-
mator t̂1/2, we use the kernel K(x) =

[
3
2 (1− x2) + 0, 001

]
1[0,1](x) (close to the

quadratic kenel), the bandwidth h is chosen by the cross-validation method and
the semimetric d is the PCA one described in [5] (see routines ”semimetric.pca”
in the website http://www.lsp.ups-tlse.fr/staph/npfda with q = 4 ) and β := d.
Our aim is to study the US monthly electricity consumption observed during
338 months (from January 1973 up to February 2001) which can be found at
http://www.economagic.com. As pointed out in [5], this time series can be viewed
as dependent functional data.
The consumption of a year is the explanatory variable and the consumption of
each month of the following year is the response one. We eliminate the 337 and
338 months and we retain the remaining 28 years.
Fix s ∈ {1, 2, . . . , 12}, in order to predict the electricity consumption of the sth

month of the last year (the 28th) by each cited method, we use the 27 first years
to define the training sample (Xi, Y

s
i )(i=1,...,26) used to build the estimators un-

der investigation, where Xi stands for the consumption of the whole ith year
and Y si is the consumption of the sth month of the (i+ 1)th year. Then, for all
s ∈ {1, 2, . . . , 12}, we predict Y s27, which is the consumption of the sth month of
the 28th year, given X27.
The criteria allowing us to compare between the three estimators is the empirical
Mean Square Error (MSE), defined by

MSE :=
1

12

12∑
i=1

(
Yi − Ŷi

)2
,

where Yi (resp. Ŷi) is the real (resp. the estimated) value of the ith month of the
last year.
The obtained results are:
MSE(t̂1/2)=0.00235, MSE(LLM)=0.00333 and MSE(KM)=0.00253.
Based on this data set, we see that our estimator provides an acceptable perfor-
mance.
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6 Sara Leulmi and Fatiha Messaci

Fig. 1. Performance of the three methods for the Electricity data.

In Figure 1 and for each mentioned method, the dotted (resp. solid) lines
stand for the true (resp. forecasted) values.

5 Appendix

In what follows, let C be some strictly positive generic constant and for any
x ∈ F , and for all i = 1, . . . , n, we set

Ki(x) := K(h−1d(Xi, x)) and βi(x) := β(Xi, x).

To treat the almost-complete convergence of F̂ x(y), we need the following pre-
liminary technical lemma.

Lemma 4 Under assumptions (H1), (H3), (H4), (H5b) and (H6), we obtain
i) ∀(p, l) ∈ N? × N, E

(
Kp

1 (x)|βl1(x)|
)
≤ ChlΦx(h).

ii) ∀(p1, p2, l1, l2) ∈ N? × N? × N× N,
E
[
Kp1

1 (x)Kp2
2 (x)|βl11 (x)||βl22 (x)|

]
≤ Ch(l1+l2) [Φx(h)]

a/(a−1)
.

iii) E
[
K1(x)K2(x)β2

1(x)
]
> Ch2 [Φx(h)]

a/(a−1)
for n sufficiently large.

Proof 1 i)(see Lemma A.1-i in [2]).
ii) In view of hypotheses (H3) and (H4), we get

E
(
Kp1

1 (x)Kp2
2 (x)|βl11 (x)||βl22 (x)|

)
≤ Ch(l1+l2)E

[
1[0,1](h

−1d(X1, x))1[0,1](h
−1d(X2, x))

]
≤ Ch(l1+l2)P [(X1, X2) ∈ B(x, h)×B(x, h)] .
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So, we derive the claimed result by using (H5b).
iii) Applying (H3), it is easy to see that

E
[
K1(x)K2(x)β2

1(x)
]
> CE

[
K1(x)d2(X1, x)K2(x)

]
.

Combining hypothesis (H4) with Fubini’s theorem, we obtain

E
[
K1(x)d2(X1, x)K2(x)

]
= h2

∫ 1

0

∫ 1

0

t2K(t)K(u)dP(h−1d(X1,x),h−1d(X2,x)(t, u)

> Ch2
∫ 1

0

(∫ 1

0

∫ 1

0

1[z,1](t)dP(h−1d(X1,x),h−1d(X2,x)(t, u)

)
d

dz
(z2K(z))dz.

Moreover, we have∫ 1

0

∫ 1

0

1[z,1](t)dP(h−1d(X1,x),h−1d(X2,x)(t, u) = P (zh ≤ d(X1, x) ≤ h, 0 ≤ d(X2, x) ≤ h) = ψx(zh, h).

Finally (H6) permits us to end the proof.

As the dependence assumption reveals covariance terms, let us define for
p ∈ {2, 3, 4} and l ∈ {0, 1}

(Sx)2n,l,p(y) =
n∑
i=1

n∑
j=1

|Cov(Γ xi,p,l(y), Γ xj,p,l(y))|, (4)

where, for i ∈ {1, . . . , n}

Γ xi,p,l(y) =
1

hp−2

{
Ki(x)βp−2i (x)1l{Yi6y} − E[Ki(x)βp−2i (x)1l{Yi6y}]

}
. (5)

Following the same lines as for proving relation (6.9) in [6], along with the
application of Lemma 4 i) and ii), we get for all y

(Sx)2n,l,k(y) = O(nΦx(h)). (6)

Proof of Lemma 1 We have

EF̂ xN (y) =
1

EW12(x)
E
[
W12(x)1{Y 26y}

]
and EF̂ xN (y) can also be written as

EF̂ xN (y) = E
[
E(F̂ xN (y)|X2)

]
=

1

EW12(x)
E
[
W12(x)E(1{Y 26y}|X2)

]
.

So, we get under assumption (U4)∣∣∣F x(y)− EF̂ xN (y)
∣∣∣ = 1

|EW12(x)|
∣∣E {W12(x)

[
F x(y)− FX2(y)

]}∣∣ ≤ supx′∈B(x,h)

∣∣∣F x(y)− F x′(y)
∣∣∣.

It sufficies to take into account hypothesis (U2) to obtain the result.
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Proof of Lemma 2 Inspired by the decomposition given in the proof of
Lemma 4.4 in [2], we set

F̂ xN (y) = Q(x)
[
Sx2,1(y)Sx4,0(y)− Sx3,1(y)Sx3,0(y)

]
,

where

Sxp,l(y) =
1

nΦx(h)

n∑
i=1

Ki(x)βp−2i (x)1l{Y j6y}

hp−2

and

Q(x) =
n2h2Φ2

x(h)

n(n− 1)EW12(x)
.

So, it suffices to show that, that for p ∈ {2, 3, 4} and l ∈ {0, 1}, we have

sup
y∈[tα(x)−δ,tα(x)+δ]

|ESxp,l(y)| = O(1) and Q(x) = O(1),

sup
y∈[tα(x)−δ,tα(x)+δ]

|Sxp,l(y)− ESxp,l(y)| = Oa.co.

(√
lnn

nΦx(h)

)
,

sup
y∈[tα(x)−δ,tα(x)+δ]

|Cov
[
Sx2,1(y), Sx4,0(y)

]
| = O

(√
lnn

nΦx(h)

)

and sup
y∈[tα(x)−δ,tα(x)+δ]

|Cov
[
Sx3,1(y), Sx3,0(y)

]
| = O

(√
lnn

nΦx(h)

)
.

• Applying Lemma 4 i), we readily obtain

sup
y∈[tα(x)−δ,tα(x)+δ]

|ESxp (y)| = O(1). (7)

• Treatment of the term Q(x)
On one hand, we have

h2E [β1(x)β2(x)K1(x)K2(x)] ≤ Ch2
∫
B(x,h)

∫
B(x,h)

β(u, x)β(t, x)dP(X1,X2)(u, t).

On the other hand and in view of (H3) and (H5b), we obtain

E [β1(x)β2(x)K1(x)K2(x)] = o
(
h2 [Φx(h)]

a/(a−1)
)
.

Now, Lemma 4-(iii) and the last result allow to write, for n sufficiently large

Q(x) =
n2h2Φ2

x(h)

n(n− 1)EW12(x)
≤ C [Φx(h)]

2

[Φx(h)]
a/(a−1) ≤ C.
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• Treatment of the term supy∈[tα(x)−δ,tα(x)+δ] |S
x
p,l(y) − ESxp,l(y)| , for p ∈

{2, 3, 4} and l ∈ {0, 1}.
We have for any y ∈ [tα(x)− δ, tα(x) + δ],

Sxp,l(y)− ESxp,l(y) =
1

nΦx(h)

n∑
i=1

Γ xi,p,l(y),

where Γ xi,p,l(y) is defined in relation (5).
By applying Proposition A.11-ii in [5], we get for any ε > 0, r ≥ 1 and for some
0 < C <∞

P
(
|Sxp,l(y)− ESxp,l(y)| > ε

)
≤ P

(
|
n∑
i=1

Γ xi,p,l(y)| > nεΦx(h)

)
≤ C [A1(x) +A2(x)] ,

(8)
where

A1(x) =

(
1 +

ε2n2 [Φx(h)]
2

r(Sx)2n,l,k(y)

)−r/2
and A2(x) = nr−1

(
r

εnΦx(h)

)a+1

.

Now, taking for η > 0

ε = η

√
lnn

nΦx(h)
and r = (lnn)2,

we obtain

A2(x) ≤ Cn1−(a+1)/2(lnn)2a−
(a+1)

2 [Φx(h)]
−(a+1)/2

,

and using (H7), one gets

A2(x) ≤ Cn−1−η0(a+1)/2(lnn)2a−
(a+1)

2 . (9)

Moreover, in view of equation (6) and the fact that ln(x+1) = x−x2/2+o(x2/2)
where x tends to zero, we can write

A1(x) ≤ Cn−η
2/2, (10)

which shows that A1(x) is the general term of a convergent series for an appro-
priate choice of η.
Hence, by combining relations (8), (9) and (10), we derive

|Sxp,l(y)− ESxp,l(y)| = Oa.co.

(√
lnn

nΦx(h)

)
.

From this last result, it is easy to obtain the uniformity on the compact [tα(x)−
δ, tα(x) + δ]. We omit the details because they are well known, we can see for
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instance the second part of the proof of Lemme 2.4 in [7].

• Finally, by following similar arguments used to prove (6), we obtain

sup
y∈[tα(x)−δ,tα(x)+δ]

|Cov
[
Sx2,1(y), Sx4,0(y)

]
| = O

(
1

nΦx(h)

)
and

sup
y∈[tα(x)−δ,tα(x)+δ]

|Cov
[
Sx3,1(y), Sx3,0(y)

]
| = O

(
1

nΦx(h)

)
.

In view of (H7), this last rate is negligible with respect to O
(√

lnn
nΦx(h)

)
.

Proof of Lemma 3 The first part of the claimed results can be directly deduced
from the proof of Lemma 2 by taking l = 0 in all its proof and this easily yields
to the second part.
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Huelva. Spain
pedro.cadahia@outlook.es,{caro,gegundez}@uhu.es

2Facultad de Ciencias Empresariales y Turismo, Universidad de Huelva,
Plaza de la Merced, 11. 21002 Huelva, Spain

antonio.golpe@dehie.uhu.es

Abstract. In this article we reconsider the prediction problem in time
series by using a new nonparametric approach. The prediction is ob-
tained by a weighted sum of past observed data. These weights are ob-
tained solving a constrained linear optimization problem that minimizes
an outer bound of the prediction error. The main novelty of the proposed
predictor is to consider deterministic and stochastic assumptions in order
to obtain the upper bound of the prediction error. A tunning parameter
is used to balance these deterministic-stochastic assumptions to improve
the predictor performance. An example is included to illustrate that the
proposed predictor can obtain suitable results in a prediction scheme
and can be an interesting alternative method to classical nonparametric
methods.

Keywords: time series forecasting; nonparametric regression; optimiza-
tion

1 Introduction

The aim of this paper is to provide a new predictor for time series based on
the observed past values of the time series, by means of a nonparametric ap-
proach. It is well-known fact that in parametric time series analysis the rela-
tionship between observed past values of the time series and the prediction is
defined by specifying a functional form and a fixed finite number of parameters.
Widely studied parametric options are autoregressive (AR) models, moving av-
erage (MA) models, and different combinations as ARMA or ARIMA models
[2, 9]. In nonlinear time series, some common parametric structures has been
studied, the threshold autoregressive (TAR) models [12], the exponential au-
toregressive (EXPAR) model [10] and smooth-transition autoregressive (STAR)

⋆ This research has been supported by DPI2016-76493-C3-2-R of Ministerio de
Economı́a y Competitividad (Spain).
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models [11] are some examples. The performance of the parametric predictor is
a consequence of the a priori function form chosen.

By contrast, in nonparametric approaches a more flexible class of functions
is considered. Nonparametric methods avoid the choosing of a specific func-
tional form. Collected data provides the information to obtain a new prediction.
The price to pay is the ’curse of dimensionality’, that is, a possible poor per-
formance in high dimensions prediction problems. Local conditional mean or
median method provides a prediction using the mean or the median of a neigh-
borhood of the interest point [8]. The Nadaraya-Watson estimator [7] averages
past observations by a kernel function to obtain a prediction. Local linear o poly-
nomial functions of past observations can be used to approximate a nonlinear
relationships [6, 4]. Semiparametric models as nonlinear additive autoregressive
(NAAR) models [3] or functional coefficient autoregressive (FAR) models have
been proposed too [13]. An extensive review of nonparametric method applied
to time series prediction can be found in [5, 1].

In this paper a new nonparametric prediction method is proposed. The pre-
diction is obtained by a weighted sum of past observations. An upper bound
of the prediction error is computed under some deterministic and stochastic as-
sumptions. A constrained optimization problem is formulated to minimize the
upper bound of the prediction error and to obtain the set of optimal weights
used to compute the prediction. The optimization problem includes a parameter
to balance the deterministic-stochastic assumptions. This is the main novelty
of the proposed method. This parameter can be tuned with training data and
a cross-validation scheme to improve the predictor performance. The proposed
predictor provides a general framework that encompasses some relevant nonpara-
metrics predictors as the Nadaraya-Watson predictor [7] or predictors based on
local linear regression [4].

The paper is organized as follows. In Section 2 , the problem formulation is
addressed. The deterministic and stochastic assumptions are presented in Section
3. The new predictor is proposed in Section 4. An example is illustrated in Section
5. Finally, Section 6 reports some conclusions.

2 FORMULATION

Let us consider a discrete1 time series process {zt} with t ∈ {0,±1,±2, . . .}. At
time instant k we assume that past data {zt} with t ∈ {k, k − 1, k − 2, ...} has
been observed and we are interested in providing a forecast for predicting zk+1.
Once we detrend,2 the time series is now the series {yt} with t ∈ {k, k − 1, ...},
where zt = yt+µt, being µt the trend component and yk+1 the detrended future
time series value.

1 We assume a discrete version of data.
2 It should be noted that in coherence with the prediction system and in order to esti-
mate µk+1, only the past observations can be used, independently of the detrending
method used.
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Let us also denote by {xi} with i = 0, 1, ..., k the set of the vectors consisting
of the observed past values of the time series, that is xi = [yi, yi−1, . . . , yi−p]

T .
Henceforth this p-dimensional vector set will be called embedding vector. This set
of data is used to forecast future values for the time series. We should make this
point clearer in order to precise the sense of the parametric and nonparametric
models used in this article. A parametric approach is characterized by the use
of the training set for estimating the parameters of the model and once this
inference is done the data set is not used again. A nonparametric approach it
is a local approach in which each forecast is obtained by using all the available
data set but selecting a neighborhood of the interest point. In this sense, we
assume that the time series can be generated by an unknown local linear model.

Assumption 1 Consider that we can model the forecast of y as:

yk+1 = r(xk)
T θk + ek (1)

where we are assuming the existence of an unknown vector of parameters θk ∈
Rn, a known function r(·) valuated at the embedding set and an unknown error
term ek.3

In order to complete the presentation of the model we should discuss in
more detail the so called regressor generator function r(·). This function allows
transform the original values into vectors of dimension nr by means of the vectors
belonging to the embedding set. A formal definition of this regressor generation
function is as follows.

Definition 1 (Regressor generator function). The function r(·) : Rp →
Rnr defines the components of the regressor vector. This function admits any
kind of autoregressive representation, nonlinear expression of past components
and different functional forms for decomposing the different components of the
time series.4

The aim of this paper is to provide a new predictor for time series that are
based on past measurement. An estimation of the output yk+1 is obtained by a
linear combination of outputs yi, with i = 1, 2, . . . , k (see [17]).

Definition 2 (Linear Prediction). At time instant k, a prediction of yk+1 ∈
IR can be obtained by a linear combination of the past system outputs, that is,

ŷk+1(λ) = b⊤Y λ

=
k∑

j=1

λjyj
(2)

3 This modelling is flexible enough to admit alternative assumptions about the error
term. As we will discuss later, we will present the model by using both deterministic
and stochastic bounds for the error term ek.

4 For instance suppose a set xk = [yk, yk−1, yk−2]. Then r(xk) could be the function
r(xk) = xk that is, an autoregressive model. We can also use alternative configura-
tions such as a nonlinear autoregressive model r(xk) = [y2

k, yk−1, yk−2, yk · yk−2] or
any possible combination.
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where λ ∈ IRk is a weights vector and bY = [y1, . . . , yk]
T .

Now it is possible to define the prediction error as the difference of yk+1 and
the linear prediction ŷk+1(λ).

Definition 3 (Prediction error). At time instant k, the prediction error êk(λ)
is defined by

êk(λ) = yk+1 − ŷk+1(λ). (3)

Therefore, the key issue is how to obtain the weights vector λ and an outer
bound of the prediction error. This outer bound is estimated using the assumed
relationship between xi−1 and yi, with i = 1, 2, . . . , k in expression (1). Then,
a set of past components xi with i = 0, 1, ..., k must be available. Next section
formulates these key ideas.

3 Assumptions based on local affine approximations

The proposed predictor is based on the approximation error. This approximation
error is defined as the error resulting from the use of vectors r(xj−1) and θk to
infer the output yj .

5

Definition 4 (Approximation error). Given vector θk, the approximation
error ej−1 associated to the pair (xj−1, yj) with j = 1, 2, ..., k is defined by

ej−1 = ej−1(θk) = yj − r(xj−1)
T θk. (4)

Henceforth, and with a slight abuse of notation, the explicit dependence of
ej−1(θk) with respect to θk is omitted. Note that the exact value of θk is un-
known. On the other hand, it is clear that the prediction error êk(λ) can be
influenced by the chosen vector λ. Next theorem proposes an expression to char-
acterize the prediction error êk(λ) as a function of vector λ and approximation
errors ej previously defined.

Theorem 1. For any vector λ ∈ IRN such that

k∑
j=1

λjr(xj−1) = r(xk) (5)

then prediction error êk(λ) = yk+1 − ŷk+1(λ) is a linear combination of approx-
imation errors ej, that is

êk(λ) = −
k∑

j=1

λjej−1 + ek.

5 The reader should note that the point is to relate the k-th prediction error ek and
the prediction errors generated by using the k-th vector of unknown parameters θk
with the i-th regressors r(xi), with i = 0, . . . , k − 1.
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Note that λi denotes the i-th element of vector λ.
Proof. In matrix notation, expression (5) is equivalent to λ ∈ {λ : ATλ =

r(xk)} where matrix A is defined by

AT =
[
r(x0) r(x1) ... r(xk−1)

]
(6)

Taking into account Assumption 1 and Definitions 3 and 4 the following equali-
ties can be inferred.

êk(λ) = yk+1 − ŷk+1(λ)

= yk+h − λ⊤bY

= r(xk)
T θk − λT bY + ek

= (ATλ)T θk − λT bY + ek

= λT (Aθk − bY ) + ek

=

k∑
j=1

λj(r(xj−1)
T θk − yj) + ek

= −
k∑

j=1

λjej−1 + ek.

QED

In order to obtain a value of error ej−1, the vector θk must be known, but
an exact value of θk is not available. However, other properties of ej−1 can be
assumed. Deterministic and stochastic options are present in the literature. From
a deterministic point of view, an upper bound of |ej−1| could be considered.

3.1 Deterministic error assumption

In bounded-error methods (see [15]), an unknown-but-bounded error is consid-
ered and an upper bound of this error is assumed. A similar consideration is
assumed here.

Assumption 2 These are constants σ, L ≥ 0 such that approximation error
ej−1 and ek are bounded by expressions

|ej−1| ≤ σ + L||xj−1 − xk|| (7)

with j = 1, ..., k and
|ek| ≤ σ (8)

where || · || is a norm.

Notice that the error term is bounded by |ek| ≤ σ. Assumption 2 has been
widely used in the context of bounded-error system identification (see [15]).
Note that constant σ defines the minimum level of noise considered and L the
uncertainty due to the local affine approximation.
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Remark 1. If no previous knowledge about constants σ and L is available, a set
of historical data can be used to estimate an approximated value of σ and L. In
[16] a method based on bounded-error and non-falsified data is proposed.

Lemma 1. Taking into account Assumptions 1 and 2, for any λ such that
ATλ = r(xk), prediction error êk(λ) = yk+1 − ŷk+1(λ) is bounded by expres-
sion

|êk(λ)| ≤
k∑

j=1

|λj |(σ + L||xj−1 − xk||) + σ. (9)

Proof. Expression (9) is obtained by a direct application of Theorem 1 and
bound |ei| ≤ σ + L||xi − xk||. QED

Now it is possible to propose a suitable option to obtain vector λ. A reason-
able choice is to consider the vector that minimizes an upper bound of |êk(λ)|
using expression (9).

Definition 5 (Deterministic predictor). The deterministic prediction ŷk+1(λ
D)

is defined by expression

ŷk+1(λ
D) =

k∑
j=1

λD
j yj

where vector λD solves the following constrained linear optimization problem

λD = argmin
λ

||Wkλ||1
s.t. ATλ = r(xk)

(10)

where Wk is a diagonal matrix with central elements wk,j−1 = σ+L||xj−1−xk||
with j = 1, ..., k. Therefore, vector λD minimizes an upper bound of the absolute
value of the prediction error.

Note that notation λD emphasizes the deterministic nature of the estimation.
Expression (10) use L1-norm to obtain the vector solution λD. In this case, λD

is sparse, that is, the number of components λD
i of vector λD that are different

from zero remains small. As λD is sparse and taking into account Definition 5
then it is inferred that ŷk+1(λ

D) use a relative small number of measurements
yi.

3.2 Stochastic error assumption

From a stochastic point of view, a second option is to consider the approximation
error ei as a random variable. In this case some assumptions about mean and
variance of ei can be considered.

Assumption 3 Approximation error ej−1 and error term ek are independent
random variables of zero mean and variances bounded by var(ej−1) ≤ σ +
L||xj−1 − xk|| and var(ek) ≤ σ respectively. Again, the value of positive con-
stants σ and L is the assumed prior knowledge.
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As noted in Remark 1, if no previous knowledge about constants σ and L
is available, a set of historical data can be used to obtain an estimation. The
variance of error ej−1 consists of a minimum value defined by σ and a term
depending of the local approximation, i.e. ||xj−1 − xk||. As ej−1 and ek are
random variables then êk(λ) is a random variable too and some properties can
be derived.

Assumption 4 Taking into account Assumptions 1 and 3, for any λ such that
ATλ = r(xk), prediction error êk(λ) = yk+1− ŷk+1(λ) is a random variable with
zero mean and variance that can be approximated by expression

var(êk(λ)) =
k∑

j=1

λ2
i var(ej−1) + σ

≤
k∑

j=1

λ2
j (σ + L||xj−1 − xk||) + σ.

(11)

Now, a predictor that minimize the outer bound of the variance prediction
error can be formulated.

Definition 6 (Stochastic central prediction). The stochastic prediction ŷk+1(λ
S)

is defined by expression

ŷk+1(λ
S) =

k∑
j=1

λS
j yj

where vector λS solves the following constrained linear optimization problem

λS = argmin
λ

λTWkλ

s.t. ATλ = r(xk)
(12)

An explicit solution of this optimization problem is obtained by

λS = W−1
k A(ATW−1

k A)−1r(xk) (13)

As before, notation λS emphasizes the stochastic assumptions considered to
obtain the estimation. The following equality is fulfilled

ŷk+1(λ
S) = bTY λ

S = r(xk)
T θ∗

where θ∗ = (ATW−1
k A)−1ATW−1

k bY is the minimizing argument of an optimiza-
tion problem which minimizes the following quadratic prediction-error functional
cost.

J(θ) = (bY −Aθ)TW−1
k (bY −Aθ)

=
k∑

j=1

(yj−r(xj−1)
T θ)2

(σ+L||xj−1−xk||) .
(14)

Therefore, the stochastic prediction is equivalent to solve a weighted least-
squares problem where the weights are defined by the elements of the diago-
nal of Wk squared. Usually, vector λS is not sparse. Then a great number of
measurements yi are used to predict yk+1.

Vectors λD and λS provide two predictions based on different assumptions.
The aim of this paper is to provide a predictor mixing both predictors. Next
section presents the main idea of this paper.
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Fig. 1. SunSpot serie.

Table 1. Kernel functions

Epanechnikov Gaussian Tricube

λi =

{

1− v2i si |vi| ≤ 1
0 si |vi| > 1

e−
1
2
v2
i λi =

{

(1− |vi|3)3 si |vi| ≤ 1
0 si |vi| > 1

vi =
||xi−xk||

γ 1
N

N∑
j=1

||xi−xk||

4 Proposed predictor

Next, a formal definition of the proposed predictor is provided. This definition
use a constant γ ≥ 0 to balance the deterministic or stochastic nature of the
prediction.

Definition 7. Given a constant γ ≥ 0, the predictor ŷk+1(λ
∗) is defined by

ŷk+1(λ
∗) =

k∑
j=1

λ∗
jyj where λ∗ is the optimal solution of

λ∗(γ) = argmin
λ

||Wkλ||1
s.t. ATλ = r(xk)

||λ− λS ||1 ≤ γ

(15)

and vector λS is defined in (13).

Some qualitative properties of the proposed predictor can be clarified. Note
that, expression (15) is a constrained linear convex optimization problem and
can be solved in an efficient way [14]. Assuming that (15) has a bounded solution,
there is a constant γ̄ such that if γ ≥ γ̄ then equality λ∗ = λD is obtained. Term
||λ− λS ||1 of expression (15) takes into account the stochastic Assumption 3 to
obtain the optimal solutions λ∗. If γ = 0 then λ∗ = λS . So, constant γ can be
seen as a tuning parameter to balance the deterministic or stochastic nature of
the considered approximation error.
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Remark 2. It is important to remark that the proposed predictor encompasses
some relevant nonparametrics predictors. If γ = 0 and r(xk) = 1 the proposed
predictor is equivalent to the Nadaraya-Watson predictor [7]. On the other hand
if γ = 0 and r(xk) = [xT

k 1] a predictor based on Local Linear Regression is
obtained.

Table 2. Obtained MAE results

γ MAE γ MAE

AR(10) 12.76

NW 0.13 18.47 0.15 18.38

LLR1 1 12.33 1.31 11.71

LLR2 0.59 11.90 0.76 11.68

LLR3 1.17 12.21 1.47 11.74

CP 1.1 11.44 1.0 11.34

Table 3. Obtained MSE results

γ MSE γ MSE

AR(10) 299.46

NW 0.12 697.54 0.12 697.54

LLR1 1.08 260.01 1.15 254.28

LLR2 0.6 255.20 0.65 254.38

LLR3 1.23 257.29 1.32 254.53

CP 1.1 251.08 1.1 251.08

Table 4. Combined results

γ MAE γ MSE

LLR1 − LLR2 1,0.59 12.11 1.08,0.6 256.19

LLR1 − LLR3 1,1.17 12.27 1.08,1.23 258.52

LLR2 − LLR3 0.59,1.17 12.04 0.6,1.23 255.39

CP − LLR1 1.1,1 11.71 1.1,1.15 249.08

CP − LLR2 1.1,0.59 11.58 1.1,0.65 249.23

CP − LLR3 1.1,1.17 11.65 1.1,1.32 248.13
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Table 5. Obtained results

γ MAE γ MAE

AR(10) 13.09

NW 0.13 17.06 0.13 17.06

LLR1 1 11.19 1.15 11.07

LLR2 0.59 11.11 0.56 11.09

LLR3 1.17 11.18 1.28 11.08

CP 1.1 10.88 2.0 10.80

Table 6. Obtained results

γ MSE γ MSE

AR(10) 309.71

NW 0.12 582.62 0.12 582.62

LLR1 1.08 223.15 1.04 222.86

LLR2 0.6 229.52 0.55 228.61

LLR3 1.23 224.60 1.24 224.58

CP 1.1 231.03 0.13 230.42

5 Example

The Sunspot Numbers is an interesting benchmark for predictions methods be-
cause it is a real world example, the prediction of these data is relevant in many
applications fields and these data are public. The time series consisting in 288
data, from year 1700 to 1987 (see Figure 1). The first 221 data have been used as
training set. The last 67 data have been included in a validation set. A one-step
ahead predictor has been considered where r(xk) = xk = [yk−1 yk−2 ... yk−10]

T .
The proposed predictor (CP) with σ = 0 and L = 1 is compared to an

Autorregressive model AR(10), a Narayada-Watson predictor (denoted NW )
with a Gaussian kernel function and a γ-bandwidth and three local linear re-
gression models LL1, LL2 and LL3 using Epanechnikov, Gaussian and Tricube
kernel functions respectively. Table 1 shows the expression of weights λi with
i = 1, ..., N for these kernel functions. Mean absolute error (MAE) and mean
square error (MSE) are used as indexes to compare.

Tables 2, 3 and 4 show the obtained results using only the training set to
infer the prediction. Table 2 shows the performance obtained by these prediction
methods in the validation set by a Mean Absolute Error (MAE) index. The first
column of Table 2 shows parameters γ selected by a leave-one-out scheme in the
training set. The second column shows the MAE obtained with this value of γ
in the validation set. The third column gives the value γ that provides the best
MAE in the validation set that is displayed in the fourth column. A grid-search
in the validation set is used in this case. Note that the third and fourth columns
are included to estimate the best possible performance, but can not be used as
reference because the optimal value of γ is not known a priori.
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Table 7. Combined results

γ MAE MSE

LL1− LL2 1,0.59 11.12 225.54

LL1− LL3 1,1.17 11.19 223.78

LL2− LL3 0.59,1.17 11.12 226.56

CP − LL1 1.1,1 10.85 223.08

CP − LL2 1.1,0.59 10.91 227.24

CP − LL3 1.1,1.17 10.88 223.67
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Fig. 2. Proposed predictor with γ = 1.1

As can be seen in the Table 2 the best results are obtained by the proposed
predictor (CP). The same information with Mean Square Error (MSE) is showed
in Table 3. Again the best results are obtained by the proposed predictor. Finally,
new predictors obtained by the combination of two nonparametric predictors
are proven. For example, LLR1 − LLR2 is a predictor obtained by the mean
of predictors LLR1 and LLR2. Table 4 shows the results obtained using these
combined predictors. In all cases, a combination with CP outperforms the results
obtained by a single Local Linear Regression or combinations of Local Linear
Regressions.

If all past information available at time instant k is used to infer the predic-
tion, Tables 5, 6 and 7 show the new results. In general the fresh data improve
the performance of predictors. As can be seen, the proposed predictor CP obtain
the best results using the MAE index, or can be combined with other predictors
to obtain the best MSEs. Figure 2 shows the obtained prediction with γ = 1.1.

6 Conclusions

A new nonparametric Time Series forecasting method has been proposed. The
prediction is obtained by a weighted sum of past observations. A combination
of deterministic and stochastic assumptions are used to obtain an expression
of the outer bound of the prediction error. The weights are obtained solving a
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convex optimization problem that minimizes the upper bound of the prediction
error. The method includes a tuning parameter. This parameter may balance
the deterministic and stochastic considered assumptions. By a cross-validation
scheme, a suitable parameter can be obtained. The performance of the proposed
predictor is illustrated by an example.
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Abstract. In this article, we present a novel approach for the cate-
gorization of functional data, i.e. curves that are inherently varying
over a continuum such as time or space. The method proposes a new
vector-valued functional representation of input time series data that
inherently encode the time evolution of localized features. This vector-
valued feature function is subsequently represented in a wavelet basis.
During training, the wavelet representation of these multivariate time
series in the same class are warped to become more similar to each ot-
her, while moving away from functions in different classes. This pro-
cess—termed discriminative interpolation—leads to a k-nearest neig-
hbor (k-NN) style supervised learner that induces discriminating warps
through adaptation of the wavelet basis coefficients. We detail the im-
provement gains from adopting a generalized vector-valued feature re-
presentation for the functional data, illustrating consistent performance
improvement over previous formulations. We term the overall approach
Classification by Discriminative Interpolation with Features (CDIF). Op-
timization of the new objective function is accomplished via an alterna-
ting procedure which has empirically shown to achieve convergence to
good approximate solutions. The utility of the proposed CDIF method
is experimentally validated on several UCR time series data sets, demon-
strating its competitiveness against related functional techniques as well
as contemporary and state-of-the-art feature-based methods.

Keywords: Functional Data Classification, Time Series Classification,
k-Nearest Neighbor, Discriminative Interpolation, Wavelets

1 Introduction

In today’s data rich environment, a multitude of sensor-acquired data come
in the form of time series data. Examples include weather (daily temperature
measured over time), medical data (ECG readings), economics (stock market),
and astronomy (starlight measurements). These measurements are often referred
to as functional data, i.e. mathematical representation of real-valued functions

?? The authors acknowledge support from NSF grant No. 1560345. Any opinions, fin-
dings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the NSF.
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2 Classification by Discriminative Interpolation with Features
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Fig. 1. Fifteen-class classification by discriminative interpolation with features
(CDIF). (a) Original training functions from fifteen different classes. (b) Post trai-
ning via the proposed CDIF method, functions in each class morphed to resemble
k-nearest neighbors. (Note: The colors of the curves represent the different classes. For
visualization purposes, only the curves were used instead of multivariate features.)

collected over a continuum like time or space. The need to analyze such data
has lead to the growth of the Functional Data Analysis (FDA) [19] field. Most
contemporary machine learning approaches employ a feature extraction process
that strips the functional nature of these data, transforming them instead to
feature vectors in Rn. Rather than adopt this informal methodology, here we
adopt the FDA approach and work rigorously in functions spaces to develop
our proposed classification framework. As we detail, this has yielded a unique
signal representation and classification framework that shows significant promise
to tackle difficult functional data categorization problems.

The present work focuses on one-dimensional functional data analysis—where
the data are time-series measurements (and throughout this article we interchan-
geably use the following terms to refer to functional data: time series, signals,
curves, or waveforms). We leverage the interpolation property of functions to
formulate a new classification model. It is worth noting that such an approach
is not rigorously possible with the feature-vector approach due to the absence
of a continuum linking the dimensions. In our new method, functional data in
the same class are adaptively reconstructed to be more similar to each other,
while simultaneously repelling nearest neighbor functional data in other classes.
Akin to other recent nearest-neighbor metric learning paradigms like stochas-
tic k-neighborhood selection [20] and large margin nearest neighbors [21], our
technique uses class-specific representations which gerrymander similar functio-
nal data in an appropriate parameter space. The present work develops a fully
generalized version of the model first considered in [14]. Whereas this previous
work was only developed for one-dimensional functional data, f : R → R, we
considerably advance the framework by formulating an extension capable of sup-
porting vector-valued functions, i.e. f : R → Rq. The vector-valued extension
allows us to incorporate localized feature curves, allowing for a richer functional
representation. For the remainder of the paper, we will refer to this new frame-
work as Classification by Discriminative Interpolation with Features (CDIF).
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Figure 1 demonstrates the warping effect of CDIF on the SwedishLeaf da-
taset. Fig. 1 (a) graphs the original curves from the fifteen classes (each color
represents a different class), while Fig. 1 (b) plots the curves after the CDIF
training. The curves within the same class better resemble each other resulting
in better classification performance, as shown in our experiments. The proposed
CDIF method makes the following unique contributions to advancing functional
data classification:

– Introduces a new vector-valued feature signal representation for functional
data;

– Implements a fully multi-class FDA classification framework that leverages
push-pull k-NN margin-based learning;

– Employs an alternating optimization strategy that first updates neighbor-
hoods and then completes a gradient descent update on the wavelet coeffi-
cients.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 briefly covers the requisite background on function spaces and wavelets
as well as explains the CDIF work in more detail. This is followed by the develop-
ment of the training and testing algorithms required for supervised classification.
In Section 4, we show that our method is competitive with many functional and
standard feature-vector based algorithms, as well as show improvements gained
from the original method in [14]. All experimental results are evaluated on UCR
datasets [9]. We conclude with Section 5, detailing recommendations and future
extensions.

2 Related Work

For several years, the norm for classification or analysis of functional data, such
as time series data, has been to represent the data in vector form [2, 4, 12], thus
turning a temporal problem into a static one. The authors in [12] proposed
Feature-Based Linear (FBL), a method that relied on the multidimensional fe-
atures of the data, such as basic statistics, correlations, etc. These features are
then separated by a greedy forward feature selection algorithm with a linear
classifier, which according to the authors is competitive with state-of-the-art
classifiers, but is still computationally expensive which might not be practical in
many applications.

The authors in [4] suggest a method called Time Series based on Bag-of-
Features (TSBF). It first separates a signal into random time intervals, and then
computes features such as the start and end interval points, mean, variance, and
slope which create a bag-of-features. The likelihood that a set of features, called
an instance, belong to a signal (bag) was calculated as a class probability. At the
end, the authors used a Support Vector Machine accompanied with a random
forest for signal classification. In [16], the authors used the Principal Components
Analysis through Conditional Expectation (PACE) method to decompose signals
into principal components and then performed classification by applying logistic
regression to the scores.
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Similar to FBL, the collective of transformation-based ensembles (COTE)
framework from [3] creates a large set of data features. Bagnall et al. derive three
different domains from the data: shapelet, frequency, and autocorrelation. Then,
they showed that forming a collective of ensembles of classifiers—kNN, Naive
Bayes, C5.4 Decision Tree, Support Vector Machines (SVM), Random Forests,
Rotation Forest, and a Bayesian network—on these three data representations
improved the classification of time-series data. While these methods have shown
promising results, they fail to address the functional aspect of the data.

The authors in [1, 2, 5, 6, 14] acknowledge the importance of incorporating
the robustness of the data. These include, but are not limited to, representing
the data in a different basis such as splines [1], Fourier [6] and wavelets [5] or
utilizing the continuous aspects and differentiability of the functional data [2].
Berlinet et al. [5] expand the observations on a wavelet basis as well and then
they pick the set of basis functions that carry the most significant information,
through a multiple step algorithm, while learning an optimal classifier. These
classifiers include k-nearest neighbors, Quadratic Discriminant Analysis (QDA)
[11] and classification and regression trees (CART) [8].

3 Classification by Discriminative Interpolation with
Features

In this section, we detail the theory and algorithmic steps for the proposed
Classification by Discriminative Interpolation with Features (CDIF) method. We
begin by providing a brief overview of the function spaces considered in this
work and the necessary results therein. Next, we detail the localized feature
extraction process that maps an input one-dimensional function to a vector-
valued function. Since CDIF is a supervised classification method, we proceed
to discuss the required training and testing procedures.

3.1 Background

CDIF relies on the fundamental characteristics of functional data. Even though
the curves are discretely sampled, they are intrinsically infinite dimensional.
The consecutive measurements within a curve are highly correlated and they
are assumed to have an underlying smooth function.

It is important to emphasis that the functional data, f , we consider are
continuous functions that belong to the space of square-integrable functions
L2([a, b] ⊂ R) that have a defined inner product, 〈f, g〉 :=

∫
t
fg for f, g ∈ L2,

and a norm, ‖f‖ := (
∫
T f

2)1/2. This premise allows the analysis to transition
from the functions themselves to the coefficients of their wavelet basis expansion
which has many benefits such as easily handling irregularly sampled functions,
missing data, and function interpolation [15].

Though many different bases exist for the Hilbert space H, CDIF uses com-
pactly supported wavelets to get a faithful reconstruction. Functions f ∈ L2([a, b])
can be represented as a linear combinations in a wavelet basis [10]:

f(t) =
∑
k

cj,kφj,k(t) (1)
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where t ∈ R, φ(x) is the scaling basis function, and cj,k is the scaling coeffi-
cients; the j-index represents the resolution level and the k-index the integer
translation value. Note how the expansion is done only using the scaling bases
functions because using a full multiresolution expansion with both the scaling
φ(x) and the wavelet ψ(x) basis function is primarily useful to obtain a sparse re-
presentation of the signal with thresholded coefficients. This is not crucial for an
accurate representation. Also, CDIF, like all other computational efforts, adopts
a projection onto a finite d-dimensional subspace P. Given a discretely sampled
function f = {f(ti)}1≤i≤m, the optimal coefficients can be found by minimizing
the quadratic objective function

min
c
‖f − φc‖22, (2)

where φ is an m × d matrix with entries φi,l = φl(ti) and c is a d × 1 column
vector of the coefficients. For an orthonormal basis such as the wavelets basis
Φ, defined by Φr,s = 〈φr, φs〉 is equivalent to Φ = I. This allows results, such as
‖fh − f j‖22, to reduce to the basis coefficients

‖fh − f j‖22 =
(
ch − cj

)T
Φ
(
ch − cj

)
= ‖ch − cj‖22. (3)

This result is used in both the pull and push terms of CDIF.

3.2 Localized Feature Representation

For CDIF, we derive several feature functions from the original signal and we
use a selective combination of these features when classifying our data. Each
feature results in a function that is of the same length of the original signal.
Note that this is a design choice not a limitation. Aggregating multiple feature
curves result in a vector-valued function.

The features we utilized in the present work are: identity map, instantane-
ous frequency [7], derivative (first, second and third), a few localized statistical
measures (standard deviation, skewness, kurtosis, median, and autocorrelation),
and local binary patterns (LBP) [17]. Some of the feature extraction methods
naturally produce functional outputs, e.g. derivatives. For others, we induce a
function output by using a n-point sliding window over the original signal. A
summary of all the features can be found in Table 1.

This feature extraction process can be formalized by defining a feature map-
ping operator Ψ : H → H such that Ψf = g, where g ∈ L2([a, b] ⊂ R). The
inner product and norm defined on f also hold for g. In CDIF, we consider a
variety of operators Ψ that act on our original f and produce a set of feature
functions gq. We aggregate those gq’s into a generalized vector-valued function,
g(t) = [g1(t), g2(t), · · · , gq(t)]T . As an a example, consider the case where we use
the derivative of a function as a feature, i.e. Ψ ≡ D and D : f → g. We assume
the data to be smooth, meaning that the data f possesses one or more derivati-
ves, indicated by Df, D2f, · · · , Dmf where m is the order of the derivative.

In another set of mappings, the Ψ ’s are not as straightforward as the deriva-
tive. They are computed using neighboring data samples, Ψf [tj−α, tj+α] = g(tj)
where α ∈ Z+. This technique is known as the sliding window technique allowing
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6 Classification by Discriminative Interpolation with Features

Table 1. Detailed Feature Extraction Equations. Some features naturally produce
functional outputs. For others, we use sliding windows (SW) to induce functional re-
presentations.

ID Feature Name Feature Function

1. Identity Map gi(t) = f i(t)

2.
Instantaneous
Frequency [7]

gi(t) = 1
2π

dω(t)
dt

where ω(t) = arg{f i(t)}

3-5. Derivative gi(t) = d(fi(t))n

dnt

where n = 1, 2, or 3

6.
SW Standard

Deviation

gi(t) =
√

1
n

∑n
j=1(f i(j)− f̄ i)2

where f̄ i = 1
n

∑n
j=1 f

i(j) and n is the window size

7. SW Skewness
gi(t) = 1

s3

∑n
j=1(f i(j)− f̄ i)3

where s is the SW standard deviation

8. SW Kurtosis
gi(t) = 1

s4

∑n
j=1(f i(j)− f̄ i)4

where s is the SW standard deviation

9. SW Median
gi(t) =

{
f i(
⌈
n
2

⌉
) if n is odd

1
2

(
f i(n

2
) + f i(n

2
+ 1)

)
if n is even

where n is the window size

10.
SW Local Binary

Pattern [17]

gi(t) =
∑n−1
j=1 I[f i(j), f i(t)]× 2(j−1)

where I[f i(j), f i(t)] =

{
0, f i(j) < f i(t)
1 f i(j) > f i(t)

and j is the

position of the neighbor cell

11. SW AutoCorrelation gi(t) =
∑n
j=1 f

i(j)f i(j − t)

us to compute a variety of localized features based on a neighborhood of conti-
guous samples. For example, the sample standard deviation σ : Rn ← R takes
in an n-dimensional data and returns a positive scalar. Standard deviation can
have valuable information on the curve but to use it in our CDIF framework, we
apply the sliding window technique which allows us to use sections of the curve
to find a standard deviation value per discrete time tj . The output is a function
due to the nature of the sliding window technique, where σ(t) represents the
local standard deviation computed from the window of n samples around the
time step t. Since we apply Ψ on the original curve with a much finer discre-
tization, enough discretization such that n → ∞ then g would be assumed to
be intrinsically infinite dimensional as well. Also, the sliding window technique
with overlapping ”windows” creates a close correlation between the data points
at tj and tj+1.
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Classification by Discriminative Interpolation with Features 7

In our CDIF technique, we are interested in using the best features to better
discriminate our data but at the same time, we do not want to lose the functional
aspect of the data. Given a set of features in Rd we can create an overall feature
map G : L2([a, b])→ L2

1([a, b])× L2
2([a, b])× · · · × L2

q([a, b]) such that

g(tj) = [g1(tj), g2(tj), · · · , gq(tj)]T (4)

is a vector-valued function at tj and q is the number of features used. This is
referred to by [18] as a q-dimensional parametric curve that still holds the same
Hilbert space properties. This representation of the features of the functional
data will be used in the CDIF framework.

3.3 CDIF Training Formulation

Now that we have established the vector-valued feature representation for CDIF,
we provide a detailed sketch of the supervised training formulation. We begin
with a labeled functional data set {(f i, yi)}Ni=1, where f i ∈ H are the one-
dimensional functions and yi = {1, . . . , A} are the class labels with A being
the number of categories. The discretized function data f i = {f i(tj)}1≤j≤m are
first used to derive all the feature vector-valued functions defined in Table 1.
Denote the vector-valued feature curve i by giq where q represents the feature

number as per the table. Observe that any single feature curve, giq ∈ Rm×1, has

the same dimension as f i. Now we can define the multivariate localized feature
signal (MLFS) hi as the concatenation of a subset of the features:

hi =
[
gi1,g

i
2, · · · ,giq

]
. (5)

This denotes hi ∈ Rm×q where q can vary between different datasets. Now similar
to the discretized data, the MLFS can be approximated in a Hilbert basis,

ĥi = φci.

where φ = [φ1, φ2, · · · , φd] is the m × d matrix of the orthonormal basis of H.
Let c̃i = [ci1, c

i
2, · · · , cid]T be the d × 1 vector of coefficients associated with the

approximation ĝi of gi. We can now define ci = [c̃i1, c̃
i
2, · · · , c̃iq] as the d × q

matrix of coefficients associated with the approximation ĥi of hi.
Getting the best approximation to ĥi requires minimizing

min
c
‖h− φc‖2F = min

c
‖h− ĥ‖2F , (6)

where ‖ · ‖2F is the Frobenius norm. For any matrix X ∈ Rn×m, ‖X‖2F =
trace

{
XTX

}
and trace {A} = a11 + a22 + · · ·+ amm. But since CDIF is trying

to find the best approximation for the data while making sure it looks more like
the data in its class and less like the data in the other classes, we also seek to
minimize ∑

j s.t. yi=yj

Mij‖ĥi − ĥj‖2F (7)

and to maximize ∑
j s.t. yi 6=yj

M ′ij‖ĥi − ĥj‖2F (8)
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8 Classification by Discriminative Interpolation with Features

Algorithm 1 Functional Classification by Discriminative Interpolation with
Features (CDIF)

Training

Input: htrain ∈ RN×m, ytrain ∈ RN , λ, µ, k, η (stepsize)
Output: ci(optimal interpolation)
1. For i← 1 to N
2. Repeat
3. Find N (i) and M(i) using kNN
4. Compute Mij and M ′ij ∀ i, j pairs
5. Compute ci (eq. 10)
6. Until convergence
7. End For

Testing

Input: htest ∈ RL×m, ci(from training), λ, µ, k, η′ (stepsize)
Output: â (labels for all testing data)
1. For l← 1 to L
2. For a← 1 to A
3. Repeat
4. Find N (a) for c̃lusing kNN
5. Compute Ma

i ∀ i
6. Compute ĉl (eq. 12)
7. Until convergence
8. compute Ela (eq. 11)
9. End For
10. âl ← {a|minEla ∀a}
11. End For

where Mij ∈ (0, 1) and
∑
jMij = 1 is the nearest neighbor constraint for yi = yj

where j 6= i, similarly, M ′ij ∈ (0, 1) and
∑
jM

′
ij = 1 is the nearest neighbor con-

straint for yi 6= yj where j 6= i. Similarly, as shown in eq. 3, given an orthonormal

basis, ‖f̂ i − f̂ j‖2 = ‖ci − cj‖2, this can be generalized to any Frobenius norm

‖f̂ i − f̂ j‖2F = ‖ci − cj‖2F . Combining this result and the objectives in eq. 6 and
eq. 7 yields the following objective function and optimization problem:

min
c,M,M ′

E = min
c,M,M ′

N∑
i=1

‖hi−φci‖2F +λ
∑

i,j s.t. yi=yj

Mij‖ci−cj‖2F −µ
∑

i,j s.t. yi 6=yj

M ′ij‖ci−cj‖2F . (9)

An update equation for the objective in eq. 9 can be found by taking the gradient
with respect to ci and then setting it to zero. This yields a closed form solution

ci =
(
ΦTΦ+ λ(1 + di)I − µ(1 + bi)I

)−1 · · · (10)ΦThi + λ(
∑
v∈Ca

Mivc
v +

∑
w∈Ca

Mwic
w)− µ(

∑
s/∈Ca

M ′isc
s +

∑
r/∈Ca

M ′ric
r)
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where di =
∑
w∈Ca

Mwi s.t. Mwi ∈ {0, 1} and bi =
∑
r/∈Ca

M ′ri s.t. M ′ri ∈ {0, 1},
cv are the neighbors of curve i from the same class, cs are the neighbors of curve
i from a different class and cw are the curves that consider i to be their neighbor
from the same class, cr are the curves that consider i to be their neighbor from
a different class.

3.4 Testing Formulation

Once we have trained our algorithm and found the coefficients that give the best
approximation to our training curves, we use the testing data to evaluate the per-
formance of our algorithm. Similar to the CDI training algorithm, we minimize
an objective function that approximates the best wavelet reconstruction of the
data and simultaneously updates the neighborhood for each class. This allows
us to try and fit a curve to the best class. The objective function is formalized
as

â = arg min
a
Ea = arg min

a

(
min
ĉ
‖ĥ− Φĉ‖2F + λ

∑
i

Ma
i ‖ĉ− ci‖2F

)
(11)

where h̃ is the test feature set function and c̃ is its matrix of reconstruction
coefficients and â is the assigned label to the incoming test pattern. Ma

i is the
nearest neighbor in the set of class a patterns. As before, the membership is
defined as Ma

i ∈ {0, 1}, again this can be solved by taking the derivative with
respect to ĉ and yields a closed form solution

ĉ =
(
ΦTΦ+ (λda)I

)−1(
ΦT ĥ+ λ

∑
i∈Ca

Ma
i ci

)
(12)

The testing formulation consists of two stages:

1. Solve minĉE
a
interp(ĉ) using block gradient descent and eq. (12).

2. Assign the label â to f̂ by finding the class with the smallest value in (1)
when using the feature set found in the training phase.

Details of the CDIF training and testing procedures are found in Algorithm 1.

4 Experimental Results

In this section, we discuss the performance of the Classification by Discrimi-
native Interpolation with Features (CDIF) algorithm. The datasets used in our
experiments are obtained from the “UCR Time Series Classification Archive”
[9]. For a uniform comparison to other algorithms, the UCR database already
divides the data into training and testing sets. All of these datasets had been
sampled using a constant sampling rate. For a well rounded experimental data-
set, we chose datasets with varying number of classes, different curve samplings,
and uneven training and testing sizes. Information on each of the datasets can be
found in Table 2. Through our empirical tests, we show two significant results.
First, we show that our formulation CDIF is competitive with state-of-the-art
algorithms, with leading competitors searching over 1,000 features compared to
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10 Classification by Discriminative Interpolation with Features

Table 2. UCR Time Series Data Set with varying number of classes, training set size,
testing set size and curve length.

Data Sets
Number of

Classes
Training Set

Size
Testing Set

Size
Curve length

Beef 5 30 30 470
CBF2 3 30 900 128
Coffee 2 28 28 286

Face(all) 14 560 1690 131
Gun-Point 2 50 150 150

SwedishLeaf 15 500 625 128
SyntheticControl 6 300 300 60

TwoPatterns 4 1000 4000 128
Wafer 2 1000 6174 152
Yoga 2 300 3000 426

our eleven. Second, the current generalized CDIF methods performs much better
than the original CDI algorithm which did not employ vector-valued functions.

The competing techniques we compare against begin with the baseline met-
hods recommended for UCR: the Euclidean distance and Dynamic Time Warping
(DTW) algorithm. We also pick four other leading algorithms [3, 4, 12, 13]. The
first three—COTE, TSBF, and FBL—are discussed in the related works. Since
COTE greedily searches over hundreds of features and uses ensemble classifiers,
the training takes multiple hours. On the other hand, our CDIF method takes
minutes to train and test. As detailed earlier, the TSBF training algorithm is
said to be computationally complex, but once the model is trained, classifying
the test set is very fast. FBL extracts thousands of features by using an extensive
database of algorithms. After it computes thousands of features for each dataset,
it learns the most informative of the classes by using a greedy forward feature
selection with a linear classifier. Our classifier is inherently nonlinear and uses
far less features. Grabcocka et al. [13] introduce a novel approach to shapelet
classification called Learning Shapelets (LS) for time series data. They claim it
has a much more significant classification accuracy than many state of the art
algorithm as well as being faster to implement.

The results of our experiments in comparison with these algorithms can be
found in Table 3. We also compare our CDIF method against the original CDI
method, which does not utilize vector-value feature functions. The free para-
meters in our method are the push λ and pull µ regularizing parameters, the
nearest neighbor parameter k. The λ and µ parameters typically range in values
[0.1, 10] and [0, .05], respectively. While k values of {1, 2, 3} consistently produce
high classification rates.

The results clearly demonstrate the value of the proposed CDIF method. Our
classification accuracies are competitive in all datasets, except SwedishLeaf. We
perform better than the previous CDI method in all experiments. Methods like
COTE and FBL employ ensemble classifiers and potentially thousands of featu-
res to achieve their accuracies. CDIF only utilized the eleven features detailed
in Section 3.2 and our method is inherently multiclass and nonlinear, without
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Table 3. CDIF Experimental Results comparable with state-of-the-art results.

Data Set
ED
[9]

DTW
[9]

COTE
[3]

TSBF
[4]

LS
[13]

FBL
[12]

CDI
[14]

CDIF

Beef 66.7 66.7 86.7 71.3 76.0 56.7 70.0 96.7
CBF2 85.2 99.6 99.9 99.1 99.4 71.1 82.1 95.9
Coffee 100 100 100 99.6 100 100 100 100

Face(all) 71.4 80.6 89.5 76.6 78.2 70.8 75.6 86.8
Gun-Point 91.3 91.3 93.0 98.9 100 92.7 90.0 97.3

SwedishLeaf 78.9 84.6 95.4 92.5 91.3 77.3 76.0 83.0
SyntheticControl 99.3 98.3 99.9 99.2 99.3 96.3 98.7 99.0

TwoPatterns 90.7 100 100 94.7 99.7 92.6 88.7 90.4
Wafer 99.5 99.5 100 99.6 99.6 100 92.3 94.5
Yoga 83.0 83.6 88.7 85.1 85.0 77.4 81.5 81.8

the need to aggregate binary classification results. Even without some of these
advantages, CDIF performed well against these techniques.

5 Conclusion

The proposed Classification by Discriminative Interpolation with Features (CDIF)
framework leverages class-specific neighborhood relationships to discriminatively
interpolate functions in a manner that morphs curves from the same class to
become more similar in their appearance, while simultaneously pushing away
neighbors from competing classes. CDIF formulates a vector-valued generaliza-
tion of the previous work in [14]. The component functions of the vector-valued
representation are obtained from localized features extracted from the original
time series function. CDIF takes advantage of the interpolation characteristics
of vector-valued functions to adaptively warp functions through their basis coef-
ficients and according to their class labels.

Our CDIF framework can inherently handle multi-class problems, avoiding
the ad-hoc one-vs-all heuristic employed strictly by binary classifiers. Our ex-
perimental evaluation demonstrated competitive performance to contemporary
techniques. The results on a number of time-series, multi-class benchmark data
sets, had CDIF ranked in the top tier among other approaches.

The present work illustrates how vector-valued functions and their interpo-
lation property can be capitalized for functional data classification. We plan to
explore several possible extensions using other functional characteristics and ap-
plication to higher dimensional functional data like images. We are also going to
continue exploring improvements in the optimization framework.
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6. Biau, G., Bunea, F., Wegkamp, M.: Functional classification in Hilbert spaces.
IEEE Transactions on Information Theory 51, 2163–2172 (2005)

7. Boashash, B.: Time-Frequency Signal Analysis and Processing: A Comprehensive
Review. Academic Press (2013)

8. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth and Brooks (1984)

9. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The
UCR time series classification archive. www.cs.ucr.edu/~eamonn/time_series_

data/ (2015)
10. Daubechies, I.: Ten Lectures on Wavelets. Regional Conference Series in Applied

Mathematics, Society of Industrial and Applied Mathematics (1992)
11. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.

Springer New York (1996)
12. Fulcher, B.D., Jones, N.S.: Highly comparative feature-based time-series classifi-

cation. IEEE Transactions on Knowledge and Data Engineering 26, 3026–3037
(2014)

13. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series
shapelets. Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 1, 392–401 (2014)

14. Haber, R., Rangarajan, A., Peter, A.M.: Discriminative interpolation for classifi-
cation of functional data. Joint European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases 1, 20–36 (2015)

15. Kreyszig, E.: Introductory Functional Analysis with Applications. John Wiley and
Sons (1978)

16. Leng, X., Müller, H.G.: Classification using functional data analysis for temporal
gene expression data. Bioinformatics 22, 68–76 (2006)
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Abstract. We derive an expectation conditional maximization either
(ECME) algorithm for estimating jointly the parameters of a linear re-
gression model, of a time-variable autoregressive (AR) model with re-
spect to the random deviations, and of a scaled t-distribution with re-
spect to the white noise components. This algorithm is shown to take
the form of iteratively reweighted least squares in the estimation of the
parameters both of the regression and time-variability model. The fact
that the degree of freedom of that distribution is also estimated turns the
algorithm into a partially adaptive estimator. As low degrees of freedom
correspond to heavy-tailed distributions, the estimator can be expected
to be robust against outliers. It is shown that the initial stabilization
phase of an accelerometer on a shaker table can be modeled parsimo-
niously and robustly by a Fourier series with AR errors for which the
time-variability model is defined by cubic polynomials.

Keywords: Linear regression model, time-dependent AR process, par-
tially adaptive estimation, robust parameter estimation, EM algorithm,
iteratively reweighted least squares, scaled t-distribution

1 Introduction

Linear regression models are used in many fields of application to approximate
numerical measurement results by means of parametric functions. In practice,
the random deviations of the observables from these deterministic functions are
frequently correlated. In the context of a time series measured by a single sensor,
autocorrelations can be expected for instance as a consequence of calibration cor-
rections being applied to all of the measurements (cf. [20]). The resulting colored
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2 EM for Regression Time Series with Time-Variable Student AR Errors

noise is often modeled parametrically by means of covariance-stationary autore-
gressive (AR) or, more generally, by autoregressive moving average (ARMA)
models. In the context of geodesy, for instance, such models were estimated to
describe the colored noise of the Gravity and Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) satellite gravity gradiometer (see [31]), of
inertial sensors (see [37], [29], [28]), and within global navigation satellite system
(GNSS) data (cf. [23]). The idea of fusing a linear regression model with an AR
error model has been known at least since [14].

Stationary colored noise models are frequently found to be insufficient due to
time-variable effects acting on the sensor, the environment or the observed phe-
nomenon. To overcome this limitation, AR(MA) processes with time-dependent
coefficients were introduced and methods for their estimation investigated by [34]
and [19]. If colored noise is to be removed from the measurements, the estimated
AR(MA) process must be invertible. Invertibility conditions for time-variable
ARMA processes were formulated by [12]. Many different schemes for model-
ing the time-variability of AR(MA) processes have been proposed. For instance,
[16] used a stochastically perturbed difference equation constraint model to en-
sure smoothness of estimated time-variable AR processes. Another stochastic
approach is based on the formulation of a time-variable AR process as a state-
space model, leading to a Kalman filter (see [35] and the references therein).
Furthermore, the modeling of AR models with coefficients changing throughout
different regimes in the sense of a Markov chain was considered by [7]; see also
the comparative study [1].

The usual approach to modeling the time-variability of AR(MA) coefficients
is to assume a certain set of basis functions and to express a particular AR(MA)
coefficient, at every time instance, as a point on the best-fitting linear combi-
nation of the basis functions. For instance, polynomials in terms of truncated
power series [4], Legendre polynomials [30], wavelets [36], trigonometric [11, 6],
sigmoid functions [10], and discrete prolate spheroidal sequences [8] have been
used for this purpose. The previous studies made effective use of least squares
techniques for the purpose of parameter estimation. When the white noise error
component of the AR(MA) process is expected to be outlier-afflicted or heavy-
tailed, a robust estimator should be used instead. Probability distributions that
take care of both of these issues are found (amongst others) within the family of
scaled t-distributions. When their degree of freedom is estimated alongside the
regression or AR(MA) model parameters, one speaks then of partially adaptive
estimation.

On the one hand, partially adaptive estimation for linear regression models
with t-distributed random deviations was suggested by [18]. In their approach,
an EM algorithm was used for the purpose of maximum likelihood (ML) esti-
mation, which takes the form of numerically convenient iteratively reweighted
least squares (as already indicated by [5]). [27] and [21] suggested expectation
conditional maximization (ECM), expectation conditional maximization either

(ECME) and multicycle ECM as variants of EM to speed up convergence. On
the other hand, [3] carried out a Bayesian type of partially adaptive estimation
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of pure AR processes with t-distributed errors. [32] considered even a time-
dependent AR process with t-distributed innovations, but did not estimate the
degree of freedom. It should be mentioned that [25] and [24] introduced par-
tially adaptive estimation, respectively, for linear regression and ARMA models
in connection with a generalized t-distribution, which however does not seem to
allow for the development of an EM algorithm in the spirit of [18].

Partially adaptive estimation of linear regression models with autoregressive
random deviations and t-distributed white noise component appears to have
been investigated first in [15]. In the following, this model is further extended
to include an additional component that allows for time-variability of the AR
coefficients. We choose for this purpose the aforementioned approach based on
basis functions. After defining the specifics of the observation model, we derive
a corresponding ECME algorithm, showing in particular that the coefficients
of the regression model and the coefficients of the AR model can be estimated
via two separate iteratively reweighted least squares schemes. This algorithm is
applied to a measured time series of accelerometer data in a vibration analysis
experiment. It is shown that the initial stabilization phase of the induced vibra-
tion can be modeled efficiently and estimated robustly by using a combination of
a low-order Fourier series and a low-order, time-variable AR process with rather
heavily tailed, t-distributed white noise components.

2 The Observation Model

The basic time series model consists of n linear observation equations

Yt = Atξ + Et (t = 1, . . . , n), (1)

where Yt represents an observable, Atξ a purely deterministic functional model,
and Et a random deviation. The observables and random deviations are collected
in corresponding (n × 1)-random vectors Y and E. We assume that the func-
tional model includesm unknown parameters ξ = [ξ1, . . . , ξm]T and that the row
vectors A1, . . ., An give rise to a known (n×m)-coefficient matrix A with full
rank m. Furthermore, we assume that the random deviations are autocorrelated
via a time-dependent p-th order autoregressive (AR) model

Et = α1,tEt−1 + . . .+ αp,tEt−p + Ut (t = 1, . . . , n), (2)

where U1, . . ., Un are independently and identically distributed random variables
with mean 0 and variance σ2

0 . The time variability of each of the p AR coefficients
will be described by linear models

αj,t = Xtβj (j = 1, . . . , p; t = 1, . . . , n) (3)

involving a (q × 1)-vector of unknown parameters βj = [β1,j , . . . , βq,j ]
T and

known coefficient vectors X1, . . ., Xn. Thus, we employ the same family of func-
tions for all p AR coefficients. We consider for the distribution of the white noise
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components U1, . . ., Un the scaled t-distribution Ut ∼ tν(0, σ
2) with generally

unknown degree of freedom ν and unknown scale parameter σ. That family of
distributions is defined by the (family of) probability density functions (pdf)

f(ut) =
Γ
(
ν+1
2

)
√
νπ σ Γ

(
ν
2

) [1 + (ut
σ

)2

/ν

]− ν+1
2

(t = 1, . . . , n), (4)

where Γ is the gamma function. Due to the stochastic independence of the white
noise components, their joint pdf factorizes into f(u) =

∏n

t=1 f(ut). To fix the
initial conditions of the AR(p) model (2), we assume that E0, . . ., E1−p take a
constant value of 0. Assuming in addition that this model can be inverted, we
can write in view of (1) – (3) for the t-th realization of Ut

ut = et − α1,tet−1 − . . .− αp,tet−p (5)

= (yt −Atξ)−Xtβ1(yt−1 −At−1ξ)− . . .−Xtβp(yt−p −At−pξ) (6)

=

yt − m∑
j=1

At,jξj

−

q∑
k=1

Xt,kβk,1

yt−1 −

m∑
j=1

At−1,jξj


− . . .−

q∑
k=1

Xt,kβk,p

yt−p −

m∑
j=1

At−p,jξj

 , (7)

setting the initial conditions y0 = · · · = y1−p = 0 and A0 = · · · = A1−p =
0[1×m]. Using the notation LjZt := Zt−j in connection with αt(L) := 1 −

α1,tL − . . . − αp,tL
p and Zt = αt(L)Zt for an arbitrary sequence of matrices

(Zt)t∈T with T ⊆ Z, we also have for every t = 1, . . . , n

ut = et = αt(L)et = αt(L)(yt −Atξ) = yt −Atξ. (8)

This enables an interpretation of the quantities et, yt and At as the outputs of
the digital filter αt(L), applied respectively to a segment of the random devia-
tions e, of the observations y and of the coefficient matrix A. Thus, α1(L), . . .,
αn(L) may be viewed as turning the colored noise sequence e progressively into
white noise u, acting thus jointly as a decorrelation filter. Equations (4) and
(7) define the basic probabilistic and parametric observation model. As f(u) is
actually a function of the observations y, depending also on the values of all
model parameters, we could use this joint pdf to define the likelihood function
L(ξ,β, σ2, ν;y) for the purpose of parameter estimation. Note that this function
is conditional on the previously fixed values for E0, . . ., E1−p; the use of such a
conditional likelihood function (cf. [13]) is justified if the number of observations
is sufficiently large in order for the ’warm-up effect’ of the initial conditions on
the subsequent autoregressive values to fade out.

Since maximum likelihood (ML) estimation based on the preceding likelihood
function (or on its natural logarithm) cannot be based on closed-form expressions
due to the intricacy of the t-distribution, we apply a well-known latent-variables
approach (see [18]), which will enable ML estimation by means of a relatively
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simple form of expectation maximization (EM) algorithm also for our specific
time series model. The general idea is to firstly introduce independently and
identically gamma-distributed latent variables Wt ∼ G(ν/2, ν/2) (t = 1, . . . , n),
where ν is the degree of freedom of the desired t-distribution tν(0, σ

2). This
distribution is defined by the pdf

f(wt) =

 ( ν
2 )

ν
2

Γ( ν
2 )

· w
ν
2−1
t · e−

ν
2wt if wt > 0,

0 if wt ≤ 0,
(9)

and the stochastic independence allows us to factorize f(w) =
∏n

t=1 f(wt).
Secondly, instead of assuming the white noise components to follow a scaled
t-distribution at the outset, it is assumed that each random variable Ut follows
a normal distribution conditional on the occurrence of the value wt of the latent
variable Wt. More specifically, we choose for the conditional pdf

f(ut|wt) =
1√

2π(σ/
√
wt)2

exp

{
−

u2t
2(σ/

√
wt)2

}
, (10)

where each Ut is assumed to be conditionally independent from U1, W1, . . .,
Ut−1,Wt−1, Ut+1,Wt+1, . . ., Un andWn. In other words, the values of the latter
random variables shall not affect the density of ut, in the sense that

f(ut|u1, w1 . . . , ut−1, wt−1, ut+1, wt+1, . . . , un, wn, wt) = f(ut|wt). (11)

This form of conditional independence can be interpreted as a hidden Markov
property for which the hidden variables are real-valued (see Section 4 in [2]).
In light of (10), we now see that the variance of every white noise component
Ut is rescaled by an unknown (latent) weight wt, independently of the white
noise components and weights associated with time instances other than t. We
obtain then from (9) and (10) the joint pdf f(ut, wt) = f(wt) f(ut|wt), which in
turn gives the desired pdf (4) of the scaled t-distribution as a marginal distribu-
tion (see Sect. 2.6 in [26]). This joint pdf also yields f(wt, ut) = f(ut) f(wt|ut),
where the conditional pdf f(wt|ut) can be shown to define the gamma distri-
bution G(a, b) with parameters a = (ν + 1)/2 and b = (ν + u2t/σ

2)/2, given
the value ut (cf. [17], equations (27)). In connection with the initially made two
assumptions of conditional independence, this allows us to establish the joint
pdf of the white noise and the latent weights in the form of the factorization
f(u,w) =

∏n

t=1 f(wt) f(ut|wt), which we define to be the likelihood function
L(ξ,β, σ2, ν;y,w) of the extended observation model.

3 The Modified EM Algorithm

Combining the preceding pdf with (8) – (10), we can write the log-likelihood
function in the form

logL(ξ,β, σ2, ν;y,w) = −
n

2
log(2π) −

n

2
log(σ2) +

nν

2
log

(ν
2

)
− n log Γ

(ν
2

)
−
1

2

n∑
t=1

logwt −
1

2σ2

n∑
t=1

wt[αt(L)(yt −Atξ)]
2 +

ν

2

n∑
t=1

(logwt − wt), (12)
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where each αt(L)-filter is a function of the parameters β. Collecting for brevity
of expressions all unknown parameters ξ, β, σ2 and ν within the vector θ and
following the idea of expectation maximization (EM) in [5], we iteratively aim

for a solution θ(i+1) that maximizes E
Y,W|y;θ(i) {logL (θ;y,W)}. Here, i ∈

{0, 1, 2, . . . , } denotes the iteration step within the EM algorithm, so that the
conditional expectation is evaluated by using both the given measurements y
and the parameter estimates θ(i) from the preceding iteration step.

3.1 The E-Step

Following the general approach by [5], we restate the conditional expectation as
the Q-function (see also [9])

Q(θ|θ(i)) = E
W|y;θ(i) {logL (θ;y,W)} . (13)

As the likelihood function was previously defined in terms of white noise U
rather than the observables Y, we will condition directly on the realizations u.
We then find with (12), in analogy both to the pure regression case without AR
models in [18] and to the regression model with time-constant AR models in
([15]), the Q-function to be

Q(θ|θ(i)) = −
n

2
log(2π)−

n

2
log(σ2) +

nν

2
log

(ν
2

)
− n log Γ

(ν
2

)
(14)

−

n∑
t=1

1

2

[
ν +

(ut
σ

)2
]
EW|u;θ(i){Wt}+

n∑
t=1

1

2
(ν − 1)EW|u;θ(i){logWt}

with

w
(i)
t := EW|u;θ(i){Wt} =

ν(i) + 1

ν(i) +

(
α

(i)
t (L)(yt−Atξ(i))

σ(i)

)2 (15)

and (employing the digamma function ψ)

EW|u;θ(i){logWt} = logw
(i)
t + ψ

(
ν(i) + 1

2

)
− log

(
ν(i) + 1

2

)
. (16)

Substitution of the findings (15) and (16) into (14) gives us now

Q(θ|θ(i)) = const.−
n

2
log(σ2)−

1

2σ2

n∑
t=1

w
(i)
t [αt(L)(yt −Atξ)]

2
+
nν

2
log ν (17)

−n log Γ
(ν
2

)
+
nν

2

[
ψ

(
ν(i) + 1

2

)
− log

(
ν(i) + 1

)
+

1

n

n∑
t=1

(
logw

(i)
t − w

(i)
t

)]
.
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3.2 The M-Step

To carry out the M-Step, we determine the first partial derivatives of the Q-
function (17) with respect to the individual parameters ξ, β, σ2 and ν in θ, and
set these equal to zero. It is not difficult to show that the first-order condition
with respect to the j-th parameter in ξ becomes

0 =
∂

∂ξj
Q(θ|θ(i)) =

1

σ2

n∑
t=1

w
(i)
t At,j(yt −Atξ).

Writing these m equations in matrix notation, for which purpose we denote by

W(i) the diagonal matrix of the weights w
(i)
1 , . . ., w

(i)
n , we obtain

0 =

 A1,1 · · · An,1

...
...

A1,m · · · An,m

W(i)

 y1 −A1ξ
...

yn −Anξ

 = AW(i)
(
y −Aξ

)
.

As these normal equations for the parameter group ξ involve also the unknown
parameters β through the filter operations, we fix values for the latter by setting
β = β(i). In doing this, we perform a so-called conditional maximization (CM)

step in the sense of [27]. Then, β(i) allows us to compute the time variable AR

coefficients α
(i)
1,1, . . ., α

(i)
p,n by means of the equations (3); these coefficients define

decorrelation filters, which we can subsequently employ to calculate the filtered
quantities (for every t = 1, . . . , n)

y
(i)
t := α

(i)
t (L)yt, A

(i)

t,j := α
(i)
t (L)At,j , A

(i)

t := α
(i)
t (L)At. (18)

The new solution ξ(i+1) for ξ can then be computed from

ξ(i+1) =
(
(A

(i)
)TW(i)A

(i)
)−1

(A
(i)
)TW(i)y(i), (19)

which estimates give rise to the colored noise residuals e
(i+1)
t := yt −Atξ

(i+1).
Next, we consider the first-order conditions with respect to the previously fixed
parameter vectors β1, . . ., βp, for which we obtain

0 =
∂

∂βh

Q(θ|θ(i)) =
1

σ2

n∑
t=1

w
(i)
t et−hX

T
t (et −Xtβ1et−1 − . . .−Xtβpet−p).

Having already determined estimates ξ(i+1), the joint solution of the equation
systems arising for all h = 1, . . . , p can be determined as a second CM step via

0 =


e
(i+1)
0 XT

1 · · · e
(i+1)
n−1 XT

n

...
...

e
(i+1)
1−p XT

1 · · · e
(i+1)
n−p XT

n

W(i)


e
(i+1)
1 − e

(i+1)
0 X1β1 − . . .− e

(i+1)
1−p X1βp

...

e
(i+1)
n − e

(i+1)
n−1 Xnβ1 − . . .− e

(i+1)
n−p Xnβp


=: (E(i+1))TW(i)

(
e(i+1) −E(i+1)β

)
,
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using the initial conditions e
(i+1)
0 = . . . = e

(i+1)
1−p = 0 and the stacked vector

βT = [βT
1 . . .β

T
p ]. The reweighted least squares solution for β then reads

β(i+1) =
(
(E(i+1))TW(i)E(i+1)

)−1

(E(i+1))TW(i)e(i+1). (20)

For every time instance t, the resulting AR coefficients will be denoted by α
(i+1)
j,t ,

and we write for the corresponding decorrelation filter α
(i+1)
t (L), which allows

us to estimate the white noise residuals through u
(i+1)
t = α

(i+1)
t (L)e

(i+1)
t . The

third CM-Step applies to the scale factor of the underlying t-distribution and
requires the solution of

0 =
∂

∂σ2
Q(θ|θ(i)) = −

n

2σ2
+

1

2σ4

n∑
t=1

w
(i)
t u2t .

Substituting the current estimates ξ(i+1) and β(i+1), we obtain for this solution
the average sum of squared residuals

(σ2)(i+1) =
1

n

n∑
t=1

w
(i)
t

(
u
(i+1)
t

)2

=
(u(i+1))TW(i)u(i+1)

n
. (21)

The fourth CM step would then follow from solving the equation 0 = ∂
∂ν
Q(θ|θ(i)),

completing the current step of the EM algorithm (in the form of ECM). In view
of the findings of [21] and [22] (see also [26]) in the context of estimating the
degree of freedom of the scaled t-distribution, the number of iteration steps
can generally be reduced greatly by replacing the Q-function with the origi-
nal log-likelihood function within the preceding first-order condition for ν. This
modification of the ECM algorithm is called ECM either (ECME) and increases
the likelihood in each iteration step as well. Applying this idea to our specific
model (4) – (8), we thus seek the zero of the equation

0 =
∂

∂ν
logL(ξ,β, σ2, ν;y) =

n

2
ψ

(
ν + 1

2

)
−
n

2
ψ
(ν
2

)
+
n

2
(log ν + 1)

−
1

2

n∑
t=1

log

[
ν +

(ut
σ

)2
]
−

1

2
(ν + 1)

n∑
t=1

[
ν +

(ut
σ

)2
]−1

Replacing u by the currently available estimated residuals u(i+1), denoting the

solution for ν by ν(i+1), and defining w
(i+1)
t according to (15), we finally obtain

0 = log ν(i+1) + 1− ψ

(
ν(i+1)

2

)
+ ψ

(
ν(i+1) + 1

2

)
− log

(
ν(i+1) + 1

)
+
1

n

n∑
t=1

(
logw

(i+1)
t − w

(i+1)
t

)
. (22)

We conclude this section with a few comments on our implementation of the
preceding ECME algorithm.
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If initial values for ξ are unknown, they are computed via unweighted least
squares through ξ(0) = (ATA)−1ATy. Based on the resulting initial residuals
e(0), initial values for β are computed next via (20), applying again the neutral
weight matrixW(0) = I. This solution gives rise to the initial decorrelation filters

α
(0)
t (L), which allow for the computation of the residuals u(0). Subsequently, we

determine the initial value for σ2 through (σ2)(0) = (u(0))Tu(0)/n. Furthermore,
we choose for the initial degree of freedom ν(0) = 30. With these values, the
weight determination (15) within the E step and the CM(E) steps (19) – (22)
are iterated until the maximum number of iterations is reached or until the
following stop criterion is satisfied. We check whether the greatest absolute value
of the differences between the estimates of two subsequent iteration steps is less
than 10−8 for the parameters ξ, β and σ2, and less than 10−4 for ν. Since the
normal distribution represents the limiting case ν → ∞ of the t-distribution, it
is possible that the zero of (22) is infinite. To circumvent numerical problems
created by this case, we check if a sign change of the function on the right-hand
side of (22) occurs between 10−8 and 108; if not, we set ν(i+1) to a very large
value in correspondence to a normal distribution. It should be mentioned that
we did not find it necessary in our real-data applications to enforce stability on
the time-variable AR-processes, which issue is beyond the scope of the current
paper.

4 An Application to Vibration Analysis

We applied the ECME algorithm to estimate the non-stationary behavior of
a highly accurate single-axis PCB Piezotronics accelerometer within a vibra-
tion analysis experiment, which was carried out at the Institute of Concrete
Construction at the Leibniz Universität Hannover. The sensor was mounted on
a shaker table, which consists of a plexiglass plate fixed between two wooden
supports and two imbalance motors in the center. This shaker induced an oscil-
lation frequency of 16 Hz throughout the measurement period of approximately
45 minutes. The sampling frequency of the accelerometer was approximately 195
Hz, so that a maximum frequency of about 95 Hz can be detected. Usually, the
first few seconds of the data set are discarded as transient oscillation. The data
set without this initial stabilization phase was modeled in [15]. In the following,
we analyze only that initial phase, which we defined to consist of the first 1500
accelerometer values (i.e., of the initial approximately 7.7 seconds). Apart from
the main frequency, multiples of 8 Hz with small amplitudes can be expected to
occur as a consequence of the sampling of the originally continuous-time phe-
nomenon and due to the physical properties of the shaker table. We modeled
this signal content by means of the truncated Fourier series

yt =
a0
2

+

12∑
j=1

aj cos (2πfjxt) + bj sin (2πfjxt) + et, (t = 1, . . . , n) (23)

with fixed frequencies fj = j · 8 Hz; the unknown Fourier coefficients a0, a1, . . .,
a12 and b1, . . ., b12, are collected within the parameter vector ξ. Concerning the
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10 EM for Regression Time Series with Time-Variable Student AR Errors

colored noise, we specified on the one hand a time-variable AR(p)-process using
the global polynomials x0, x1, . . ., xq, and on the other hand a time-constant
AR(p)-process (which constitutes the special case q = 0 of the preceding model).
We tried different autoregressive and polynomial model orders, beginning with
p = q = 1, and identified the least orders for which the estimated, decorrelation-
filtered residuals û (obtained as the values u(i+1) after convergence of the ECME
algorithm) pass a periodogram-based white noise test. We used for this purpose
the MATLAB routine periodogram to compute the onesided periodogram I1,
. . ., IM , which values give the normalized cumulated periodogram

S0 = 0, Si =

∑i

k=1 Ik∑M

k=1 Ik
(i = 1, . . . ,M),

whereM is the lower integer of n/2. The test compares the maximum cumulated
periodogram excess T = maxi |Si − i/M | over a cumulated, theoretical white
noise periodogram with 1 − α significance bounds (cf. Sect. 7.3.3 in [33]). We
thus obtained as the most parsimonious colored noise description a time-variable
AR(6) model with cubic polynomials (q = 3) and a time-constant AR(21) model
(see Fig. 1 for the depiction of the two periodogram tests and Fig. 2 for the
estimated AR coefficients). The adjustment involving the time-variable AR
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Fig. 1. Excess of the estimated periodogram of the decorrelated residuals for the time-
variable AR(6) model (blue) and for the stationary AR(21) model (green) with respect
to the theoretical white noise periodogram (black) and 99% significance bounds (red).

model yields for the estimated degree of freedom ν̂ = 4.8 (indicating a rather
heavy-tailed t-distribution), whereas we obtained the Gaussian limit ν̂ → ∞ for
the time-constant model. The difference between these two models in terms of
adjusted observations Aξ̂ is also clearly discernible (see Fig. 3). Whereas the
time-variable model reproduces the eventual oscillation amplitude quite accu-
rately, much of the oscillation signal is absorbed into the colored noise residuals
of the time-constant model. We therefore conclude that it is more reasonable to
interpret and model the initial measurement phase, where the oscillation ampli-
tude changes greatly before reaching a stable value, as a combination of outliers
(leading to heavy tails) and non-stationary autocorrelation patterns interacting
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Fig. 2. Estimated coefficients of the time-variable (tv) AR(6) model and of the first
six coefficients for the time-constant (tc) AR(21) model over the 1500 time instances.

with the Fourier series model. These patterns can be displayed as a time-variable
power spectral density (see Fig. 4), defined by (cf. [35])

PSD(f, t) =
σ̂2
u∣∣∣1−∑p

j=1 α̂j,te−i2πjf
∣∣∣2 , (24)
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Fig. 3. Top row: plot of the complete dataset y (blue), of the adjusted observations
involving the time-variable (tv) AR(6) model (in red on the left subplot), and of
the adjusted observations Aξ̂ involving the time-constant (tc) AR(21) model (in red
on the right subplot). Bottom row: plots of the corresponding estimated residuals
(decorrelation-filtered residuals û in blue, colored noise residuals ê in red).
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Fig. 4. Power spectral density based on the time-variable AR(6) processes.

where the standard deviation of the t-distributed white noise components is
related to the estimated scale factor and degree of freedom via σ̂2

u = ν̂
ν̂−2 σ̂

2.
The evident fact that the PSDs have peaks around 16 Hz demonstrates that the
oscillation signal is still partially captured by the colored noise model. As both
the Fourier and the AR model have relationships with the frequency domain,
this kind of interaction appears to be unavoidable.
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10. Härmä, A., Juntunen, M., Kaipio, J.P.: Time-Varying Autoregressive Modeling of
Audio and Speech Signals. In: Proceedings of the 10th European Signal Processing
Conference, Tampere, Finland, 2037-2040 (2000)

11. Hall, M.G., Oppenheim, A.V., Willsky, A.S.: Time-Varying Parametric Modeling
of Speech. Signal Processing 5, 267-285 (1983)

12. Hallin, M.: Mixed Autoregressive-Moving Average Multivariate Processes with
Time-Dependent Coefficients. Journal of Multivariate Analysis 8, 567-572 (1978)

13. Hamilton, J.D.: Time series analysis. Princeton University Press (1994)
14. Hildreth, C.: Asymptotic Distribution of Maximum Likelihood Estimators in a Lin-

ear Model with Autoregressive Disturbances. The Annals of Mathematical Statistics
40, 583-594 (1969)

15. Kargoll, B., Omidalizarandi, M., Loth, I., Paffenholz, J.A., Alkhatib, H.: An It-
eratively Reweighted Least-Squares Approach to Adaptive Robust Adjustment of
Parameters in Linear Regression Models with Autoregressive and t-Distributed De-
viations. Journal of Geodesy, https://doi.org/10.1007/s00190-017-1062-6 (2017)

16. Kitagawa, G., Gersch, W.: A Smoothness Priors Time-Varying AR Coefficient
Modeling of Nonstationary Covariance Time Series. IEEE Transactions on Auto-
matic Control 30, 48-56 (1985)

17. Koch, K.R., Kargoll, B.: Expectation Maximization Algorithm for the Variance-
Inflation Model by Applying the t-Distribution. Journal of Applied Geodesy 7, 217-
225 (2013)

18. Lange, K.L., Little, R.J.A., Taylor, J.M.G.: Robust Statistical Modeling Using the
t-Distribution. Journal of the American Statistical Association 84, 881-896 (1989)

19. Liporace, L.A.: Linear Estimation of Nonstationary Signals. The Journal of the
Acoustical Society of America 58, 1288-1295 (1975)
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Abstract. Copulas are useful tools for formalizing the dependence struc-
ture between variables, especially for the economics field, where the depen-
dence plays a key role. In this paper, we analyze the dependence between
the inflation and the US/Euro exchange rates in the Euro area, from
different periods, a crisis and a non-crisis periods. First, we analyze the
dependence profiles using a non-parametric approach. In the second, we
select an appropriate parametric Copulas, depending on the nature of the
periods. Results confirm the sensibility of Copulas to the macroeconomic
fluctuations, which occur during the analyzed periods.

Keywords: Copulas, Forecasting, GoF tests, Inflation, Exchange rate,
Non-parametric approaches.

1 Introduction

The economic literature presents the inflation as one of the key macroeconomic
indicators. This concept is defined as persistent increases in the general level of
the prices, which referred to the devaluation of the money worth (ILO, IMF,
OECD, UNECE, Eurostat, and The World Bank, 2004). Concerning susceptible
causes, the economic literature provides two main reasons of the inflation. The
most common is the demand-pull inflation while the second is the cost-push in-
flation (Jongwanich and Park, 2008). The first one occurs when a demand for
a good or a service increases much more than it outstrips supply. This situa-
tion can occur only in some circumstances, namely a growing economy which
conduct people to be more confident, a discretionary fiscal policy where the gov-
ernment’s ability to spend more or tax less increases the demand, in the situation
of the marketing and a new technology deployment or, in the situation of over
expansion of the money supply. The cost-push inflation is a result of a supply
shortage combined with an enough demand. This can occur through a wage in-
flation, a monopoly, a natural disasters and a depletion of a natural resources,
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a government regulation and a taxation or, through the currency exchange rates.

Economists highlight the dependence between the inflation and several key
macroeconomic variables. Chollete and Ning (2009) mention a negative depen-
dence between outputs and prices, Munyeka (2014) studies a positive dependence
between the inflation and the real GDP, and Fitzgerald and Nicolini (2014) an-
alyze a negative linear dependence between the unemployment and the inflation .

The exchange rate movements are one of the factors that influence the infla-
tion. This indicator is of a great importance from the perspective of the monetary
policy. The exchange rate is defined as the price of one country’s’ currency in
relation to another. It may be expressed as the average rate for a period of a
time or as the rate at the end of a period.

A variety of empirical studies and time series models show that there is a rela-
tionship between the exchange rate fluctuations and the inflation (Kano (2016),
Burstein and Gopinath (2014) and Engel (2014)).

In fact, the exchange rate can influence the inflation, directly through the
price of the imported final consumer goods, and indirectly via the price of the
imported intermediate goods used in the Euro area domestic production. How-
ever, the effect on the inflation depends on what the causes of the exchange rate
movements are. Moreover, the size and the speed of the exchange rate effects
differ across the product categories and depends on the macroeconomic environ-
ment (ECB, 2014).

Most of the results about these macroeconomic dependencies are formulated
with some variant of a covariance. However, covariances and correlations are
not enough to identify the forms of a dependence. For this reason, the Copulas
are introduced as useful extensions and generalizations of the approaches for
modeling a joint distributions and a dependence (Sklar, 1959). There are many
econometric studies which use a Copulas in an explicit manner. Granger et al.
(2006) use the Copulas to examine common factors in a conditional distributions
for the income and the consumption. Miller and Liu (2002) mention the Cop-
ula approach to recover a joint distributions from a limited information. Prieger
(2002) and van Ophem (1999, 2000) use Copulas to model the bivariate latent
variable distributions. Zimmer and Trivedi (2006) use a trivariate Copula frame-
work to analyze a model with counted outcomes. Xiongtoua and Sriboonchitta
(2014) use a Copulas-based GARCH to analyze the volatility and the depen-
dence between the exchange and the inflation rates.

The interest in the Copulas arises from a several perspectives. First, the
Copulas are the best useful method for deriving the joint distributions given
the marginal ones, especially in the situation of the econometricians who often
possess more information about the marginal distributions. Second, the Copulas
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Using a Copula for Modeling Inflation 3

allow a convenient choice for modeling a potentially nonlinear dependence.

In this paper, we are interested in the establishment of a relationship between
the US/Euro exchange and the inflation rates in Euro area for different periods.
Afterwards, we present our proposed methodology with a detailed theoretical
background. In the third section, we present the used data. The last section
concerns the results and a brief conclusion.

2 Methodology and a Theoretical Background

Given two random variables X and Y with the continuous marginals F (x) = u
and G(y) = v, the Sklar theorem (Sklar, 1959) stats that the joint distribution
function H(x, y) of (X,Y ) can be written in terms of a unique function C(u, v),
where:

H(x, y) = C(u, v) (1)

C(u, v) is known as the Copula of (X,Y ). It describes how H(x, y) is coupled
with the marginal functions F and G.

Many families of Copulas C(u, v) have been proposed in the literature (Ta-
ble 1). We can mention for example the Archimedean Copulas (e.g.: a Gumbel
Copula) and the Elliptical Copulas (e.g.: a Normal Copula). To identify the best

Table 1. Some examples of Copulas

Copulas θ C(u, v)

Gumbel [1,∞) exp[−((− log(u))θ + (− log(v))θ)
1
θ ]

Clayton θ ∈ [−1,∞)\{0} max([u−θ + v−θ − 1]−
1
θ , 0)

Frank θ ∈ R\{0} − 1
θ

ln(1 + (exp(−θu)−1)(exp(−θv)−1)
exp(−θ)−1

)

Gaussienne [−1, 1] ΦΣ(Φ−1(u), Φ−1(v))
Student [−1, 1] tΣ,ν(t−1

ν (u), t−1
ν (v))

Plackett (θ > 0, θ 6= 1)
(1+(θ−1)(u+v))−

√
(1+(θ−1)(u+v))2−4uvθ(θ−1)

2(θ−1)

Galambos [0,∞) uv exp(((− log(u))−θ + (− log(v))−θ)
−1
θ )

Copula which describes the data, we use first a non-parametric approach, based
on graphical tools which allow to identify susceptible families of Copulas.

2.1 The Chi-plot

The Chi-plot allows to identify a nature of a dependence between X and Y . Let
(Xi, Yi)1≤i≤n be a random sample from a bivariate cumulative distribution H.
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Let F and G be the marginal distributions of X and Y, respectively. Fisher and
Switzer (1985 ,2001) propose a plot of the pairs (λi, χi), defined by:

λi = 4 sign(F̃iG̃i) max(F̃i

2
, G̃i

2
) and χi =

Hi − Fi ∗Gi√
Fi(1− Fi)Gi(1−Gi)

, (2)

Where:

Fi =
1

(n− 1)
rank(Xi), Gi =

1

(n− 1)
rank(Yi), Hi =

1

(n− 1)
rank(Xi, Yi),

rank(Xi) =
∑
j 6=i

1Xj≤Xi , rank(Xi, Yi) =
∑
j 6=i

1Xj≤Xi,Yj≤Yi , F̃i = Fi − 0.5, and

G̃i = Gi − 0.5.

To predict the χi’s values, Fisher and Switzer (1985 ,2001) built confidence
intervals of the form ±cp

√
n. They also gave approximate values of the cp’s

for different values of p ∈ [0, 1]. In the case of independence, we expect that
p× 100% of the pairs (λi, χi) will be inside the interval [−cp

√
n, cp
√
n ]. In the

case of a positive dependence, the pairs points go scattered above the band, and
conversely for the case of negative dependence.

2.2 The Kendall (K)-Plot

The Kendall plot or the K-plot proposed by Genest and Boies (2003) is a rank
based procedure for the detection of dependence. The procedure consists to
represent the pair (Wi,n, Hi) for i ∈ [1, n], where Wi,n is the expectation of the
ith order statistic of a n random sample size. K0 is a conditional distribution,
issued from H, under the independence between X and Y . The form of the
bivariate distribution K0 is given as follows:

K0(w) = P (UV ≤ w) = w − wlog(w) (3)

Where U and V are independent uniform random variables on the interval
[0, 1], and Wi,n is given by:

Wi,n = n

(
n− 1
i− 1

)∫ 1

0

w{K0(w)}(i−1)1−K0(w)
(n−i)

dK0w (4)

The closer the K-plot from the 45-degree line is, less is the association between
the random variables.

2.3 Deheuvels Empirical Copula and Mean Squared Error (MSE)

Once we have an idea on the susceptible family of Copulas, we explore another
non-parametric approach, to identify a specific sets of Copulas. This approach is
based on the comparison regarding the Deheuvels empirical Copula (Deheuvels,
1979 and 1981), using the Mean Squared Error (MSE). The implementation of
this approach is done by:
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1. The construction of empirical univariate marginal.
2. The construction of the empirical Copula.
3. The construction of the parametric Copula.
4. The minimization of the Mean Squared Error (MSE).

Once the best Copula is identified using the non-parametric approach, we pro-
ceed to the identification of the best Copula, using a parametric approach.

2.4 Adjustement of a Parametric Copula

In this paper, the observed data (x1, . . . , xn) and (y1, . . . , yn) present an auto-
correlation. This can be taken into account, by modeling Xt and Yt as a time
series, before adjusting an adequate Copulas (Patton, 2012).

Models such as ARIMA and GARCH are commonly used for the time series
(Box and Jenkins, 1976). If a model is well adjusted to Xt and Yt, then their
residuals εXt and εYt are not autocorrelated. In this case, to model the depen-
dence between Xt and Yt, we adjust a Copula C(F (εXt), G(εYt)), where F and
G are the distribution of εXt and εYt , respectively.

This Copula can be used for the forecasting, based on the corresponding
conditional Copula C1, where:

P [εYt ≤ εy|εXt = εx] = P [V ≤ v|U = u] =
∂C(u, v)

∂u
≡ C1(F (εXt), G(εYt)) (5)

Let τ = C1(F (εXt), G(εYt)), with τ ∈]0, 1[. To obtain QεXt
(τ |εx), which is the

τ -th conditional quantile function, given εXt = εx, one can solve the equation:

QεXt
(τ |εx) = G−1(C−11 (τ, F (εx))) = G−1(C−11 (τ, u)|u = F (εx)) = H(εx, τ)

(6)
Where G−1 and C−1 are the inverse function of G and C, respectively.

In this paper, we set τ to 0.5 which corresponds to the case of the median
quantile Copula.

Thus, to forecast at the (t + 1) period, the value of the quantile QεYt+1
, we

can use the adjusted Copula and the value of εXt+1
.

3 Data

The proposed methodology is applied to the monthly inflation and the US/Euro
exchange rates in the Euro area, from a different periods. The first is from April
2000 to December 2006, devoted to the forecasting of the inflation during 2007.
The second adds observations of 2007 to those of the first period, to forecast
inflation during 2008. The third period is from September 2009 to March 2016,
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Fig. 1. The evolution of the Inflation in the Euro area from April 2000 to December
2016

devoted to the forecasting of the second quarter of 2016. The reason behind
choosing different periods, is to show the sensibility of Copulas according to
occurred macroeconomic events.

The representation of the fluctuations in the Inflation in EU and the US/Euro
exchange rates shows an obvious relationships. Thus, while the exchange rate
manifests an uptrend, the inflation behaves erratically.

Fig. 2. The exchange rate and the Inflation evolution during sixteen years.
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4 Results and Concluding Remarks

To identify an adequate model for the inflation and the US/Euro exchange rates,
both for the three specified periods, we use the Box-Jenkins modeling strategy.
By matching the patterns of the observed sample autocorrelations with the the-
oretical autocorrelations of a specific times series models, and by using a some
goodness of fit criteria and tests (AIC, BIC and a significance of estimated pa-
rameters), we identify the following models:
For more details on Exponential smoothing models, see (Holt, 1957; Charles,1957).

Table 2. Residuals deduced from adjusting different time series models

Series Adjusted models Residuals

The inflation (First period) SARIMA(0,1,0)(0,0,1) εInf,period1
The US/Euro exchange rate (First period) SARIMA(0,1,1)(0,0,0) εExch,period1

The inflation (Second period) SARIMA(1,1,0)(0,0,1) εInf,period2
The US/Euro exchange rate (Second period) SARIMA(0,1,1)(0,0,0) εExch,period2

The inflation (Third period) Exponential smoothing (Holt) εInf,period3
The US/Euro exchange rate (Third period) SARIMA(1,1,0)(0,0,0) εExch,period3

A non-parametric approach and a goodness of fit test are used to specify the
distributions of the residuals, deduced from each adjusted model. The results
confirms that the residuals are distributed as Normal variables.

The non-parametric approach is used also to choose a preliminary copulas
families, to be tested. The representation of residuals of the inflation and the
US/Euro exchange rates, doesn’t present any particular structure.

However, the examination of the K and Chi-plots (figure 4) gives a specific
information. For the first period, this examination indicates an upper tail depen-
dence between the studied variables, since the dots show a clear departure from
the diagonal line of 45 degrees, especially from the upper tails of the distribution.

The chi-plot confirms the aforementioned constatation from the K-plot and
reveals an upper tail dependence. This result suggests that the underlying Cop-
ula belongs to the Archimedean and Elliptical copulas families.

The table 3 above presents the results of the empirical investigation. Based
on the values of the Mean Squared Error, some preliminary Copulas are retained.
The corresponding values of the MSE are small and close to each others.
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Fig. 3. Dependence patterns of residuals and empirical marginal values of the inflation
and exchange rates

Fig. 4. Chi-plot and K-plot for the first period

Table 3. The retained Copulas from the empirical investigation

Period Copulas Parameters SME

2000-2006
t-Copula 0,02 0,000194476
Normal 0,02 0,00019655
Frank 0,1 0,000198502

Plackett 1,04 0,00019857
Clayton 0,01 0,000199487
Gumbel 1 0,000201036

Galambos 1 0,003321712

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1153



Using a Copula for Modeling Inflation 9

The preliminary Copulas are tested using a GoF test. The final results are
produced in the following table 4.

Table 4. The final retained Copulas, based on a GoF tests

Periods Copulas families Adjusted Copulas P-values Parameters

First period
Archimedean Clayton 0.6848 -0.066658

Plackett Plackett 0.5759 0.85718
t-Copula 0.9615 -0.054132

Elliptical Copulas Normal 0.9805 -0.054132

For the first period, the best adequate description of the dependence be-
tween the elements of the pairs is given by the Elliptical Copulas (a t-Copula
with a p-value of 0.96 and a Normal Copula with a p-value of 0.98), other
families of Copulas describe well the studied dependence structure, namely the
Archimedean and the Plackett Copulas, but they have a lower p-value, compar-
atively to the two first one. The Elliptical Copulas include the Gaussian Copula
and the Student t-Copula. The first one, constructed from a bivariate normal
distribution using the Sklar theorem, allows equal degrees of a positive and a
negative dependence. The t-Copula specifies an additional dependence parame-
ter which captures fatness in a distribution’s tails.

The Elliptical Copulas, adjusted for the first period, do not have closed form
expressions and are restricted to have radial symmetry. Thus, some asymmetries
cannot be modeled with elliptical Copulas, such as in many finance and insur-
ance applications, where it seems reasonable that there is a stronger dependence
between big losses than between big gains. One practical problem with elliptical
distributions in multivariate risk modeling is that all marginal are of the same
types. This presents a big problem in the concern of estimation.

Based on the same methodology, the Elliptical Copulas are also adjusted for
the second period (a t-Copula with a p-value of 0.93 and a Normal Copula with
a p-value of 0.96). For the third period, the best adequate description is given
by the Archimedean Copulas (a Clayton Copula with a p-value of 0.95) and
the Plackett Copula with a p-value of 0.94. The Elliptical Copulas give also a
high p-value, but it cannot reach the two first one. The Archimedean Copulas
have the great advantage to capture wide ranges of dependence. Examples of
the Archimedean Copulas include the product Copula which corresponds to in-
dependence of the examined variables, the Clyaton Copula which is used in the
case of strong left tail dependence, the Gumbel Copula which is employed in
the case of highly correlated variables at high values but less correlated at low
values, and the Frank Copula which is applied when a tail dependence is weak.
Unlike the Elliptical Copulas, the Archimedean Copulas are not derived from
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multivariate distribution functions using Sklar’s theorem.

We propose to retain the Elliptical and Archimedean Copulas for the fore-
casting. This step allows identifying the best model that captures better, the
evolution of the dependence between the inflation and the US/Euro exchange
rate.

Results shows that for the first period, characterized by a stability, Copulas
perform well in terms of the forecasting.

Table 5. Predicted values based on the retained Copulas

Observed values t-Copula Normal Clayton Plackett

-0.19 -0.085 -0.092 -0.096 -0.096
-0.09 -0.033 -0.033 -0.037 -0.037
-0.07 -0.01 -0.008 -0.011 -0.011
-0.05 -0.046 -0,049 -0,052 -0,052
0.02 0.001 0.005 0.002 0.002

0 -0,047 -0,05 -0,053 -0,053

In the opposite, for a crisis and instable periods, the forecasting seems to be
biased. This is due to the volatility of the major macroeconomic aggregates. To
overcome this problem, we suggest to model the updated series, using a dynamic
Copulas.
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Abstract
Fractal behaviours, i.e. scale invariance in spatio-temporal dynamic, have been found to describe and model

many systems in nature, in particular fluid mechanics and geophysical related geometrical objects, as the con-
vective boundary layer of cumulus cloud fields, topographic landscapes, solar granulation patterns, and obser-
vational astrophysical time series, like light curves of pulsating stars.

The main interest in the study of fractal properties in such physical phenomena lies in the close relationships
they have with chaotic and turbulent dynamic.

In this poster we introduce some statistical tools for fractal analysis of light curves: Rescaled Range Anal-
ysis, Multifractal Spectra Analysis, and Coarse Graining Spectral Analysis (CGSA), an FFT based algorithm,
which can discriminate in a time series the stochastic fractal power spectra from the harmonic one.

An interesting application of fractal analysis in asteroseismology concerns the joint use of all these tools
in order to develop classification criteria and algorithms for δ-Scuti, γ-Doradus and Solar-like pulsating stars.
In fact from the fractal and multi-fractal fingerprints in light curves we could infer the mechanism of modes
excitation and/or on the magnetic activity in the outer convective region.

1 Introduction

• Fractals are mathematical sets that are defined through [7] Self-Similarity, i.e. geometrical objects invariant
under homogeneous scaling, emerging from infinite iteration rules, and no integer dimension, measured by
the so called box counting method, generalizing the Euclidean dimension. Fractal dimension is the exponent
of the power law dependence between the minimal number Nr of boxes that embeds the object and their
linear dimension r.

• Fractals patterns in nature emerge by means of an interaction between stochasticity and the accomplishment
of a few simple deterministic dynamic rules: in this last case we are dealing with stochastic fractals.

• Fractal behaviours have been found in several fluid mechanics dynamical systems: the convective boundary
layer of cumulus cloud fields, topographic landscapes, rivers branching, geological formation, thin film
growth by molecules deposition. The main interest in the study of fractal properties in such physical
phenomena lies in the close relationships they have with chaotic and turbulent dynamic.

∗Corresponding Author
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• In stellar physics fractal fingerprints in statistical observables (power law distributed) have been found in
perimeter/area correlations [9] and size and lifetime distributions of solar granules [5], as well as in sunspot
number variability [3] and in light curves from pulsating stars [1, 2, 8].

• Fractal time series y(t) are called self-affine, and their scaling relation is [6]:

y(λt) = λαy(t) (1)

where α is the so-called Hurst exponent, characterizing long term correlations and the type of self-
affinity in time series. It is possible to generate series with different values of α by time integration of
Gaussian white noise, obtaining Fractional Brownian Motions [6].

The oscillation modes of δ-Scuti stars are excited by the κ-mechanism, driven by the radiative flux excitation and
the opacity modulation in He partial ionization regions, which coincide with convective zone, dominated by tur-
bulent and convective dynamic, and thus eventually affected at least by chaos.
In Solar-like pulsating stars, the mechanism is explicitly called stochastic excitation mechanism, and is modeled by
a stochastically driven oscillator, whose driving force is a noise that models the dynamic of their typical convective
thick outer layer pushing the inner radiative zone.
Our hypothesis is that an appropriate fractal analysis of light curves from pulsating stars could give strong indi-
cations on the role played by the stochastic and/or chaotic dynamic of excitation mechanism on their background
spectra, and finally characterize it to solar-like or δ-Scuti stars type.

2 Main Objectives

Our work hypothesis establishes that an appropriate fractal analysis of light curves from pulsating stars could give
strong indications on the role played by stochastic and/or chaotic dynamic of mode excitation mechanism as well
as by magnetic phenomena.

1. Find in fractal characterization of light curves a robust physical observable associated with chaos and
turbulence phenomena typical of the convective envelope.

2. Correlate the different fractal fingerprints in light curves emerging from mode excitation mechanisms
and, in the solar-like cases, from magnetic activity.

3 Coarse Graining Spectral Analysis

The Coarse Graining Spectral Analysis splits in a time series the self-affine component and the harmonic
one, giving as output the percentage of (stochastic) fractal power in time series [10]. While the majority of
Fourier based analysis consider only the amplitudes of the harmonic components, disregarding the half of the in-
formation resulting from Fourier transform, i.e. the phases associated at each harmonic, CGSA method focused
also on phases distribution.
CGSA is based on the consideration that in a self-similar time series FFT phases Θk follows a uniform distri-
bution Θk ∈ [0, 2π].
We consider the original time series y(i) and the series obtained by scaling y(i) by a factor 2 and 1/2:

y2 = {y(2), y(4), y(6), . . .} y 1
2
= {y(1), y(1), y(2), y(2), . . .},

2

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1158



and we cut them into Ns partially overlapping windows. For each window l we compute the power spectra Syy,l(k)
and the cross spectra between the original series and the rescaled ones, i.e. Syy2,l(k) and Syy 1

2
,l(k). If y(i) is

constituted by a sum of few harmonics with fixed phase relationship it is possible to exploit the phase difference
between windows l − 2 and l − 1 to orthogonalize SyyZ ,l with the rotating factor

So
yyZ ,l(k) = SyyZ ,l(k)e

π/2−(Θl−1,k−Θl−2,k).

The residuals of such orthogonalization process are non zero in self-affine series, because any rescaled har-
monic will find its counterpart in the original series and the phase relationships are always randomly dis-
tributed. Taking advantage of Schwartz’s inequality we can calculate the fractal module cross correlations

〈|| Sfrac
yyZ ,l−1(k) ||〉l ≡

〈|| SyyZ ,l−1(k) · So
yyZ ,l(k) ||〉l

〈SyyZ ,l−1(k)〉l ≤ 〈|| So
yyZ ,l(k) ||〉l.

Finally considering the possible distortions that could emerge by the finite size of the original series and the coarse
graining of y2 and y1/2, we define the fractal power and the percentage of fractal power as

|| Sfrac(k) ||≡
√
|| Sfrac

yy2 (k) || · || Sfrac
yy 1

2

(k) || %Frac ≡
∑

k || Sfrac(k) ||∑
k || S(k) ||

.

4 Rescaled Range Analysis

An often used approach to the quantification of correlations in self-affine time series, determined by α
exponent in 1, is rescaled-range (RR) analysis [4, 6]. Let us consider the running sum of the N long time series
relative to its mean value, i.e. ys(n) =

∑n
i=1 (y(i)− 〈y〉N ). The Hurst exponent, α, is obtained from

lim
N→+∞

(
RN

SN

)
=

(
N

2

)α

, (2)

here the range is defined by RN = Max(ys(n))−min(ys(n)), and SN = σN is the total series standard deviation.

5 Multifractal Singularity Spectrum

Some time series do not exhibit a simple monofractal scaling behavior, which can be accounted for by a
single α scaling exponent, and such different scaling behavior can be observed for many interwoven fractal
subsets of the time series. Thus a multitude of scaling exponents, associated with different behaviors of small
and large fluctuations, is required for a full description of the scaling behavior and a multifractal analysis
must be applied [4].
Two general types of multifractality in time series can be distinguished: (i) Multifractality due to a broad prob-
ability distribution (density function) for the values of the time series, e. g. a Levy distribution. In this case the
multifractality cannot be removed by shuffling the series. (ii) Multifractality due to different long-term correla-
tions of the small and large fluctuations. In this case the probability density function of the values can be a regular
distribution with finite moments, e. g., a Gaussian distribution.
The corresponding shuffled series will exhibit non-multifractal scaling, since all long-range correlations are de-
stroyed by the shuffling procedure. Randomly shuffling the order of the values in the time series is the easiest way
of generating surrogate data.

3
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A multifractal analysis of time series will also reveal higher order correlations. Multifractal scaling can be ob-
served if, e. g., three or four-point correlations scale differently from the standard two-point correlations studied
by classical autocorrelation analysis. In addition, multifractal scaling is observed if the scaling behavior of small
and large fluctuations is different. For example, extreme events might be more or less correlated than typical
events.
Multifractal singularity spectrum (MSS) gives us the whole broad range of ᾱ scaling exponents with their
relative weights. In this framework we work with the cumulative sum of an y(n) series, i.e. Y (n) =

∑n
i=1 y(i).

Once we cut our N long Y (n) time series in Ns non-overlapping segments with size s, such that s = int(N/Ns),
we compute the q − th momentum of the fluctuations,

Fq(s) =

{
1

Ns

Ns∑
ν=1

1

s

s∑
i=1

εqν,s(i)

} 1
q

= s
1+τ(q)

q = sh(q), (3)

which define a the generalized multifractal Hurst exponent h(q). Residuals series εν,s(i) could be computed by the
Multifractal Detrending Moving Average Analysis (MFDMA), which consists in considering for each segment ν
of size s the detrended series using the moving average function Ỹ (i) = 1

s

∑s−1
k=0 Y (i − k) resulting in εν,s(i) =

Y (i) − Ỹ (i). Another choice is the Multifractal Detrended Fluctuation Analysis (MFDFA), which estimates
an m grade polynomial trend Pm(ν) by least-square fitting and subtracting this trend from the original profile
εν,s(i) = Y (i)− Pm(i). Multifractal singularity spectrum f(ᾱ) is related to τ(q) via a Legendre transform,

ᾱ =
d

dq
τ(q), f(ᾱ) = qᾱ− τ(q).

Here ᾱ is the singularity strength or Hölder exponent, while f(ᾱ) denotes the dimension of the subset of the
series that is characterized by ᾱ. Such multifractal approach can be considered as a generalized version of the
fluctuation analysis method, that make use of the second order fluctuation to find the standard (mono) fractal
self-affine exponent in eq.1, i.e. α = 1+τ(2)
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6 Results and Conclusions
ID CGSA %Frac RR α MSS Δᾱ

kplr008 (Solar-like) 1.05 0.42 0.68
kplr009 ” 0.85 0.31 0.62
kplr011 ” 0.48 0.23 0.39
Active Sun (reg. I and II) 0.68 0.99/0.13 0.51/0.21
Quiet Sun ” 0.55 1.00/0.29 0.54/0.4
HD50844 (δ-Scuti) 0.054 0.25 0.22
HD174936 ” 0.12 0.38 0.08

We perform fractal analysis of 3 light curves of Kepler solar-like stars, 2 CoRoT δ-Scuti and SoHO/GOLF
data from the sun.

• CGSA %Frac values of all the Kepler stars are compatible with the ones obtained for SoHO/GOLF
data, giving us a good indication on the solar-like nature of them. High %Frac values are a fingerprint
of granulation due to the outer convective layer that excites stochastically the oscillating modes, resulting in
a background spectra with fractal features.

• RR Analysis confirms the fractal nature of Kepler, SoHO/GOLF and CoRoT δ-Scuti light curves, since for
all of them there is a power law dependence. While Kepler curve have only 1 fractal regime, SoHO/GOLF
displays 2 regimes in the range t ∈ (2, 31) hours and for t > 7 days, and for CoRoT δ-Scuti light curves
fractal regime, depending from the star, emerges between t ∈ (1, 8) hours and breaks down at t ∈ (1, 7)
days (data not shown).

• MSS width, typical fingerprint of turbulent dynamic, is broader in solar-like than in δ-Scuti stars,
indicating the predominant role played of convective layer in the excitation of solar-like modes.
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Abstract. The paper considers a multicomponent model for natural time series 

(MCM) which was developed by the authors. Model identification is based on 

the combination of a wavelet transform with the class of autoregressive inte-

grated moving average model (ARIMA). The MCM is capable of studying the 

characteristic changes of natural time series and of detecting anomalies deter-

mined by its structure change. To make a detailed analysis of anomalous chang-

es in the data, computing solutions were developed. They are based on the con-

tinuous wavelet transform. They allow the authors to detect different-scale 

anomalies and to estimate the moments of their occurrences, duration and inten-

sity. On the example of ionospheric critical frequency f0F2 data, the efficiency 

of the suggested method is illustrated (Paratunka site data (Kamchatka, Russia, 

53.0 N, 158.7 E, IKIR FEB RAS) and Gakona site data (USA, 62.40 N, 145.0 

W.) were under analysis). Typical changes of foF2 variations were investigated 

in the conditions of calm ionosphere and during disturbed periods (increased so-

lar activity and magnetic storms). During the increased solar activity, iono-

spheric anomalies (anomalous increases and decreases of electron density in the 

ionosphere) were detected. They had large spatial-time scales. The detected 

anomalous increases in electron densities occurring before magnetic storms 

(pre-storm increases) were of the greatest interest. Analysis showed that the 

pre-storm increases are typical for the strongest magnetic storms with sudden 

commencements.  

Keywords: wavelet transform, autoregressive-integrated moving average mod-

el, ionosphere critical frequency, ionospheric disturbances 

 

1 Introduction 

The work is focused on the development of methods and algorithms for analysis of 

natural time series of complex structure and the construction of automatic systems for 

their realization. The present paper is concerned with the problem associated with the 

analysis of ionospheric parameters and detection of anomalous effects occurring dur-

ing ionospheric disturbances. Ionospheric disturbances cause serious failures in the 
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operation of ground and space technical equipment [1, 2] that determines applied 

significance of the investigation. 

The Earth’s ionosphere is a part of the atmosphere, stretching from 80 to 1000 km 

and affecting radio wave propagation [1, 3, 4]. Its structure is changeable and hetero-

geneous, and its investigation is based on the variation analysis of environmental 

parameters. The ionospheric parameters clearly change with the height, depend on the 

solar activity cycle, geomagnetic conditions, and geographic coordinates, and have 

characteristic diurnal and seasonal variations [1-5]. Among the main parameters of 

the ionosphere are the variations of ionospheric F2-layer critical frequency (foF2). 

Data of foF2 are registered by vertical radio sounding using an impulse radar (iono-

sonde). These data are represented as time series. The registered foF2 time series 

describe electronic concentration of the ionosphere, abrupt fluctuations of which (in-

crease or decrease) leads to their anomalous behavior [1, 2, 4, 5]. During the anoma-

lies in foF2 time series, local features, having different form and duration, occur [6-

10]. In most cases ionospheric anomalies are observed during solar flares events and 

magnetic storms [1-5]. 

The problems associated with the analysis of ionospheric conditions and detection 

of anomalies have been addressed by many authors [1, 2, 4, 5, 9, 11-17, 19]. The main 

approaches include the traditional moving median method [15], ionosphere empirical 

models [1, 11-13], the application of adaptive algorithms based on neural networks [1, 

4, 14, 16], and the wavelet transform [3, 6-10, 17]. At present, the International Ref-

erence Ionosphere (IRI) model is the best ionospheric empirical model, based on a 

wide range of ground and space data [10-12]. Its accuracy significantly depends on 

the presence of recorded data as well as on the level of solar activity and decrease 

rapidly with the growth of the latter [1, 11-13]. New developments of ionospheric 

data empirical models based on the methods of pattern recognition and neuron net-

works [1, 4, 14, 16] are the most effective in comparison with the IRI model. They are 

easily realized in automatic mode and are quite flexible. However, at the stage of 

identification, to describe the pattern space, these models require long training sam-

plings, prone to re-training and can show unpredictable results in the case of too noisy 

data. To apply the models in real-time mode (or close to it) we need operative data on 

a complex of geophysical parameters that is not always realizable [1, 4].   

Identification of the MCM suggested in the paper is based on the application of 

ARIMA methods [18] which allow us to obtain quite accurate estimates of model 

parameters when the samplings are limited, besides the methods are easily realized in 

automatic mode. However, their main advantage is the possibility to obtain the results 

with a given confidence level. As long as ARIMA methods are linear, in the case of 

data complicated structure, their direct application is not effective. Extending the 

application of ARIMA methods, we developed a new MCM [6-8], based on the com-

bination of multiscale wavelet decomposition with ARIMA models. As the recent 

investigations [3, 6-10, 19] show, nonlinear adaptive wavelet decompositions are 

natural and one of the most effective ways for representation of complicated structure 

data. Adaptive wavelet decomposition is being intensively developed at present [3, 6-

10, 19]. Given the large variety of orthogonal basis wavelets and the presence of nu-

merically stable fast algorithms for data transformation, wavelet decomposition pro-
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vides many possibilities for the analysis of data with a complex structure [20], includ-

ing geophysical data [3, 6-10, 19]. Based on the application of ionospheric critical 

frequency foF2 time series, the papers [6-8] describe a technique for MCM identifica-

tion. The comparison of MCM with IRI carried out in the article [8] showed that 

MCM allows us to describe the data time series more accurately, especially during 

solar activity maxima that proves the efficiency of the suggested approach. This paper 

is a sequel of those articles. It proves the MCM efficiency for the analysis of typical 

changes of natural time series and the detection of anomalies. Computing solutions 

are suggested for a more detailed analysis of foF2 time series structure. They are 

based on a continuous wavelet transform and threshold functions and allow us to ob-

tain quantitative estimates of times of occurrence, duration and intensity of ionospher-

ic anomalies with high accuracy.  

2 Methods 

2.1 MCM identification 

Considering a random time series )(tf containing stationary components and noise, 

based on the multiscale wavelet decomposition (MRA) up to the m -th level, the 

)(tf time series was presented as a linear combination of multiscale components [6-

8, 20]: 

     )()( tet2ft2gtf m
m

1j

j

0  




 , (1) 

where    

 
k

kmkm

m tct2f )(,,  is a smoothed component; kmkm fc ,, ,   

are decomposition coefficients describing time series trend; 

)2(2)( 2/

, ktt mm

km  

  is a scaling function;    
k

kjkj

j tdt2g )(,, are 

detailing components; kjkj fd ,, , are decomposition coefficients describing 

local changes in a time series; )2(2)( 2/

, ktt jj

kj  is a wavelet basis; )(te  

is noise; the lower index 0 corresponds to the data initial resolution 0j  . 

By changing the decomposition level m , we could obtain various representations 

of a time series. Our task was to determine the representation scheme that allowed the 

extraction of the stationary components from the noise: 

1. We consequently make MRA of the time series to the decomposition levels 

Mm ,1  (the maximum acceptable decomposition level M  is determined by the 
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length N of the time series: NM 2log  [20]). We obtain smoothed and detailing 

components    

 
k

kmkm

m tct2f )(,,  and   m,1j,)t(dt2g

k

k,jk,j
j   . 

2. We test the components  t2f m
 and  t2g j

 for stationarity by estimating their 

character [18].  

3. When the conditions of strict stationarity are fulfilled for the components 

 t2f
*m

 and  t2g
*j

 corresponding to the decomposition level 
*mm  , we consid-

er that these components describe data regular changes.  

To detect regular components  t2f
*m

 and  t2g
*j

, we identify the models from 

ARIMA class based on the traditional approaches [18]. Joining the obtained models 

into a general multi-component construction, we obtain data representation in the 

form:  

  tbstf
kj

Nk

kjregular

j








,

,1 ,1

,0 **)(  
 

 , (2) 

where 










 
jj h

n
nkjnj

p

l
lkjljkj

as
1

,*,

1
,,, ****   is an estimated  th component, 


*j

p and 


lj ,*  are the order and parameters of the  th component autoregression, 


*j

h  and 


kj ,* are  the order and parameters of a moving average of the  th compo-

nent,
 



kjkj ,, **  , 
  is the difference order of the  th component, 

T,2,d,c
k,jk,jk,j

1

k,j ****   
,  is the number of modeled components; 

kj
a

,*
  

are the residual errors of the  th component model; 
*j

N   is the length of the  th 

component; 
kjkj

b
,

1

, **   is a scaling function, and  ,2,
,, ** 

kjkj
b  is a wave-

let basis of the  th component. 

During the anomalous behavior of data, their structure changes and, as a conse-

quence, the model errors increase. Following the papers [6-8], detection of anomalies 

in a time series can be based on the analysis of MCM residual errors  

 







 Ta

Q

q
qkj





1
,*

, (3) 

where Q  is the time of data prediction based on the  th component model, T  is 

the threshold value of the  th component, determining the presence of an anomaly, 
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and 
el

qkj

fact

qkjqkj
ssa mod,

,

,

,, ***




  are the residual errors of the  th component model 

at a point qk  .  

2.2 Modeling of ionospheric critical frequency data for the Kamchatka 

region 

For the model construction, we used hourly data of the ionospheric critical frequency 

f0F2 (Paratunka station, 52° 58′N, 158° 15′E, Kamchatka, Russia, Institute of Cos-

mophysical Research and Radio Wave Propagation FEB RAS (IKIR FEB RAS)) from 

1968 to 2013. To determine the degree of geomagnetic disturbance, we used the K-

index (IKIR FEB RAS). To model the foF2 data for a quiet period, the data for calm 

near earth space (NES), without strong seismic events that occurred in Kamchatka 

(without earthquakes of Ks ≥ 12, within a 300 km radius from the station), were used 

as estimates. Considering the seasonality of ionospheric processes, the different sea-

sons were modeled separately. The level of solar activity (SA) was also considered. 

The SA was estimated according to the average monthly radio radiation at a wave-

length of f10.7. For f10.7 < 100, the activity was considered low, while for f10.7 > 

100, it was considered high. The model identification was performed using the meth-

od described in “MCM identification” section. The multiresolution wavelet decompo-

sition of the foF2 data (Eq. 1) was performed using Daubechies wavelet of third or-

der, which was determined by minimization of the approximation error [8]. Based on 

the operations 1-3 (“MCM identification” section), representation of foF2 time series 

was determined as  

     )(22)( 33

0 tetgtftf  
, (4) 

where    

 
k

kk tctf )(2 ,3,3

3  is the regular smoothed component containing 

periods of more than 8 h,    

 
k

kk tdtg )(2 ,3,3

3
is the regular detailing com-

ponent containing periods of 8-16 h  and    
k

kjkj

j tdtg )(2 ,, 2,1j   

are the detailing components taken as noise ones )(te  . 

The identification results showed that the model parameters depend on season and 

SA level [8]. MCM general parameters were obtained for winter season for high and 

low SA according to Eq. 2: 

)(36.063.062.0 1

,3

1

3,3

1

2,3

1

1,3

1

,3 tas kkkkk     for the estimated com-

ponent ]t2[f 3
 and )(93.097.0 2

,3

2

2,3

2

1,3

2

,3 tas kkkk     for the estimat-

ed component ]t2[g 3
. We obtained the following models for summer season ac-

cording to Eq. 2. For a high SA, we obtained: 
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)(58.050.0 1

,3

1

2,3

1

1,3

1

,3 tas kkkk     for the estimated component ]t2[f 3
 

and )(80.088.0 2

,3

2

2,3

2

1,3

2

,3 tas kkkk     for the estimated component ]t2[g 3

. For a low SA, we obtained: )(73.083.0 1

,3

1

2,3

1

1,3

1

,3 tas kkkk     for the esti-

mated component ]t2[f 3
 and )(86.095.0 2

,3

2

2,3

2

1,3

2

,3 tas kkkk     for 

the estimated component ]t2[g 3
.   

The investigation on the estimation of the threshold value of the  th component (

T , see Eq. (3)), determining the anomaly in foF2 time series, also showed its de-

pendence on SA and season. Values of T  were determined on the basis of foF2 data 

prediction error dispersion [8, 18]. For Paratunka (Kamchatka) site it is:  

─ for winter time: 22.1/37.11 T  (high/low SA), 73.0/97.02 T  (high/low SA); 

─ for summer time: 30.1/60.11 T  (high/low SA), 80.0/88.02 T  (high/low SA). 

Statistic modeling was performed to evaluate the efficiency of MСM. The model time 

series included the following commutative components: foF2 time series median val-

ues, white noise and “triangle impulse” anomalies. Duration of the anomalies was 

from 3 to 17 hours, the anomalies amplitude changed from 1.5 to 6 MHz, noise ampli-

tude was 1.5 MHz. Figure 1 illustrates the evaluation results of the probability of 

anomalies detection depending on their amplitude and duration. The analysis of Fig-

ure 1 shows that on the basis of the model, long-period anomalies (from 7 h and 

more) can be detected with a probability of 85% if their amplitude exceeds the noise 

amplitude by a factor of 1.5.    

 

Fig. 1. The graph of the dependence of the probability of anomalies detection on their ampli-

tude and duration (winter, low solar activity, noise amplitude is 1.5 MHz): a the duration of the 

features is 7 hours, and b the amplitude of the features is 1.5 MHz 

Figure 2 illustrates the modeling results of the foF2 data (Paratunka station) for 

December 11-22, 2015. The analyzed period is characterized by increased geomag-

netic activity. The results show that during disturbed periods (K-index exceeds 3), the 

obtained model errors increase and go beyond the limits of a typical deviation that 

indicates anomalous changes in the foF2 data. During a strong magnetic storm which 

occurred on December 20-22, 2015, the most significant increase of errors is ob-
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served, that is more than 5 standard deviations for component ]t2[f 3
 and more 

than 2.5 standard deviations for ]t2[g 3
 component. 

 

Fig. 2. Analysis results of the foF2 data (Paratunka station, Kamchatka) for December 11-22, 

2015: a the foF2 data, b – errors of the )(3 tf smoothed component model, c errors of the 

)(3 tg  detailing component model, and d K-index of geomagnetic activity. Graphs b and c 

show standard deviations of component model errors (dashed lines) 

2.3 Ionospheric anomaly detection and estimation of their parameters 

based on the continuous wavelet transform and threshold functions 

Regarding each basic wavelet  , the continuous wavelet transform was given by the 

following formula [20]: 

,)(:
2/1

, dt
a

bt
tfafW ab 







 
 








.0,,),(2  aRbaRLf  

A decrease in the abfW ,  coefficient amplitudes depending on scale a  is associat-

ed with the Lipschitz’s uniform and dot smoothness of the Lipschit’z function f
[20]. According to the Zhaffar’s theorem [20], when scale a decreases, the ampli-

tudes of the abfW ,  coefficients rapidly decrease to zero where the function f  is 

smooth and has no local features. Based on this property of the wavelet transform, we 

used the following threshold function to detect local features in the time series of the 

foF2 critical frequency and identify ionospheric anomalies: 
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where 
aa StUT *  is the threshold detects the presence of an anomaly for an a  

scale near point  included in the carrier ab, (see below), U is a threshold coeffi-

cient and  




 



1

2

,,
1

1

k

ababa fWfWSt , abfW , and
med

abfW , are the 

average and median for a moving time window of length  .Taking into account the 

diurnal variation of the ionospheric data, the average abfW , and median 
med

abfW ,

were calculated separately for each hour. 

Since the ab, carrier for an a scale is  abab  , , the cone of influence of 

 on a was defined by the following inequality [20] 

 ab  . 

The anomaly duration for a  was then defined by the influence cone of   and equal 

to:     

 
aa  2

 

The anomaly intensity for bt  was defined as: 

                                               
 







a ab

abT

b
fW

fWP
Y

a

2,

, ,                                            (6)  

where   2,2,   
a

a

N

abTab fWPfW  is the norm and 
aN
 
is the series length for 

scale a .    

Figure 3 shows the application results of Eq. 5 and Eq. 6, during the magnetic 

storm of August 25–26, 1987. Analyze of the results shows that a negative anomaly 

(it is shown in Figure 3b in blue), lasting for more than 1 day and characterizing by a 

decrease in the ionospheric electron density, occurred in the foF2 data during a mag-

netic storm. Its intensity increased from the beginning of the storm and was maximum 

during the main phase of the storm. After the magnetic storm, the electron density 

increased, as indicated by the positive anomalies (it is shown in Figure 3b in red) 

from 28 August 1987. During the storm, small-scale anomalies, associated with local 

variations of the ionospheric electron density also occurred. 

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1170



9 

 

Fig. 3. Results of the foF2 data processing (Paratunka station, Kamchatka) for August 22-31, 

1987: a the foF2 data, b detected anomalies for a threshold coefficient 3.2U and a moving 

time window length   of 336 h, c estimation of the anomaly intensity and d K-indices above 

three (Paratunka station, Kamchatka). 

3 Application of the method to analyze ionospheric 

critical frequency data during magnetic storms  

Fig. 4 illustrates the results of application of the developed method for the foF2 data 

(Paratunka site (Kamchatksiy kray, Russia), 53.0 N, 158.70 E) and Gakona site 

(USA), 62.40 N, 145.0 W). To analyze the near earth space (NES), Fig. 4 shows ge-

omagnetic disturbance intensity determined on the basis of the value  
a

abb fWE ,
 

[10], Dst-index and solar wind speed. Within the period under analysis from May 30 

to June 3, 2013, based on space weather data [http://ipg.geospace.ru/], the gradual 

increase of solar wind speed which began at about 14:00 UT on May 31 was accom-

panied by a strong magnetic storm with gradual commencement at 00:00 on June 1, 

2013. Analysis of the results of foF2 data processing demonstrates a common charac-

ter of the behavior for the ionosphere. Modeling results (Fig. 4 d, k) show anomalous 

processes in foF2 data before and during the event. It is a significant increase of 

MCM errors at Paratunka site (  tf 32  is more than 2.5 of standard deviations (SD); 

 tg 32  is more than 4.3 of SD) and at Gakon site (  tf 32
 is more than 3.4 of SD). 

Before the storm, gradual increase of electron concentration was observed in the iono-

sphere. Positive anomaly maximum was observed on May 31, at 20:00 UT at Para-

tunka site and at 00:)) at Gakona site (Fig. 4 c, j). Comparison of the occurrence time, 

duration and intensity dynamics of the anomaly with NES data and taking into ac-

count that integral SA was low from May 30 to June 1[http://ipg.geospace.ru/], allow 

us to assume the relation of the detected anomaly with the oncoming magnetic storm. 

During the magnetic storm, electron concentration decrease (10:00-11:00 UT) and 
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formation of the negative phase of ionospheric storm was observed (Fig.4 b, c, i, j). 

Similar character of ionosphere behavior is observed during magnetic storms on April 

5 and August 3, 2010 (event on April 5 was discussed in the paper [9], the event on 

August 3 was considered in the paper [10]), on March 7, 2012 [10], on March 17 and 

October 2, 2013 (events are discussed in the papers [8, 10]), on February 19 and No-

vember 4, 2014 [8]. The electron concentration increased before the events. During 

the magnetic storms and, in some cases, at the recovery stage, significant and long 

decreases of electron concentration were observed.  

 

Fig. 4. Results of data processing for Paratunka site (left) and Gakona site (right) for the period 

of May 30 – June 3, 2013: a, h the foF2 data,  b, i blue color shows negative anomalies, red 

color shows positive ones, c, j estimation of the anomaly intensity, d, k MCM errors of 

smoothed (black) and detailing (green) components and their standard deviations, e, l estima-

tion of the geomagnetic disturbance intensities, f, m Dst-index, and g, n solar wind speed 

Table 1 presents the results of analysis of ionospheric data during magnetic storms 

which occurred within the period of 2004-2014. Analysis of Table 1 shows that the 

pre-storm increase effect is typical for strong storms with sudden commencement. 

The detected effects were observed independently on local time at the background of 

calm and slightly disturbed geomagnetic field. The duration was from several hours to 

a day and a half. Significant decrease of electron concentration in the ionosphere was 

observed during the strongest events. Similar behavior of the ionosphere during 

ground measurements and in TEC data was mentioned in the review [5].  The results 

obtained in this paper agree well with the effects described in the article [5]. We hold 

to the opinion of the authors [5] and think that such ionospheric effects are associated 

with some channel of energy penetration from interplanetary space and the magneto-

sphere. In this case, the pre-storm ionospheric anomalies may be a signal of the on-

coming geomagnetic storm that has high applied significance.  
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Table 1. Results of ionospheric data processing of Paratunka site  

4 Conclusions  

The method, based on the application of wavelet transform and traditional meth-

ods, developed by the authors to analyze natural time series of complicated structure 

showed the efficiency in the tasks of analysis of ionospheric parameters and in detec-

tion of anomalies during ionospheric disturbances. Analysis of foF2 data during in-

creased solar activity and magnetic storms has confirmed the fact of possible occur-

rence of electron concentration increase pre-storm effect in the regions under analysis 

and showed the possibility of the application of the developed method in detection of 

similar effects.  
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Abstract. In recent years, non-normal innovations in time series models are ob-

served in many applications and the estimation problem is considered newly 

through different distributions by the use of modified maximum likelihood 

(MML) estimation technique which assumes the shape parameter to be known. 

This becomes a drawback in machine data processing where the underlying dis-

tribution cannot be determined but assumed to be a member of a broad class of 

distributions. Therefore, in this study, the shape parameter is also assumed to be 

unknown and the MML technique is combined with Huber technique to esti-

mate the model parameters of autoregressive (AR) models of order 1; named as 

adaptive modified maximum likelihood (AMML) estimation. After derivation 

of the AMML estimators, their efficiency and robustness properties are dis-

cussed through simulation study and compared with both MML and the least-

squares (LS) estimators. 

Keywords: Adaptive modified maximum likelihood. Autoregressive models. 

Least squares estimators. Modified maximum likelihood. Estimation. Efficien-

cy. Robustness. 

1 Introduction 

The classical AR models assume that the innovations are normally distributed 

which might not be the case in applications. Therefore, in recent studies, this assump-

tion is relaxed and MML method developed by Tiku [9] is utilized to estimate un-

known parameters in such situations [1 – 4, 13 – 14]. The LS estimators are neither 

efficient nor robust and maximum likelihood (ML) estimators are elusive due to the 

implicit nature of likelihood functions under non-normality. Use of iterative approach 

is weary due to convergence problems and produce bias in estimators especially for 

small samples. The MML estimators capture all the good statistical properties of ML 

estimators and they are explicit functions of sample observations. Besides they are, i) 

considerably more efficient (unbiased and smaller variance) than the LS estimators 

for all sample sizes, particularly for large n, ii) asymptotically fully efficient under 
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very general regularity conditions and almost fully efficient for small samples and iii) 

robust to plausible deviations from the assumed distribution and mild  data anomalies 

(outliers, inliers etc). For the detailed information about MML and its applications, 

one can refer to [10, 12]. On the other hand, MML method is based on the assumption 

of a particular distribution; i.e. the shape parameter is known. Many different ways 

are suggested in literature for determining the shape parameter including the use of Q-

Q plots [6]. Due to the intrinsic robustness of MML estimators [10], the values ob-

tained by any of these methods will yield essentially the same estimates and standard 

errors for plausible alternatives. However, when the data is huge and machine learn-

ing methods will be applied, it is important to estimate this parameter also since one 

has no opportunity to investigate the nature of the underlying distribution in this case. 

It can only be assumed that it is a member of a broad class of distributions. Inserting a 

likelihood equation related to the shape parameter into the likelihood equation system 

makes it unsolvable analytically even MML estimation method is used. Thus, there is 

a need to extend the MML method so that the assumption on the shape parameter is 

relaxed.  

In studies [7 – 8], M-estimators which are efficient and robust under a broad class 

of long-tailed symmetric (LTS) distributions are developed. In this study, following 

[5, 11, 15], we use an adapted form of MML estimators which combine the logic of 

MML with M-estimators named as AMML estimation in memory of Moti Lal Tiku 

who actually initiated the idea and thought this name. The parameters are estimated 

under the assumption that the innovations in AR(1) model belong to LTS family. The 

efficiency and robustness properties of them are discussed via simulation as well as 

their comparison with LS and MML estimators. 

2 Estimation of the Model Parameters 

Consider the time series model 

 𝑦𝑡 = 𝜇 + 𝜙𝑦𝑡−1 + 𝜀𝑡,    (1 ≤ 𝑡 ≤ 𝑛), (−1 < 𝜙 < 1) (1) 

where the innovations 𝜀𝑡 are independent and identically distributed (iid), and have 

one of the distributions in LTS family 

 𝑓(𝜀) =
Γ(𝑝)

𝜎√𝑘Γ(1 2⁄ )Γ(𝑝−1 2⁄ )
(1 +

𝜀2

𝑘𝜎2)
−𝑝

, −∞ < 𝜀 < ∞; (2) 

where k = 2p-3 and p ≥ 2. E() = 0 and V() = 𝜎2.  For p = ∞, Equation (2) reduces to 

normal N(0,1). Note that the distribution of 𝑡 = √𝜐 𝑘⁄ (𝜀 𝜎⁄ )  is Student’s t with 

𝜐 = 2𝑝 − 1  degrees of freedom. The likelihood function is 

 𝐿 ∝ 𝜎−𝑛 ∏ (1 +
𝜀𝑖

2

𝑘𝜎2)
−𝑝

𝑛
𝑖=1 . (3) 
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In fact, Equation (3) is the likelihood function conditional on 𝑦0 = 𝜀0 √1 − 𝜙2⁄  

where 𝜀0 is an independent innovation that has the same distribution as  𝜀𝑖 (1 ≤ 𝑖 ≤
𝑛). Actually, this is Model 2 of [16] which is more general than their Model 1. 

2.1 Modified Maximum Likelihood Estimators 

The likelihood equations for known p are obtained in terms of 

𝑧𝑖 = (𝑦𝑖 − 𝜙𝑦𝑖−1 − 𝜇) 𝜎⁄ = 𝜀𝑖 𝜎⁄ , (1 ≤ 𝑖 ≤ 𝑛) as follows: 

 
𝜕𝑙𝑛𝐿

𝜕𝜇
=

2𝑝

𝑘𝜎
∑ 𝑔(𝑧𝑖)

𝑛
𝑖=1 = 0, 

 
𝜕𝑙𝑛𝐿

𝜕𝜙
=

2𝑝

𝑘𝜎
∑ 𝑔(𝑧𝑖)𝑦𝑖−1

𝑛
𝑖=1 = 0, (4) 

 
𝜕𝑙𝑛𝐿

𝜕𝜎
= −

𝑛

𝜎
+

2𝑝

𝑘𝜎
∑ 𝑧𝑖𝑔(𝑧𝑖)𝑛

𝑖=1 = 0, 

where 𝑔(𝑧𝑖) =
𝑧𝑖

(1+
𝑧𝑖

2

𝑘
)

. 

 

Since Equations (4) include nonlinear function, 𝑔(𝑧𝑖), they have no explicit solu-

tions and iterative solutions are problematic. MML method is used to find estimators 

which are known to be asymptotically equivalent to ML estimators [10]. Estimation 

procedure is carried out in three steps: (i) the maximum likelihood equations are ex-

pressed in terms of the order statistics of 𝑧(𝑖) = (𝑦[𝑖] − 𝜙𝑦[𝑖]−1 − 𝜇) 𝜎⁄  where 

(𝑦[𝑖], 𝑦[𝑖]−1) are the concomitants of 𝑧(𝑖), i.e., the pair (𝑦𝑗 , 𝑦𝑗−1) (𝑗 = [𝑖]) associated 

with the ith ordered value, 𝑧(𝑖) so that the ordering of the time series data is not lost; 

(ii) the nonlinear function 𝑔(𝑧(𝑖)) are replaced by linear approximations 𝑔(𝑧(𝑖)) ≅

𝛼𝑖 + 𝛽𝑖𝑧(𝑖), 1 ≤ 𝑖 ≤ 𝑛 where the constant coefficients 𝛼𝑖 and 𝛽𝑖 are obtained from the 

first two terms of a Taylor series expansion of 𝑔(𝑧(𝑖)) around the ith population quan-

tile, 𝑡(𝑖) = 𝐸(𝑧(𝑖)). Here we use approximate values of 𝑡(𝑖) calculated from  

 
Γ(𝑝)

√𝑘Γ(1 2⁄ )Γ(𝑝−1 2⁄ )
∫ (1 +

𝑧2

𝑘
)

−𝑝

𝑑𝑧
𝑡(𝑖)

−∞
=

𝑖

𝑛+1
  (1 ≤ 𝑖 ≤ 𝑛). (5) 

The resulting 𝛼𝑖 and 𝛽𝑖 are 

 𝛼𝑖 = (2 𝑘⁄ )𝑡(𝑖)
3 {1 + (1 𝑘⁄ )𝑡(𝑖)

2 }
2

⁄  and 𝛽𝑖 = [1 − (1 𝑘⁄ )𝑡(𝑖)
2 ] {1 + (1 𝑘⁄ )𝑡(𝑖)

2 }
2

⁄ . (6) 

(iii) incorporating Equations (6) in Equations (4) and by solving the modified (linear-

ized) likelihood equations 𝜕𝑙𝑛𝐿∗ 𝜕𝜇⁄ = 0 , 𝜕𝑙𝑛𝐿∗ 𝜕𝜙⁄ = 0  and 𝜕𝑙𝑛𝐿∗ 𝜕𝜎⁄ = 0 , the 

MML estimators are obtained as:  
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 �̂� = ∑ 𝛽𝑖(𝑦[𝑖] − �̂�𝑦[𝑖]−1)𝑛
𝑖=1 𝑚⁄  , 

 �̂� = 𝐾 + 𝐷�̂�,   �̂� = (𝐵 + √𝐵2 + 4𝑛𝐶) 2𝑛⁄  (7) 

where 

  𝑚 = ∑ 𝛽𝑖
𝑛
𝑖=1 ,          𝐾 =

∑ 𝛽𝑖𝑦[𝑖]𝑦[𝑖]−1
𝑛
𝑖=1 −

1

𝑚
∑ 𝛽𝑖𝑦[𝑖]

𝑛
𝑖=1 ∑ 𝛽𝑖𝑦[𝑖]−1

𝑛
𝑖=1

∑ 𝛽𝑖𝑦[𝑖]−1
2𝑛

𝑖=1 −
1

𝑚
(∑ 𝛽𝑖𝑦[𝑖]−1

𝑛
𝑖=1 )

2 ,   

  𝐷 =
∑ 𝛼𝑖𝑦[𝑖]−1

𝑛
𝑖=1

∑ 𝛽𝑖𝑦[𝑖]−1
2𝑛

𝑖=1 −
1

𝑚
(∑ 𝛽𝑖𝑦[𝑖]−1

𝑛
𝑖=1 )

2 , 

 𝐵 =
2𝑝

𝑘
∑ 𝛼𝑖 (𝑦[𝑖] − �̅�[.] − 𝐾(𝑦[𝑖]−1 − �̅�[.]−1))𝑛

𝑖=1  , 

 𝐶 =
2𝑝

𝑘
∑ 𝛽𝑖 (𝑦[𝑖] − �̅�[.] − 𝐾(𝑦[𝑖]−1 − �̅�[.]−1))𝑛

𝑖=1

2

,  

  �̅�[.] = ∑ 𝛽𝑖𝑦[𝑖]
𝑛
𝑖=1 𝑚⁄ ,     �̅�[.]−1 = ∑ 𝛽𝑖𝑦[𝑖]−1

𝑛
𝑖=1 𝑚⁄ . 

 

Comment: The coefficients βi (1 ≤ i ≤ n) increase until the middle value and then 

decrease in a symmetric fashion. Therefore, if β1 is positive then all the βi coefficients 

are positive and �̂� is real and positive. For small p and large n, however, β1 (and a few 

other βi coefficients) can be negative and needed to be rectified. Thus, if 𝛽1 turns out 

to be negative, we replace 𝛼𝑖  by  𝛼𝑖
∗ = (1 𝑘⁄ )𝑡(𝑖)

3 {1 + (1 𝑘⁄ )𝑡(𝑖)
2 }

2
⁄  and 𝛽𝑖  by 𝛽𝑖

∗ =

1 {1 + (1 𝑘⁄ )𝑡(𝑖)
2 }

2
   ⁄ (1 ≤ 𝑖 ≤ 𝑛). 

Computations: The estimates of the parameters require figuring out the concomi-

tants found out by sorting the innovations. Therefore, there is a need to obtain the 

initial estimates for the parameters in the model. This is done by the use of LS estima-

tors  �̃� and �̃�, given in Equations (8) since LS estimators do not need any distribu-

tional assumptions. Then the initial estimates of innovations 𝜀�̃� = 𝑦𝑖 − �̃�𝑦𝑖−1 − 𝜇  
(1 ≤ 𝑖 ≤ 𝑛) are ordered to obtain the concomitants (𝑦[𝑖], 𝑦[𝑖]−1) corresponding to the 

ith ordered value of the estimated residual. By the use of these concomitants, the 

MML estimators are calculated from Equations (7). To eliminate the effects of the 

initial estimates, the LS estimators �̃� and �̃� are then replaced by �̂� and �̂�, respectively 

and the corresponding innovations �̂�𝑖 = 𝑦𝑖 − �̂�𝑦𝑖−1 − �̂�  are ordered to obtain the new 

concomitants. The revised MML estimators are computed from these new concomi-

tants. The process is repeated one more time for the estimates to stabilize sufficiently. 

2.2 Least Squares Estimators 

Regardless of the underlying distribution, the LS estimators are 

 �̃� =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
− �̃�

∑ 𝑦𝑖−1
𝑛
𝑖=1

𝑛
 ,        �̃� =

∑ 𝑦𝑖𝑦𝑖−1
𝑛
𝑖=1 −∑ 𝑦𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖−1

𝑛
𝑖=1 𝑛⁄

∑ 𝑦𝑖−1
2𝑛

𝑖=1 −(∑ 𝑦𝑖−1
𝑛
𝑖=1 )

2
𝑛⁄

 ,  

 and      �̃� =
√∑ (𝑦𝑖−�̃�𝑦𝑖−1−�̃�)

2𝑛
𝑖=1

𝑛−2
  . (8) 
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2.3 Adaptive Modified Maximum Likelihood Estimators 

Since the shape parameter p is unknown, the coefficients 𝛼𝑖 and 𝛽𝑖 have to be es-

timated from the sample data. The idea of Huber [8] is implemented for this purpose. 

Let 𝑇0 and 𝑆0 be the initial estimators of  and , respectively given as: 

𝑇0 = 𝑚𝑒𝑑{𝑦𝑖 − �̂�0𝑦𝑖−1}  and  𝑆0 = 1.483 𝑚𝑒𝑑{|𝑦𝑖 − �̂�0𝑦𝑖−1 − 𝑇0|} , (1 ≤ 𝑖 ≤ 𝑛) (9) 

where �̂�0 = 𝑚𝑒𝑑 {
𝑦2−𝑦1

𝑦1−𝑦0
,

𝑦3−𝑦2

𝑦2−𝑦1
, … ,

𝑦𝑛−𝑦𝑛−1

𝑦𝑛−1−𝑦𝑛−2
} , (𝑖 = 1, 2, … , 𝑛 − 1) . 

Then 𝑡𝑖 values in Equations (6) can be estimated by �̂�𝑖 =
𝑦𝑖−�̂�0𝑦𝑖−1−𝑇0

𝑆0
  and the re-

vised estimated values of coefficients 𝛼𝑖 and 𝛽𝑖 are obtained as follows: 

 �̂�𝑖 = (2 𝑘⁄ )�̂�𝑖 {1 + (1 𝑘⁄ )�̂�𝑖
2}2⁄  and  �̂�𝑖 = 1 {1 + (1 𝑘⁄ )�̂�𝑖

2}2⁄ . (10) 

Realize that the MML estimators do not have bounded influence functions so coef-

ficients 𝛼𝑖 and 𝛽𝑖 are revised to make them bounded. Besides, they completely depend 

on the observations not the presumed values of the parameter  and p now. 

Replacing Equations (9) and (10) in the modified likelihood equations, the adaptive 

modified maximum likelihood estimators are obtained as exactly the same as MML 

estimators given in Equation (7) except the coefficients 𝛼𝑖  and 𝛽𝑖  are replaced by 

coefficients �̂�𝑖 and �̂�𝑖  and the concomitants (𝑦[𝑖], 𝑦[𝑖]−1) are replaced by the original 

observations (𝑦𝑖 , 𝑦𝑖−1) since 𝑡𝑖 values are not obtained from the quantiles of the dis-

tribution but estimated directly from the sample and complete sums are invariant to 

ordering. 

Computations: i) First by using sample observations calculate the initial values of  

ϕ̂0,  T0 and S0  ii) use these initial values to calculate μ,̂  ϕ̂  and σ̂  from Equations (7) 

by the use of coefficients �̂�𝑖 and �̂�𝑖 given in Equations (10); iii) replace  ϕ̂0 , T0 and 

S0 by ϕ̂ , μ̂ and σ̂, respectively; iv) repeat the process one more time and calculate 

μ,̂  ϕ̂  and σ ̂ which are the desired AMML estimators.   

3 Efficiency and Robustness Comparisons of the Estimators 

To evaluate the efficiency and robustness of the AMML, MML and LS estimators, 

[100,000/n] (integer value) Monte Carlo runs (simulations) are used. The distribution 

of ε, known as population model, is taken as LTS with p = 16.5. As alternative sample 

models first  

(1) Normal with mean 0 and variance  𝜎2 , and the LTS family with  

(2) p = 5.0;   

(3) p = 3.5;   

(4) p = 2.5;   

(5) p = 2.0  
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Table 1. Simulated Values of the Mean and Variance of LS, MML and AMML Estimators 

under Alternative Models (1) – (5) 

n    µ    ϕ    σ   µ   ϕ    σ    µ      ϕ   σ 

               LS MML           AMML 

     Model (1)    

30 Mean 0.00 0.42 0.97 0.01 0.42 1.04 0.00 0.42 0.92 

 Var 1.44 0.83 0.50 1.47 0.87 0.63 1.48 0.84 0.52 

50 Mean 0.00 0.45 0.98 0.00 0.45 1.06 0.00 0.45 0.94 

 Var 1.36 0.79 0.51 1.30 0.86 0.63 1.40 0.80 0.53 

100 Mean 0.00 0.48 0.99 0.00 0.48 1.06 0.00 0.48 0.96 

 Var 1.10 0.71 0.49 1.23 0.78 0.58 1.12 0.72 0.52 

     Model (2)    

30 Mean 0.00 0.42 0.97 0.00 0.42 1.01 0.00 0.42 0.89 

 Var 1.46 0.84 0.77 1.31 0.80 0.75 1.38 0.82 0.61 

50 Mean 0.00 0.45 0.98 0.00 0.46 1.03 0.00 0.45 0.91 

 Var 1.27 0.76 0.81 1.24 0.79 0.77 1.17 0.73 0.62 

100 Mean 0.00 0.48 0.99 0.00 0.48 1.03 0.00 0.48 0.93 

 Var 1.17 0.73 0.83 1.05 0.69 0.77 1.10 0.69 0.62 

     Model (3)    

30 Mean 0.00 0.41 0.97 0.00 0.42 0.97 0.00 0.42 0.86 

 Var 1.39 0.79 1.00 1.20 0.75 0.75 1.24 0.75 0.64 

50 Mean 0.00 0.45 0.98 0.00 0.46 1.02 0.00 0.45 0.88 

 Var 1.28 0.78 1.17 1.09 0.72 0.95 1.09 0.72 0.62 

100 Mean -0.01 0.48 0.98 0.00 0.47 1.02 -0.01 0.48 0.89 

 Var 1.06 0.78 1.01 0.97 0.66 0.81 0.90 0.71 0.78 

     Model (4)    

30 Mean 0.00 0.42 0.95 0.00 0.43 0.94 0.00 0.43 0.80 

 Var 1.43 0.82 1.91 1.09 0.73 1.03 1.09 0.73 0.65 

50 Mean 0.00 0.45 0.96 0.00 0.46 0.98 0.00 0.45 0.82 

 Var 1.29 0.79 1.91 0.99 0.68 1.29 0.98 0.67 0.65 

100 Mean 0.00 0.47 0.97 0.00 0.48 0.97 0.00 0.48 0.83 

 Var 1.07 0.78 2.16 0.88 0.59 1.14 0.82 0.64 0.61 

     Model (5)    

30 Mean 0.00 0.42 0.92 0.00 0.43 0.86 0.00 0.43 0.70 

 Var 1.41 0.77 4.02 0.81 0.67 1.95 0.80 0.66 0.56 

50 Mean 0.00 0.45 0.94 0.00 0.46 0.90 0.00 0.46 0.71 

 Var 1.26 0.72 5.80 0.77 0.62 1.90 0.71 0.56 0.57 

100 Mean 0.00 0.47 0.96 0.01 0.48 0.91 0.00 0.48 0.73 

 Var 1.05 0.68 6.29 0.68 0.51 2.82 0.57 0.50 0.55 
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are used. The results for n = 30, 50 and 100 where  = 0.5,  = 0.0 and  = 1.0 are 

given in Table 1. 

It can be seen from Table 1 that all estimators are unbiased except AMML estimate 

of  which is slightly less and its bias decreases as sample size increases as expected. 

However in all cases the variances of AMML estimates are smaller than that of the LS 

estimates and similar with MML estimates except Model (1) where they are close. 

Thus, although AMML slightly under-estimates , its mean squared error is less than 

the others. Realize that all methods underestimate  in Model (5). Therefore, we can 

conclude that AMML is efficient and robust to misspecification errors. Similar results 

are obtained for other presumed values of ,  and  so they are not reported here for 

conciseness. 

Then, the outlier models where (𝑛 − 𝑟)𝑋𝑖 come from 𝑁(0, 𝜎2) and 𝑟 (we do not 

know which) come from 

(6) 𝑁(0, 4𝜎2);   

(7) 𝑁(0, 16𝜎2); 𝑟 = [0.5 + 0.1𝑛] (integer value), 

and the mixture models 

(8) 0.90𝑁(0, 𝜎2) + 0.10𝑁(0, 4𝜎2);   

(9) 0.90𝑁(0, 𝜎2) + 0.10𝑁(0, 16𝜎2) 

are taken as alternative sample models. The innovations are scale corrected to make 

their variances equal to 𝜎2. The results for n = 30, 50 and 100 where  = 0.5,  = 0.0 

and  = 1.0 are given in Table 2. 

It can be seen from Table 2 that the results are similar to misspecification ones giv-

en in Table 1. Finally, the extreme alternative sample models 

(10) Student’s t distribution with 2 degrees of freedom; 

(11) Cauchy distribution; and  

(12) Slash (Normal/Uniform) distribution 

are taken as alternative sample models. It must be noted that model (10) has finite 

mean but non-existent variance, and models (11)-(12) have non-existent mean and 

variance. Since the differences between the AMML and the others become very strik-

ing due to exploding variances, only the results for AMML estimators are given in 

Table 3. However, it must be noted that Model (10) is still comparable due to negligi-

ble bias in  and  with unacceptable variances. Besides,  is overestimated by the 

other methods in this case again with unacceptable variances. Therefore, under such 

extreme alternatives, only AMML method is valid and robust. 
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Table 2. Simulated Values of the Mean and Variance of LS, MML and AMML Estimators 

under Alternative Models (6) – (9) 

n     µ    ϕ    σ    µ   ϕ    σ   µ   ϕ   σ 

               LS MML           AMML 

     Model (6)    

30 Mean 0.00 0.41 1.10 -0.01 0.42 1.15 0.00 0.41 1.01 

 Var 1.83 0.95 0.93 1.80 0.89 0.83 1.72 0.93 0.70 

50 Mean 0.00 0.45 1.12 0.00 0.45 1.18 0.00 0.45 1.03 

 Var 1.60 0.95 0.90 1.51 0.91 0.83 1.49 0.90 0.72 

100 Mean 0.00 0.47 1.13 0.00 0.48 1.18 0.00 0.47 1.05 

 Var 1.39 1.06 0.95 1.39 0.95 0.86 1.28 0.98 0.72 

     Model (7)    

30 Mean 0.00 0.40 1.05 0.00 0.40 0.98 0.00 0.40 0.79 

 Var 1.63 1.55 2.08 1.05 1.17 0.95 1.05 1.18 0.54 

50 Mean 0.01 0.43 1.05 0.00 0.45 1.03 0.00 0.43 0.81 

 Var 1.40 1.86 2.17 0.95 1.36 1.32 0.94 1.29 0.54 

100 Mean 0.00 0.46 1.09 -0.01 0.47 1.02 0.00 0.46 0.83 

 Var 1.26 2.17 2.48 0.79 1.53 1.18 0.74 1.44 0.59 

     Model (8)    

30 Mean 0.00 0.42 0.97 0.00 0.42 1.01 0.00 0.42 0.88 

 Var 1.48 0.81 0.76 1.29 0.80 0.75 1.39 0.80 0.58 

50 Mean 0.00 0.45 0.98 0.00 0.46 1.03 0.00 0.45 0.91 

 Var 1.38 0.80 0.80 1.13 0.78 0.74 1.26 0.77 0.57 

100 Mean 0.00 0.47 0.99 0.00 0.48 1.04 0.00 0.47 0.92 

 Var 1.17 0.78 0.89 1.04 0.75 0.72 1.10 0.74 0.63 

     Model (9)    

30 Mean 0.00 0.43 0.95 0.00 0.43 0.88 0.00 0.44 0.71 

 Var 1.35 0.73 2.63 0.82 0.63 1.23 0.77 0.59 0.66 

50 Mean 0.00 0.45 0.96 0.00 0.46 0.94 0.00 0.46 0.73 

 Var 1.22 0.73 2.63 0.85 0.58 1.72 0.67 0.56 0.60 

100 Mean 0.00 0.48 0.97 0.00 0.48 0.92 0.00 0.49 0.74 

 Var 1.03 0.80 2.78 0.67 0.49 1.50 0.59 0.55 0.63 

 

Table 3.  Simulated Values of the Mean and Variance of AMML Estimators under Alternative 

Models (10) – (12) 

              Model (10) Model (11)           Model (12) 

N     µ    ϕ    σ    µ   ϕ    σ    µ   ϕ    σ 

30 Mean 0.00 0.45 1.37 -0.01 0.47   1.94   0.01 0.47   2.68 

 Var 2.95 0.54 2.96 6.32 0.28 11.73 11.08 0.27 19.08 

50 Mean 0.00 0.47 1.40 0.01 0.48   1.93  -0.01 0.49   2.71 

 Var 2.59 0.46 2.49 4.55 0.19 10.43   8.95 0.18 16.97 

100 Mean 0.00 0.48 1.42 -0.01 0.49   1.92   0.01 0.49   2.72 

 Var 2.32 0.30 2.80 4.29 0.09   9.54   7.56 0.10 16.96 
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4 Conclusion 

In this study, for AR(1) models, MML technique is adapted to machine data pro-

cessing where the distribution family is known rather than the exact distribution. For 

this purpose, the idea of Huber M-estimation is inserted to MML technique. Then, the 

efficiency and robustness properties of the most widely used LS estimators, MML and 

AMML estimators are examined through simulations and observed that MML and 

AMML estimators are more efficient than LS estimators as expected. However, 

AMML underestimates  in all cases but have much smaller variances than the others 

yielding less mean squared errors. Therefore, if there is an opportunity to examine the 

distribution, one should prefer the use of MML rather than AMML. Otherwise, like in 

machine data processing, one can safely use AMML estimators having in mind the 

bias in  which cannot be corrected since the exact distribution is not known. 
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Modeling and analysis of the cosmic rays variations 
during periods of heliospheric disturbances on the basis 

of wavelet transform and neural networks 
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In this work, using the cosmic ray (CR) data as an example, we proposed a method 
for analysis of time series with a complex structure, method is based on combination 
of orthogonal multiple-scale analysis (MRA) and multilayer neural networks (NN). 
The method allows to perform an analysis of the typical variations of the data, to allo-
cate anomalous changes and to obtain quantitative estimates of their parameters. Pro-
posed method includes following operations: (1) on the basis of MRA the data is rep-
resented as: where 𝑓𝑎,(−𝑚) (𝑡) = ∑ 𝑐−𝑚,𝑛𝜙−𝑚,𝑛(𝑡)𝑛 , 𝑓𝑑,𝑗(𝑡) = ∑ 𝑑𝑗,𝑛Ψ𝑗,𝑛 𝑛 , 𝛹𝑗 =
�𝛹𝑗,𝑛�𝑛∈𝑍  – wavelet basis, 𝜙𝑗 = �𝜙𝑗,𝑛�𝑛∈𝑍 - scaling function basis; (2)  for isolated 
smoothed components 𝑓𝑎,(−𝑚) on the basis of NN the mapping is performed 
: 𝛾:𝑓𝑎,(−𝑚) → 𝑓𝑎,(−𝑚)���������, where 𝑓𝑎,(−𝑚)– input values of NN, 𝑓𝑎,(−𝑚)���������– output values of 
the NN; (3) analysis of the error vector of the NN: 𝑒(𝑛) = 𝑐−5,𝑛������ − 𝑐−5,𝑛, where 𝑐−5,𝑛 
–real value of the coefficient in the time moment 𝑡 = 𝑛, 𝑐−5,𝑛������ – extrapolated value; 
anomalous changes are allocated  on the basis of the condition: |𝑒(t)| ≥ 𝑇s, where 𝑇s 
is threshold function for the corresponding NN. In work on the example of data pro-
cessing of ground stations of neutron monitors, a model of the time course of cosmic 
rays is constructed, having the form 
𝑐−𝑚,𝑛+1���������� = 𝜙𝑘3(∑ 𝜔𝑘𝑖𝜙𝑖2(∑ 𝜔𝑖𝑙𝜙𝑙1(∑ 𝜔𝑙𝑛𝑐−𝑚,𝑛−𝑧)))γ

z=0  𝑙𝑖 , where 𝜔𝑙𝑛 ,𝜔𝑖𝑙 ,𝜔𝑘𝑖–weight 
coefficients of the neurons of NN; 𝜙𝑙1 = 𝜙𝑖2 = 2

1+𝑒−2𝑧
− 1; 𝜙𝑘3 = 𝑎 ∗ 𝑧 + 𝑏; γ – length 

of the input vector of NN (we used γ = 6). 
For the analysis of subtle features of the time series used computing solutions 

based on continuous wavelet transform (CWT) and threshold functions: (1) continu-
ous wavelet transform of data is 

formed: 𝑓НМ ∶  �𝑊𝛹𝑓𝑏,𝑠� ≔  |𝑠|−
1
2 � 𝑓(𝑡)𝛹 �𝑡−𝑏

𝑠
� 𝑑𝑡,

+∞

−∞
 where 𝑓 ∈ 𝐿2(𝑅), 𝑠, 𝑏 ∈ 𝑅, 𝑠 ≠

0, 𝛹 – wavelet basis, parameter 𝑠 characterizes the scale, 𝑏 –time; (2) a  threshold 
function is applied to the obtained array of wavelet coefficients: 

𝑊𝛹𝑓𝑏,𝑠: 𝑃𝑇𝑠�𝑊Ψ𝑓𝑏,𝑠� = �
𝑊Ψ𝑓𝑏,𝑠, if (𝑊Ψ𝑓𝑏,𝑠 −𝑊Ψ𝑓𝑏,𝑠

𝑚𝑒𝑑,𝑙) ≥ 𝑇𝑠𝑙  
0 , if �𝑊Ψ𝑓𝑏,𝑠 −𝑊Ψ𝑓𝑏,𝑠

𝑚𝑒𝑑,𝑙� < 𝑇𝑠𝑙

−𝑊Ψ𝑓𝑏,𝑠, if  (𝑊Ψ𝑓𝑏,𝑠 − 𝑊Ψ𝑓𝑏,𝑠
𝑚𝑒𝑑,𝑙) < −𝑇𝑠𝑙

 (1) 
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where 𝑊Ψ𝑓𝑏,𝑠
𝑚𝑒𝑑,𝑙– is the median value calculated in a sliding time window of length 𝑙. 

𝑇𝑠𝑙 = 𝑈 ∗ 𝜎𝑠𝑙 – is threshold function, where 𝜎𝑠𝑙 = ��1
𝑙
− 1∑ (𝑊Ψ𝑓𝑏,𝑠 −𝑊Ψ𝑓𝑏,𝑠���������𝑙

𝑘=1 �
2
– 

is standard deviation, calculated in a sliding time window of length 𝑙, 𝑊Ψ𝑓𝑏,𝑠��������� – is 
average value, 𝑈 – threshold coefficient (we used 𝑈 = 2.5); the application of func-
tion 𝑃𝑇𝑠�𝑊Ψ𝑓𝑏,𝑠� allows us to allocate periods of abnormal decreases and abnormal 
increases in the time series. To evaluate the intensity of anomaly at the time 𝑡 = 𝑏  we 
used the value: 𝑌𝑏 = ∑ 𝑃𝑇𝑠(𝑊Ψ𝑓𝑏,𝑠𝑠 ), which in the case of abnormal increases will be 
positive, and in the case of  abnormal decreases — negative. The result of the applica-
tion of the method is presented on figures 1 and 2. 

 
Fig. 1. Analysis of cosmic rays data on the basis of neural network 

 

Fig. 2. Detailed analysis of cosmic rays data 

On the basis of the data processing during periods of increased solar and geomagnetic 
activity we confirmed the possibility of an anomalous increase in CR intensity (CR 
pre-increase) a few hours before the beginning of geomagnetic storms.  

These effects can be used as precursors of strong geomagnetic storms (act as addi-
tional factor) in the problem of space weather forecast, the solution of which is not 
satisfactory at the moment  

This work was supported by a grant from RSF 14-11-00194. 
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Abstract. The CAPM theory provides a measure of the sensitivity of
an asset to the market called the systematic risk. The Beta of an equity
is estimated by its market line. According to the OLS hypothesis, it is
stable over time but this is not empirically verified. Many studies are
in favor with this fact (Unstable Beta), and more particularly the Beta
dispersion according to the frequencies which is related to the heteroge-
neous behavior of agents. Using the wavelets method, we can calculate
the coherence and the phase between the stock’s returns and those of the
market over time, it is also possible to visualize it. In order to confirm
the correctness of the methodology, we use three french equities with dif-
ferent Betas (AXA, LVMH and Orange) for the period from 2005−2015
including the crisis. We show that the wavelets coherence, associated with
the phase, improve our understanding and the classification of equities
according to there characteristics. Our study reveal the contagion and
interdependence phenomenons between the stocks and the market. The
contagion effects (from the market to the stock) is principally located
on the High-Frequencies whereas the interdependence effect is located
on the Low-Frequencies (Long-run investment). The link between beta
and coherence-phase can help the investors to choose more efficiently the
time they should invest.

Keywords: Wavelets; Coherence; CAPM; Co-Movement

? Corresponding author, email: roman.mestre@lameta.univ-montp1.fr

LAMETA, University of Montpellier, UFR Economie, Site de Richter, Avenue
Raymond Dugrand, CS 79606, 34960 Montpellier, Cedex 2, France

?? LAMETA, University of Montpellier

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1187



For more efficiency, the portfolio managers must have the higher
level of returns with the lesser risk. They can use the CAPM of
Sharpe (1962) providing a measure of risk (The Beta) corresponding
to the sensitivity of an asset to the market. In the CAPM theory,
the risk premium of an asset ( return above the risk free rate) are
related with the market premium. The main equation of the CAPM
is the Securities Market Line (SML):

ri,t = α + β.rm,t + εt (1)

With ri,t the risk premium of asset i and rm,t market premium,
εt is an i.i.d(0, σε) process.

The systematic risk of an asset is given by the β of the SML. The
higher Beta, the more sensitive is the equity to the market move-
ments (the system). The β is a regression parameter, so it constant
by hypothesis, it is similar for the correlation between ri,t and rm,t.
However, due to the erratic market fluctuations, the equity-market
link does not have the same intensity over time. On the other hand,
an action may be weakly correlated with the market in long-run
but have a more tight link in short run. When agents are informed
about the variability of the Action-Market relationship, they can
adjust their portfolios more optimally. The volatility of Beta is thus
related to the hypothesis of heterogeneous behaviors of agents1.

To analyze the Beta instability phenomenon, we use the tech-
nique of wavelets in order to calculate the coherence between two
time series. This instrument was developed by Haar in 1909, pop-
ularized by Morlet and Grossmann in 1984 (which give the name
”wavelet”), Meyer in 1986 − 1987 2 and Mallat [1989-2009], over-
takes the limits of the spectral analysis, in particular its timeless-
ness, and reduces time-frequency arbitration. In finance, wavelets
play an important role because they become the preferred tool to
take into account the behavioral hypothesis of agents. Univariate
wavelet approaches have been used in the analysis of exchange rate
volatility and in the construction of a VaR that takes into account
the heterogeneity of agents, called WVaR (Wavelets Value-at-Risk).

1 Cf. Bibliography[14]
2 Abel Prize laureate in Mathematics 2017
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The wavelets were used by Gencay et al (2005) to estimate the sys-
tematic risk of US equities, they show the possibility of estimate the
Beta by frequency. In addition, Auth (2013) used wavelet coherence
to appreciate the links between hedge fund portfolios and other fi-
nancial assets. It is thus possible to show the factors influencing the
diversification of these portfolios.

The multivariate extensions with the wavelet coherence give the
possibility to dynamically appreciate the frequency causality . The
financial series have,indeed rarely a constant variance over time and
hence the co-spectral analysis 3 is not a reliable method. In this
multivariate time-frequency case, the wavelets coherence can be com-
pared to the correlation by frequency over time between two station-
ary signals. Coherence associated with the phase calculation, test the
significance of the relationships (links) between variables and give
the sens of the causality.

The main goal of this article is to demonstrate that the wavelet
coherence-phase association is a powerful tool for measuring risk for
investors according to their investment horizons. For this purpose,
we apply it to the stocks prices of AXA, LVMH and Orange equi-
ties listed on the French market (the CAC40 index are used as a
reference) for the daily period from 2005 to 2015. The equities are
selected according to their betas values (estimated by OLS) : 1.51
for AXA, 1 for LVMH and 0.72 for Orange. Supposing that the Beta
of the market is equal to 1, AXA is an highly sensitive stock overre-
acting the market movement , Orange is relatively less sensitive to
the market fluctuation (under reaction), and LVMH ”follows” the
market.

We present in a first part a synthesis of the methodology used
before applying it to the selected data, we conclude on the benefits of
using the wavelet coherence-phase method to manage the portfolio.

3 Cf. Bibliography [12; 13]
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1 Time-Frequency analysis

The Wavelets

The wavelets improve the interpretation of the Fourier coherence for
which the temporal information is lost for more information in the
frequency domain. The first works on this, are those of Gabor (1946)
concerning the Short-Time Fourier Transform (STFT) using a con-
stant size rolling window. With this method we choose the resolution
degree about the temporal or frequency accuracy, but we don’t solve
totally the arbitration between Time information and Frequency in-
formation. The main parameter of this method is the window size, we
have a good frequency localization at the detriment of the temporal
information if the window is large. The largest window, the better
frequency localization at the detriment of the temporal information.
To the contrary, a tight window improve the temporal resolution but
deteriorate the frequency aspects. This fact is a Physics Dilemma
explain by Heisenberg (eponymous Uncertainty Principle): It is im-
possible to accurately and simultaneously measure the position and
momentum of a particle. In our case, we can calculate, concomitantly,
the temporal and frequency position of a variable. The Wavelets are
constrained by this principle but they ”reduce” the arbitration effect
by providing simultaneous time-frequency analysis.

A Wavelet ϕ(t) (the wavelet-mother), is similar to the window.
Its mean equals zero and it preserves the energy (variance) of a time
series. The ϕ(t) function is translated by τ and dilated by s in order
to extract frequency information from the series at a specific moment
t of time. The information is stocked in the wavelet-family ϕs,τ (t),
which collecting all the translated and dilated version of ϕ(t).

A wavelet mathematically is defined by the following equation:

ϕs,τ (t) =
1√
s
ϕ(
t− τ
s

) (2)

The wavelets transform (or wavelets decomposition) project the
function x(t) on the wavelet family. This method indicate how the
wavelet-mother generates the wavelets and it providing the wavelets
coefficients W (s, τ). the coefficients reproduce the variations of the
series in the neighborhood of t ∓ τ with a frequency width s. By
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varying tau and s we have ,consequently, the temporal variations of
the series for a given frequency scale, justifying the name ”Time-
Frequency Analysis”. By varying τ and s we have ,consequently, the
temporal variations of the series for a given frequency scale, justifying
the name ”Time-Frequency Analysis”.

Formally we have the following result 4 :

W (s, τ) =
1√
s

∫ +∞

−∞
x(t)ϕ∗(

t− τ
s

) dt (3)

ϕ∗ is the complex-conjugate of ϕ.

We can find again the series with the inverse wavelet transform.
Its mathematical equation shows the admissibility condition Cϕ of
the wavelet.

x(t) =
1

Cϕ

∫ +∞

0

∫ +∞

−∞
|W (s, τ)|ϕ(

t− τ
s

) dτ
ds

s2
(4)

This condition ensures the nullity of the mean and the energy
preserving during the decomposition.

Cϕ =

∫ +∞

−∞

∣∣∣ϕ̂(f)
∣∣∣

|f |
df <∞ (5)

ϕ̂(f) is the Fourier transform of ϕ(f)

This relation must respect the following constraints:∫ +∞

−∞
ϕ(t) dt = 0 (6)

∫ +∞

−∞

∣∣ϕ(t)2
∣∣ , dt = 1 (7)

The Continuous Wavelet Transform (CWT) needs a large number
of observations, for its implementation. Its discrete version (Discrete
Wavelet Transform) reduce the number of frequencies by a lesser
variation step of s and τ . By reducing the variation-step, we have

4 Cf. Mallat [9;10;11]

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1191



an optimal sampling for reduce the calculation. This discretization
impose a dyadic scale (the number of observations N must be a mul-
tiple of 2), and an High-Pass and Low-Pass Filters determining the
the order of decomposition J (depth) which indicate the number of
frequency bands. In this case J = Log2(N), with N is the number
of observation. This process, called Pyramidal Algorithm, is created
by Mallat ( the name ”Mallat Algorithm” is also used). There is
an alternative version of the DWT without the dyadic length con-
straint , called the Maximal Overlap Discrete Wavelets Transform
(or MODWT)5.

The different wavelets transformations distinguish themselves by
their wavelet-mother (and associated family) and its characteristics,
defining also the wavelet filter properties. Each wavelets family have
their own properties and specificities, as the orthogonal, the sym-
metry, etc. The Daubechies wavelet family is commonly used, or
also the Morlet Wavelet (called Mexican-hat wavelet). In a fam-
ily, there are differences between the wavelets about the number of
vanish moments ( equal to zero). For instance, the ”D8” wavelet
is a Daubechies wavelet with 8 moments equal to zero whereas the
”La8”, even if it has 8 null moments, are not in the same family but
in th Least Asymmetric Daubechies family. More details about the
wavelets properties are given by Farge(1992) and Daubechies (1992).

We use, in this paper, the CWT with the Morlet complex wavelet
because it is a good balance between temporal and frequency local-
ization. The CWT is, moreover, has a finer frequency mesh (the
frequency step). Its mathematical equation is:

ϕMs,τ (t) = π−1/4e(if0t)e(−t
2/2). (8)

f0 is the center frequency, equal to 6 in our case in order to respect
the admissibility condition.

The calculation softwares realize, in practice, a frequency sam-
pling for calculate the CWT, because we are constrain by the cal-
culation power of the computers concerning the infinite integral. In
theory, the depth of the decomposition J is defined only by the fre-
quency step δj.

5 Cf. Mallat [9;10;11] and Gencay et al [7] for more details about the MODWT
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In the continuous case, we can arbitrarily choose it, but in prac-
tice, J is related to the size of the series (N). This order is important
to define the graphical resolution and reduce the calculation time.
Torrence et Compo (1997) give the following formula for calculate
the maximum frequency scale level:

J = δ−1j Log2(Nδt/s0) = δ−1j Log2(N/2) (9)

δj is the frequency step, δt the time step, and s0 = 2δt the smallest
scale. We can use commonly δj = 1/8, we have a good frequency
resolution with reasonable calculation time.

Lau et Weng(1995) gives the following formula for calculate the
set of frequencies for the decomposition until the J order.

sj = s02
jδj ; j = 1, ....., J (10)

We notice that the values of sj are related, for each scale j, to a
time horizon (in the same time unity of the series).

The wavelets coherence

The wavelets coherence between two functions (with the same size
N) also called Time-Varying Coherence, is based on a CWT using
the Morlet Wavelets. Similar to the Fourier Coherence; we have a
measure of wavelet spectral covariance definied by the cross wavelets
spectrum SWxy(s, τ):

SWxy(s, τ) = Wx(τ, s).W
∗
y (τ, s) (11)

x(t) et y(t) two temporal functions, Wx(τ, s) is the wavelet coeffi-
cients of the CWT,and W ∗

y the complex conjugate of Wy(τ, s) .

|Wxy(s, τ)| cross power spectral between x(t) and y(t). Associated
with the auto-power spectrums, we define the wavelet coherence:

WQ(f) =
|=(s−1.SWxy)|2

=(s−1. |SWx|2).=(|s−1.SWy|2)
(12)

WQ(f) formula is similar to the determination coefficient for-
mula. For each frequency scales s and for each moment t, we have
a coefficient between 0 and 1 corresponding to the greater or lesser
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squared correlation between the two signals and of course the ex-
planatory power of the model. These coefficients,coming from the
wavelets decomposition by Morlet Wavelet, are complex in nature.
Consequently, the wavelet coherence is equal to 1 in the real space,regardless
the time τ . Requiring the use of a time-frequency smoothing = to
get the true values of the coherence. The temporal smoothing for
a frequency scale given is =time, and the frequency smoothing for a
given time t is =scale.

The general smoothing operator is:

=(W ) = =
scale(=time(W ))(13)

The equations of =scale and =time are given by Torrence et Web-
ster (1998):

=time(WN) = WN .c1
−t2/2s2 (14)

=scale(.) = WN .c2Π(0.6s) (15)

c1 and c2 are normalizing constants and Π is the rectangle func-
tion 6.

The wavelets provide a measure of the phase between two func-
tions, so we can appreciate the positive or the negative correlation
between the frequency components or mutual interactions (causal-
ity). The wavelet phase function θW (f) is the ratio between the imag-
inary part C and the real part P of SWxy:

θW (f) = arctan(C(SWxyf)/P (SWxyf)) (16)

In practice xt et yt are samples of two random processes, with
time-step and frequency-step define by the CWT previously de-
scribed.

6 the rectangle function is a function equal to a in [−1/2, 1/2] interval and equal to
zero outside
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2 Results and discussions

– The betas values, coming from the SML estimate by OLS, and
the corresponding R2 are given in the table 1:

Table 1: Estimates Results

Stocks Beta R2

AXA 1,5 0.68
LVMH 1 0.62
Orange 0.73 0.43

The appendix 1 provides more details about these estimates: the
variables are stationary, the residuals are homoscedastic and au-
tocorrelation and no follow a Normal distribution. So the betas
don’t respect the required properties about the BLUE estimator,
but we consider them as references.

The table 2 gathers the results in the frequency space about the
cross-spectral analysis between the stocks and the CAC40. This
table provides the mean and the standard-deviation of the coher-
ence and also the mean of the absolute value of the phase and its
standard-deviation.

Table 2: Characteristics of the coherence and the phase
from the cross-spectral analysis

Stocks Average Coherence standard-deviation
AXA 0.71 0.17

LVMH 0.65 0.18
Orange 0.48 0.21

Stocks Average Coherence standard-deviation
AXA 0.21 0.17

LVMH 0.23 0.19
Orange 0.34 0.32
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AXA and LVMH have an average coherence higher than Orange,
in accordance with their R2 (in table 2). In addition, the Or-
ange coherence is a more erratic than the other two stocks (see
their standard deviations), illustrating a greater variability of its
link with the market over the frequencies. The appendix 3 con-
firms with the graphics these results. The absolute mean phase
values are larger (and more volatile) for Orange, the phase-shift
illustrates how Orange reacts(responds) to the market.

A stock with a low beta has a lower coefficient of determination
and a lower average coherence than an stock with a strong beta.
The explanatory power of the market (on the stock fluctuations)
is therefore more important for a high stock beta. But we can not
verify if this finding is valid whatever the period considered and
the chosen investment horizon.This is a limit of the cross-spectral
analysis (timelessness).

– We can improve this static method by using the Multidimen-
sional Time-Frequency Analysis. The following figures illustrate,
for each stock, the dynamic evolution of the coherence and the
phase simultaneously.

The frequency scales (in days) are indicated in the y-axis and the
Time in the x-axis starting from 0 (first observation) to 2869.

The wavelet coherence intensity is given by the following colors:
red illustrates a high correlation between the stock and the CAC40
whereas blue indicates a weakest link. The bold lines delineate the
areas for which the correlation (the R2 in this case) is significant at
the 5% risk level (using Monte-Carlo simulations). The white trans-
parent surface is the ”cone of influence”, where edge effects can bias
results about cross-spectrum because we have finite samples.

The arrows orientation simplifies the phase analysis: if an arrow
points to the right then the series are in-phase, whereas if arrows
point to the left then are out-of-phase.

The coherence and the phase give a simultaneous representation
of Equity-Market relationship. The phase can be interpreted as the
sign of the correlation, two series are positively correlated if it is
in phase whereas it is negatively correlated when it is out-of-phase.
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The phase can be interpreted as the sign of the correlation, two se-
ries are positively correlated if it is in phase whereas it is negatively
correlated when it is out-of-phase. With the phase we can also ap-
preciate the nature of the interdependencies between the series: an
arrow pointing up indicates that xt leads yt to an high correlation,
so xt is the ”Leader”. Conversely, an arrow pointing down illustrates
that yt is the Leader (yt leads xt). The phase in a way constitutes a
type of the causality measure.

Figures 1 : Wavelet Coherences-phases for the 3 stocks

Figure 1.1 AXA− CAC40

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1197



Figure 1.2 LVMH − CAC40

Figure 1.3 Orange− CAC40
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This figures show a predominance of red in the coherences of
AXA and , in a lesser extent, LVMH ,indicating an high correlation
with the market. For the high frequencies, the coherence is not con-
tinuous because we can notice blue and red areas alternating. The
blue is predominant in the Orange coherence but we remark a tight
red area. Overall, AXA and LVMH are strongly correlated with the
market whatever frequencies, to the contrary, Orange is not corre-
lated. The high beta equities have, generally, a coherence with red
predominance whatever the frequencies and the period. Conversely,
a low beta equity has a blue predominance coherence, but with co-
movement area on particular frequency and time.

To highlight and synthesize the main points of these results, we
divide the global period in 5 sub periods:

– The ante crisis period extends from 2005 to the beginning of 2008
(around 800 days on the x-axis).

– The subprimes crisis in 2008 until the end 2010 (from 800 to 1300
days on the x-axis)

– The debt crises in 2011 − 2012 ( from 1700 to 2000 days on the
x-axis).

– The post-crisis period begin at the middle of 2012 until the end
of our sample in 2015.

The Table 3 summarizes the intensity of the correlation (High,
Medium,Low) for each stocks, the letter M indicates the market lead-
ership and S for the Stock Leadership. If we can learly determinate
the Leader, we use the letter I to indicate the interaction between
the market and the stock .

Table 3: Coherences Syntheses

Subprimes Crisis Debt crisis
Stocks Frequencies 2005-2008 2008-2010 2010-2011 2011-2012 2012-2015

AXA HF High-M High-M High-M High-M High-I
MF Medium-I High-M High-I High-M High-I
LF High-M High-M High-I High-M **

LVMH HF High-M Medium-M Medium-M High-M Medium-M
MF High-I High-I Medium-I High-M Medium-I
LF High-M High-S High-I High-S High-I

Orange HF Medium-M Medium-M Forte-M Medium-MMedium-High-M
MF Low-I Medium-Low-M High-I Medium-I Medium-High-I
LF Low Low Low Low Low

HF=High-Frequencies, MF=Medium-Frequencies and LF=Low-Frequencies.
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We can confirm the CAPM hypothesis on the High-Frequencies: The market
fluctuations cause the stock movements, but each of them have a different link over
time. AXA is more often correlated than Orange, this is logical according to their
beta value. We highlight the Contagion effects from the market to the stocks. A stock
has a contra-cyclical fluctuations if it is out-of -phase with the market (not observed
in this paper), whereas, it has a pro-cyclical if it is in-phase. However in short-run (
High-Frequencies), a stock can not impact the market (or rarely).

On the medium-frequencies, we notice that the market and the stock lead
themselves alternatively (bilateral interactions). The market is not systematically the
Leader. So, the Equity-Market relationship is not uniform and homogeneous in the
time-frequencies space, revealing the interest of the wavelets method compared to the
previous traditional tools. During the two crisis periods, the three stocks are correlated
with the market, but differently. For instance, AXA has a high beta before the sub-
primes crisis (leads the market), it tend to amplify the market fluctuations (CAPM
theory) and impact it. The market reacts to the stock movements, and he drop sharply.
It is the Leader during the Crisis, and leads the stock. This result is observed for the
other stocks.

On the Low-Frequencies(below 256 scale on the y-axis), Orange is not correlated
with the CAC40 contrary to AXA and LVMH. The latter stocks are in phase with the
market with more complex interactions. We can’t, indeed, define clearly the leadership,
the arrows pointing up and down alternatively. We conclude the existence of a high
and relevant interdependence. In long-run the stocks and the market mutually interact
and lead the relationship alternatively, resulting of the price adjustment on the market.

Conclusion

The wavelet coherence-phase is an efficient tool to better understand the Equity-Market
interactions. It appears that it is indispensable method to supplement the SML esti-
mation and to solve the main limit of the co-spectral analysis (atemporality).

The stocks selected are considered as ”major” assets of the CAC because of their
index weight relatively large (LVMH weight is 8%, AXA 4 − 5% and Orange 2 − 3%).
Consequently, it is not surprising LVMH influences more the market than Orange. This
is one of the CAPM limits, theoretically the Market should include all the assets. In
fact, the CAC40 is a french portfolio composed by 40 assets, and the estimated beta is
a measure of the asset sensitivity (to the market movement) , but it represents x% of
this one. This problem is lesser, in our case, by the coherence providing the areas and
the periods in which the stock leads the market, so we can analyze the CAPM results
more precisely. Moreover, we have an obvious interest in the frequency decomposition
because each agent can make a classification of his equities according his investment
horizon (the scale in the y-axis). Orange, for instance, is more correlated with the cac in
short-run during tumultuous market period than in long-run. Consequently, a pension
fund (investing for 5 years) will be less exposed than a HFT (High Frequency Trading)
investing in short-run. The HFT can spot, with this method, the shortcomings (or
where the stock is less correlated with the market) and exploit its.

This study illustrates the frequency links (relations) between an equity and its
market, a improve the stocks-assets profiling:
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– On the High-Frequencies, we notice, the Contagion phenomenon describing how
the market fluctuations lead the stocks volatility. However, the equities are not
highly correlated with the market at the time t systematically; in this case the
market lead it to greater co-movement area.

– On the Low-Frequencies, there is a predominance of the Interdependence phe-
nomenon with bilateral interactions between equities and the market. The market
influences the stock’s returns but this one react to assets volatility.There is a re-
sponse process between the two variables, illustrating a different and more complex
systematic risk. This results is significant for AXA and LVMH, Orange being not
correlated with the CAC40 on this frequencies.

– On the Medium-Frequencies, there are a different combinations of this two phe-
nomenons according the asset profile.

Ultimately, there is a plurality of asset profiles to build well-diversified portfolios
over time with different investment horizons. The coherence-phase of a portfolio is a
new indicator of the well-diversification ( or not) according the investors profiles and
risk appetites.
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Appendixes

A1-Tests on the variables and regressions

Phillips-Peron test on the risk premium.

Stocks Test Value Critical Value at 1%

CAC -56.11 -3.96
AXA -51.22 -3.96

LVMH -55.7 -3.96
Orange -54.42 -3.96

OLS estimates and residuals tests

Actions Beta T-Stat R2 LB ARCH JB

AXA 1,5 31.74 0.68 21.07 62.13 41993.2
LVMH 1 36.81 0.62 13.24 38.34 10867.6
Orange 0.73 18.83 0.43 17.7 37.81 4480.43

At 5% risk level, column LB (Ljung-Bpx Test): χ2(5) = 11.1, column ARCH
(ARCH-LM Test): χ2(2) = 5.99, column JB (Jarque-Bera Test): χ2(2) = 5.99.
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A2-Cross-spectral analysis Coherences and phases

The coherence is on the y-axis and the frequencies on the x-axis (in
days).

Figure 1.1 AXA− CAC40

Figure 1.2 LVMH − CAC40
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Figure 1.3 Orange− CAC40
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Abstract. We propose a novel methodology to predict high-dimensional
time-series with exogenous variables using Koopman operator frame-
work, by assuming that the time series are generated by some under-
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1 Introduction

In many application fields, high-dimensional time-series are generated or sam-
pled from some underlying dynamical system. Even if this is not apparently the
case, assuming so could potentially enable methodologies developed in systems
and control communities to be utilized for time series analysis and prediction
purposes. The Koopman operator [8, 10, 1] is a good example. It enables charac-
terization, reduced order modeling and dimensionality reduction, system identi-
fication, prediction, control, etc. of the underlying nonlinear dynamical system
using linear theories and techniques, and since it has been developed as a data-
driven framework [13, 15], most of its applications up to now are dealing with
high-dimensional time series. Hence this framework fits well in the time series
prediction context, especially the high dimensional ones [5]. There have been
several major numerical methods developed to extract the spectral properties
of Koopman operator from time series data, and utilizing these properties for
time series prediction has several major advantages, which we will elaborate and
re-emphasize in Sec. 2.2.

In this paper, we generalize the Koopman operator framework to system
with input as exogenous variables. By using the simplest generalization trick
[11], we found that the techniques and methods that we developed for Kernel
KMR [5] methodology can be utilized almost directly with minimal modifica-
tion. Hence we can generalize Kernel KMR to Kernel EKMRX (Kernel-based
Extended Koopman Mode Regression with eXogenous variables) to predict high
dimensional time series with exogenous variables. In theory part of this paper, we
formulate the Koopman operator in reproducing kernel Hilbert space (RKHS),
which is the most important function space in modern machine learning, and we
obtain a new derivation of the EDMD [15] and its kernel-based extension [16]
by exploiting the Dirac bra–ket notation [3]. Moreover, we obtain a probabilistic
interpretation of these numerical methods developed for deterministic Koopman
operator by exploiting the connection between RKHS and Gaussian processes
regression, and relate it to the stochastic Koopman and Perron-Frobenius op-
erator. In application part, we test our new prediction methodology for various
types of data from different fields and found promising initial results.

2 Theory

2.1 Reproducing kernel Hilbert space and Gaussian processes
regression

In this subsection, we briefly summarize the basic theory of reproducing ker-
nel Hilbert space and its relation to Gaussian processes regression. For a more
complete exposition of this topic with technical details, we refer the readers to
Refs. [4, 12].

In many applications of statistical learning, a typical task is to approximate
an unknown function f(x) given some training data or observations {(x1, y1),
(x2, y2), . . . , (xM , yM )}, where xi ∈ RN and yi ∈ R, such that the learned
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function f̂ minimizes some regularized empirical risk function and can provide
reasonably accurate prediction at a new data point f̂(x∗). The unknown func-
tion f is usually chosen from a “reproducing kernel Hilbert space (RKHS)” Hk.
The representer theorem [14] states that this minimizer f̂ of a (special case
of) regularized empirical risk function J [f ] =

∑M
i=1(yi − f(xi))2 + λ‖f‖2

Hk
can

be written as f̂(·) =
∑M
i=1 αik(·,xi), where k(x,x′) : RN × RN → R is the

“reproducing kernel” function which is symmetric and positive (semi-)definite.
Throughout this paper, we will often exploit the Dirac’s bra–ket notation [3]
to write functions, functionals, and linear operators in a compact way, e.g., the
minimizer can be written as |f̂〉 =

∑M
i=1 αi|kxi

〉 in bra–ket notation.
The RKHS is a Hilbert space of functions equipped with inner product 〈·|·〉Hk

satisfying: (1) ∀x fixed, k(x,y) = kx(·) ∈ Hk is a function of y; (2) k(·, ·)
has the “reproducing” property: ∀f ∈ Hk, 〈f(·)|kx(·)〉Hk

= f(x). It follows
from (2) that 〈ky(·)|kx(·)〉Hk

= ky(x) = kx(y) = k(y,x). Each RKHS has
a unique k, and according to Moore-Aronszajn theorem, given any symmetric
positive definite function k(y,x), there is a unique RKHS such that k(y,x) is
the reproducing kernel. In fact, this theorem showed that this unique RKHS
{f ∈ Hk|f(·) =

∑M→∞
i=1 αik(·,xi)} can be built from defining the inner product

〈f |g〉Hk
=

∑M ′→∞
j=1

∑M→∞
i=1 αiβjk(yj ,xi), where g(·) =

∑M ′→∞
j=1 βjk(·,yj). It

satisfies the reproducing property 〈f(·)|kx(·)〉Hk
=

∑M→∞
i=1 〈αik(·,xi)|kx(·)〉Hk

=
∑M→∞
i=1 αik(x,xi) = f(x). The reproducing kernels can be considered as a

basis of this RKHS, and they are also called “point evaluation functional”. As
an analog, in L2, the Dirac delta is the point evaluation functional 〈δx|f〉L2 =∫
f(x′)δ(x− x′)dx′ = f(x), but since δx(·) /∈ L2, L2 is not a RKHS.

Another representation of RKHS is from Mercer’s theorem, which states
that a positive (semi-)definite function can be eigen-decomposed as k(x,x′) =∑∞
i=1 σiqi(x)qi(x′), where {qi(·)} are orthonormal in L2, and {σi}M→∞i=1 is a

non-increasing sequence of eigenvalues with σM → 0 when M → ∞. It fol-
lows from this theorem that the unique RKHS associated to this k(x,x′) is
{f ∈ L2|

∑∞
i=1

〈qi|f〉L2
σi

< ∞}, and the inner product is given by 〈f |g〉Hk
=∑∞

i=1〈f |qi〉L2
1
σi
〈qi|g〉L2 . One consequence of this inner product is that the in-

duced norm is ‖f‖2
Hk

= 〈f |f〉Hk
=

∑∞
i=1

〈qi|f〉L2
σi

, and in order to be bounded, the
components fi = 〈qi|f〉L2 must decay quickly when i increases, which effectively
imposes a smoothness requirement on L2 in order for it to become a RKHS. An-
other consequence of this inner product is that one can define {pi(·) = √σiqi(·)}
such that it is an orthonormal basis of this unique RKHS, and as an analogue to
the Dirac delta which can be represented by δx(·) =

∑∞
i=1 qi(x)qi(·), the repro-

ducing kernel functions can be written as kx(·) =
∑∞
i=1 pi(x)pi(·). One can easily

check that the reproducing property holds with respect to this inner product.
Back to the regularized optimization problem J [f ] = 1

2λ2
M

∑M
i=1(yi−f(xi))2+

1
2‖f‖

2
Hk

, the representer theorem asserts that the minimizer f̂(·) =
∑M
i=1 αik(·,xi),

such that one can effectively minimize J [αi] by setting the derivatives with
respect to αi equal to zeros, and then the αi’s can be solved as a column

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1208



4 Jia-Chen Hua et al.

vector α = (G + λ2
MI)−1y, where y = [y1, · · · , yM ]T are the training out-

puts, I is the identity matrix, and G is the kernel Gramian matrix where
Gij = k(xi,xj). Given a new test data x∗, the function output or prediction
is f̂(x∗) = k(x∗)T (G + λ2

MI)−1y, where k(x∗)T = [k(x∗,x1), · · · , k(x∗,xM )].
This is the same as the posterior mean of Gaussian processes regression with
i.i.d. noise variance λ2

M .
A more heuristic view of predicting the function output given a new test

data is from the point evaluation at this new data. As an analogue to the point
evaluation in L2 using Dirac delta f(x∗) = 〈δx∗ |f〉L2 =

∫
f(x)δ(x − x∗)dx

(which is computationally infeasible using training data), one can work in the
RKHS using the reproducing kernel function k(x,x′) as: f(x∗) = 〈kx∗ |f〉Hk

=∑M
i=1〈kx∗ |qi〉L2

1
σi
〈qi|f〉L2 , where the inner products in L2 can be approximated

by summation using training data as 〈g|f〉L2 =
∫
g(x)f(x)dx ≈

∑M
i=1 g(xi)f(xi)

=
∑M
i=1〈g|kxi

〉Hk
〈kxi
|f〉Hk

. Hence one can obtain 〈kx∗ |f〉Hk
=

∑M
i=1〈kx∗ |qi〉L2

1
σi
〈qi|f〉L2

≈
∑
ijl〈kx∗ |kxj

〉Hk
〈kxj
|qi〉Hk

1
σi
〈qi|kxl

〉Hk
〈kxl
|g〉Hk

. Notice that the kernel Gramian
matrix has eigen-decomposition G = QΣ2QT , where Qij = qj(xi) = 〈kxi

|qj〉Hk

and Σ is diagonal with Σii = √
σi. Hence G−1 = QΣ−2QT and (G−1)ij

=
∑M
l=1〈kxi

|ql〉Hk

1
σl
〈ql|kxj

〉Hk
. Finally one arrives at

f(x∗) = 〈kx∗ |f〉Hk
= k(x∗)TG−1[f(x1), · · · , f(xM )]T , (1)

which is the same as the posterior mean in noiseless Gaussian processes regres-
sion. Replacing G−1 by the Moore–Penrose pseudoinverse G+ will be equivalent
to regularization, or additive noise in Gaussian processes regression. A typical
way of regularization using G+ is to truncate out some small eigenvalues σi’s
and the corresponding eigenvectors qi(x)’s, although a more sophisticated way to
perform this truncation is using a smooth cutoff, as developed in Ref. [5]. A use-
ful result following the above derivation is that the inner product in RKHS can
be approximated using training data as 〈g|f〉Hk

≈
∑
ij〈g|kxi

〉Hk
G−1〈kxj

|f〉Hk
,

which means that the “resolution of the identity” or the projection operator into
this RKHS can be approximated by training data as 1Hk

=
∑M
i=1 |pi〉〈pi| ≈∑

ij |kxi〉Hk
G−1

Hk
〈kxj |.

In summary, deterministic approximation of a function in RKHS, or point
evaluation of a function on new data can have a probabilistic interpretation
via Gaussian processes regression. Moreover, since k(x∗)TG−1 is a row vector
of weights on the training outputs [f(x1), · · · , f(xM )]T , and if it sums up to
1 and if the amount of training data is sufficiently large, it may be consid-
ered as a density estimation for the posterior distribution of Gaussian processes,
which will induce a density on the training data [x1, · · · ,xM ]T . A special case is
the point evaluation on training data f(xi) = k(xi)TG−1[f(x1), · · · , f(xM )]T ,
where k(xi)TG−1 will become a row vector with every element equal to zero
except for the i-th one equal to 1, which is a probability mass function con-
centrated on xi that approximates the Dirac delta distribution δxi

(·). Again,
replacing G−1 by the Moore–Penrose pseudoinverse G+ effectively corresponds
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to Gaussian processes with additive noise such that the Dirac delta will become
a narrow Gaussian centered at the training data.

2.2 Koopman operator of dynamical system and its generalization
to systems with input

Consider a high dimensional time series {xn} sampled from an underlying dy-
namical system (M, n,F ), where n ∈ Z is discrete time, M ⊂ RN is the N -
dimensional state space containing the {xn}, and xi 7→ F (xi) = xi+1 defines
the evolution law. For continuous-time dynamical system (M, t,F t), the flow F t
evolves the system state as x0 7→ F t(x0) = xt. Since time series data are often
sampled with a fixed time gap τ , the adjacent two snapshots of the system are
related by F τ (xt) = xt+τ . When the context is clear, we will drop the τ in F τ to
denote either the discrete time map or continuous time flow of a fixed time gap
τ . Here we restrict to stationary time series, or at least locally stationary time
series, which can be considered as being sampled from autonomous dynamical
systems. We will generalize the Koopman operator to systems with input later.
The (deterministic) Koopman operator K : F → F , where F consists of scalar
observables or functions of state space φ :M→ C, is defined as

(Kφ)(x) = (φ ◦ F )(x) = φ(F (x)), (2)

where ◦ denotes the composition of φ with F . Since Kφ is another element
in F , the Koopman operator defines a new dynamical system (F , n,K) where
K evolves observables φ ∈ F to a new function Kφ that gives the value of φ
at “one step in the future”. Unlike F which is finite dimensional, K is infinite
dimensional because it acts on function space F . However, it is also linear even
when F is nonlinear, and hence one can investigates its spectral properties, i.e.,
eigenvalues and eigenfunctions, which we refer to as Koopman eigenvalues {µk}
and eigenfunctions {ϕk}.

The dynamical systems (M, n,F ) and (F , n,K) are two different representa-
tions of the same evolution. The link between them is the “full state observable”
g(x) = x, where x 7→ F (x), and gi 7→ (Kgi) = gi ◦ F where gi ∈ F is the
i-th component of the vector-valued observable g : M → RN . Assuming gi is
in the span of a set of K Koopman eigenfunctions {ϕk}Kk=1, where K could
(and often will) be infinite, then it can be projected as gi =

∑K
k=1 ξikϕk with

ξik ∈ C. Hence g can be obtained by “stacking” these weights into vectors (i.e.,
ξj = [ξ1j , ξ2j , . . . , ξNj ]T ). As a result,

x = g(x) =
K∑
k=1

ξkϕk(x), (3)

where ξk is the k-th Koopman mode corresponding to the eigenfunction ϕk. To
make prediction or arrive at the system state of “one step in the future”, one
can either evolve x through F directly, or evolve the full state observable g(x)
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through the Koopman operator K as g(F (x)) = (Kg) (x) =
∑K
k=1 ξk(Kϕk)(x)

=
∑K
k=1 µkξkϕk(x). Similarly, for continuous time case, we have

xt+τ = F τ (xt) = g(F τ (xt)) = (Kτg) (xt) =
K∑
k=1

eλkτξkϕk(xt), (4)

where λk and ϕk are the k-th eigenvalue and eigenfunction of the infinitesimal
generator K̂ , d

dt of the semi-group of Koopman operators {Kt}t∈R+ , and µk =
eλkτ is the k-th eigenvalue of finite-time Koopman operator Kτ = eτK̂.

There are many available methods and techniques to approximate each com-
ponent Fi of the unknown F one-by-one by using training data in order to make
predictions (e.g., Gaussian processes regression). However, the Koopman oper-
ator framework is advantageous for these reasons: (a) the dynamics associated
with each eigenfunction is determined by its corresponding eigenvalue, such that
one can predict the system state at any time later (rather than a fixed time
length only), by setting an arbitrary real number τ in Eq. (4), (b) F is usually
highly nonlinear and/or stochastic, whereas K is linear, so it is easier to inves-
tigate and much more convenient to generate predictive models and utilize for
other applications such as system identification and control, (c) because of the
linearity, the high-dimensional time series generated by the system dynamics
can be decomposed linearly using spectral properties of K as Eq. (4), where by
truncating out some noisy, irregular, or non-important terms in the summation,
one can accomplish both dimensionality reduction and time series prediction si-
multaneously, (d) the state variables xt and many designed or learned features
are extrinsic to the underlying dynamical system, which means that models and
predictions could be dependent on specific extrinsic variables chosen or features
designed to sample and describe the system dynamics, whereas the eigenfunc-
tions {ϕk} of K are intrinsic dynamic variables [17] of the underlying system
which are independent from particular experimental apparatus such as sensors or
specific observations of the high dimensional time series, so they are able to ex-
tract the intrinsic features of the system dynamics that generates the time series
and are more fundamental and physically meaningful, (e) Koopman modes {ξk}
and eigenfunctions {ϕk} characterize the underlying system dynamics collec-
tively in continuous time instead of a number of functions individually with each
of them predicting a single variable at a fixed time length later, and hence they
enable us to avoid over-fitting not only by regularization and cross-validation
on parameters and/or model complexity in usual ways of statistics, but also by
“physical” cross-validation on intrinsic dynamic features at the system level [5],
and by identifying irregular and non-repeatable/non-predictable features and
dropping them out in Eq. (4), one can achieve more reliable predictions.

In order to compute {(µk, ϕk, ξk)}Kk=1 of Koopman eigenvalues, eigenfunc-
tions, and modes from data, one has to find a matrix representation of K by
projecting it into some subspace of F spanned by a basis {ψk(x)}Kk=1. For
computational feasibility and convenience, we usually require ψk(·) ∈ L2(M),
such that we can compute inner products using training data {(x1,y1), . . . ,
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(xM ,yM )} where yi = F (xi), in order to require {ψk(x)}Kk=1 to be orthonor-
mal by computing the Moore–Penrose pseudoinverse of the data matrix Ψ+

x ,
where [Ψx]ij = ψj(xi). Utilizing Dirac bra–ket notation, we denote the i-th
row of Ψ+

x as 〈ψi| such that 〈ψi|ψj〉L2 = δij , where δij is the Kronecker delta.
Hence in this “feature space” FK , span{ψk(·)}Kk=1, the identity operator can
be written as 1FK

=
∑K
k=1 |ψk〉〈ψk|, and K projected to FK can be written as

K = K1FK
= K

∑K
k=1 |ψk〉〈ψk| =

∑K
k=1 |ψk ◦ F 〉〈ψk|. Therefore, the elements

of matrix representation K of K is Kij = 〈ψi|K|ψj〉L2 = 〈ψi|ψj ◦ F 〉L2 , and
K = Ψ+

xΨy, where the j-th column of Ψy is |ψj ◦F 〉 and [Ψy]ij = ψj ◦F (xi) =
ψj(yi). Eigenvalue problem K|ϕk〉 = µk|ϕk〉 becomes eigenvalue equation of K
as Kvk = µkvk, where the i-th component of vk is (vk)i = 〈ψi|ϕk〉L2 , so the
eigenfunction |ϕk〉 =

∑K
i=1 |ψi〉(vk)i, or Φx = ΨxV in matrix notation, where

[Φx]ij = ϕj(xi) and columns of V are {vk}. The continuous-time eigenvalue
can be computed as λk , log(µk)/τ , and according to Eq. (3), Koopman modes
{ξk} can be computed by projecting g(x) = x onto {ϕk(x)} as Ξ = Φ+

xX,
where the i-th rows of Ξ and X are ξTi and xTi , respectively. This procedure is
called extended Dynamic Mode Decomposition (EDMD)[15] and it has become
one of the most widely adopted numerical methods for data-driven Koopman
spectral analysis, even outside the fluid dynamics community where the Koop-
man operator’s spectral properties was throughly investigated for the first time
[10].

Koopman operator can be also defined as an integral operator [9, 2, 6, 7],
which enables a better and uniform formulation of both deterministic and stochas-
tic Koopman operator, and its Hermitian adjoint, namely the Perron-Frobenius
operator L = K†, where the † denotes Hermitian adjoint. Again, consider the
dynamical system (M, t,F t), when F t is highly nonlinear and/or stochastic,
starting from an initial point on M and keeping track of its single trajectory
along the time evolution will become meaningless, as any finite initial differ-
ence will blow up exponentially. Instead, a better strategy is to investigate the
statistical behavior of a swarm of points’ time evolution, which leads to the
investigation of (probability) measure/density on M and its time evolution in-
duced by F t. Consider a probability density function ρ defined on M, and for
computational convenience, we require ρ ∈ F ⊆ L2(M). When F evolves an
arbitrary swarm of points of system states on M, i.e., evolves the pre-image
F−1(A) of any measurable domain A ⊆ M to A at time τ later, the density ρ
on F−1(A) will be evolved by a linear operator to a new density on A as∫

A
(Lτρ)(y)dy =

∫
F−1(A)

ρ(x)dx, (5)

such that the probability measure in conserved, where the Lτ is the Perron-
Frobenius operator that evolves probability densities. If F is stochastic, which
means that F (x) follows a transition probability density pτ (y|x), the Perron-
Frobenius operator can be also defined as

(Lτρ)(y) =
∫

F−1(A)
ρ(x)pτ (y|x)dx. (6)
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A special case is the deterministic system, where pτ (y|x) will become a Dirac
delta distribution δF (x)(y) = δ(y − F (x)), such that the center of an initial
Dirac delta distribution δx will be moved in consistence with the dynamics as
Lτδx(y) =

∫
F−1(A) δ(x − x

′)δ(y − F (x′))dx′ = δF (x)(y). Analogous to this,
notice that Koopman operator for deterministic system is defined as (Kτφ)(x) =
(φ ◦ F )(x) = φ(F (x)), it can be also written as

(Kτφ)(x) =
∫
A
φ(y)δ(y − F (x))dy, (7)

and following this idea, the Koopman operator for stochastic system should be
defined as

(Kτφ)(x) =
∫
A
φ(y)pτ (y|x)dy = E[φ(F (x))|x], (8)

which is the conditional expectation of observable φ’s value at time τ later.
Using these definitions, one can check that the Koopman operator and Perron-
Frobenius operator are adjoint to each other for both deterministic and stochastic
systems, by considering how the expectation value of an observable over some
region evolves in time:

E[φ(y)] =
∫
A

(Lτρ)(y)φ(y)dy = 〈Lτρ|φ〉L2 =
∫
A

∫
F−1(A)

ρ(x)pτ (y|x)dxφ(y)dy

=
∫

F−1(A)
E[φ(F (x))|x]ρ(x)dx =

∫
F−1(A)

(Kτφ)(x)ρ(x)dx = 〈ρ|Kτφ〉L2 ,

(9)
where Kτ acting to the left on 〈ρ| is 〈ρ|Kτ |φ〉L2 = 〈K†τρ|φ〉L2 = 〈Lτρ|φ〉L2 . This
formulation enables us to predict the expectation of a function’s value at a later
time when tracking and predicting a single trajectory is not meaningful due to
high nonlinearity and/or stochasticity of F , and we will relate this formulation
to Koopman and Perron-Frobenius operators framework in reproducing kernel
Hilbert space in the next subsection.

Finally, there are several ways to generalize Koopman operator to systems
with input [11]. One of the simplest ways is to augment the system state xt with
the current input ut ∈ RN ′ , such that the dimension of the extended system
state x̃ will be N + N ′. The time evolution of the system will be extended as
x̃t+τ = F̃ τ (x̃t) = F̃ τ (xt,ut), where the first N components of F̃ and x̃ are
xt+τ = F τ (xt,ut), and we assume that there is a purely formal map or flow
that “shifts” the input as ut+τ = Sτ (xt,ut), since there is not necessarily any
“dynamics” of the input. The generalized Koopman operator can be defined on
this extended system as before Kφ(x̃t) = φ ◦ F̃ τ (x̃t). For prediction purposes,
we are only interested in the original system state x, so there is no need to
project N ′ dimensional full state observable of input gu(xt,ut) = ut on Koop-
man eigenfunctions in order to compute the corresponding Koopman modes for
input. Except for this trivial difference, all the available numerical procedures for
Koopman spectral analysis and prediction can be applied with very little modifi-
cation. Notice that this augmentation trick can be also applied to previous state
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and input, such that one can investigate a system with finite amount of memory
in the same way as investigating a system without memory. For simplicity, we
only consider memoryless system in this paper, and this topic will be left for
future investigation.

2.3 Koopman operator in reproducing kernel Hilbert space

Recall from Eq. (1) that point evaluation in RKHS is the same as computing
some expectation value such as the posterior mean of Gaussian processes, for
example, 〈kxi

|f〉Hk
= k(xi)TG−1[f(x1), · · · , f(xM )]T , where k(xi)TG−1 is a

row vector with all zero elements except for the i-th equal to 1, which may be
considered as discrete approximation to Dirac delta distribution δxi . Replacing
G−1 by pseudo-inverse G+ will be equivalent to regularization or adding noise
to the Gaussian processes, such that k(xi)TG+ can approximate some narrow
Gaussian centered at xi. Similarly, consider the projection of Koopman operator
in RKHS by point evaluation at a new state x∗ of a function |h〉 evolved by K
as 〈kx∗ |K|h〉Hk

= k(x∗)TG−1[Kh(x1), · · · ,Kh(xM )]T , where the k(x∗)TG−1 is
expected to approximate the initial density ρ(x) before time evolution in Eq. (6),
in the limit of infinite amount of training data, i.e., M →∞.

Now, recall that the identity operator in RKHS 1Hk
=

∑
i |pi〉〈pi| ≈

∑
ij |kxi

〉Hk
G−1

Hk
〈kxj
|,

and inner product can also be approximated as 〈g|1Hk
|f〉Hk

≈
∑
ij〈g|kxi

〉Hk
QΣ−2QT

y 〈kyj
|f〉Hk

,
where [QT

y ]ij = 〈qi|kyj
〉Hk

=
∑
l〈qi|ql〉L2

1
σl
〈ql|kyj 〉L2 ≈

∑
l

1
σi
〈qi|kxl

〉Hk
〈kxl
|kyj 〉Hk

= [Σ−2QTKT ]ij , andKij = 〈kxi |K|kxj 〉Hk
= kxj (F (xi)) = k(yi,xj) = 〈kyi |kxj 〉Hk

.
It follows that QΣ−2QT

y = QΣ−2QTQΣ−2QTKT = G−2KT , and hence 1Hk

can also be approximated by
∑
ij |kxi

〉Hk
G−2KT

Hk
〈kyj
|. After plugging the

appropriate approximations of 1Hk
into 〈kx∗ |1Hk

K1Hk
|h〉Hk

, one can obtain

〈kx∗ |K|h〉Hk
≈ k(x∗)TG−1KG−2KT [h(y1), · · · , h(yM )]T . (10)

When the number of training snapshots pairs M → ∞, we would expect that
k(x∗)TG−1 approximates ρ(x), andKG−2KT approximates the transition den-
sity pτ (y|x), such that the multiplication between G−1 and K in Eq. (10) ap-
proximates the integral over x in Eq. (6), and the multiplication between KT

and [h(y1), · · · , h(yM )]T in Eq. (10) approximates the integral over y in Eq. (8).
Finally, we can consider Eq. (10) as an appropriate discrete approximation of
Eq. (9) using training data, and the point evaluation of a function h evolved
by Koopman operator in RKHS at a new data point 〈kx∗ |K|h〉Hk

is equivalent
to predicting its expectation value E[h(y)] over training data at a later time,
which avoids tracking and predicting a single trajectory unreliably on M gov-
erned by a highly nonlinear and/or stochastic F . Notice that during the deriva-
tion of Eq. (10), we did not use the definition of stochastic Koopman operator,
but we can in fact approximate (Kτφ)(x) =

∫
A φ(y)pτ (y|x)dy = E[φ(F (x))|x]

on training data by the rows of KG−2KT [h(y1), · · · , h(yM )]T , and approxi-
mate (Lτρ)(y) =

∫
F−1(A) ρ(x)pτ (y|x)dx on training data by the columns of

k(x∗)TG−1KG−2KT . These nice relations are induced by the connection be-
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tween deterministic approximation of a function in RKHS and Gaussian pro-
cesses regression, and replacing G−1 by G+ will turn these almost singular
densities to narrow Gaussians, which have even better probabilistic interpreta-
tion and correspond to regularized optimization in RKHS and noisy Gaussian
processes regression that usually have better prediction accuracy.

In order to predict the future state of the system in RKHS using the spectral
properties of Koopman operator, we first need to obtain a matrix representa-
tion of K projected in this space. Following the derivation of EDMD procedure
in previous section, one can write 1Hk

=
∑
i |pi〉〈pi| =

∑
i |qi〉L2

1
σi L

2〈qi| =∑
ij |qj〉L2

1
σj
〈qj |pi〉L2〈pi| ≈

∑
il |kxl

〉Hk
〈kxl
|qi〉Hk

1√
σi
〈pi| =

∑
il |kxl

〉Hk
[QΣ+]li〈pi|

=
∑
il |pi〉Hk

[Σ+QT ]il Hk
〈kxl
|, where |pi〉 = √σi|qi〉 (in some literature they are

called canonical features or Mercer’s features due to Mercer’s theorem). Then
K can be written as K1Hk

=
∑
k |pk ◦ F 〉〈pk|, and its matrix representation

is K̂ij = 〈pi|K|pj〉Hk
= 〈pi|1Hk

K1Hk
|pj〉Hk

= [Σ+QTKQΣ+]ij , where we
plugged in the last two expressions of 1Hk

above, and Kij = 〈kxi |K|kxj 〉Hk

= kxj (F (xi)) = k(yi,xj) = 〈kyi |kxj 〉Hk
can be computed directly on train-

ing data. Similarly, the eigenvalue problem can be solved by computing eigen-
values and eigenvectors of K̂, where the i-th component of eigenvector vj is
(vj)i = 〈pi|ϕj〉Hk

, so the eigenfunction |ϕj〉 =
∑
i |pi〉(vj)i. The point evaluation

of an eigenfunction on training data is 〈kxi
|ϕj〉Hk

= ϕj(xi) =
∑
l〈kxi

|pl〉Hk
(vj)l

=
∑
nl〈kxi |kxn〉Hk

〈kxn |ql〉Hk

1√
σl

(vj)l = [GQΣ+V ]ij , where columns of V are
{vj}. By defining [Φx]ij = 〈kxi

|ϕj〉Hk
and [Φy]ij = 〈kyi

|ϕj〉Hk
, we can write

the matrix of eigenfunctions evaluated on training data in a compact form as
Φx = GQΣ+V and Φy = KQΣ+V . Following the same convention and no-
tation in derivation of EDMD, the matrix of Koopman modes can be solved
as Ξ = Φ+

xX = Φ+
y Y = [diag(eλτ )]+Φ+

x Y , where rows in Y are {yT } and
[diag(eλτ )] is the diagonal matrix containing the finite time eigenvalues µi = eλiτ .
This procedure is called kernel-based Koopman spectral analysis [16] and it is
currently being adopted as a better approach for other applications [5]. Finally,
given a new system state x∗, the prediction of the l-th component of system state
Fl(x∗) will be a point evaluation of the Koopman operator evolved observable
gl at x∗ as

〈kx∗ |Fl〉Hk
= 〈kx∗ |K|gl〉Hk

=
M∑
i=1
〈kx∗ |K|ϕi〉Hk

Ξil =
M∑
i=1
〈kx∗ |ϕi〉Hk

eλiτΞil

=
M∑
i=1

k(x∗,xi)[QΣ+V [diag(eλτ )]Ξ]il,

(11)
where Ξil is the Koopman mode associated with the i-th eigenfunction when
projecting gl(x) on Φx.

Another benefit of working in RKHS is that when properly choosing and/or
designing the kernel functions (e.g., Gaussian RBF kernel), the unique associ-
ated RKHS is dense in the space of continuous bounded functions, which means
that these kernel functions are universal approximators to any function in this
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very large and general function space, and hence they should achieve better
approximation and prediction in most cases, especially in computing Koopman
eigenfunctions via point evaluation ϕj(xi) = 〈kxi

|ϕj〉Hk
.

3 Numerical algorithm

Recall Eq. (11), if one needs to predict all state variables at a future time, one
can simply compute

F (x∗) = k(x∗)TQΣ+V [diag(eλτ )]Ξ, (12)

where k(x∗)T = [k(x∗,x1), · · · , k(x∗,xM )]. Notice that for system with input,
all the x∗, xi, and yi are extended states with input, but the Koopman modes
Ξ will only contain N columns corresponding to the first N components of the
extended state, which eliminates meaningless prediction on input. Another ob-
servation is that if we substitute Ξ in Eq. (12) by Ξ = [diag(eλτ )]+Φ+

x Y , after
some simplification, we will get k(x∗)TG+Y , which is exactly the regularized
optimization in RKHS or Gaussian processes regression on each state variable
one-by-one. As we elaborated in Sec. 2.2, one of the major advantages of utilizing
the spectral properties of Koopman operator is to linearly decompose the system
dynamics as a summation over individual modes, such that it is possible to regu-
larize, sort, perform more “physical” cross-validation, and optimize these modes
in order to generate an ensemble of prediction models to achieve better predic-
tion, as developed in Ref. [5]. When investigating time series with exogenous
variables as a dynamical system with input, since the only major change on the
numerical procedure is to neglect the Koopman modes associated with input,
one can simply work with the remaining Koopman modes and all techniques
and methods developed for Kernel-based Koopman modes regression (Kernel
KMR)[5] can be employed almost unchanged. Hence we achieved a simple yet
useful extension of Kernel KMR, which we refer to as Kernel-based Extended
Koopman mode regression with exogenous variables (Kernel EKMRX). For more
details on the techniques and methods constituting the Kernel KMR, we suggest
referring to Ref. [5].

4 Numerical examples and applications

For the following reason, we will not include prediction results in the current
paper, instead, we will present the complete results in the conference: (1) page
limit rule, (2) we may need to obtain approvals to publish the prediction results
on some dataset, due to customers privacy policies and others, (3) we are cur-
rently testing the algorithm on other data in order to better assess the capability
of it and improve it if possible, hence we believe presenting more complete and
comprehensive results in the conference will be more reasonable.
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5 Conclusion and outlook

In this paper, we extended our previously developed Kernel KMR methodology
to Kernel EKMRX (Kernel-based Extended Koopman Mode Regression with eX-
ogenous variables) for prediction of high dimensional time series with exogenous
variables, by utilizing a simple yet useful generalization of Koopman operator to
dynamical systems with input that generates the time series. We found that the
techniques and methods that we developed for Kernel KMR can be employed
in Kernel EKMRX with minimal modification. We re-emphasized the advanta-
geous of using spectral properties of Koopman operator for prediction purposes,
and by formulating Koopman operator in reproducing kernel Hilbert space, we
obtained a new derivation of the kernel-based EDMD and the original EDMD al-
gorithms by using Dirac bra–ket notation. Moreover, we obtained a probabilistic
interpretation of these numerical methods developed for deterministic Koopman
operator by exploiting the connection between RKHS and Gaussian processes
regression, and relate them to the stochastic Koopman and Perron-Frobenius
operators. This connection and probabilistic interpretation are crucial to justify
the application of existing data-driven deterministic Koopman spectral analy-
sis to non-deterministic dynamical systems, and account for the advantage of
kernel-based EDMD over original EDMD which relies on explicit choice of ba-
sis functions spanning the space where the Koopman operator is projected and
approximated. In applications, we found that the prediction performance of this
methodology is very promising in forecasting real world high-dimensional time-
series with exogenous variables, especially on financial markets data and energy
generation and consumption data.

This generalization of Koopman operator to systems with input is not unique,
and we are keen to investigate other generalization for prediction purposes. More-
over, even the very simple trick in this generalization that we used in this paper
can be developed further to investigate system with memory in the same way
as for memoryless systems. These will be left for future work. Another possible
improvement, which is still an open question, is the design of kernel functions.
When utilizing Gaussian RBF kernels, it should be possible to optimize the ker-
nel widths as hyper-parameters by some other more sophisticated techniques in
machine learning. This, again, will be left for future investigation.
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7. Klus, S., Nüske, F., Koltai, P., Wu, H., Kevrekidis, I., Schütte, C., Noé, F.: Data-
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Abstract. In this paper we present the results of nonlinear dynamical analysis 

of Twitter time series. According to these results we compare nonlinear dynam-

ical model and nonlinear random dynamical model of Twitter with observed da-

ta. From results of nonlinear analysis if observed Twitter time series and eval-

uation of their probability density functions we conclude, that the most ade-

quate forecasting model of social network is nonlinear random dynamical sys-

tem. We determine that observed TTS have q-exponential distribution 

with1 𝑓𝛽⁄  noise. Also we consider possible applications of Tsallis entropy and 

self-organized criticality for analysis of Twitter. 

Keywords: Twitter time seriesFractal dimensionsq-exponential distribution 

1/f noiseNonlinear dynamical system Nonlinear random dynamical system 

1 Introduction 

Microblogging is one of the most important instruments of business development 

nowadays. It is actively used for promotion of goods or services, making the positive 

opinion about the company and allows organizing and supporting customer relation-

ships processes. Corporate microblogging networks and services serve as a platform 

for business communications between the employees in companies on different 

scales. 

Modeling of processes taking place in microblogging social networks (one of the 

well-known examples is Twitter) is a complicated, but at the same time theoretically 

and practically important scientific problem. Results and conclusions that can be 

made by using such models allow us to identify whether the social network is able to 

remain stable under the internal and external informational influence, to define differ-

ent ways of local community formation and to find out the parametric terms of social 

network management. Such modeling may have a large variety of practical applica-

tions. Thus, it can be useful for decision-making processes during the development of 

short-term and long-term marketing strategies, development of recommender systems, 

demand forecasting, as well as tasks related to the national security. 

There are a number of works in the field of physical modeling of social networks. 

The main physical models of the social networks are following: Ising model [1-3], 

Bose-Einstein condensate model [4, 5], quantum walk model [6], ground state and 

community detection[7], etc. The other relevant works in this area are those of refs. 

[8-12]. 
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The weak point of the observed papers is that they do not cover nonlinear dynam-

ical analysis of aggregated twitter time series
1
 (TTS). Results of such analysis can 

provide a possibility to select the most appropriate prediction methods for TTS and 

give a general idea about adequate models of social networks generating these signals. 

Recently, more attention has been paid to the study of time series from the point of 

view of chaos theory. Research in this direction will reveal the nature and intercon-

nections between the hidden processes occurring in microblogging social networks, 

which will enable the construction of more adequate forecasting models for TTS and 

a deeper understanding of social networks functioning. 

Analysis of chaotic phenomena requires methods and techniques for identifying of 

time series that is chaotic or having a chaotic component, as well as for quantitative 

evaluation of chaotic characteristics and comparison of theoretical and experimental 

time series. Having these methods and techniques allows one to answer the following 

problems: 1) the number of variables essential for modeling of system dynamics; 2) 

relation between changes in characteristics and changes in dynamical behavior of the 

system. 

These methods and techniques are grouped into two different, but connected ap-

proaches. The first approach focuses on dynamical characteristics of chaos: the Lya-

punov exponents and entropy measures, power spectral density and autocorrelation 

function. The second approach represents the geometric nature of trajectories in the 

state space considering fractal and correlation dimensions. 

These two approaches complete each other. It is intuitively expected that they are 

closely interconnected. However, theoretical proof of such connection has not been 

developed yet. That is why we used several criteria of chaotic nature of time series. 

This paper is organized as follows. In section 2 we present the results of fractal 

analysis for empirical TTS with their interpretation. In section 3 we present the results 

of fractal analysis and probability density function (PDF) for a sample of 3-

dimensional nonlinear dynamical model of Twitter network as an open nonequilibri-

um system[13], as well as comparison with empirical results. In section 4 we provi-

dethe results of fractal analysis and PDF for the model of Twitter network as nonline-

ar random dynamical system comparing them with empirical resultsand describe the 

possibilities of applying theTsallis entropy and self-organized criticality for analysis 

of TTS. Section 5 contains the conclusions of this paper. 

2 Analysis of an Empirical Twitter Time Series 

Foranalysisofempirical TTS wechosethefollowingtimeseriesobtainedfromthere-

sourceMozdeh"BigDataTextAnalysis" (http://mozdeh.wlv.ac.uk/): 

 bbc_breaking,from 16/05/29 to 17/05/26, step 1 hour; 

 cnn_braeking, from 16/07/12 to 17/01/11, step 1 hour; 

 nasa, from 16/09/26 to 17/05/26, step 1 hour. 

                                                           
1 Series of tweet and retweet numbers indexed in time order, 𝑇𝑅𝑡. 
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Figure 1 shows the corresponding time series. 

 

Fig. 1.Twitter time series: (a) bbc_breaking, (b) cnn-breaking, (c) nasa 

It is clear, that these time series represent impulse-type signals with integer values. 

The nonlinear analysis was conducted for all chosen TTS. Such measures as corre-

lation dimension (𝐷2), embedding dimension (𝑚), Hurst exponent (𝐻) and fractal 

dimension (𝐷𝐹) were calculated (table 1). 

Table 1.Measures of chaos 

Time series 𝐷2 𝑚 𝐻 𝐷𝐹  

bbc_breaking 3.732 6 0.7648 1.2352 

cnn_breaking 3.984 6 0.8165 1.1835 

nasa 4.202 6 0.7833 1.2167 

Dynamical system 1.896 3 0.5328 1.4272 

Random dynamical system 4.619 5 0.7872 1.2128 

 

The determination of the correlation dimension [14] for a supposed chaotic process 

directly from experimental time series is often used to gain information about the 

nature of the underlying dynamics (see, for example, contributions in ref. [15]. In 

particular, such analysis has been made to support the hypothesis that the time series 

are generated from the inherently low-dimensional chaotic process [15]. The geome-
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try of chaotic attractors can be complex and difficult to describe. It is therefore useful 

to understand quantitative characterizations of such geometrical objects. One of these 

characterizations is 𝐷2. 𝐷2 has several advantages in comparison to the other dimen-

sional measures: 

 𝐷2 is easy to compute from the TTS; 

 If 𝐷2 is finite, then the TTS is a chaotic time series (generated by a dynamical sys-

tem); 

 If  𝐷2 → ∞, then the TTS is a stochastic time series (generated by a purely random 

process). 

The correlation dimension of the attractor of dynamical system can be estimated using 

the Grassberger–Procaccia algorithm [14]. 

For calculation of 𝐷𝐹we used the algorithm, described in a paper [16]. If 𝐷𝐹 > 𝑑𝑇  

(𝑑𝑇 is a topological dimension of the TTS, that equals 1 for all time series), then the 

TTS is a random fractal. A value of  𝐻 = 2 − 𝐷𝐹 characterizes the following features 

of the TTS: 

 If 𝐻 > 0.5, then the TTS represents a persistent process (a positive increment of a 

number of tweets and retweets in the past on the average means that there is a ten-

dency to further increase in future, and vice versa); 

 If 𝐻 < 0.5, then the TTS represents an anti-persistent process (a positive increment 

in a number of tweets and retweets in the past on the average means that there is a 

tendency to decrease in future, and vice versa); 

 If 𝐻 = 0.5, then the TTS represents an intermediate state between the persistent 

and anti-persistent processes (the TTS is a stochastic time series). 

In addition, the value of 𝐻 allows to give a noise classification (1 𝑓⁄ -classification, 

where 𝑓 is a signal frequency) of the TTS [17]: 

 If 0 < 𝐻 ≤ 0.5, then the TTS represents a process with the negative memory, 1 𝑓⁄  

noise or a pink noise (if there has been the positive increment in a number of 

tweets or retweets, then there is a high probability of appearance of the negative 

increment in future, and vice versa); 

 If 0.5 < 𝐻 ≤ 1 , then the TTS represents a process with a positive memory, 

1 𝑓𝛽⁄ (𝛽 > 2) noise or a brown noise (if there has been the positive increment in a 

number of tweets or retweets, then there is a high probability of appearance of the 

positive increment in future, and vice versa); 

 If 𝐻 = 0.5, then TTS represents a process with the absence of memory, 1 𝑓2⁄  noise 

or brown noise (the next increment in the number of tweets and retweets doesn’t 

depend on the previous increments). 

Thus, according to the point values of measures, shown in a table 1, the following 

conclusions can be made: 

 TTS is a chaotic time series, i.e. it is generated by dynamical systems in a phase 

space dimension that equals 6; 
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 TTS has a fractal structure; 

 TTS represents processes with the positive memory; 

 TTS represents the persistent process; 

 TTS is a signal with the 1 𝑓𝛽⁄  noise (in support of that, fig. 2 provides the spectral 

power density plots in log-log scale for corresponding TTS). 

 

Fig. 2.Power spectral density for TTS: (a) bbs_breaking, (b) cnn_breaking, (c) nasa 

3 Twitter Time Series as a Realization of the Nonlinear 

Dynamical System 

Paper [13] proposes a model of Twitter social network as an open nonequilibrium 

system. Omitting the detailed construction of dynamical system, the model of Twitter 

is described by well-known Lorenz–Haken equations: 

 �̇�1 = −𝛼𝑥1 + 𝛽𝑥2, �̇�2 = −𝛾𝑥2 + 𝑐𝑥2𝑥3, �̇�3 = 𝜀(𝐼0 − 𝑥3) + 𝑘𝑥1𝑥2 (1) 

In equation (1) 𝑥 = 𝑇𝑅(𝑡) − 𝑇𝑅𝑒𝑞 represents the scaled deviation of number of 

tweets and retweets (𝑇𝑅(𝑡)) from equilibrium value𝑇𝑅𝑒𝑞 ; 𝑥2(𝑡) = 𝐼(𝑡) − 𝐼𝑒𝑞 is the 

scaled deviation of aggregated internal amount of information (𝐼(𝑡)) from equilibrium 

value 𝐼𝑒𝑞 ; 𝑥3(𝑡) = 𝑁|𝑢〉(𝑡) − 𝑁|𝑙〉(𝑡) is instantaneous difference in number of users 

between state|𝑢〉andstate |𝑙〉. According to the model, a particular user, being|𝑢〉-state, 

has enough information for sending tweet or retweet. If the user is in|𝑙〉-state (so, he 
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or she does not have enough amount of information), then he or she will not send any 

tweets or retweets. Control parameter 𝐼0 is the intensity of external information flow. 

The most important conclusions from model implementation are: 1) impossibility 

of social network being in equilibrium state and occurrence of low-dimensional chaos 

[18] in social network for specific values of  𝐼0. Fig. 3 as hows integral trajectory of 

dynamical system (1) (𝑥1(𝑡)), demonstrating the existence of chaotic dynamics in 

case of significant intensity of external information flow. 

 

Fig. 3.Integral trajectory (a) and its histogram (b) 

Except for values of higher Lyapunov exponent [19] as one of the measures of 

low-dimensional chaos, paper [13] does not contain calculated fractal dimensions for 

observed TTS. 

Estimations of measures of the chaos for theoretical TTS (fig. 3a). Table 1 contains 

the estimated values for measures of chaos for the theoretical TTS (see dynamical 

system). Thus, 3-dimensional dynamical model of Twitter as open nonequilibrium 

system [13] explains some properties of social network functioning such as fractality, 

chaotic nature, persistency and positive memory of TTS. 

The weakness of this model lies in significant discrepancy between empirical (fig. 

1) and theoretical (fig. 3a) trajectories of TTS. Moreover, it is impossible to fit theo-

retical trajectories to observed data by varying control parameters (in range of chaotic 

state) of dynamical system [13]. As it shown on fig. 3b, this dynamical system has 3 

stable equilibrium points (three maxima of the histogram) for any values of control 

parameters in range of chaotic state. 

There are at least two possible ways to achieve the fitness between empirical and 

theoretical TTS: by adding specific noise to dynamical system [13] or by using one-

dimensional nonlinear random dynamical system [20] as a model of Twitter network. 

According to table 1 at 𝑛 = 6 the estimated value of correlation dimension reaches its 

"saturation point" and stops changing significantly. Because of that, the actual number 

of variables for constructing an adequate model is 6, but not 3 as it is for model [13]. 

We do not rule out, that six-dimensional model of Twitter network could explain 

existing experimental characteristics, including empirical PDF of Twitter time series. 
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4 Twitter Time Series as a Realization of the Nonlinear 

Random Dynamical System 

In such autonomous dynamical systems as  �̇� = 𝐅(𝐗), low-dimensional chaos can 

appear only at 𝑛 ≥ 3 [18]. Therefore, the one of opportunity to build an adequate 

model of a microblogging network is to consider it as a random dynamical system 

(RDS). In this case, the observable TTS is one of the realizations of  𝑥(𝑡) of a sto-

chastic differential equation of the following kind: 

 𝑑𝑥 = 𝑓(𝑥, 𝑡)𝑑𝑡 + 𝑔(𝑥, 𝑡)𝑑𝑊 (2) 

where 𝑊(𝑡) is a standard Wiener process. 

One of the ways to solve the equation (2) is to find its solution in a form of a prob-

ability density function (PDF) 𝑝(𝑥, 𝑡). In this case, the equation (2) can be trans-

formed into the Fokker-Planck equation [21], that represents a differential equation in 

partial derivatives of the following kind: 

 
𝜕𝑝(𝑥,𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
(𝑓(𝑥)𝑝(𝑥, 𝑡)) +

1

2

𝜕2

𝜕𝑥2
(𝑔2(𝑥)𝑝(𝑥, 𝑡)) (3) 

In this case it is necessary to define the PDF for the empirical TTS (a stationary so-

lution of (3)). Having found out the explicit kind of PDF, we shall be able to find out 

the explicit kind of (1), describing the realizations of the empirical TTS. 

Figure4provides PDFs for empirical TTS, which form point to the fact that it is 𝑞-

exponential distribution [22-24]: 

 𝑝(𝑥) = (2 − 𝑞)𝜆exp𝑞(−𝜆𝑥) (4) 

whereexp𝑞(𝑥) = [1 + (1 − 𝑞)𝑥]
1

1−𝑞. 

 

(a)                                           (b) 
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(c) 

Fig. 4.Histograms of TTS: (a) bbc_breaking, (b) cnn_breaking, (c) nasa 

The distribution (4) is a two-parameter generalization (𝑞 < 2 is a shape parameter, 

𝜆 > 0 is a rate parameter) of a one-parameter exponential distribution. Table 2 con-

tains the estimated values for parameters of PDF (4) obtained by maximum likelihood 

method [25]. 

Table 2.Point and interval estimations of the PDF (4) parameters 

User 𝑞 𝜆 

bbc_breaking 1.202±0.005 1.980±0.074 

cnn_breaking 1.155±0.025 1.482±0.086 

nasa 1.184±0.038 1.362±0.069 

 

From table 2 we conclude that empirical PDF corresponds to 𝑞-exponential distri-

bution. 

Going back to the equation (2): a stationary probability density function of the TTS 

looks as (4) with the numerical parameter values shown in a table 2 and is a stationary 

solution of the equation (3). Therefore, the equation (3) should be of such kind, that 

gives the distribution (4) for all realizations of the random dynamical system. 

A group of researchers [26-28] has suggested the RDS in a view of a nonlinear sto-

chastic differential equation: 

 𝑑𝑥 = 𝜎2 (𝜂 −
1

2
𝜆) (𝑥 + 𝑥0)

2𝜂−1𝑑𝑡 + 𝜎(𝑥 + 𝑥0)
𝜂𝑑𝑊 (5) 

where 𝑥(𝑡) ≥ 0 is a signal, 𝜂 ≠ 1 is a power-law exponent of the multiplicative noise, 

𝜆 > 0 is a parameter, defining the behavior of stationary probability distribution, 𝑊 is 

a standard Wiener process, 𝜎 is a parameter of the multiplicative noise. Parameter 𝑥0 

limits the divergence of the power-series distribution 𝑥(𝑡) by 𝑥(𝑡) → 0. If 𝑥 ≪ 𝑥0 , 

then (5) generates a linear additive stochastic process (Brownian movement with the 

stable drift); if 𝑥 ≫ 𝑥0, then (5) generates a multiplicative process [27]. 

If 𝑥0 = 1, then the stationary solution of the equation (3) takes the form of an𝑞-

exponential distribution (4) by 𝑞 = 1 + 1 𝜆⁄ . Besides, some of realizations of the 

process (5) give a power spectral density in a form of 1 𝑓𝛽⁄ . 
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We have calculated estimations of the measures of chaos for some realizations of 

RDS (5). Table 1 contains the estimated values for measures of chaos for the theoreti-

cal TTS (see random dynamical system). 

Thus, the realizations of the RDS (5) have not only close measures to the observa-

ble fractal measures of the TTS (table 1) in comparison to the realizations of the dy-

namical system [13], but they also have an observable (table 2) 𝑞 -exponential distri-

bution. Therefore, the RDS (5) is more adequate model in comparison to the model in 

a form of the dynamical system [13]. 

𝑞-exponential distribution takes place by the maximization of the Tsallis entropy 

[29] considering definite limitations. Tsallis entropy as a non-additive generalization 

of the Boltzmann-Gibbs entropy has the following form: 

 𝑇𝑞 =
1

𝑞−1
(1 − ∑ 𝑝𝑖

𝑞𝑁
𝑖=1 ) (6) 

The probability 𝑝𝑖 = 𝑁𝑖 𝑁(𝜀)⁄  can be estimated in much the same way as that one 

used in the Renyi entropy: 𝑁𝑖 is a number of system elements for the i-element of the 

𝜀-partition; 𝑁(𝜀) – is a full number of elements of the given 𝜀-cover. If 𝑞 → 1, then 

the entropy (6) transforms into the well-known Shannon entropy. 

In contrast to all entropy types, the Tsallis entropy is nonadditive. Being applied to 

the microblogging network (such as, for example, Twitter) it gives a possibility to 

correctly describe a social network, where any user interacts not only with the nearest 

user or several nearest users, but also with the whole network or some of its parts. 

Besides, from (5) it follows that 𝑇𝑞 is concave by 𝑞 > 0 and convex by 𝑞 < 0. 

Thus, entropy description of Twitter based on Tsallis statistics is appropriate for 

studying of evolution of social network that contains large amount of users who inter-

act with each other in a particular way and, specifically, every user can interact not 

only with his or her nearest neighbors but also with remote users. 

There are a lot of practical application of Tsallis theory. Among them there are 

studies on the anomalous diffusion [30, 31], uniqueness theorem [32], sensitivity to 

initial conditions and entropy production at the edge of chaos [33] and many others 

(see ref. [34]). 

The fact, that the RDS (5) generates a signal with the power-series distribution (4) 

and with the occurrence of the 1 𝑓𝛽⁄  noise [35], is the important feature of the RDS 

(5). It is determined by the existence of the degree 2𝜂 − 1 in the drift term and degree 

𝜂 in the noise term. The same fact is observable for the empirical TTS as well. 

The existence of the power laws of signal distribution with the presence of the  

1 𝑓𝛽⁄  noises (see fig. 2) is a necessary condition of system complexity, its nontrivial 

behavior or presence of the catastrophic events (unexpected and/or extraordinary). 

There is a relatively new field in non-linear dynamics – a theory of the self-organized 

criticality [36]. It was created to explain similar phenomena in systems with the pow-

er-series distributions and 1 𝑓𝛽⁄  noises. 

The existence of the 1 𝑓𝛽⁄ noise in a system means the internal tendency to the cat-

astrophic cases in a system. The theory of the self-organized criticality studies the 

dynamical dissipative systems with the high range of discretion, which operate in the 

neighborhood of the critical point without the smallest external influence. If the sys-
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tem is in a critical configuration, than small fluctuations can lead to a random event of 

any “size” with the power-series distribution similar to (4): 

 𝑝(𝑠)~𝑠−𝜏 (7) 

Twitter as a self-organizing system generates signals with 1 𝑓⁄ noise, since the life-

time of event𝑠is related to its scale according to [36]: 

 𝑡1+𝛾 ≈ 𝑠 (8) 

where 𝛾 is the speed of event distribution in the system. 

5 Conclusion 

The main contributions of the present paper look as follows: 

 The three-dimensional model of the microblogging network [13] (such as, for ex-

ample, Twitter) as an open non-equilibrium system explains some features of so-

cial networks functionality, such as the fractality, chaotic state, persistence, as well 

as the positive memory of the TTS. But, at the same time, the dimension test of 

such dynamical system gives the negative result: empirical embedding dimension 

of all TTS equals to 6 (by 𝑛 = 6 the correlation dimension reaches the saturation 

and stops changing). This fact leads to the necessity of building a new model of a 

microblogging network in a form of nonlinear RDS. 

 We have conducted a research into the empirical PDF of some TTS to build a 

model of the microblogging network in a form of one-dimensional non-linear RDS. 

As a result it has been recognized that at the significance level equal to 0.05 the 

observable PDF has a 𝑞-exponential distribution. For such distribution, the one-

dimensional nonlinear RDS has been suggested. The fractal measures of its realiza-

tions are equivalent to the measures of the observable TTS. 

 It has been shown, that in contrast to all entropy types, the Tsallis entropy gives a 

possibility to correctly describe a network, where any user interacts not only with 

the nearest user or several nearest users, but also with the whole network or some 

of its parts. Use of the Tsallis entropy also allows to describe the macroscopic sta-

bility of a microblogging network. 

 It has also been mentioned, that because of the existence of the 1 𝑓𝛽⁄ noise and 

power series distribution, a social network may have a tendency to catastrophic 

events. If a social network keeps staying in a critical configuration, then small fluc-

tuations may lead to the random event of any scale. 

Despite the fact, that the results of the present study can be useful for the research into 

the fundamentals of the network functionality, we haven’t yet defined the physical 

meaning of parameters of the one-dimensional nonlinear RDS. That is the question of 

our further research. 
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Abstract. In this short presentation we sketch the following fact: any
stationary time series satisfying an ARMA(p, q) model, for arbitrary p
and q, can be embedded in a continuous time stationary process.

Specifically we show that, given the stationary process Xt, t ∈Z, that
satisfies the ARMA model Xt =

∑p
j=1 φjXt−j +

∑q
k=0 θkεt−k where

εt is an infinitely divisible white noise with finite variance, there exist
a centred second-order Lévy process Λs, s ∈R, and a square integrable
function l(t), t ∈ R+ that vanishes exponentially at infinity, such that the
restriction to t ∈Z of the stationary process Zt =

∫ t

−∞ `(t− s)dΛs, t ∈R
has the law of the given ARMA(p, q) model.

Keywords: Continous ARMA, Lévy process, embedding

1 Introduction

Given the stationary process Xt, t ∈Z, that satisfies the discrete ARMA model
(DARMA)

Xt =

p∑
j=1

φjXt−j +

q∑
k=0

θkεt−k (1)

where εt is white noise with finite variance, the problem of obtaining a process
satisfying a continuous version of the DARMA model (a CARMA), such that
when sampled at discrete times has the same autocovariance function as {Xt} has
been studied by several authors and termed the embedding problem. The works
by [8], [10], [3] and [5] established embeddings of some DARMA(p, q) processes
in continuous ARMA(p, q), for 0 ≤ q < p. [11] gave necessary and sufficient
conditions for a DARMA process to be embedded in a CARMA process.

Brockwell [3, 4] proposes to define CARMA processes via a state space rep-
resentation of the formal equation

a(D)Y (t) = σb(D)DΛ(t)
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where σ > 0 is a scale parameter, D denotes differentiation w.r.to t, Λ is a
second-order Lévy process, a(z) = zp + a1z

p−1 + . . . + ap is a polynomial of
order p and b(z) = b0 + b1 + . . .+ bqz

q is a polynomial of order q. The resulting
CARMA is a linear function of a CVAR Markovian process.

This formalism has some limitations:

– If q is not smaller than p, it requires the use of generalised processes [9].
– Even for q < p, not every DARMA processes are embeddable.

All these approaches to the embedding problem are only concerned with
the covariance structure of the processes involved, not with their probability
distributions besides the fact that, if the processes are Gaussian, the equality of
the first- and second-order moments entails the equality of the probability laws.
In general, the discretised version of the CARMA will not necessarily have the
same law as the original DARMA. We propose in this work a different approach
to construct for any DARMA(p, q) a continuous stationary embedding in law.
The precise statement is the following:

Theorem 1. Given the stationary DARMA(p, q) Xt that satisfies (1) with in-
finitely divisible innovations εt, there exists at least one function L : R+ → R
decaying exponentially at infinity and a Lévy process Λ on R, such that for each
real number a the stationary processes xt =

∫ t
−∞ L(t − s)dΛ(s), t ∈ R, sampled

at times a+ t, t ∈ Z, have the same joint law as Xt.

In the following sections we sketch the construction of the processes xt. De-
tails and proofs can be found in the extended version of this conference paper
[2].

2 A stationary embedding

We show in the sequel that, given the stationary DARMA Xt, t ∈ Z, there exist
a centred second-order Lévy process Λs, s ∈ R, and square integrable functions
`(t), t ∈ R+ that vanish exponentially at infinity, such that the restriction to
t ∈ Z of the stationary processes∫ t

−∞
`(t− s)dΛs, t ∈ R (2)

satisfy the given ARMA(p, q) model.
The construction makes use of a similar embedding for vectorial autore-

gressive (VAR) processes, driven by an infinitely divisible white noise, and an
optimisation procedure for choosing `. The function ` can be chosen so as to
satisfy certain optimisation criteria, as shown in §4. This means that any sta-
tionary time series satisfying a DARMA(p, q) model for arbitrary p and q can
be embedded in a continuous parameter stationary process.

One possible optimisation criterion, not always feasible, depending on the
DARMA model and on the distribution of the noise, leads to the well known

Proceedings ITISE 2017. Granada, 18-20, September, 2017.ISBN: 978-84-17293-01-7 1232



3

CARMA models as in [5, 7], or Lévy driven generalisations of the processes in
[1]. With a different criterion, we derive other interpolations, with no constraints
on the model, nor on the nature of the noise.

The construction of the embedding is made in several steps:

1. A DARMA(p, q) in R can be expressed as a DVAR(1) in Rr, r = p∨ (q+1).
2. DVAR(1) in Rr can be expressed as several canonical J-DVAR(1) in Rri ,∑

ri = r as a result of a Jordan Canonical decomposition.
3. Each J-DVAR(1) in Rri can be embedded in a continuous time process J-

CVAR in Rri .
4. Finally, the J-CVAR in Rri , i = 0, 1, 2, . . . can be joined to get the continu-

ous embedding of DARMA.

2.1 From DARMA(p, q) to DVAR(1) in Rr, r = p ∨ (q + 1)

Let (εt)t∈Z denote a standardized white noise, that is, the εk are i.i.d. with

Eε1 = 0,Eε21 = 1, and D the r × r matrix

D =



φ1 φ2 φ3 . . . φr−1 φr
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0


, and ηt = uεt,u =



1
0
0
0
...
0


.

a vectorial white noise.
Then it is well known (Example 8.3.2. in [6]) that the stationary series sat-

isfying the DARMA(p, q) model (1) can be expressed as the linear function

Xt = θtrξt =

q∑
k=0

θkξt,k

of the DVAR(1)

ξt = Dξt−1 + ηt ξt = (ξt,1, ξt,2, . . . , ξt,r)
tr (3)

where r = max{p, q + 1}, φj = 0 for j > p, and θtr = (θ0, θ1, . . . , θr−1), with
θk = 0 for k > q.

2.2 From DVAR(1) to J-DVAR(1)

Let C denote the matrix that carries D to its Jordan canonical form J = C−1DC
where

J =


Jρ0 0 0 . . . 0
0 Jρ1 0 . . . 0
0 0 Jρ2 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . Jρk

 .
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The block Jρh = ρhImh
+ I1,mh

is associated to the eigenvalue ρh with mul-
tiplicity mh. For each m, Im is the m×m identity matrix and I1,m is the m×m
matrix with the first sub-diagonal of ones and all other entries equal to zero.

Then the change ξ = Cζ leads to express the DVAR(1)

ξt = Dξt−1 + uεt

in the canonical form
ζt = Jζt−1 + C−1uεt (4)

equivalent to the k + 1 canonical equations to be treated separately

ζh,t = Jρhζh,t−1 + chεt with ζ =


ζ0
ζ1
...
ζk

 , C−1u =


c0
c1
...
ck


(with vectors partitioned in blocks of sizes m0,m1, . . . ,mk).

Our goal is to extend the domain of ζt, t ∈ Z to all R, maintaining the
stationarity. After obtaining ζt, t ∈ R, the embedding xt = θtrCζt is computed.
This new scalar process is stationary and for t ∈ Z, xt = Xt. The eigenvalues
ρh of the matrix J are the roots of the polynomial equation ρr =

∑r
j=1 φjρ

r−j

and the sizes mh of the blocks in J are their respective multiplicities. In other
words, the eigenvalues are the inverses of the roots of the polynomial φ(z) =
1−

∑p
j=1 φjz

j associated to the AR-coefficients of the ARMA(p, q) model, with
their algebraic multiplicities, and also ρ0 = 0 with multiplicity r − p that may
vanish.

The geometrical multiplicity of each ρh is one, and the matrix C is partitioned
in k + 1 blocks C(h) of r ×mh with possible values (the solution is not unique)

C(h) =
(
c
(h)
i,j

)
i = 1, 2, . . . , r
j = 1, 2, . . . ,mh

, c
(h)
i,j =

mh−j∑
n=0

(
r − i
n

)
ρnh

in correspondence with each of the blocks Jρh , h = 0, 1, . . . , k, that satisfy the
conditions DC(h) = C(h)Jρh .

2.3 Solving one canonical equation

Find the Rm-valued function L(t), t ∈ R+ such that ζt =
∫ t
−∞ L(t− s)dΛs is a

solution of
ζt = Jρζt−1 + cεt, Jρ = ρI + I1

Let SL(t) = L(t+ 1). Then∫ t

−∞
L(t− s)dΛs =

∫ t−1

−∞
SL(t− 1− s)dΛs +

∫ t

t−1
L(t− s)dΛs

= Jρ

∫ t−1

−∞
L(t− 1− s)dΛs + cεt
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is satisfied when SL = JρL, εt =
∫ 1

0
l(1 − s)dΛs+t−1 and for t ∈ [0, 1), L(t) =

cl(t).

For n = 0, 1, 2, . . . and t ∈ [0, 1), L(n+ t) = SL(n−1+ t) = JρL(n−1+ t) =
· · · = Jnρ L(t) = Jnρ cl(t), and therefore

L(t) = J [t]
ρ cl(frac(t))

with [t] denoting the integral part of t and frac(t) = t− [t] its fractional part.

Because Im1,m = 0, then Jnρ = (ρIm + I1,m)n =
∑n∧(m−1)
j=0

(
n
j

)
ρn−jIj1,m and

hence

L(t) =

[t]∧(m−1)∑
j=0

(
[t]

j

)
ρ[t]−jIj1,mcl(frac(t)).

In particular, if l(t) is constant equal to one, then the i-th component of L(t) is

Li(t) =

[t]∧(i−1)∑
j=0

(
[t]

j

)
ρ[t]−jci−j .

The particular case ρ = 0 that necessarily applies when q ≥ p, leads to the
simpler expressions

L(t) = 1{t<m}I
[t]
1 cl(frac(t)).

for the vector L and, if l(t) is constant equal one, the i-th component of L(t) is

Li(t) = 1{t<i}ci−[t].

2.4 Joining the solutions corresponding to each Jordan block and
retracing steps

The continuous parameter embedding of (4), that we denote by the same symbol
ζt is composed by the juxtaposition of the processes

ζρh,t =

∫ t

−∞
Lρh(t− s)dΛ(s)

so that, for each selection of the function l, Lρh(t) = J
[t]
ρhcρh l(frac(t)), and the

matching Lévy process Λ, the continuous parameter stationary process xt =

θ
tr
Cζt is an embedding for Xt.

Now we proceed to show how to choose the Lévy integrator Λ and the function
l.
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3 Choosing the Lévy integrator Λ

Assume without loss of generality that Varεt = VarΛ1 =
∫ 1

0
l2(s)ds = 1.

A necessary and sufficient condition to express the noise as an integral

εt =

∫ 1

0

dΛs+t−1

is that the common law of (εt)t∈Z be infinitely divisible and, in that case, Λ1 =
ε1. Integrands l 6= 1 limit the family of noises that admit the representation

εt =

∫ 1

0

l(1− s)dΛs+t−1.

On the other hand, Gaussian noises can be represented with any integrand l
and Λ a Wiener process.

4 Choosing the integrand l(t), t ∈ [0, 1)

The optimisation criteria applied to select the integrand L refer to the covari-
ances of the resulting continuous embedding

xt = θtr
k∑
h=0

Ch

∫ t

−∞
J [t−s]
ρh

chlh(frac(t− s))dΛs (5)

A detailed computation of these covariances shows that Cov(xt, x0) is a
product of a function of the parameters of the DARMA, independent of the
restriction l of L to the domain [0, 1), times a factor that depends exclusively of
l.

5 Particular case r = 1 (one-dimensional AR(1))

We proceed to show how to choose the integrand l(s), 0 ≤ s < 1, in the particular
case r = 1. In fact, it is not hard to show that the results for dimension r = 1 of
the state space corresponding to DARMA(1) extend to the general case.

Let us extend the domains R+ and [0, 1) of the functions L and l by defining
L(s) = 0 for s < 0, and l(s) = 0 for s 6∈ [0, 1), employ the inner product nota-

tion 〈f, g〉 =
∫∞
−∞ f(s)ḡ(s)ds, ‖f‖2 = 〈f, f〉 and 〈f, g〉1 =

∫ 1

0
f(s)ḡ(s)ds, ‖f‖21 =

〈f, f〉1 for complex functions with domain R or [0, 1] and generalise the definition
of the shift operator Sf(s) = f(s+ 1) by introducing Stf(s) = f(s+ t).

Then the covariance of the process ζt =
∫ t
−∞ L(t− s)dΛs is

γt = 〈StL,L〉 =
1

1− |ρ|2
〈StL,L〉1 =

〈Stl, l〉+ ρ〈St−1l, l〉
1− |ρ|2
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Let Ft denote the σ-field generated by (Λs)s≤t. The conditional expectation

ζ̂t = E(ζt|F0) =
∫ 0

−∞ L(t − s)dΛs is the F0-measurable estimator of ζt with
minimum error variance.

On the other hand, ζ̃t = γtζ0/γ0 is the linear predictor of ζt given ζ0 with
minimum error variance.

Then, since ζ̃t is F0-measurable, the inequality

Var(ζt − ζ̃t) ≥ Var(ζt − ζ̂t)

must hold and also hold the equalities

Varζt = Varζ̂t + Var(ζt − ζ̂t) = Varζ̃t + Var(ζt − ζ̃t)

because both decompositions of ζt as sum of the estimator and the error are
orthogonal. Consequently

Varζ̃t ≤ Varζ̂t

Now compute

Var(ζ̂t − ζ̃t) = Var

∫ 0

−∞

(
L(t− s)− γt

γ0
L(−s)

)
dΛs

=
‖StL− γt

γ0
L‖21

1− |ρ|2
=
‖StL‖21 − 〈StL,L〉21

1− |ρ|2
,

because of the assumption ‖L‖21 = ‖l‖2 = 1.
This result attains its minimum value 0 when StL is proportional to L. This

proportionality is achieved simultaneously for all t when `(s) = ρs, since this
implies StL = ρtL and therefore

l(s) = ρs/‖ρ‖ implies ζ̂t = ζ̃t

and also implies that ζ is Markovian, since the conditional law of ζt = ρtζ0 +∫ t
0
ρt−sdΛs given ζ0 is the sum of a function of ζ0 plus a term independent of

F0.
Comments about the selection l(s) = ρs:

1. The resulting

ζt =

∫ t

−∞
ρt−sdΛs =

∫ t

−∞
e−κ(t−s)dΛs

with κ = − log ρ is an Ornstein - Uhlenbeck process, with the Markov prop-
erty.

2. Negative values of ρ lead to complex processes, and there is no solution for
ρ = 0.

3. The admisible probability law of the noise εt is limited to the ones that can

be represented as integrals
∫ 1

0
ρ1−sdΛs.
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5.1 Maximising the integrated covariance

Another posibility for choosing l is maximising the integrated correlation of the
process, leading to the following results:

Theorem 2. The embedding ζt for which the integrated correlation∫ ∞
−∞

γt = 2<
∫ ∞
0

γtdt =
2

1− |ρ|2
<
∫ 1

0

〈StL,L〉1dt,

of the process ζt is maximum and the integrated variance
∫ 1

0
Var(ζt − ζ0)dt is

minimum is obtained with `(s) = 1 for all s ∈ [0, 1).

As for the covariances of the differences between the embedding and the
polygonal interpolation of the original DARMA when l(s) = 1, 0 ≤ s < 1, we
have the following,

Theorem 3. 1. For each integer n, denote

Sn,t = ζn+t − (1− t)ζn − tζn+1, 0 ≤ t ≤ 1

the difference between the stationary interpolation ζn+t and the segment join-
ing (n, ζn) and (n+ 1, ζn+1). Then

ESn,sSn,t =
2(1−<(ρ))

1− |ρ|2
(s ∧ t)(1− (s ∨ t)).

2. For any integer m, Sn,t, 0 ≤ t ≤ 1 and ζm are not correlated.
3. For integers m < n, the covariances between Sm,s and Sn,t are

ESm,sSn,t = ρn−m
2(1−<(ρ))

1− |ρ|2
(s ∧ t)(1− (s ∨ t)).

Corollary 1. As a particular case, consider a Gaussian AR(1) interpolated with
l = 1, Assume

1. The stationary series Xt, t ∈ Z, satisfies the AR(1) model Xn = ρXn−1 +εn
where εn is a Gaussian white noise,

2. The stationary sequence of processes Bn with domain [0, 1], satisfies the
model Bn = ρBn−1 + βn where βn is a sequence of Brownian bridges in-
dependent of the noise ε.

Then the process ζt = X[t] + (t− [t])(X[t]+1 −X[t]) +B[t](t− [t]), t ∈ R is a
stationary interpolation of Xn, n ∈ Z.
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Abstract. In this work the temporal features of earthquake time distribution in 

Caucasus is investigated. Several methods (power spectrum, wavelet and Hilbert-

Huang transformation) are applied to earthquake time series. Our findings show 

that earthquakes hourly and daily occurrence is not characterized by the dominant 

frequencies.  

It was shown that the variation of the power of cyclic components in the tem-

poral features of earthquakes occurrence is not uniform, but their amplification 

corresponds to the decrease of released local seismic energy. Temporal distribu-

tion of the power of weak cyclic oscillatory modes is not uniform and varies sig-

nificantly during certain periods.   

Keywords: Seismicity, time series, time frequency analysis.  

Introduction 

Investigation of temporal features of earthquake occurrence remain among the most 

important scientific and practical tasks. It can be listed number of high level contem-

porary studies based on different conceptual frameworks which aimed at investigating 

earthquake temporal patterns using both field and laboratory data as well as numerical 

simulations [see e.g. 1, 2, 3, 4, etc.].  

Most of such analyses agree that earthquake time dynamics is characterized by 

switching or intermittent behavior with periods of intense seismic activity interspersed 

with those of low seismicity. The details of such transition from one state (high seismic 

activity) to the other (low seismic activity) are still unclear. At the same time it is rea-

sonable to presume that temporal variation of seismic processes should be caused by 

stress changes in the Earth’s crust, which can be dynamically different and of both tec-

tonic and non-tectonic origin [1, 5]. As a consequence, the question of earthquakes’  

temporal distribution is still an open problem. Nowadays, in scientific literature, it can 

be found controversial views on this question from earthquakes regular to completely 

random distribution [5]. 
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Data and methods of analysis 

 
In the present work, we aimed to continue investigation of seismic process in Cau-

casus on the presence of regular or irregular dynamical behaviors in the earthquake 

generation. For this purpose from the Caucasian earthquake catalogue spanning from 

1970 to 2016 we compiled time series of frequency of earthquake occurrence (FEO). 

Exactly, from Caucasian earthquakes catalogue (further details about catalogue and 

study area can be found elsewhere [4]) we calculated number of earthquakes occurred 

in consecutive hours of observational period and divided them by the total number of 

yearly occurred events and normalized to zero mean and unit variance. FEO, as distinct 

from often used inter earthquakes time sequences, are evenly sampled time series ena-

bling the correct using of different methods of frequency and time frequency analysis. 

In present research in order to investigate temporal characteristics of FEO time series 

we have used power spectrum calculation, wavelet analysis and Hilbert-Huang Trans-

form (HHT) (for details see [5]). These three methods when used together enable to 

avoid restrictions typical for each of them separately, such as influence of non-station-

arity, time-frequency uncertainty, etc. Next, in order to assess the robustness of the 

obtained results against the influence of possible noise, we filtered our FEO time series 

by using two different de-noising techniques, the Savitzky-Golay filtering and the Sin-

gular Spectrum Analysis (SSA) decomposition.  

 

Results and discussion 
 

The power spectrum of the original FEO series does not revealed prevalent cyclic 

components in the analyzed data obtained from declustered Caucasian earthquake cat-

alogue. It is flat in the higher frequency range, and looks like the power spectrum of 

randomized by shuffling procedure FEO time series. At the same time, continuous 

wavelet transform shows lesser homogeneity in spectrum comparing to randomized 

FEO sequences. Difference from random processes is more visible when we analyzed 

smoothed by Savitzky-Golay filter and SSA decomposition FEO data time series. Ran-

domness in the earthquakes time distribution makes even more questionable results of 

the HHT analysis of the hourly FEO time series indicating clear changes in Hilbert 

Energy Spectrum at different level of local seismic activity.  

 Based on the results of our analysis we concluded that the time series of frequency 

of earthquake occurrence does not reveal presence of leading cycles. At the same time 

the temporal distribution of the power of weak cyclic oscillatory modes is not uniform 

and varies significantly during certain periods. Our analysis indicates that the increase 

in the extent of regularity in FEO data sets is closely related with the amount of released 

local seismic energy.  
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Summary 

 
We investigated features of time distribution of earthquakes in Caucasus. Methods 

of frequency and time frequency analysis as well as Hilbert-Huang Transform transfor-

mation have been used. It was shown that variation of cyclic components is not uniform 

and depends on the amount of released seismic energy.  
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Suárez Sánchez, Ana 649
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