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Half-metallicity (full spin polarization of the Fermi surface) usually occurs in strongly correlated
electron systems. We demonstrate that doping a spin-density wave insulator in the weak-coupling regime
may also stabilize half-metallic states. In the absence of doping, the spin-density wave is formed by four
nested bands [i.e., each band is characterized by charge (electron or hole) and spin (up or down) labels]. Of
these four bands, only two accumulate the charge carriers introduced by doping, forming a half-metallic
two-valley Fermi surface. Depending on the parameters, the spin polarizations of the electronlike and
holelike valleys may be either (i) parallel or (ii) antiparallel. The Fermi surface of (i) is fully spin polarized
(similar to usual half-metals). Case (ii), referred to as “a spin-valley half-metal,” corresponds to complete
polarization with respect to the spin-valley operator. The properties of these states are discussed.
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Introduction.—Half-metallicity [1–3] is a useful prop-
erty for spintronics applications. Unlike usual metals,
which have both spin projections (spin-up and spin-down)
on the Fermi surface, half-metallicity implies that electrons
with only one spin projection, for example, spin-up, reach
the Fermi level, while spin-down states are pushed away
from the Fermi energy. A highly desirable consequence
[3,4] of half-metallicity is the perfect spin polarization
of the current. Experiments confirmed that many real
materials are half-metals, for example, NiMnSb [5],
ðLa0.7Sr0.3ÞMnO3 [6], CrO2 [7], Co2MnSi [8], and others.
From the theory standpoint, the half-metallicity of these
compounds relies on sizable electron-electron interactions,
associated with transition-metal atoms. However, in recent
years, the search for “metal-free half-metals” began [9,10].
Such systems could be useful for biocompatible applica-
tions and, in general, are consistent with current interest
in carbon-based and organic-based mesoscopic systems
[11–16]. It is difficult to expect a strong electron-electron
interaction for systems composed entirely of s and p
elements. Thus, different mechanisms for half-metallicity
must be looked for. In this Letter, we discuss a novel
possibility to generate half-metallicity. Specifically, we
demonstrate that doping a spin-density wave (SDW) or
charge-density wave (CDW) insulator may stabilize a
certain type of half-metallic state. Let the undoped system
[see Fig. 1(a)] have two nested Fermi surface sheets, which
we will also refer to as valleys. Let one sheet, or valley,
correspond to electron states and another to hole states.
Both valleys are spin degenerate. The SDW or CDW
instability opens a gap generating an insulating ground
state [Fig. 1(b)]. We show that, when doping is introduced,

each valley becomes half-metallic. If the spin polarizations
of both sheets are parallel to each other [Fig. 1(c)], a half-
metallic state, called below the CDW half-metal, emerges.
For antiparallel polarizations [Fig. 1(d)], a different half-
metallic state, the spin-valley half-metal, appears. The
properties of these two states are discussed below.
Model.—Our model describes two bands, or valleys: an

electronic band a and a hole band b, shown as blue and red
parabolas, respectively, in Fig. 1(a), with the following
single-particle dispersions (ℏ ¼ 1):

εaðkÞ ¼ k2

2ma
þ εamin − μ; εamin < εa < εamax; ð1Þ

εbðkþQ0Þ¼−
k2

2mb
þεbmax−μ; εbmin< εb < εbmax: ð2Þ

Here band a is centered at k ¼ 0 and band b at some finite
momentum Q0. Below, for simplicity, we assume the
perfect electron-hole symmetry: ma ¼ mb ¼ m and εbmax ¼
−εamin ¼ εF; consequently, εaðkÞ ¼ −εbðkþQ0Þ ¼ εk.
Zero doping corresponds to μ ¼ 0. Undoped Fermi surface
sheets for the a and b bands are characterized by a single
Fermi momentum kF ¼ ffiffiffiffiffiffiffiffiffiffiffi

2mεF
p

, and density of states (per
spin projection) NF ¼ mkF=ð2π2Þ at the Fermi energy.
This provides a perfect nesting: a translation of the electron
Fermi surface by the vector Q0 completely superposes the
sheets. The total Hamiltonian is equal to

Ĥ ¼ Ĥe þ Ĥint; ð3Þ
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where Ĥe is the single-electron term, described by the
dispersions (1) and (2), while Ĥint corresponds to the
interaction between quasiparticles.
To treat the SDW instability, it is sufficient to keep inHint

only the interaction between electrons in the a and b bands.
We also assume that the interaction is a short-range one. Let
us initially focus on the following interaction term (the
neglected term will be discussed later):

Ĥint ¼ g
Z

d3r
X
σσ0

ψ†
aσðrÞψaσðrÞψ†

bσ0 ðrÞψbσ0 ðrÞ: ð4Þ

Here, ψασ denotes the usual fermionic field operator for
band α and spin σ; the symbol r refers to spatial coor-
dinates. The interaction is repulsive (g > 0) and weak
(gNF ≪ 1).
Spin-valley half-metal.—When the Fermi surface sheets

of the holes and the electrons perfectly match each other,
model (3) describes the spontaneous formation of SDW or
CDW orders. We start with the SDW. The SDW ground
state is believed to be unique (up to rotations of the spin-
polarization axis) and well described by a BCS-like theory.
The electron operators can be grouped into two sectors,
labeled by the index σ ¼ �1: sector σ consists of ψaσ and
ψbσ̄ (here σ̄ means −σ). In the mean-field approach, the

sectors are decoupled, and the SDWorder parameter can be
written as

Δσ ¼
g
V

X
k

hψ†
kaσψkbσ̄i; ð5Þ

where V is the system volume and h…i denotes the
diagonal matrix element for the ground state. At zero
doping, the sectors are degenerate: Δ↑ ¼ Δ↓ ¼ Δ0, where
Δ0 ≈ εF exp ð−1=gNFÞ is the order parameter at perfect
nesting [see Fig. 1(b)]. This equality implies that the SDW
polarization in real space is directed along the x axis:

hSxðrÞi ¼ Δ↑ þ Δ↓

g
cosðQ0rÞ ¼

2Δ0

g
cosðQ0rÞ; ð6Þ

hSyðrÞi ¼ Δ↑ − Δ↓

2g
sinðQ0rÞ≡ 0: ð7Þ

Doping destroys the perfect nesting, and the number of
low-energy states competing to become the true ground
state increases. Both incommensurate and inhomogeneous
phases [17–25] were considered for Hamiltonian (3) and its
modifications. Here we argue that the half-metallic state is
yet another viable contender in the case of imperfect
nesting.
The grand potential of our system Ω at zero temperature

and finite doping x is a sum of two partial grand potentials
Ω ¼ P

σΩσ , where

Ωσ ¼
Δ2

σV
g

−
X
k

h
μ−Eð1Þ

kσ þ
�
μ−Eð2Þ

kσ

�
θ
�
μ−Eð2Þ

kσ

�i
; ð8Þ

Eð1;2Þ
kσ ¼∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2k þ Δ2

σ

q
; θðzÞ is the step function: ð9Þ

Here we assume that μ>0. To describe doping, it is
convenient to introduce the partial dopings xσ¼−∂Ωσ=∂μ,
which are the amounts of charge accumulated in sectors σ.
Parameter Δσ minimizes ΩσðΔσÞ. Thus, one has to solve

∂Ωσ

∂Δσ
¼ 0; x↑ þ x↓ ¼ x; ð10Þ

to determine μ and Δσ. Equations (8) and (10) are valid
provided that the state remains homogeneous and the SDW
order remains commensurate even at finite doping.
Since the two sectors σ are decoupled, one can calculate

[18,25,26] parameters Δσ and μ as functions of xσ:

Δσ ¼ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

xσ
NFΔ0

r
and μ ¼ Δ0 −

xσ
2NF

: ð11Þ

We see that the doping destroys the ordered state, and the
homogeneous commensurate state becomes completely
unstable for xσ > xc ¼ NFΔ0.
It is often implicitly assumed (e.g., Refs. [17,25,26]) that

the charge carriers are spread evenly between both sectors

FIG. 1. The electron bands and spin structure for different
dopings x [the vertical (horizontal) axis is energy (momentum),
and the Fermi level μ is shown by horizontal dash-dot lines].
(a) Noninteracting bands at x ¼ 0. The bands are shown by solid
curves; the dashed parabola is the hole band translated by the
nesting vector Q0. (b)–(d) The interaction is taken into account.
(b) If x ¼ 0, the ground state is an insulating SDWor CDW, with

degenerate sectors (Δ↑ ≡ Δ↓), with electron bands Eð1;2Þ
σ given

by Eq. (9). (c), (d) If x > 0, the sectors are no longer degenerate
(Δ↑ < μ < Δ↓ ≡ Δ0), with the charge accumulating in sector
“↑,” in which a Fermi surface opens. The spin polarizations
(arrows) of the Fermi surface sheets correspond to (c) the CDW
half-metal and (d) the spin-valley half-metal.
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(x↑ ¼ x↓) and the degeneracy of Δσ persists even for finite
x. Yet, it is easy to show that the spontaneous lifting of
this degeneracy optimizes the energy. To prove this,
consider the system free energy F ¼ P

σFσ, where the
partial free energy Fσ ¼ Ωσ þ μxσ can be calculated as
FσðxσÞ ¼ Fσð0Þ þ

R xσ
0 dx0μðx0Þ, to obtain

F
V
¼

X
σ

Fσ

V
¼ −NFΔ2

0 þ Δ0x −
x2↑ þ x2↓
4NF

; ð12Þ

where we took into account that Fσð0Þ ¼ −NFΔ2
0=2. Only

the third term in Eq. (12) depends on the distribution of the
charge among the two sectors. It is easy to check that, if
xσ ¼ x and xσ̄ ¼ 0, the third term, together with F, is the
smallest. In other words, for fixed x, the most stable
spatially homogeneous state of the model corresponds to
the case when all the doped charge is accumulated in a
given sector. The other sector is completely free of the extra
charge carriers. Therefore,

F
V
¼ −NFΔ2

0 þ Δ0x −
x2

4NF
; ð13Þ

μ ¼ Δ0 −
x

2NF
; ð14Þ

ΔσðxÞ ¼ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

x
NFΔ0

r
; Δσ̄ðxÞ ¼ Δ0: ð15Þ

These relations are valid for not too strong doping
x < NFΔ0. An important feature of Eq. (13) is that the
second derivative ∂2F=∂x2 is negative. This means that
the doped system is unstable with respect to electronic
phase separation [18,22,23,26–30]. However, the long-
range Coulomb interaction can suppress the phase separa-
tion [31,32]. Thus, it is reasonable to study the properties of
the homogeneous state [33].
It follows from Eqs. (14) and (15) that ΔσðxÞ < μðxÞ <

Δσ̄ðxÞ ¼ Δ0, when x > 0. This means that, in the sector
σ̄, the order parameter remains equal to Δ0. Since the
chemical potential is lower than Δσ̄ , no charge enters sector
σ̄; see Fig. 1(d). In the sector σ, two Fermi surface sheets
emerge. They are fixed by the equation ε2k ¼ ½μðxÞ�2 −
½ΔσðxÞ�2, which is equivalent to εk ¼ �x=2NF. As the
doped charges are distributed unevenly between the sectors,
the doped state acquires nontrivial macroscopic quantum
numbers. To characterize the macroscopic state, it is useful
to specify spin operator Ŝ ¼ P

ασσN̂ασ and spin-valley
operator Ŝv ¼

P
ασσvαN̂ασ. Here, α ¼ a, b, is the valley

label and vα is defined as va ¼ 1, vb ¼ −1. The operator
N̂ασ ¼

P
kψ

†
kασψkασ corresponds to the number of elec-

trons with spin σ in valley α. The Hamiltonian (3)
commutes with both Ŝ and Ŝv. The field operators satisfy
obvious commutation rules ½Ŝ;ψασ�¼σψασ and ½Ŝv;ψασ� ¼
σvαψασ . Namely, in addition to the spin quantum number

σ, a field ψασ can be characterized by the spin-valley
projection σvα.
It is easy to check that in the sectorσ bothψaσ andψbσ̄ carry

the same spin-valley quantumequal toþσ. In the sector σ̄, the
field operators correspond to a −σ quantum of Ŝv. That is,
the Fermi surface of the doped system is characterized by the
single projection of the spin-valley operator. The Fermi
surface sheets with the opposite projection of Ŝv are absent,
since the sector σ̄ is gapped. Thus, the doped system can be
referred to as a spin-valley half-metal: like a classical half-
metal, our system exhibits complete polarization of the Fermi
surface; however, in contrast to the usual half-metal, the
polarization is not the spin polarization but, rather, the spin-
valley one. Therefore, the electric current through the spin-
valley half-metal is completely spin-valley polarized.
Since the sector σ̄ is free of doped electrons, the average

values of N̂aσ̄ and N̂bσ remain unaffected by the doping,
while hN̂aσi and hN̂bσ̄i change. Taking the average occu-
pation numbers Nασ ¼ hN̂ασi in the undoped state to be
zero, we can write Naσ̄ ¼ Nbσ ¼ 0, and Naσ þ Nbσ̄ ¼ xV.
Consequently, Sv ¼ hŜvi is proportional to x. Namely,
Sv ¼ σxV. In a system with perfect electron-hole sym-
metry, we have Naσ ¼ Nbσ̄ ¼ xV=2, which corresponds to
S ¼ hŜi≡ 0, for any x. If the symmetry is absent, then
jSj ∝ x. However, the net spin polarization of the spin-
valley half-metal satisfies the inequality jSj < jSvj.
Doping also affects the SDW order inherited from the

undoped state. Intuitively, since the charge enters only
one of the two sectors, the symmetry between sectors σ
disappears for x > 0. [Equations (15) prove this.] The simple
SDW is replaced by a more complicated order parameter:
analyzing Eqs. (6) and (7) one can prove that, at finite
doping, a circularly polarized spin component emerges
fδSxðrÞ;δSyðrÞg∝ ðΔ↑−Δ↓ÞfcosðQ0rÞ;sinðQ0rÞg. The
amplitude of this component increases when x grows.
From spin-valley half-metal to CDW half-metal.—

In addition to the expected invariance with respect to
simultaneous rotations of all fermion spins, our model
Hamiltonian allows for a broader class of symmetries: it
remains unchanged, even if the electron and hole spins are
transformed by two different rotation operators. This
observation can be trivially proven in the absence of
interaction (g ¼ 0). In the case of a generic interaction,
this symmetry does not apply. However, if the interaction is
short-range, as in Eq. (4), the invariance of the Hamiltonian
under such transformations remains. Indeed, the integrand
in Eq. (4) is ∝ ρeρh, where ρe and ρh are the density
operators for electrons and holes, respectively, which both
are invariant under separate rotations of the electron and
hole spins. Therefore, the substitution

ψb↑ → ψb↓; ψb↓ → ψb↑ ð16Þ
corresponds to a symmetry of the model. Thus, Eq. (16)
either preserves the ground state or transforms one ground
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state into another one. Since the order parameter [Eq. (5)]
changes under the transformation (16), we must conclude
that a new ground state is generated by such a substitution. If
we start with the spin-valley half-metal ground state, what
kind of new state does the transformation (16) bring us?
Consider the SDW polarization [Eq. (6)] at zero doping.

Under the transformation (16), the SDW is replaced by a
CDW with a finite average value for the density operator
ρ̂Q0

: hŜxQ0
i ¼ P

σhψ†
kaσψkbσ̄i →

P
σhψ†

kaσψkbσi ¼ hρ̂Q0
i.

Calculations identical (up to relabeling) to the case of
the SDW order demonstrate that for x > 0 the charge
carriers accumulate in a single mean-field sector. However,
the sector composition is changed by the transformation
(16): sector σ consists of ψaσ and ψbσ. Unlike the case of
spin-valley half-metals, now both electronic fields within a
single sector have the same spin projection. Therefore, if
the doped charge enters sector σ, both Fermi surface sheets
have identical spin polarizations equal to σ; see Fig. 1(c).
This perfect polarization of the Fermi surface is a hallmark
feature of half-metals. Thus, the spin-valley half-metal is
related to the CDW half-metal by the substitution (16), and
both states are degenerate within our model. This relation
becomes apparent if we notice that (16) switches the
operators Ŝ and Ŝv. Consequently, in the CDW half-metal
S ¼ σxV and jSvj < jSj. When x > 0, in addition to the
CDW order parameter, the SDW order parameter hSzQ0

i is
generated. It grows monotonically with x.
Note, however, that the degeneracy between the SDW

and CDW ground states is an artifact of the short-range
interaction [Eq. (4)], which possesses extra symmetries
absent in more realistic models. The effects of more generic
interaction operators are discussed below.
Discussion.—While themechanismpresented here is quite

general and may be relevant to any material with a nesting-
drivendensitywave, belowwewill overviewsomeextensions
of the model, which may affect the proposed half-metallic
states. Specifically, the interaction Eq. (4) is not the most
general form of electron-electron coupling. In particular,
the “exchange” term Ĥex ¼ g⊥

R
d3x

P
σσ0ψ

†
aσψbσψ

†
bσ0ψaσ0

should be accounted for. The coupling constant g⊥ > 0
describes a repulsive interaction at finite momentum Q0.
The exchange term Ĥex immediately lifts the degeneracy
between the SDW and CDW, in favor of SDW. This means
that, for finite doping, the spin-valley half-metal ismore stable
than the CDW half-metal. On the other hand, other factors
could favor the CDW half-metal, for example, the proximity
to a lattice instability. An external magnetic field acts
similarly, since the total spin of the CDW half-metal exceeds
the spin of the spin-valley half-metal.
We assumed that the Coulomb interaction guarantees

the homogeneity of the electron liquid [33]. Thus, in the
above discussion, we neglected the possibility of phase
separation. In addition, the incommensurate SDW states
were not considered. While the detailed study of such states

is an interesting goal for future research, we do not expect
that this modification would affect significantly the stability
of the half-metallic phases, at least at some doping range.
Indeed, at the mean-field level the free energy in the
presence of the incommensurate SDW equals FicðxÞ ¼
minx↑þx↓¼x½Fic

0 ðx↑Þ þ Fic
0 ðx↓Þ�, where Fic

0 ðxσÞ is the free
energy of a sector with partial doping xσ. As above, the free
energy of the system is found by minimization under the
condition x↑ þ x↓ ¼ x. We calculated Fic

0 ðxσÞ numerically,
as described in Ref. [26]. Our analysis shows that
∂2Fic

0 ðxσÞ=∂x2σ < 0 for xσ less than the threshold value
x� ≅ 0.83NFΔ0. This is a rather general feature of a system
with imperfect nesting [18,22,23,26,30]. Since the second
derivative of Fic

0 is negative, the sum Fic
0 ðx↑Þ þ Fic

0 ðx − x↑Þ
as a function of x↑ ∈ ½0; x� is concave. Consequently, the
extremum of the latter sum at x↑ ¼ x=2 corresponds to a
maximum, not a minimum (see Fig. 2). Therefore, the total
free energy is minimized as follows: FicðxÞ ¼ Fic

0 ðxÞ þ
Fic
0 ð0Þ, at xσ ¼ x and xσ̄ ¼ 0. Thus, the undoped sector σ̄

remains insulating. All doped charge goes to sector σ,
which becomes metallic, with a well-defined Fermi surface,
and we recover the spin-valley half-metal with an incom-
mensurate SDW.
If xσ > x�, then ∂2Fic

0 ðxσÞ=∂x2σ > 0, and the total free
energy Fic

0 ðxσÞ þ Fic
0 ðx − xσÞ acquires a local minimum at

x↑ ¼ x↓ ¼ x=2 (see Fig. 2). When doping increases even
further, this minimum becomes a global minimum for
x ≅ 1.8NFΔ0. Consequently, the first-order transition from
incommensurate spin-valley half-metal to common incom-
mensurate SDW phase occurs at this point.
We assume that both the electron and hole sheets in the

Fermi surface are perfectly nested at zero doping. Generally,
the sheets have nonidentical shapes, causing finite denest-
ing. For example, one sheetmay be spherical,while the other
may be elliptical [23]. At moderate denesting, the range of

FIG. 2. Dependence of ΔFic
0 ðxσ ; x − xσÞ≡ Fic

0 ðxσÞ þ Fic
0 ðx −

xσÞ − 2Fic
0 ðx=2Þ on the partial doping xσ , calculated at T ¼ 0

and fixed total doping x ¼ 1.4NFΔ0 [(red) solid curve], x ¼
1.76NFΔ0 [(green) dashed curve], and x ¼ 2.0NFΔ0 [(blue)
dash-dot curve].
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doping where ∂2Fic
0 ðxÞ=∂x2 < 0 diminishes [23]. When the

sheet shapes differ significantly, one has ∂2Fic
0 ðxÞ=∂x2 > 0

for all x, and the half-metal states become impossible. On the
other hand, if the sheets are nonspherical, but the zero-
doping nesting is preserved (at x ¼ 0 the sheets are
identical), our conclusions endure, and only minor math-
ematical modifications to the formalism (the density of
states acquires a dependence on the spherical angles) are
required. We also neglected several other perturbations
(disorder, spin-orbit coupling, and umklapp processes).
The stability of the half-metal phases against these should
be checked in the future.
In conclusion, we demonstrated that doping a SDW state

with perfectly nested Fermi surface sheets stabilizes a half-
metal-like ground state. Depending on the microscopic
parameters and the external magnetic field, such a ground
state could be either a CDW half-metal with complete spin
polarization of the Fermi surface or a spin-valley half-metal.
The Fermi surface of the latter state is characterized by a
perfect polarization in the spin-valley space.While theCDW
half-metal supports purely spin-polarized currents, which is
a natural consequence of the Fermi surface polarization, the
spin-valley half-metal supports spin-valley-polarized cur-
rents. The proposed scheme is a controllable weak-coupling
approach to half-metallicity. The discussed mechanismmay
be of importance for the current search for nontoxic
biologically compatible materials with nontrivial electronic
properties.
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