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Abstract
A fundamental notion in Algorithmic Statistics is that of a stochastic object, i.e., an object having
a simple plausible explanation. Informally, a probability distribution is a plausible explanation
for x if it looks likely that x was drawn at random with respect to that distribution. In this
paper, we suggest three definitions of a plausible statistical hypothesis for Algorithmic Statistics
with polynomial time bounds, which are called acceptability, plausibility and optimality. Roughly
speaking, a probability distribution µ is called an acceptable explanation for x, if x possesses
all properties decidable by short programs in a short time and shared by almost all objects
(with respect to µ). Plausibility is a similar notion, however this time we require x to possess
all properties T decidable even by long programs in a short time and shared by almost all
objects. To compensate the increase in program length, we strengthen the notion of ‘almost all’
– the longer the program recognizing the property is, the more objects must share the property.
Finally, a probability distribution µ is called an optimal explanation for x if µ(x) is large (close
to 2−Cpoly(x)).

Almost all our results hold under some plausible complexity theoretic assumptions. Our
main result states that for acceptability and plausibility there are infinitely many non-stochastic
objects, i.e. objects that do not have simple plausible (acceptable) explanations. Using the same
techniques, we show that the distinguishing complexity of a string x can be super-logarithmically
less than the conditional complexity of x with condition r for almost all r (for polynomial time
bounded programs). Finally, we study relationships between the introduced notions.
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1 Introduction

Acceptable statistical hypotheses

I Example 1. Assume we are given an n-bit natural number x which is a square and has
no other features. Which statistical hypotheses we would accept for x? An acceptable
hypothesis is the following: the number x was obtained by random sampling in the set of
all n-bit squares, where all numbers have equal chances to be drawn (the hypothesis µ1).
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And the following hypothesis µ2 is clearly not acceptable: the number x was obtained by
random sampling in the set of all n-bit numbers. On what grounds we refute hypothesis µ2?
Because we can exhibit an easily checked property (to be a square) possessed by x and not
possessed by a vast majority of all n-bit strings.

The reader can object to this line of reasoning by noting that on these grounds we can
reject the hypothesis µ1 as well. Indeed, we exhibit the property “to be equal to x”, which
is also shared by a negligible fraction of numbers with respect to µ1. However, in contrast
to the property “to be a square”, this property is not simple, as it has no short program
recognizing the property in a short time. And for the property “to be a square”, there is
such a program.

Generalizing this example, we will define the notion of an acceptable statistical hypothesis
x. A probability distribution µ over the set of binary strings will be called an acceptable
hypothesis for a binary string x if there is no simple set T 3 x with negligible µ(T ). We will
call a set T simple if there is a short program to decide membership in T in a short time, as
in Example 1.

A string will be called stochastic, if it has a simple acceptable hypothesis. How will we
measure simplicity of a probability distribution µ? In the same way as we measure the
simplicity of a refutation set T : a probability distribution will be called simple, if it can be
sampled by a short probabilistic machine with no input in a short time. We say that such
a machine samples a distribution µ, if for all x the probability of the event “M outputs x”
equals µ(x). The running time of M is defined as the maximum of M ’s running time over
all outcomes of its coin tossing.

Of course in a rigorous definition of an acceptable hypothesis µ, we have to specify three
parameters: the upper bound α for the length of a program that recognizes T , the upper
bound t for the running time of that program, and the upper bound ε for µ(T ) (how small
should be µ(T ) to be qualified as “negligible”). The larger these parameters are, the stronger
the notion of an acceptable hypothesis is. And in a rigorous definition of a simple distribution
µ, we have to specify two parameters: the upper bound α′ for the length of a program
sampling µ and the upper bound t′ for the running time of that program. The smaller these
parameters are, the stronger the notion of a simple distribution is. Thus in the notion of
stochasticity we have 5 parameters, α′, t′ and α, t, ε. It seems natural to choose α > α′ and
t > t′, that is, to give more resources to those who want to refute a hypothesis µ than the
amount of resources needed to sample µ (as it was in Example 1).

Also in the definition of an acceptable hypothesis the parameter ε should be much smaller
than 2−α. In this case the notion of an acceptable distribution satisfies The Majority Principle:
for every probability distribution µ for almost all (w.r.t. µ) strings x the distribution µ is an
acceptable hypothesis for x (Proposition 7 below). We believe that any notion of a plausible
statistical hypothesis should satisfy this principle.

The main question we are interested in is the following: for which values of parameters
there are strings that have no simple acceptable explanations? Such strings will be called
non-stochastic. Our main result states that under assumption NE 6= RE there are infinitely
many non-stochastic strings x for t, t′, 1/ε = poly(n) and α, α′ = O(logn)1, where n = |x|
(Theorem 8).

In Section 6 we explain why we need complexity theoretic assumptions to prove the main
result: we prove that existence of non-stochastic strings for such parameters implies that

1 All of the logarithms are base 2.
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P 6=PSPACE. To prove Theorem 8, we introduce the notion of an elusive set. Using that
notion, we establish that there is a super-logarithmic gap between Kolmogorov complexity and
Distinguishing complexity with polynomial time bounds (similar questions were addressed
in [3]). We also study the following two notions of a good statistical hypothesis.

Plausible statistical hypotheses

I Example 2. Let G : {0, 1}n → {0, 1}2n be a Pseudo Random Number Generator (the
precise definition is given in Assumption 4 below). Consider a string x = G(s) of length 2n.
Would we accept the uniform distribution over all strings of length 2n as a good statistical
hypothesis for x? We do not like this hypothesis, as the fraction of x′ of length 2n for which
x′ = G(s′) for some s′ is negligible. However it is impossible to check this property by a short
program in short time – for almost all s the uniform distribution over all strings of length 2n
is an acceptable hypothesis for Gn(s) (Theorem 17). However for every fixed s the property
Gn(s) = x can be decided by a long program (of length n), into which s is hard-wired.

Let us give up the requirement that the program recognizing T in a short time is short.
In a compensation, let us decrease the threshold for µ(T ): we will now think that µ(T ) is
negligible if logµ(T ) is much less than the negative length of the program recognizing T .
Notice that in Example 2 we have logµ(T ) = −2n, which is by n less than the negative
length of the program recognizing T . Probability distributions satisfying this requirement
are called plausible hypotheses for x. The definitions imply that every plausible hypothesis is
acceptable (Proposition 6). The converse is false (Theorem 17). And again the notion of
plausibility satisfies the Majority Principle (Proposition 7).

As plausibility implies acceptability, our main result implies that there are infinitely
many strings that have no simple plausible explanations. The existence of such strings can
be proved also under other assumptions. Indeed, under Assumption 2 (below) only strings
whose distinguishing complexity is close to Kolmogorov complexity can have simple plausible
explanations (Proposition 16). And strings with a large gap between these complexities exist
under assumption FewP ∩ SPARSE * P [3].

Optimal statistical hypotheses

In practice, it is hard to decide whether a given probability distribution µ is plausible or
acceptable for a given string x, as there are many possible “refutation sets” T and for a given
T it is very hard to check whether it indeed refutes µ or not. Ideally, we would like to have a
sound notion of a good hypothesis such that for a given simple distribution µ and a given
string x, we could decide whether µ is good for x in a short time. Or, at least to refute µ in
a short time, if µ is not good for x.

There is a natural parameter measuring how good is µ as an explanation for x, namely
µ(x). Let us try to use this parameter instead of “refutation sets”. According to the
new definition, a simple probability distribution µ is a good explanation for x if µ(x) is
large. How large? We will compare µ(x) with 2−Ct(x), where Ct(x) denotes Kolmogorov
complexity with time bounded by t, where t is large enough compared to the running time
of the short probabilistic program sampling µ. We will call µ an optimal hypothesis for x if
µ(x) ≈ 2−Ct(x).

There are three arguments to justify this definition. Firstly, whatever t we choose, the
Majority Principle holds true (Proposition 13). Second, under some complexity theoretic
assumption, if t is large enough compared to the running time of probabilistic machine
sampling µ then µ(x) cannot significantly exceed 2−Ct(x), therefore, if µ(x) is close to this
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value, then µ is optimal indeed. This fact was established in [1]. And third, given µ, x we
can prove in a short time that µ is not an optimal hypothesis for x, if this is the case – it
suffices to produce a program p for x such that µ(x)� 2−|p| (we assume here that µ(x) can
be computed in a short time).

Relations between the introduced notions

It follows from the definitions that plausibility implies acceptability and optimality. (To
prove the second implication, we let T = {x} in the definition of plausibility.) All other
statements in the remainder of this section hold true under some assumptions (that are
specified later).

For strings x with CDpoly(n)(x)� Cpoly(n)(x) there are no plausible explanations at all
(Proposition 16). For such strings we are not aware about any relations between acceptability
and optimality.

On the other hand, for strings x with CDpoly(n)(x) ≈ Cpoly(n)(x), the picture is clear:
Plausibility = Optimality ⇒ Acceptability, and the converse implication does not hold
(Example 2, Theorem 17 and Remark 3.3). The equivalence of plausibility and optimality
(Theorem 18) for such strings is good news, as it provides a justification to the Maximal
Likelihood Estimator. Indeed, imagine that x was drawn at random w.r.t. a simple but
unknown probability distribution µ. Then with high µ-probability all C(x),Ct(x),CDt(x)
are close to each other and are close to − logµ(x) 2 and µ is an acceptable and plausible
hypothesis for x (Propositions 7, 13, 12). Given x, we want to find µ or any other plausible or
at least acceptable statistical hypothesis for x. Using the Maximal Likelihood Estimator, we
choose among all simple hypotheses µ the one that maximizes µ(x). Theorem 18 guarantees
the success to this strategy – the chosen hypothesis µ is both acceptable and plausible.

In the next section we define the notions of a program and of Kolmogorov complexities
used in the paper.

2 Preliminaries

Fix a deterministic one-tape Turing machine U that inputs three binary strings p, x, y and
outputs one binary string and satisfies the following condition:

For any other deterministic one-tape Turing machine V there is a constant c and a
polynomial f such that for all p there is q with |q| < |p| + c for which U(q, y, r) =
V (p, y, r) (for all y, r) and the running time of U(q, y, r) is bounded by

f(|y|+ |r|+ the running time of V (p, y, r))

and the similar inequality for the space holds as well.

This machine will be called universal. Using the universal machine we can define the
Kolmogorov complexity (with or without time or space bounds) and the notions of programs
and their running times for deterministic and randomized machines.

Kolmogorov complexity: Ct(x|y) is the minimal length of p such that U(p, y,Λ) = x in
time t. Similarly, CSm(x|y) is the minimal length of p such that U(p, y,Λ) = x on space s.
If U(p, y,Λ) = x in time t, we say that p is a program for x conditional to y (or simply a
program for x, if y = Λ), and we call t the running time of p on input y.

2 Provided that t is larger than certain polynomial of the time needed to sample µ.
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The distinguishing complexity: CDt(x|y) is the minimal length of p such that
U(p, x, y) = 1;
U(p, x′, y) halts in t steps for all x′ of the same length as x;
U(p, x′, y) = 0 for all x′ 6= x.

Programs of deterministic machines: We say that a program p outputs y on input x in
time t if U(p, y,Λ) in time t.

Programs of randomized machines: Considering the uniform probability distribution over
r’s, we obtain a universal randomized machine. More specifically, a program of a randomized
machine is a pair (p,m). A machine with program (p,m) on an input string y tosses a fair
coin m times and then outputs U(p, y, r), where r denotes the outcome of the tossing. We
can fix y = Λ thus obtaining the notion of a program of a randomized machine without input.
The length of the program (p,m) is defined as |p|+ logm, and the running time (space) as
the maximum over all r ∈ {0, 1}m of the running time (space) of U(p, y, r).

In the next section provide the rigorous definitions and formulations to all informal
definitions and statements mentioned in the Introduction.

3 Our results and their comparison to the previous ones

3.1 Existence of non-stochastic strings
By a technical reason we consider only probability distributions µ over {0, 1}n for some n
and assume that µ(x) is a rational number for all x.

I Definition 3. Let t, α be natural numbers and ε a real number between 0 and 1. A (t, α, ε)-
acceptable statistical hypothesis (or explanation) for a string x of length n is a probability
distribution µ such that µ(T ) > ε for all T 3 x recognized by a deterministic program of
length less than α in at most t steps for all inputs of length n.

The larger t, α, ε are, the stronger the notion of a (t, α, ε)-acceptable hypothesis becomes.
For every x the distribution concentrated on x is a (∗, ∗, 1)-acceptable hypothesis for x (the
asterisk for the time parameter means that the time can be arbitrary large as long as the
program always halts). However, we are interested in simple explanations.

I Definition 4. A probability distribution µ is called (t, α)-simple if it can be sampled by a
probabilistic program (with no input) of length less than α in time at most t.3 (Recall that
a machine M samples µ in time t if for all x the probability of event “M outputs x” equals
µ(x) and the running time of M is at most t for all outcomes of coin tossing.)

Strings that have (t′, α′)-simple (t, α, ε)-acceptable explanations for small t′, α′ and large
t, α, ε are informally called stochastic and otherwise non-stochastic. The smaller t′, α′ and
the larger t, α, ε are, the stronger the notion of stochasticity is and the weaker the notion of
non-stochasticity is.

I Definition 5. A probability distribution µ is called a (t, ε)-plausible hypothesis for a sting
x of length n, if for any set T 3 x recognized by a program of length l whose running time
on all inputs of length n is at most t we have µ(T ) > 2−lε.

3 In Theorem 18 we will need simplicity in another sense: we will need that the function x 7→ µ(x) can be
computed by a program of length α in time t.
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The following proposition is a straightforward corollary from the definitions:

I Proposition 6. Every (t, ε)-plausible hypothesis for x is (t, α, ε2−α)-acceptable for x for
any α.

I Remark. Notice that if µ is (t, α)-plausible for x then µ(x) > 0. In contrast, (t, α, ε)-
acceptability of µ for x does not imply that in general. However, if the set T = {x | µ(x) = 0}
can be recognized by a program of length α in time t, then (t, α, ε)-acceptability for x implies
µ(x) > 0. Another reason for not stipulating µ(x) > 0 in the definition of acceptability is
that we can achieve this almost ‘for free’. Indeed, for every (t, α)-simple distribution µ the
distribution µ′ that is the arithmetic mean of µ and the uniform distribution over the set of
all strings of length n is (t′, α′)-simple for t′, α′ close to t, α. For all x of length n we have
µ′(x) > 0. If µ is (t, α, ε)-acceptable for x, then µ′ is (t, α, ε/2)-acceptable for x.

The next statement shows that the Majority Principle is valid for (t, α, ε)-acceptability
provided ε� 2−α and for (t, ε)-plausibility provided ε� 1/n.

I Proposition 7 (Majority Principle). For every probability distribution µ over binary strings
of length n and all α, ε we have

µ{x | µ is not (∗, α, ε)-acceptable for x} < ε2α,
µ{x | µ is not (∗, ε)-plausible for x} < ε(n+O(1)).

This proposition as well as all other statements in this section will be proved in Section 5.
Our main result shows that there are infinitely many non-stochastic strings x for polyno-

mial values of t, t′, 1/ε and logarithmic values of α, α′. This result holds under the following

I Assumption 1. For some language L in NP over the unary alphabet there is no probabilistic
polynomial time machine that for each string x in L finds a certificate for membership
of x in L with probability at least 1/2. Equivalently, for some language L in NE (the
class of languages accepted in time 2O(n) by non-deterministic Turing machines) there is
no probabilistic machine that for each string x in L in time 2O(|x|) finds a certificate for
membership of x in L with probability at least 1/2.

This assumption follows from the assumption NE 6= RE, where RE denotes the class of
languages recognized in time 2O(n) by probabilistic Turing machines that err with probability
at most 1/2 for all strings in the language and do not err for strings outside the language. It
is unknown whether these two assumptions are equivalent or not (see [5]).

I Theorem 8. Under Assumption 1 for some constant d for all c for infinitely many n there
is a string of length n that has no (nc, c logn)-simple (nd, d, n−c)-acceptable hypotheses.

In other words, for the strings x from this theorem, for every (nc, c logn)-simple µ there
is T 3 x recognized by a program of length d in time nd with µ(T ) < n−c. The values of
parameters in this theorem are chosen so that the Majority Principle holds: for any candidate
µ the fraction of strings for which µ is not acceptable is less than 2dn−c which is negligible
for large c and n. And the resources nd, d needed to refute a candidate µ can be even smaller
than resources nc, c logn allowed to sample the candidate µ, as c can be much larger than d.

Later we will compare this result to known results on non-existence of stochastic strings.
The latter exist only for t = t′ = ∗.
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3.2 Super-logarithmic gap between distinguishing complexity and
Kolmogorov complexity

In the proof of Theorem 8 we use the notion of an elusive set, which is interesting in its own
right.

I Definition 9. A language T is called elusive if it is decidable in polynomial time and for all
c for infinitely many n the following holds. T contains at least one word of length n, however
there is no probabilistic machine M with program of length at most c logn and running time
at most nc that with probability at least n−c produces a string of length n from T .

We show that under PI Assumption 1 there exists an elusive set (Theorem 22). Then we
prove that any elusive set has infinitely many non-stochastic strings. There is another
interesting corollary from the existence of elusive sets: there are infinitely many pairs x, r
with CDpoly(n)(x|r)� Cpoly(n)(x|r) (the definition of conditional distinguishing complexity
and conditional Kolmogorov complexity is given in Section 2). More specifically, the following
holds.

I Theorem 10. Under Assumption 1 for some constant d for all c there are infinitely many
strings x with

CDnd

(x|r) 6 Cn
c

(x|r)− c logn

for 98% of r’s of length nd. Here n stands for the length of x. Moreover, under Assumption 2
(see below), in the left hand side of the last inequality, we can replace the conditional
complexity by the unconditional one:

CDnd

(x) < Cn
c

(x|r)− c logn.

I Assumption 2. There is a set that is decidable by deterministic Turing machines in time
2O(n) but is not decidable by Boolean circuits of size 2o(n) for almost all n.

The existence of pairs x, r satisfying the first part of Theorem 10 is known to be
equivalent to the impossibility to separate in polynomial time non-satisfiable Boolean formulas
from those having the unique satisfying assignment [3]. The latter statement (denoted
by (1SAT, SAT ) /∈ P) follows from the assumption NP 6= RP, which is weaker than
Assumption 1, using Valiant and Vazirani Lemma [11].4 For unconditional complexity,
previously it was known that there are strings with CDnd

(x) < Cn
c

(x)− c logn under the
assumption FewP∩ SPARSE * P [3]. Thus the first part of Theorem 10 is not new, however
its second part is.

3.3 A comparison of the notions of acceptability, plausibility and
optimality

I Definition 11. A probability distribution µ is called (t, ε)-optimal for x, if

µ(x) > ε2−Ct(x).

The larger t, ε are, the stronger the notion of (t, ε)-optimality is. Assume that the
distribution µ is (t′, α)-simple for a small α. We will explain that the definition of optimality

4 Thus if (1SAT, SAT ) ∈ P then there are no elusive sets. Is the inverse true?
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makes sense for values of t which are larger than some polynomial of |x|+ t′ and does not
make any sense if, conversely, t′ is larger than some polynomial of |x|+ t.

Consider the following

I Assumption 3. There is a set which is decidable by deterministic Turing machines in time
2O(n) but is not decidable by deterministic Turing machines in space 2o(n) for almost all n.

I Proposition 12. Under Assumption 3 the following holds. There is a constant d such that
for all (t, α)-simple probability distributions µ for all strings x of length n,

logµ(x) 6 −C(n+t)d

(x) + α+ d log(n+ t).

Assume that µ is a (t, ε)-optimal (t′, α)-simple hypothesis for x and t > (n+ t′)d where d
is the constant from Proposition 12. Then logµ(x) differs from the maximal possible value
of logµ′(x) for (t′, α)-simple hypotheses µ′ by at most α + log(1/ε) + d log(n + t′). This
fact provides some justification for the notion of optimality. Another justification for the
definition is the validity of the Majority Principle:

I Proposition 13. For some constant c for all n and all strings x of length n for all
probability distributions µ we have

µ{x | µ is not (∗, ε)-optimal for x} < ε(n+ c).

Conversely, if t′ is larger than some polynomial of |x|+ t then for all strings there is a
simple optimal hypothesis (and thus the notion of optimality becomes trivial).

I Proposition 14. There is a constant c such that for all t every string x of length n has a
((n+ t)c, c log(n+ t))-simple (t, 1)-optimal hypothesis.

Letting T = {x} in the definition of plausibility we can see that plausibility implies
optimality:

I Proposition 15. For all strings x and for all (t, ε)-plausible hypotheses µ for x we have
logµ(x) > −CDt(x) + log ε > −Ct(x) + log ε−O(1).

By Proposition 12 the first inequality in this proposition implies the following

I Proposition 16. Under Assumption 3 there is a constant d such that for every string x of
length n that has a (t1, α)-simple (t2, ε)-plausible hypothesis we have

C(n+t1)d

(x) 6 CDt2(x) + α+ log(1/ε) + d log(n+ t1).

Therefore strings with a large gap between distinguishing complexity and Kolmogorov
complexity do not have simple plausible explanations. From the result of [3] cited above it
follows that (under some complexity theoretic assumptions) for some d for every c there are
infinitely many strings x without (nc, c logn)-simple (nd, n−c)-plausible hypotheses (where n
denotes the length of x).

Thus plausibility implies acceptability and optimality. Is there any implication in the
reverse direction? Assuming the existence of a Pseudo Random Number Generator G :
{0, 1}n → {0, 1}2n we can show that acceptability does not imply neither plausibility, nor
optimality.
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I Assumption 4 (Existence of PRNG). There is a polynomial time computable function
G : {0, 1}∗ → {0, 1}∗, such that |G(s)| = 2|s| and for every sequence of Boolean circuits
{Cn} with 2n inputs and 1 output such that the size of Cn is bounded by a polynomial of n,
the difference of probabilities of events Cn(G(s)) = 1 and Cn(r) = 1 tends to 0 faster than
every inverse polynomial of n (that is, for any polynomial p for all sufficiently large n the
difference of probabilities is less than 1/p(n)). We assume here the uniform distributions
over strings s and r of length n and 2n, respectively.

I Theorem 17. Assume that there is PRNG G : {0, 1}n → {0, 1}2n, as in Assumption 4.
Then for all c for all sufficiently large n for 99% of strings s of length n the uniform
distribution over strings of length 2n is a (nc, c logn, n−c/200)-acceptable hypothesis for
Gn(s).

I Remark. Note that the uniform distribution is neither optimal (Cpoly(n)(x) 6 n+O(1), and
logµ(x) = −2n), nor plausible (recall Example 2) hypothesis for x. By counting arguments
for almost all s for x = Gn(s) it holds CDpoly(n)(x) ≈ Cpoly(n)(x) ≈ C(x) ≈ n. Therefore,
there are strings satisfying Theorem 17 and having the latter property.

Finally, for simple hypotheses µ and for strings with CDpoly(x) ≈ Cpoly(x) optimality
implies plausibility and hence acceptability. However this time we need that µ can be
computed rather than sampled in a short time by a short program.

I Theorem 18. Under Assumption 2 there is a constant c such that the following holds true.
Let µ be a probability distribution µ such that the function x 7→ µ(x) can be computed by a
program of length α in time t. Assume further that µ(x) > ε2−CD(n+t+t1)c

(x), where n is the
length of x and t1 an arbitrary number. Then µ is a (t1, ε2−α−c logn)-plausible hypothesis
for x.

Notice that in this theorem instead of ((n + t + t1)c, ε)-optimality we use a stronger
condition µ(x) > ε2−CD(n+t+t1)c

(x) (with distinguishing complexity in place of Kolmogorov
complexity). However for strings x and t2 with Ct2(x) 6 CD(n+t+t1)c

(x) + β we can replace
that condition by the condition of (t2, ε2β)-optimality of µ for x. Informally speaking, if
Cpoly(x) ≈ CDpoly(x) then optimality for x implies plausibility for x.

3.4 Non-stochastic strings in classical Algorithmic Statistics
In Algorithmic Statistics without resource bounds [4, 6, 7, 8, 12, 13] plausibility of a statistical
hypothesis µ for x is measured by one parameter − logµ(x) − C(x|µ), called randomness
deficiency of x w.r.t. µ. Probability distributions can be represented by the lists of pairs
(a string, its probability) ordered in a standard way. Thus we can talk on conditional
Kolmogorov complexity C(x|µ) and of Kolmogorov complexity C(µ) of µ itself. Up to
an additive constant C(µ) coincides with the length of the shortest program sampling µ
(assuming that the program always halts).

Neglibibility of randomness deficiency is similar to all three our definitions of a good
hypothesis. More specifically the inequality − logµ(x) − C(x|µ) < β is similar to saying
that µ is (∗, α, 2−β)-acceptable, (∗, 2−β)-plausible and (∗, α, 2−β)-optimal for x. However
there is an important difference. The inequality − logµ(x) − C(x|µ) < γ implies that µ
is (∗, γ + O(1))-optimal for x, but not the other way around. If − logµ(x) − C(x|µ) < γ

then for every set T 3 x accepted by a non-deterministic program p we have µ(T ) > 2−|p|−γ .
Conversely, if − logµ(x) − C(x|µ) > γ, then there is a set T 3 x accepted by a short
non-deterministic program (of length about C(µ)) with µ(T ) 6 2−γ .

CCC 2017
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In contrast, both the notion of (∗, γ)-plausibility and the notion of (∗, α, ε)-acceptability
are defined by means of deterministic recognizing machines. Thus − logµ(x)− C(x|µ) < γ

implies (∗, γ)-plausibility but not the other way around (with logarithmic accuracy: the
inequality − logµ(x)− C(x|µ) < γ implies only (∗, γ +O(logn))-plausibility.)

A string x is called Kolmogorov (α, β)-stochastic if there is a probability distribution
µ with C(µ) 6 α and − logµ(x) − C(x|µ) 6 β. As we have just explained, Kolmogorov
(α, β)-stochasticity implies the existence of a (∗, α)-simple (∗, 2−β)-plausible (and hence
(∗, α2, 2−β−α2)-acceptable for all α2) hypothesis. (Again we ignore logarithmic terms.)

Shen proved the existence of Kolmogorov (α, β)-non-stochastic string for α, β that are
linear in n:

I Theorem 19 ([10]). For some constant c for all n and all α, β, with 2α+ β < n− c logn,
there is a Kolmogorov (α, β)-non-stochastic string of length n.

As we have mentioned, this statement does not imply the existence of non-stochastic strings
in our sense (even for very large values of time parameters). However the techniques of [10]
can be used to prove the following:

I Theorem 20. For all n and all α, β with α+ β < n there is a string of length n that has
no (∗, α)-simple (∗, α+O(logn), 2−β)-acceptable hypotheses.

It is not hard to see that Theorem 20 implies Theorem 19. Later the term 2α in
Theorem 19 was replaced with α:

I Theorem 21 ([13]). For some constant c for all n and all α, β, with α+ β < n− c logn,
there is a Kolmogorov (α, β)-non-stochastic string of length n.

This result is optimal up to logarithmic terms. Indeed, for all x of length n and all α 6 n

the uniform distribution µ over strings of length n that have the same α first bits as x, has
complexity about α and randomness deficiency at most n− α:

− logµ(x)− C(x|µ) = n− α− C(x|µ) 6 n− α.

So using the known methods we can show the existence of strings of length n that have no
(∗, α1)-simple (∗, α2, ε)-acceptable hypotheses for α1, log(1/ε) = Ω(n) and for α2 which are
only logarithmically larger than α1. It is essential for those methods that the running time
can be arbitrary large and hence they cannot be used in the case when the running time is
bounded by a polynomial of the length.

The notion of an optimal hypothesis is also borrowed from the classical Algorithmic
Statistics. A distribution µ with small Kolmogorov complexity is called optimal if logµ(x)
is close to −C(x), which is equivalent to saying that the randomness deficiency is small.
However, optimality was studied also for distribution µ with large Kolmogorov complexity,
in which case optimality was defined as logµ(x) ≈ C(µ) − C(x). Using the Symmetry of
Information, we can show that the randomness deficiency never exceeds the ‘optimality
deficiency’ C(µ)−C(x)−logµ(x), but not the other way around [13]. However in the definition
of Kolmogorov stochasticity, we can use the optimality deficiency instead of randomness
deficiency: for a string of length n there is an ∗, α-simple hypothesis with optimality deficiency
less than β if and only if the string is Kolmogorov α, β-stochastic. More accurately, both
directions ‘if’ and ‘only if’ hold up to adding some terms of order O(logn) to parameters
α, β [13].



A. Milovanov and N. Vereshchagin 17:11

4 Open questions

I Question 1. Under which other assumptions (different from Assumption 1) there are non-
stochastic strings and elusive sets? Under which other assumptions (different (1SAT, SAT ) ∈
P and P =PSPACE) there are no elusive sets and all strings are stochastic?

I Question 2. Let us replace in the definitions of a plausible and acceptable hypothesis
deterministic machines by non-deterministic ones. Do the notions of a plausible and acceptable
hypothesis and of stochastic string become stronger?

I Question 3. Are there strings that do not possess simple optimal hypotheses?

I Question 4. How acceptability is related to optimality for strings x with CDpoly(x) �
Cpoly(x)?

I Question 5. Are there non-stochastic strings with polynomial bounds for time and linear
bounds for program length: is it true that for some c and ε < 1 for all d and all δ < 1 for all
but finitely many n every string x of length n has an (nc, εn)-simple (nd, δn, n−c)-acceptable
hypothesis?

5 The proofs

5.1 Proof of Proposition 7
The first inequality: the number of sets recognized by a program of length less than α is less
than 2α and each such set contains a fraction at most ε of all n-bit strings w.r.t. µ.

The second inequality: w.l.o.g. we may consider only sets T recognized by programs of
length less than n + c (for some constant c). Indeed, assume that a set T 3 x witnesses
implausibility of µ for x and is recognized by a program of length l > n + c. Then
µ(x) 6 µ(T ) 6 ε2−n−c. Thus the set {x}, whose complexity is less than n + c, witnesses
implausibility of µ for x (if c is large enough). Then we can repeat the arguments from the
previous paragraph: for every fixed l any set T recognized by a program of length l refutes a
fraction at most ε2−l of all strings and the number of programs of length l is 2l, thus all
together they refute a fraction at most ε of strings of length n.

5.2 Proof of Theorem 8
I Theorem 22. Under Assumption 1 there exists an elusive set.

Proof. Fix a language L over the unary alphabet {1} satisfying Assumption 1. Since L ∈ NP,
it can be represented in the form

L = {1k | ∃x ∈ {0, 1}k
c

R(1k, x)},

where c > 0 is a natural number and R a relation decidable in time poly(k).
Consider the set

T = {x ∈ {0, 1}k
c

| R(1k, x)}.

Obviously T can be recognized in polynomial time. Let us show that T is elusive.
Let d be any constant. For the sake of contradiction assume that for some m for all

k > m with 1k ∈ L there is a program Mk of length d log kc that, with probability at least
k−cd, in time kcd prints a string from T of length kc. To obtain a contradiction we construct
the following probabilistic algorithm that finds in polynomial time with failure probability at
most 1/2 a certificate for membership of an input string 1k in L:
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The algorithm. On input 1k we run all randomized programs of length d log kc in kcd steps.
Each program is run kcd times. For each string x output by any of those programs we check
the equality R(1k, x) = 1. If the equality holds true for at least one of those x’s, we output
any such x. (The end of the Algorithm.)

This algorithm runs in polynomial time. Let us bound the probability of failure on any
input 1k ∈ L. We assume that for all 1k ∈ L with k > m there is a randomized program of
length d log kc that produces a string from T with probability at least k−cd. The probability
that kcd times its output falls outside T is less than (1− k−cd)kcd

6 1/e. Therefore for all
k > m the algorithm fails with probability at most 1/e, which is a contradiction. J

Proof of Theorem 8. By Theorem 22 there is an elusive set T . For some d there is a machine
with program of length at most d recognizing T in time nd.

Let T=n denote the set of all strings of length n from T . For every n such that T=n 6= ∅
pick any string xn from T=n. We claim that for any constant c for infinitely many n the
string xn does not have (nc, c logn)-simple (nd, d, n−c)-acceptable hypotheses.

For the sake of contradiction assume that for somem for all n > m there is such hypothesis
µn. As xn ∈ T and T is recognized by a program of length at most d in time nd we have
µ(T ) > n−c. Thus for each such n the probabilistic program of length less than c logn
sampling the distribution µn in time nc produces a string from T with probability at least
n−c, which contradicts the assumption that T is elusive. J

5.3 Proof of Theorem 10
I Proposition 23. Assume that L is an elusive set. Then for all constants c there is a
constant d such that there are infinitely many x ∈ L with

CDnd

(x|r) 6 Cn
c

(x|r)− c logn

for 99% of strings r of length nd. Here n denotes the length of x.

This proposition follows from Sipser’s lemma.

I Lemma 24 ([9]). For every language L recognizable in polynomial time there is a constant
d such that for all n for 99% of strings r of length nd and all x ∈ L=n we have

CDnd

(x|r) 6 log |L=n|+ d logn.

Proof Proposition 23. Let d be the constant from Sipser’s Lemma applied to the given
elusive language L. Let c be an arbitrary constant. By Sipser’s lemma it suffices to show
that log |L=n|+ d logn is less than the right hand side of the inequality we have to prove.
More precisely, we have to show that

log |L=n|+ d logn 6 Cn
c

(x|r)− c logn

for infinitely many x ∈ L and for 99% of r of length nd.
For the sake of contradiction assume that for some m for all n > m for all x ∈ L=n we

have

Cn
c

(x|r) < log |L=n|+ (c+ d) logn

for at least 1% of r’s. For any such n consider the program Mn of probabilistic machine that
samples a random string w of length less that log |L=n|+ (c+ d) logn (all such strings are
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equiprobable) and a string r of length nd. Then Mn considers w as a program of a string
conditional to r, runs that program in nc steps and outputs its result (if any). Thus Mn

outputs every x ∈ L=n with probability at least 1/(100|L=n|nc+d). And hence for all n > m

with non-empty L=n the output Mn falls in L=n with probability at least

|L=n|/(100|L=n|nc+d) = 1/100nc+d.

This contradicts the assumption that L is an elusive set, as Mn runs in time poly(n) and its
program length is O(logn). J

The first part Theorem 10 follows immediately from Theorem 22 and Proposition 23. Let
us prove the second part of Theorem 10. In [14], it was shown that under Assumption 2 we
can replace in Sipser’s lemma conditional complexity by the unconditional one.

I Theorem 25 (Theorem 3.2 in [14]). Under Assumption 2 for all L ∈ PSPACE/poly there
is a constant d such that for all x ∈ L=n we have

CDnd,L=n

(x) 6 log |L=n|+ d logn.

Moreover the constant d depends only on the length of the advice string for L and on the
space bound for L.

In the notation CDnd,L=n

(x) the superscript L=n means that the distinguishing program is
granted the access to an oracle for L=n. If L is decidable on polynomial space we can drop
this superscript.

Combining this theorem with the proof of Proposition 23 and Theorem 22 we obtain the
proof of the second part of Theorem 10.

I Remark. In [3], a weaker result is derived from an assumption that is not comparable with
our one:

I Theorem 26 ([3]). Assume that FewP ∩ SPARSE * P. Then for some constant d for all
c for infinitely many x we have

CDnd

(x) < Cn
c

(x)− c logn.

Here n denotes the length of x.

I Remark. In [3], the following relation between (1 SAT, SAT) and distinguishing complexity
was discovered:

I Theorem 27 ([3]). The following are equivalent:
(1) (1SAT, SAT ) /∈ P.
(2) For some d for all c there are x and y with

CD(|x|+|y|)d

(x|y) 6 C(|x|+|y|)c

(x|y)− c log(|x|+ |y|).

From Theorem 27 and Theorem 10 we obtain the following implication NE 6⊆ RE ⇒
(1SAT, SAT ) 6∈ P, which is not surprising since (1SAT, SAT ) ∈ P implies NP = RP using
the Valiant–Vazirani Lemma.
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5.4 Proof of Proposition 12
I Definition 28. A probability distribution σ over {0, 1}∗ is called P-samplable, if there
is a program of randomized machine that samples this distribution in time bounded by a
polynomial of the length of the output.

I Theorem 29 (Lemma 3.2 in [1]). Under Assumption 3 for every P-samplable probability
distribution σ there is a d such that for all x of length n,

Cn
d

(x) 6 − log σ(x) + d logn.

Proof of Proposition 12. Assume that µ is sampled by a program q of length less than α
in time t. Assume that α < n as otherwise the statement is obvious (the complexity of x
with a polynomial time bound does not exceed its length).

Consider the following P-samplable probability distribution σ: we choose a random t

with probability proportional to 1/t2, then we choose a random program q′ of a randomized
machine with probability proportional to 2−|q′|/|q′|2, run that program in t steps and output
the triple (1t, q′, x), where x is the result of q′ (if any, and the empty string otherwise). The
triple (1t, q′, x) is encoded in such a way that the code length be polynomial in t+ |q′|+ |x|.
By Theorem 29

C|y|
d

(y) 6 − log σ(y) + d log |y|

for some constant d and all y. Letting y = (1t, q, x), we obtain

C|(1t,q,x)|d(1t, q, x) 6 − log σ(1t, q, x) + c log |(1t, q, x)|
6 2 log t+ α+ 2 logα− logµ(x) +O(log(t+ |x|)).

Since the complexity of any entry of a tuple does not exceed the complexity of the tuple
itself, we get the sought inequality. J

5.5 Proof of Proposition 13
Indeed, if µ is not ∗, β-optimal for x, then µ(x) < 2−β−C(x). The sum of probabilities of all
such words is less than ε times the sum of 2−C(x) over all x of length n. The latter sum is
less than n+O(1), since C(x) 6 n+O(1) for all x of length n and for all fixed k the sum of
2−C(x) over all x with C(x) = k is at most 1 (there are at most 2k such x’s).

5.6 Proof of Proposition 14
Consider the machine that chooses a random program of length Ct(x) (with uniform dis-
tribution), runs it in t steps and outputs its result (if any). The program of this machine
has length O(log(n+ t)) and its running time is bounded by a polynomial in t+ n. With
probability at least 2−Ct(x) that machine prints x hence it samples a probability distribution
µ that is poly(n+ t), 1-optimal for x.

5.7 Proof of Theorem 17
Fix an arbitrary constant c. For any set Tn of strings of length 2n recognizable by a program
of length less than c logn in time nc we can construct a Boolean circuit Cn recognizing
that set whose size is bounded by a polynomial of n (that polynomial depends only on c).
Therefore there is a function ε(n) that tends to 0 faster than any inverse polynomial of n
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and such that the probabilities of events Gn(s) ∈ Tn and r ∈ Tn differ at most by ε(n) for
any such set Tn.

For the sake of a contradiction assume that for infinitely many n for 1% of strings s of
length n there is a set Ts recognizable by a program of length less than c logn in time nc
with Pr[r ∈ Ts] < n−c/200. Consider the union Tn of all such sets. Since Gn(s) ∈ Tn for
all such s, the probability of event Gn(s) ∈ Tn is at least 1/100. On the other hand, the
probability of event r ∈ Tn is less than 2c logn (the number of sets Ts) times n−c/200, which
equals 1/200. Thus the difference of probabilities of events r ∈ Tn and Gn(s) ∈ Tn is greater
than 1/200.

Recall now that for each n probabilities of events Gn(s) ∈ Ts and r ∈ Ts differ by at
most ε(n), which tends to 0 faster than any inverse polynomial of n. The number of Ts is
less than 2c logn. Thus we obtain the inequality 2c lognε(n) > 1/200 for infinitely many n,
which is a contradiction.

5.8 Proof of Theorem 18
First we derive a corollary from Theorem 25.

I Corollary 30. Under Assumption 2 for some constant d for all n for every program q of
length at most 3n that recognizes a set T ⊂ {0, 1}n in time t, for all x ∈ T we have

CD(n+t)d

(x) 6 log |T |+ |q|+ d log(n+ t).

Proof. Fix any sequence of strings qn with qn 6 3n. Let

L =
⋃
n,t

Tn,t, where Tn,t = {0[n,t]−n1x | |x| = n, qn(x) = 1 in time t}.

Here [n, t] – denotes a polynomial computing a 1-1-mapping from pairs of natural numbers
to natural numbers such that [n, t] > n, t. Given the length of any word from Tn,t we can
compute n and t in polynomial time. Therefore L ∈ P/3n and L=([n,t]+1) = Tn,t. Hence we
can apply Theorem 25 to L and conclude that

CD([n,t]+1)d,qn(0[n,t]−n1x) 6 log |Tn,t|+ d log(n+ t)

for all t, for all x of length n and all sequences {qn} as above. The constant d does not
depend on {qn}, therefore this inequality holds for all n, t, for all x of length n and all q 6 3n.
Plug into this inequality t, q, n, x from the conditions of theorem. We obtain

CD([n,t]+1)d,q(0[n,t]−n1x) 6 log |T |+ d log(n+ t).

It remains to append to the program of this length distinguishing 0[n,t]−n1x from other
strings the information about n, t and q. In this way we get a distinguishing program for
x of length log |T |+ |q|+O(log(n+ t)) with running time poly(n, t) that does not need an
oracle for T . J

Proof of Theorem 18. Assume the contrary: there is T 3 x recognizable by a program of
length l in time t1 with µ(T ) < ε2−l−α−c logn (where the constant c will be chosen later).
Then consider the set T ′ = {x′ ∈ T | µ(x′) > 2−i} where −i stands for the integer part of
the binary logarithm of µ(x). This set has at most µ(T )2i 6 2µ(T )/µ(x) strings (of length
n) and can be recognized in time t+ t1 by a program of length α+ l +O(log log(1/µ(x))).
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W.l.o.g. we may assume that µ(x) > 2−n and that α, l 6 n. Thus the length of that program
is less than 3n. Corollary 30 implies that for some constant d

CD(n+t+t1)d

(x) 6 logµ(T )− logµ(x) + α+ l + d logn,

that is,

logµ(x) 6 −CD(n+t+t1)d

(x) + α+ l + logµ(T ) + d logn

6 −CD(n+t+t1)d

(x) + α+ l + log ε− l − α− c logn+ d logn

= gCD(n+t+t1)d

(x) + log ε− c logn+ d logn.

Let c = d+ 1. Then the last inequality implies that

logµ(x) < −CD(n+t+t1)d

(x) + log ε 6 −CD(n+t+t1)c

(x) + log ε,

which contradicts the condition of the theorem. J

Proof of Theorems 20 and 19
Proof of Theorem 20. For every µ sampled by a program of length < α consider the set
of all x′ satisfying the inequality µ(x′) > 2−β . For any fixed µ there at most 2β such x′

(otherwise the sum of their probabilities would exceed 1). Therefore the total number of
strings in all such sets is less than

2α2β < 2n.

Here the first factor is an upper bound for the number of µ and the second factor the number
of x′ for a fixed µ.

Let x by the lex first string of length n outside all such sets. Its Kolmogorov complexity
is at most α + O(logn), as we can find it from the number N of distributions µ sampled
by a program of length < α and from parameters α, β (from α and N we can find all
such distributions by running in parallel all programs of length less than α until we find
N distributions; then for every of the distributions µ we can find the set of strings x′ with
µ(x′) > 2−β).

Let us show that x does not possess (∗, α)-simple (∗, α + O(logn), 2−β)-acceptable
hypotheses. Assume that µ is sampled by a program of length < α. Consider the set T = {x}.
Its complexity is at most α+O(logn) and µ-probability is less than 2−β by construction.
Hence the set T witnesses that µ is not acceptable for x. J

Proof of Theorem 19. Assume that α′, β′ satisfy the inequality 2α′+β′+ c logn < n where
c is the constant hidden in the O-notation in Theorem 20 (actually a little larger). Let in
Theorem 20 α = α′ and β = β′ + α′ + c logn. If the word x existing by Theorem 20 were
Kolmogorov (α′, β′)-stochastic, then it would have (∗, α′)-simple (∗, α2, 2−β

′−α2)-acceptable
hypothesis for all α2. Letting α2 = α+ c logn, we would derive that x has an (∗, α)-simple
(∗, α+c logn, 2−β)-acceptable hypothesis, which contradicts the statement of Theorem 20. J

6 Non-stochastic strings and P=PSPACE

In this section we show why we need some complexity-theoretic assumption in Theorem 8 –
its statement implies P 6=PSPACE (Theorem 31). In other words, P=PSPACE implies that
the conclusion in Theorem 8 is false. However, this is due to the fact that, in Theorem 8, the
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length of a program (and its running time) recognizing the refutation set T does not depend
on program length and time to sample the distribution. If we allow the former depend
on the latter then, on the contrary, P=PSPACE implies that non-stochastic strings exist
(Theorem 32).

I Theorem 31. Assume that P=PSPACE. Then for every c there is d for which every
string of length n has an (nd, 2 logn)-simple (nc, c logn, n−d)-acceptable hypothesis.

Proof. Fix a constant c. Define sets A0, A1, . . . recursively: A0 = {0, 1, }n and for i > 0 let

Ai = {x ∈ Ai−1 | ∃ (nc, c logn, n−c)-simple T 3 x |T ∩Ai−1| 6 2nn−i−c}.

The definition of Ai implies that it has at most 2nn−i words. Indeed, there are less than nc
(nc, c logn)-simple sets and each of them contributes at most 2nn−i−c strings to Ai.

Thus An is empty. On the other hand, A0 = {0, 1}n, therefore for every string x of length
n there is i 6 n with x ∈ Ai \Ai+1. For a given x fix such i and consider the distribution µi
sampled as follows. Sample a random j 6 2nn−i and output jth in the lexicographical order
word from Ai (if there is no such word, then the last one, say).

Assume that there is an (nc, c logn)-simple T 3 x with µi(T ) < n−d. The probability of
each string from Ai is at least 2−nni hence we have

|Ai ∩ T | < n−d2nn−i 6 2nn−(i+1)−c

(the last inequality holds provided d > c + 1). Hence x ∈ Ai+1, which contradicts to the
choice of i.

It remains to show that µi is (nd, 2 logn)-simple provided d is large enough. The
distribution µi can be identified by numbers n, i, hence there is a program of length 2 logn
sampling µi. Given the index of a string x in Ai we can find x on the space polynomial in n
and nc. Under assumption P=PSPACE, we can do it in time polynomial in n and nc and
hence µi is (nd, 2 logn)-simple for some d. J

In this theorem the time nd to sample an (nc, c logn, n−d)-acceptable hypothesis µ for x
can be much larger than the time nc allowed to refute µ. Does a similar statement hold for
d that does not depend on c? The next theorem answers this question in the negative.

I Theorem 32. Assume that P=PSPACE. Then for some constant e for every n, α, t there is
a string of length n that has no (t, α)-simple ((α+t+n)e, α+2 log t+2 logn, 2−n+α)-acceptable
statistical hypotheses.

Plugging t = nd and α = d logn we get, for each n, a string of length n with no
(nd, d logn)-simple (ned, (2d + 2) logn, 2−n+d logn)-acceptable hypotheses. Thus for any d
for some c = O(d) there are infinitely many strings which have no (nd, 2 logn)-simple
(nc, c logn, n−d)-acceptable hypotheses.

Proof. Let µtp denote the probability distribution sampled by a program p in time t. Consider
the arithmetic mean of all (t, α)-simple distributions: µ(x) = 2−α

∑
|p|<α µ

t
p(x). Let x stand

for the lex first string of length n such that µ(x) 6 2−n. This string can be found on space
poly(n + t + α). Using the assumption P=PSPACE we conclude that x can be found in
time p(n+ t+ α) from t, α, n, where p is a polynomial.

We claim that x has has no (t, α)-simple (p(α+t+n), α+2 log t+2 logn, 2−n+α)-acceptable
statistical hypotheses. For the sake of contradiction assume that µtp is such a hypothesis
for x. By construction we have µtp(x) 6 2−n+α and hence the singleton set T = {x} has
small probability. It can be recognized in time p(α+ t+ n) by a program of length less than
α+ 2 log t+ 2 logn, consisting of t and n in the self-delimiting encoding followed by p. J
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I Remark. Assume that, in the definitions of a simple and acceptable hypothesis, we
would restrict space instead of time. Then in Theorems 31 and 32 we would not need any
assumptions.

References
1 L. Antunes and L. Fortnow, Worst-Case Running Times for Average-Case Algorithms. In

Proceedings of the 24th IEEE Conference on Computational Complexity, pages 298–303.
IEEE, 2009.

2 H. Buhrman, L. Fortnow, and S. Laplante, Resource-Bounded Kolmogorov Complexity
Revisited. SIAM Journal on Computing, 31(3):887–905. 2002.

3 L. Fortnow and M. Kummer, On resource-bounded instance complexity. Theoretical Com-
puter Science, vol. 161, issues 1–2, pages 123–140, 1996.

4 P. Gács, J. Tromp, and P.M.B. Vitányi, Algorithmic statistics. IEEE Transactions on
Information Theory, v. 47, no. 6, pages 2443–2463, 2001.

5 R. Impagliazzo and G. Tardos, Decision versus search problems in super-polynomial time.
In Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pages
222–227, 1989.

6 A.N. Kolmogorov, The complexity of algorithms and the objective definition of randomness.
Summary of the talk presented April 16, 1974 at Moscow Mathematical Society. Uspekhi
matematicheskikh nauk, Russia, 29(4[178]), 155, 1974.

7 M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications.
3rd ed., Springer, New York, 2008.

8 A. Shen, V. Uspensky, and N. Vereshchagin, Kolmogorov complexity and algorithmic ran-
domness. MCCME, 2013 (Russian). English translation: URL: http://www.lirmm.fr/
~ashen/kolmbook-eng.pdf

9 M. Sipser, A complexity theoretic approach to randomness. In Proceedings of the 15th ACM
Symposium on the Theory of Computing, pages 330–335, 1983.

10 A. Shen, The concept of (α, β)-stochasticity in the Kolmogorov sense, and its properties.
Soviet Math. Dokl., v. 28, no. 1, pages 295–299, 1983.

11 L. Valiant and V. Vazirani, NP is as easy as detecting unique solutions. Theoretical Com-
puter Science, 47:85–93, 1986.

12 Nikolay K. Vereshchagin and Alexander Shen, Algorithmic Statistics: Forty Years Later.
Computability and Complexity 2017:669–737, 2017.

13 N.K. Vereshchagin and P.M.B. Vitányi, Kolmogorov’s structure functions with an applic-
ation to the foundations of model selection, IEEE Transactions on Information Theory,
vol. 50, no. 12, pages. 3265–3290, 2004.

14 N.V. Vinodchandran and M. Zimand, On Optimal Language Compression for Sets in
PSPACE/poly. Theory of Computing Systems, 56:581, 2015.

http://www.lirmm.fr/~ashen/kolmbook-eng.pdf
http://www.lirmm.fr/~ashen/kolmbook-eng.pdf

	Introduction
	Preliminaries
	Our results and their comparison to the previous ones
	Existence of non-stochastic strings
	Super-logarithmic gap between distinguishing complexity and Kolmogorov complexity
	A comparison of the notions of acceptability, plausibility and optimality
	Non-stochastic strings in classical Algorithmic Statistics

	Open questions
	The proofs
	Proof of Proposition 7
	Proof of Theorem 8
	Proof of Theorem 10
	Proof of Proposition 12
	Proof of Proposition 13
	Proof of Proposition 14
	Proof of Theorem 17
	Proof of Theorem 18

	Non-stochastic strings and P=PSPACE

