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Abstract: The paper is concerned with the asymptotic behaviour of the number mi(𝑇𝑞,𝑛) of maximal in-
dependent sets in a complete 𝑞-ary tree of height 𝑛. For some constants 𝛼2 and 𝛽2 the asymptotic formula
mi(𝑇2,𝑛) ∼ 𝛼2 ⋅ (𝛽2)

2𝑛 is shown to hold as 𝑛→∞. It is also proved thatmi(𝑇𝑞,3𝑘) ∼ 𝛼
(1)
𝑞 ⋅ (𝛽𝑞)

𝑞3𝑘 ,mi(𝑇𝑞,3𝑘+1) ∼
𝛼(2)𝑞 ⋅ (𝛽𝑞)

𝑞3𝑘+1 ,mi(𝑇𝑞,3𝑘+2) ∼ 𝛼(3)𝑞 ⋅ (𝛽𝑞)𝑞3𝑘+2 as 𝑘 →∞ for any sufficiently large 𝑞, some three pairwise distinct
constants 𝛼(1)𝑞 , 𝛼

(2)
𝑞 , 𝛼
(3)
𝑞 and a constant 𝑏𝑞.
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1 Introduction
An independent set in a graph is an arbitrary set of its pairwise nonadjacent vertices. An independent set in
a graph ismaximal if it is maximal under inclusion.We shall write “m.i.s.” to abbreviate the phrase “maximal
independent set”. The number of independent sets (respectively, maximal independent sets) in a graph𝐺 is
usually denoted by 𝑖(𝐺) (respectively,mi(𝐺)).

The asymptotic behaviour of independent sets in graphs from parametrically defined classes (as a func-
tion of the class parameters) was extensively studied. Korshunov and Sapozhenko [3] found the asymp-
totic behaviour of the number of independent sets in the 𝑛-dimensional cube. Kalkin and Wilf obtained
the weak asymptotic formula for the number of independent sets in a complete grid graph [4]. Voronin and
Demakova [1] found the asymptotic behaviour of the number of independent sets in complete binary trees.
The case of complete 𝑞-ary trees was considered by Kirschenhofer, Prodinger, and Tichy. Let 𝑇𝑞,𝑛 denote the
complete 𝑞-ary tree of height 𝑛. Kirschenhofer, Prodinger, and Tichy [5] showed that there exist constants
𝛽𝑞, 𝛼

𝑞, 𝛼

𝑞,1, 𝛼

𝑞,2 (𝛼

𝑞,1 ̸= 𝛼


𝑞,2) such that, for any 𝑞 ∈ {2, 3, 4}, 𝑖(𝑇𝑞,𝑛) ∼ 𝛼


𝑞 ⋅ (𝛽

𝑞)
𝑞𝑛 as 𝑛→∞ and for any 𝑞 ≥ 5

𝑖(𝑇𝑞,2𝑘) ∼ 𝛼

𝑞,1 ⋅ (𝛽


𝑞)
𝑞2𝑘 and 𝑖(𝑇𝑞,2𝑘+1) ∼ 𝛼𝑞,2 ⋅ (𝛽𝑞)𝑞2𝑘+1 as 𝑘 →∞.

The purpose of the present paper is to examine the behaviour of mi(𝑇𝑞,𝑛) as 𝑛 → ∞ as a function
of 𝑞 ≥ 2. The main results are as follows.

Theorem 1. There exist constants 𝛼2 and 𝛽2 such thatmi(𝑇2,𝑛) ∼ 𝛼2 ⋅ (𝛽2)
2𝑛 as 𝑛→∞.

Theorem 2. For any sufficiently large𝑞 there exist three pairwise distinct constants𝛼(1)𝑞 , 𝛼
(2)
𝑞 , 𝛼
(3)
𝑞 anda constant

𝑏𝑞 such that

mi(𝑇𝑞,3𝑘) ∼ 𝛼
(1)
𝑞 ⋅ (𝛽𝑞)

𝑞3𝑘 , mi(𝑇𝑞,3𝑘+1) ∼ 𝛼(2)𝑞 ⋅ (𝛽𝑞)𝑞3𝑘+1 , mi(𝑇𝑞,3𝑘+2) ∼ 𝛼(3)𝑞 ⋅ (𝛽𝑞)𝑞3𝑘+2
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as 𝑘 →∞.

2 The asymptotic formula for the number of m.i.s. in the trees 𝑇𝑞,𝑛
In this section we shall prove Theorems 1 and 2. The proofs are not partitioned into lemmas and theorems,
but will be rather given as subsections, each of which constitutes a separate conceptual part of the general
argument.

2.1 The derivation of the recurrence relation for the number of m.i.s. in the trees 𝑇𝑞,𝑛
We setmi(𝑞, 𝑛) = mi(𝑇𝑞,𝑛). Next, we denote bymi+(𝑞, 𝑛) the number of m.i.s. in the tree 𝑇𝑞,𝑛 of which each
set contains its root 𝑟 and denote by mi−(𝑞, 𝑛) the number of m.i.s. in the tree 𝑇𝑞,𝑛 of which each does not
contain the vertex 𝑟. It is clear thatmi(𝑞, 𝑛) = mi+(𝑞, 𝑛) +mi−(𝑞, 𝑛).

Let𝑀𝐼𝑆 be somem.i.s. of the tree𝑇𝑞,𝑛. By removing the root 𝑟 of the tree𝑇𝑞,𝑛 and removing all the descen-
dants of 𝑟 we get a set of 𝑞2 subtrees of the tree 𝑇𝑞,𝑛, in which each subtree is isomorphic to 𝑇𝑞,𝑛−2. Hence, if
𝑟 ∈𝑀𝐼𝑆, then the set𝑀𝐼𝑆\{𝑟} is a disjoint union of 𝑞2 sets ofwhich each is anm.i.s. of its subtree𝑇𝑞,𝑛−2. Con-
versely, if in each of given 𝑞2 subtrees we takem.i.s. and augment the union of these sets by the vertex 𝑟, then
we obtain some m.i.s. of the tree 𝑇𝑞,𝑛 that contains the vertex 𝑟. Hence we havemi+(𝑞, 𝑛) = (mi(𝑞, 𝑛 − 2))

𝑞2 .
Removing the root 𝑟 from the tree 𝑇𝑞,𝑛 we get the set of 𝑞 subtrees of which each is isomorphic to 𝑇𝑞,𝑛−1.

If 𝑟 ̸∈𝑀𝐼𝑆, then𝑀𝐼𝑆 contains one root of some subtree from this set of 𝑞 subtrees, because𝑀𝐼𝑆 is maximal
under inclusion.

Conversely, if in each of these 𝑞 subtrees one takes an m.i.s., assuming that at least one of these
sets contains the root of its subtree, then the union of these sets gives an m.i.s. of the tree 𝑇𝑞,𝑛 that
does not contain the vertex 𝑟. Hence mi−(𝑞, 𝑛) is the difference between the number of ways to choose
a family of 𝑞 sets of which each is an m.i.s. of the tree isomorphic to 𝑇𝑞,𝑛−1 and the number of ways to choose
a family of 𝑞 sets of which each is anm.i.s. of the tree isomorphic to𝑇𝑞,𝑛−1 andwhich does not contain its root.
Hencemi−(𝑞, 𝑛) = (mi(𝑞, 𝑛 − 1))

𝑞 − (mi−(𝑞, 𝑛 − 1))
𝑞. This equality (which depends on the above equality

mi+(𝑞, 𝑛 − 1) = (mi(𝑞, 𝑛 − 3))
𝑞2 ) may be rewritten as follows:

mi−(𝑞, 𝑛) = (mi(𝑞, 𝑛 − 1))
𝑞 − (mi−(𝑞, 𝑛 − 1))

𝑞 =
= (mi(𝑞, 𝑛 − 1))𝑞 − (mi(𝑞, 𝑛 − 1) −mi+(𝑞, 𝑛 − 1))

𝑞 =

= (mi(𝑞, 𝑛 − 1))𝑞 − (mi(𝑞, 𝑛 − 1) − (mi(𝑞, 𝑛 − 3))𝑞
2
)𝑞.

Combining the above relations formi+(𝑞, 𝑛) andmi−(𝑞, 𝑛), we find that

mi(𝑞, 𝑛) = (mi(𝑞, 𝑛 − 2))𝑞
2
+ (mi(𝑞, 𝑛 − 1))𝑞 − (mi(𝑞, 𝑛 − 1) − (mi(𝑞, 𝑛 − 3))𝑞

2
)𝑞. (1)

It is easily checked thatmi(𝑞, 0) = 1,mi(𝑞, 1) = 2,mi(𝑞, 2) = 2𝑞.

2.2 Particular solution of the resulting recurrence relation

In order to partially solve equation 1) with given initial conditions, we consider the quantity
𝑎(𝑞, 𝑛) ≜ mi(𝑞,𝑛)

(mi(𝑞,𝑛−1))𝑞 .
It is clear that

(mi(𝑞, 𝑛 − 2))𝑞
2

(mi(𝑞, 𝑛 − 1))𝑞
=

1
(𝑎(𝑞, 𝑛 − 1))𝑞

and
(mi(𝑞, 𝑛 − 3))𝑞

2
mi(𝑞, 𝑛 − 1)

=
1

𝑎(𝑞, 𝑛 − 1) ⋅ (𝑎(𝑞, 𝑛 − 2))𝑞
.
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Hence equality (1) and its initial conditions may be rewritten as follows:

𝑎(𝑞, 𝑛) =
1

(𝑎(𝑞, 𝑛 − 1))𝑞
+ 1 − (1 −

1
𝑎(𝑞, 𝑛 − 1) ⋅ (𝑎(𝑞, 𝑛 − 2))𝑞

)
𝑞

,

𝑎(𝑞, 1) = 2, (2)
𝑎(𝑞, 2) = 1.

It is easily verified (for example, using induction on 𝑛) that for any 𝑞 the sequence {𝑎(𝑞, 𝑛)} is bounded from
above and below.

Since 𝑎(𝑞, 𝑛) = mi(𝑞,𝑛)
(mi(𝑞,𝑛−1))𝑞 , we have ln(𝑎(𝑞, 𝑛)) = ln(mi(𝑞, 𝑛)) − 𝑞 ⋅ ln(mi(𝑞, 𝑛− 1)). Hence, for any 𝑛 ≥ 3

and any 𝑖 ∈ {0, . . . , 𝑛 − 3} we have

𝑞𝑖 ⋅ ln(𝑎(𝑞, 𝑛 − 𝑖)) = 𝑞𝑖 ⋅ ln(mi(𝑞, 𝑛 − 𝑖)) − 𝑞𝑖+1 ⋅ ln(mi(𝑞, 𝑛 − 𝑖 − 1)).

As a result, ln(mi(𝑞, 𝑛)) − 𝑞𝑛−2 ⋅ ln(mi(𝑞, 2)) =
𝑛−3
∑
𝑖=0
(ln(𝑎(𝑞, 𝑛 − 𝑖)) ⋅ 𝑞𝑖) for any 𝑛 ≥ 3. In other words,

ln(mi(𝑞, 𝑛)) =
𝑛

∑
𝑖=3
(ln(𝑎(𝑞, 𝑖)) ⋅ 𝑞𝑛−𝑖) = 𝑞𝑛 ⋅

𝑛

∑
𝑖=3
(ln(𝑎(𝑞, 𝑖)) ⋅ 𝑞−𝑖) =

= 𝑞𝑛 ⋅ (
∞

∑
𝑖=3
(ln(𝑎(𝑞, 𝑖)) ⋅ 𝑞−𝑖) −

∞

∑
𝑖=𝑛+1
(ln(𝑎(𝑞, 𝑖)) ⋅ 𝑞−𝑖)) =

= 𝑞𝑛 ⋅ (
∞

∑
𝑖=3
(ln(𝑎(𝑞, 𝑖)) ⋅ 𝑞−𝑖) −

∞

∑
𝑖=𝑛+1
(ln(𝑎(𝑞, 𝑖)) ⋅ 𝑞𝑛−𝑖)) .

Since for any 𝑞 the sequence {𝑎(𝑞, 𝑛)} is bounded from above and below by some positive constants (this
fact is clear from the inequalities (mi(𝑞, 𝑛 − 1))𝑞 ≤ mi(𝑞, 𝑛) ≤ 2 ⋅ (mi(𝑞, 𝑛 − 1))𝑞), it follows that

the sum
∞
∑
𝑖=3
(ln(𝑎(𝑞, 𝑖)) ⋅ 𝑞−𝑖) of the convergent series is well defined; we denote this sum by ln(𝛽𝑞). Hence

ln(mi(𝑞, 𝑛)) = 𝑞𝑛 ⋅ ln(𝛽𝑞) + ln(𝛼𝑞,𝑛) for some number 𝛼𝑞,𝑛, and so

mi(𝑞, 𝑛) = 𝛼𝑞,𝑛 ⋅ (𝛽𝑞)
𝑞𝑛 . (3)

Our next purpose is to prove the convergence of the sequence {𝛼2,𝑛} and justify the convergence of the

sequence {𝛼𝑞,3𝑘+𝑟} for any 𝑟 ∈ {0, 1, 2} and any sufficiently large 𝑞.Wehave ln(𝛼𝑞,𝑛) = −
∞
∑
𝑖=𝑛+1
(ln(𝑎(𝑞, 𝑖))⋅𝑞𝑛−𝑖),

and hence to prove the above two facts it suffices to check the convergence of the sequence {𝑎(2, 𝑛)} and of
the sequences {𝑎(𝑞, 3𝑘)}, {𝑎(𝑞, 3𝑘 + 1)}, {𝑎(𝑞, 3𝑘 + 2)} for large 𝑞.

Thus, we havemi(𝑇2,𝑛) ∼ 𝛼2 ⋅ (𝛽2)
2𝑛 as 𝑛→∞ for some constant 𝛼2.

For any sufficiently large 𝑞 there exist pairwise distinct constants 𝛼(1)𝑞 , 𝛼
(2)
𝑞 , 𝛼
(3)
𝑞 such that

mi(𝑇𝑞,3𝑘) ∼ 𝛼
(1)
𝑞 ⋅ (𝛽𝑞)

𝑞3𝑘 , mi(𝑇𝑞,3𝑘+1) ∼ 𝛼(2)𝑞 ⋅ (𝛽𝑞)𝑞3𝑘+1 ,
mi(𝑇𝑞,3𝑘+2) ∼ 𝛼

(3)
𝑞 ⋅ (𝛽𝑞)

𝑞3𝑘+2 as 𝑘 →∞.
2.3 The case 𝑞 = 2
In this subsection we shall show that the sequence {𝑎(2, 𝑛)} has limit. We set 𝑔(𝑡1, 𝑡2) ≜ 1 +

1
𝑡21 − (1 − 1𝑡1𝑡22 )2.

On the halfaxis [1,+∞) there exists a unique 𝑙 such that 𝑙 = 𝑔(𝑙, 𝑙). This is indeed so, because the function
ℎ(𝑡) ≜ 𝑡 − 𝑔(𝑡, 𝑡) has the derivative ℎ𝑡 = 1 +

2
𝑡3 + 2 ⋅ (1 − 1𝑡3 ) ⋅ 3𝑡4 , which is positive and continuous at each

point of this halfaxis, and besides, ℎ(1) = −1 and ℎ(2) = 9764 . Since ℎ(1.29) = −0.025... and ℎ(1.3) = 0.005...
it may be shown that 𝑙 = 1.29...
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The function 𝑔(𝑡1, 𝑡2) has the partial derivatives

𝑔𝑡1(𝑡1, 𝑡2) = − 2𝑡31 − 2 ⋅ (1 −
1
𝑡1𝑡22
) ⋅
1
𝑡21𝑡
2
2
and 𝑔𝑡2(𝑡1, 𝑡2) = −2 ⋅ (1 − 1𝑡1𝑡22) ⋅

2
𝑡1𝑡32
.

Consider the numbers 𝐴 ≜ 𝑔𝑡1(𝑙, 𝑙) = −1.296... and 𝐵 ≜ 𝑔𝑡2(𝑙, 𝑙) = −0.764... Clearly,
𝑎(2, 𝑛) = 𝑔(𝑎(2, 𝑛 − 1), 𝑎(2, 𝑛 − 2)) for any 𝑛 ≥ 3. We set 𝜖𝑛 ≜ 𝑎(2, 𝑛) − 𝑙. By Taylor’s formula
𝜖𝑛 = 𝐴 ⋅ 𝜖𝑛−1 + 𝐵 ⋅ 𝜖𝑛−2 + 𝑂(𝜖

2
𝑛−1 + 𝜖

2
𝑛−2). Thus

𝜖𝑛+1 = 𝐴 ⋅ 𝜖𝑛 + 𝐵 ⋅ 𝜖𝑛−1 + 𝑂(𝜖
2
𝑛 + 𝜖
2
𝑛−1) = (𝐴

2 + 𝐵) ⋅ 𝜖𝑛−1 + 𝐴𝐵 ⋅ 𝜖𝑛−2 + 𝑂(𝜖
2
𝑛−1 + 𝜖

2
𝑛−2)

and

𝜖𝑛+2 = 𝐴 ⋅ 𝜖𝑛+1 + 𝐵 ⋅ 𝜖𝑛 + 𝑂(𝜖
2
𝑛+1 + 𝜖

2
𝑛) = (𝐴

2 + 𝐵) ⋅ 𝜖𝑛 + 𝐴𝐵 ⋅ 𝜖𝑛−1 + 𝑂(𝜖
2
𝑛 + 𝜖
2
𝑛−1) =

= (𝐴3 + 2𝐴𝐵) ⋅ 𝜖𝑛−1 + (𝐴
2𝐵 + 𝐵2) ⋅ 𝜖𝑛−2 + 𝑂(𝜖

2
𝑛−1 + 𝜖

2
𝑛−2).

Hence, we have

|𝜖𝑛+2| ≤ (|𝐴
3 + 2𝐴𝐵| + |𝐴2𝐵 + 𝐵2|) ⋅max(|𝜖𝑛−1|, |𝜖𝑛−2|) + 𝑂(𝜖

2
𝑛−1 + 𝜖

2
𝑛−2). (4)

The number |𝐴3 + 2𝐴𝐵| + |𝐴2𝐵 + 𝐵2| = 0.896... is smaller than 1. The constant 𝐶∗, which is implicitly
involved in the 𝑂-symbol, may be estimated in terms of the maximum of the absolute values of the second
derivatives of the function 𝑔(𝑡1, 𝑡2) on the square [1, 2]2 and in terms of the numbers 𝐴, 𝐵. Calculating the
first few terms of the subsequence {𝑎(2, 𝑛)} (see Table 2 in section 3) one can verify that there exists 𝑛∗ for
which the remainder 𝐶∗ ⋅ (𝜖2𝑛∗−1 + 𝜖2𝑛∗−2) in formula (4) is majorized by 110 ⋅max(|𝜖𝑛∗−1|, |𝜖𝑛∗−2|). As a result,

|𝜖𝑛∗+2| ≤ (|𝐴3 + 2𝐴𝐵| + |𝐴2𝐵 + 𝐵2| + 110) ⋅max(|𝜖𝑛∗−1|, |𝜖𝑛∗−2|).
Hence, there exists a number 0 < 𝑤 < 1 such that the inequality |𝜖𝑛+2| ≤ 𝑤 ⋅ max(|𝜖𝑛−1|, |𝜖𝑛−2|) holds for
any 𝑛 ≥ 𝑛∗. From this inequality we have 𝜖𝑛 = 𝑂(𝑤

−𝑛). Hence, the sequence {𝑎(2, 𝑛)} converges to 𝑙 with
exponential rate in 𝑛. This proves Theorem 1.

2.4 Solvability of one system of nonlinear equations

In this subsection we shall be concerned with the system of nonlinear equations

{{{
{{{
{

𝑥 = 𝑓(𝑧, 𝑦),
𝑦 = 𝑓(𝑥, 𝑧),
𝑧 = 𝑓(𝑦, 𝑥),

(5)

where 𝑓(𝑡1, 𝑡2) ≜
1
𝑡𝑞1 + 1 − (1 − 1𝑡1𝑡𝑞2 )𝑞. We shall show that this system has a solution (𝑥∗𝑞 , 𝑦

∗
𝑞 , 𝑧
∗
𝑞 ) for any

sufficiently large 𝑞. In the notation for this function and its derivatives we shall not indicate explicitly its
argument 𝑞.

Consider the following system of equations, which is a consequence of system (5):

{
𝑥 = 𝑓(𝑓(𝑦, 𝑥), 𝑦),
𝑦 = 𝑓(𝑥, 𝑓(𝑦, 𝑥)).

(6)

We set

𝑓1(𝑡1, 𝑡2) ≜ 𝑡1 − 𝑓(𝑓(𝑡2, 𝑡1), 𝑡2), 𝑓2(𝑡1, 𝑡2) ≜ 𝑡2 − 𝑓(𝑡1, 𝑓(𝑡2, 𝑡1)),

Tr ≜ {(𝑡1, 𝑡2) : 1 ≤ 𝑡1 ≤ 1 + (
3
2
)
−𝑞
, 1 ≤ 𝑡2 ≤ 1 + (

3
2
)
−𝑞
, 𝑡1 ≤ 𝑡2} .
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We claim that the interior of the triangleTr contains a solution of system (6). Clearly, we have

𝑓1(𝑡1, 𝑡2) = 𝑡1 −
1
𝑓𝑞(𝑡2, 𝑡1)

− 1 + (1 −
1

𝑓(𝑡2, 𝑡1)𝑡
𝑞
2
)
𝑞

, (7)

𝑓2(𝑡1, 𝑡2) = 𝑡2 −
1
𝑡𝑞1
− 1 + (1 −

1
𝑡1𝑓𝑞(𝑡2, 𝑡1)

)
𝑞

.

Next, it is easily verified that the asymptotic formula

𝑓(𝑡1, 𝑡2) ∼ 2, 𝑡
𝑞
1 ∼ 1, 𝑡

𝑞
2 ∼ 1 (8)

holds as 𝑞 →∞ for any (𝑡1, 𝑡2) ∈ Tr.
We note that

𝑓𝑡1(𝑡1, 𝑡2) = − 𝑞𝑡𝑞+11 − 𝑞 ⋅ (1 −
1
𝑡1𝑡
𝑞
2
)
𝑞−1

⋅
1
𝑡21𝑡
𝑞
2
,

𝑓𝑡2(𝑡1, 𝑡2) = −𝑞 ⋅ (1 − 1𝑡1𝑡𝑞2)
𝑞−1

⋅
𝑞

𝑡1𝑡
𝑞+1
2

, (9)

𝑑𝑓(𝑡, 𝑡)
𝑑𝑡
= −
𝑞
𝑡𝑞+1
− 𝑞 ⋅ (1 −

1
𝑡𝑞+1
)
𝑞−1
⋅
𝑞 + 1
𝑡𝑞+2
.

From equalities (7), (9) and the asymptotic formula (8) it follows that for any point (𝑡1, 𝑡2) ∈ Tr the
inequalities

𝜕𝑓1
𝜕𝑡1
(𝑡1, 𝑡2) > 0,

𝜕𝑓2
𝜕𝑡1
(𝑡1, 𝑡2) > 0,

𝜕𝑓2
𝜕𝑡2
(𝑡1, 𝑡2) > 0 (10)

hold simultaneously for any sufficiently large 𝑞.
We claim that for any 𝑡 ∈ [1, 1 + ( 32 )

−𝑞]
𝑑𝑓3
𝑑𝑡
(𝑡) < 0, (11)

where 𝑓3(𝑡) ≜ 𝑓1(1, 𝑡) = −
1
𝑓𝑞(𝑡,1) + (1 − 1

𝑓(𝑡,1)𝑡𝑞 )𝑞. Indeed,
𝑑𝑓3
𝑑𝑡
(𝑡) = 𝑞 ⋅

𝑓𝑡 (𝑡, 1)
𝑓𝑞+1(𝑡, 1)

+ 𝑞 ⋅ (1 −
1
𝑓(𝑡, 1)𝑡𝑞

)
𝑞−1

⋅
(𝑓(𝑡, 1)𝑡𝑞)


𝑡

𝑓2(𝑡, 1)𝑡2𝑞
=

= 𝑞2 ⋅
− 1𝑡𝑞+1 − (1 − 1𝑡 )𝑞−1 ⋅ 1𝑡2
𝑓𝑞+1(𝑡, 1)

+ 𝑞2 ⋅ (1 −
1
𝑓(𝑡, 1)𝑡𝑞

)𝑞−1 ⋅
𝑡𝑞−1 − (𝑡 − 1)𝑞−1

𝑓2(𝑡, 1)𝑡2𝑞
= (12)

=
𝑞2

𝑓2(𝑡, 1)𝑡𝑞+1
⋅((1 −

1
𝑓(𝑡, 1)𝑡𝑞

)
𝑞−1

−
1

𝑓𝑞−1(𝑡, 1)
)−𝑞2⋅
(1 − 1𝑡 )

𝑞−1 ⋅ 1𝑡2
𝑓𝑞+1(𝑡, 1)

−−𝑞2⋅(1 −
1
𝑓(𝑡, 1)𝑡𝑞

)
𝑞−1

⋅
(𝑡 − 1)𝑞

𝑓2(𝑡, 1)𝑡2𝑞
.

Clearly, 1 − 1
𝑓(𝑡,1)𝑡𝑞 < 1𝑓(𝑡,1) for any 𝑡 ∈ [1, 1 + ( 32 )−𝑞]. Hence from formula (12) we have 𝑑𝑓3𝑑𝑡 (𝑡) < 0 for any

𝑡 ∈ [1, 1 + ( 32 )
−𝑞].

Consider the functions𝑓1(𝑡, 𝑡) and𝑓2(𝑡, 𝑡). From (7), (8) and (9) it follows that for any sufficiently large 𝑞
both functions are monotone increasing on the interval [1, 1 + ( 32 )

−𝑞]. Let us estimate the values of 𝑓1(𝑡1, 𝑡2)
and 𝑓2(𝑡1, 𝑡2) at the vertices of the triangle Tr. We have 𝑓1(𝑃1) = 0 and 𝑓2(𝑃1) = (1 −

1
2𝑞 )𝑞 − 1 < 0, where

𝑃1 ≜ (1, 1). The value of 𝑓1(𝑡1, 𝑡2) at 𝑃2 ≜ (1, 1 + (
3
2 )
−𝑞) is equal to

(1 −
1

𝑓(1 + ( 32 )
−𝑞, 1) ⋅ (1 + ( 32 )

−𝑞)𝑞
)
𝑞

−
1

𝑓𝑞(1 + ( 32 )
−𝑞, 1)
.

This number is negative, because 𝑓(1 + ( 32 )
−𝑞, 1) < 1 + 1

1+( 32 )−𝑞 . The value of 𝑓2(𝑡1, 𝑡2) at 𝑃2 is equal to
( 32 )
−𝑞 + (1 − 1

𝑓𝑞(1+( 32 )−𝑞,1))
𝑞
− 1. The asymptotic formula (8) implies that 𝑓2(𝑃2) > 0 for any sufficiently
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large 𝑞. Similarly, one may show that 𝑓1(𝑃3) > 0 and 𝑓2(𝑃3) > 0 for any sufficiently large 𝑞, where
𝑃3 ≜ (1 + (

3
2 )
−𝑞, 1 + ( 32 )

−𝑞).
The mapping 𝐹(𝑡1, 𝑡2) ≜ (𝑓1(𝑡1, 𝑡2), 𝑓2(𝑡1, 𝑡2)) sends the cathetus 𝑃1𝑃2 of the triangleTr into some curve

𝑆1 connecting the points 𝐹(𝑃1) and 𝐹(𝑃2). Inequalities (10) and (11) show that the abscissa decreases and
the ordinate increases as the curve 𝑆1 is traversed from 𝐹(𝑃1) to 𝐹(𝑃2). The cathetus 𝑃2𝑃3 is mapped into the
curve 𝑆2, along which from 𝐹(𝑃2) to 𝐹(𝑃3) both the abscissa and the ordinate are increasing (by the same
inequalities). Since 𝑑𝑓1(𝑡,𝑡)𝑑𝑡 > 0 and 𝑑𝑓2(𝑡,𝑡)𝑑𝑡 > 0 for any 𝑡 ∈ [1, 1+ ( 32 )−𝑞], the side𝑃1𝑃3 is transformed by𝐹 into
the curve 𝑆3 along which from 𝐹(𝑃1) to 𝐹(𝑃3) both the abscissa and the ordinate are increasing.

The point 𝐹(𝑃1) lies in the lower half-plane on the axis of ordinates, the point 𝐹(𝑃2) lies in the sec-
ond quadrant, and the point 𝐹(𝑃3) in the first one. Hence the curvilinear triangle Tr, as bounded by the
curves 𝑆1, 𝑆2 and 𝑆3, contains the origin in its interior. The mapping 𝐹 is continuous on Tr, and hence it
maps Tr into Tr. Hence system (6) has a solution (𝑥∗𝑞 , 𝑦

∗
𝑞 , 𝑧
∗
𝑞 ) which is an interior point of Tr. Therefore,

1 < 𝑥∗𝑞 < 𝑦
∗
𝑞 < 1 + (

3
2 )
−𝑞 and 𝑧∗𝑞 = 2 − 𝑂((

3
2 )
−𝑞).

2.5 The case of large 𝑞
In this section we shall show that for any sufficiently large 𝑞 the limit relations

𝑎(𝑞, 3𝑘 + 1) → 𝑧∗𝑞 ,

𝑎(𝑞, 3𝑘 + 2) → 𝑥∗𝑞 ,

𝑎(𝑞, 3𝑘 + 3) → 𝑦∗𝑞
hold as 𝑘 → ∞. From (2) and the definition of the function 𝑓(𝑡1, 𝑡2) it follows that
𝑎(𝑞, 𝑛) = 𝑓(𝑎(𝑞, 𝑛 − 1), 𝑎(𝑞, 𝑛 − 2)). We set

𝜁𝑘,𝑞 ≜ 𝑎(𝑞, 3𝑘 + 1) − 𝑧
∗
𝑞 ,

𝜂𝑘,𝑞 ≜ 𝑎(𝑞, 3𝑘 + 2) − 𝑥
∗
𝑞 ,

𝜃𝑘,𝑞 ≜ 𝑎(𝑞, 3𝑘 + 3) − 𝑦
∗
𝑞 .

From (2) it follows thatmax(|𝜁0,𝑞|, |𝜂0,𝑞|, |𝜃0,𝑞|) → 0 as 𝑞 →∞ and

𝜁𝑘+1,𝑞 + 𝑧
∗
𝑞 = 𝑓(𝜃𝑘,𝑞 + 𝑦

∗
𝑞 , 𝜂𝑘,𝑞 + 𝑥

∗
𝑞 ),

𝜃𝑘,𝑞 + 𝑦
∗
𝑞 = 𝑓(𝜂𝑘,𝑞 + 𝑥

∗
𝑞 , 𝜁𝑘,𝑞 + 𝑧

∗
𝑞 ), (13)

𝜂𝑘,𝑞 + 𝑥
∗
𝑞 = 𝑓(𝜁𝑘,𝑞 + 𝑧

∗
𝑞 , 𝜃𝑘−1,𝑞 + 𝑦

∗
𝑞 ).

Using (13), the equalities 𝑧∗𝑞 = 𝑓(𝑦
∗
𝑞 , 𝑥
∗
𝑞 ), 𝑦
∗
𝑞 = 𝑓(𝑥

∗
𝑞 , 𝑧
∗
𝑞 ), 𝑥
∗
𝑞 = 𝑓(𝑧

∗
𝑞 , 𝑦
∗
𝑞 ), and Taylor’s formula, we find

that

𝜁𝑘+1,𝑞 = 𝑓

𝑡1(𝑦∗𝑞 , 𝑥∗𝑞 ) ⋅ 𝜃𝑘,𝑞 + 𝑓𝑡2(𝑦∗𝑞 , 𝑥∗𝑞 ) ⋅ 𝜂𝑘,𝑞 + 𝑂(𝜃2𝑘,𝑞 + 𝜂2𝑘,𝑞),

𝜃𝑘,𝑞 = 𝑓

𝑡1(𝑥∗𝑞 , 𝑧∗𝑞 ) ⋅ 𝜂𝑘,𝑞 + 𝑓𝑡2(𝑥∗𝑞 , 𝑧∗𝑞 ) ⋅ 𝜁𝑘,𝑞 + 𝑂(𝜂2𝑘,𝑞 + 𝜁2𝑘,𝑞), (14)

𝜂𝑘,𝑞 = 𝑓

𝑡1(𝑧∗𝑞 , 𝑦∗𝑞 ) ⋅ 𝜁𝑘,𝑞 + 𝑓𝑡2(𝑧∗𝑞 , 𝑦∗𝑞 ) ⋅ 𝜃𝑘−1,𝑞 + 𝑂(𝜁2𝑘,𝑞 + 𝜃2𝑘−1,𝑞).

Next, by (2.5) we have

𝜂𝑘,𝑞 = 𝑓

𝑡1(𝑧∗𝑞 , 𝑦∗𝑞 ) ⋅ 𝜁𝑘,𝑞 + 𝑓𝑡2(𝑧∗𝑞 , 𝑦∗𝑞 ) ⋅ 𝜃𝑘−1,𝑞 + 𝑂(𝜁2𝑘,𝑞 + 𝜃2𝑘−1,𝑞),
𝜃𝑘,𝑞 = (𝑓


𝑡1(𝑥∗𝑞 , 𝑧∗𝑞 ) ⋅ 𝑓𝑡1(𝑧∗𝑞 , 𝑦∗𝑞 ) + 𝑓𝑡2(𝑥∗𝑞 , 𝑧∗𝑞 )) ⋅ 𝜁𝑘,𝑞+

+𝑓𝑡1(𝑥∗𝑞 , 𝑧∗𝑞 ) ⋅ 𝑓𝑡2(𝑧∗𝑞 , 𝑦∗𝑞 ) ⋅ 𝜃𝑘−1,𝑞 + 𝑂(𝜁2𝑘,𝑞 + 𝜃2𝑘−1,𝑞), (15)

𝜁𝑘+1,𝑞 = (𝑓

𝑡1(𝑦∗𝑞 , 𝑥∗𝑞 ) ⋅ 𝑓𝑡1(𝑥∗𝑞 , 𝑧∗𝑞 ) ⋅ 𝑓𝑡1(𝑧∗𝑞 , 𝑦∗𝑞 ) + 𝑓𝑡1(𝑦∗𝑞 , 𝑥∗𝑞 ) ⋅ 𝑓𝑡2(𝑥∗𝑞 , 𝑧∗𝑞 )+

+𝑓𝑡1(𝑧∗𝑞 , 𝑦∗𝑞 ) ⋅ 𝑓𝑡2(𝑦∗𝑞 , 𝑥∗𝑞 )) ⋅ 𝜁𝑘,𝑞 + (𝑓𝑡1(𝑦∗𝑞 , 𝑥∗𝑞 ) ⋅ 𝑓𝑡1(𝑥∗𝑞 , 𝑧∗𝑞 ) ⋅ 𝑓𝑡2(𝑧∗𝑞 , 𝑦∗𝑞 )+
+𝑓𝑡2(𝑦∗𝑞 , 𝑥∗𝑞 ) ⋅ 𝑓𝑡2(𝑧∗𝑞 , 𝑦∗𝑞 )) ⋅ 𝜃𝑘−1,𝑞 + 𝑂(𝜁2𝑘,𝑞 + 𝜃2𝑘−1,𝑞).
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We have 𝑥∗𝑞 = 1 + 𝑂((
3
2 )
−𝑞), 𝑦∗𝑞 = 1 + 𝑂((

3
2 )
−𝑞) and 𝑧∗𝑞 = 2 − 𝑂((

3
2 )
−𝑞), and hence by (9)

|𝑓𝑡1(𝑧∗𝑞 , 𝑦∗𝑞 )| = 𝑂( 𝑞2𝑞 ), |𝑓𝑡2(𝑧∗𝑞 , 𝑦∗𝑞 )| = 𝑂(𝑞
2

2𝑞
), |𝑓𝑡1(𝑥∗𝑞 , 𝑧∗𝑞 )| = 𝑂(𝑞),

|𝑓𝑡2(𝑥∗𝑞 , 𝑧∗𝑞 )| = 𝑂(𝑞
2

2𝑞
), |𝑓𝑡1(𝑦∗𝑞 , 𝑥∗𝑞 )| = 𝑂(𝑞), |𝑓𝑡2(𝑦∗𝑞 , 𝑥∗𝑞 )| = 𝑂(𝑞2).

This shows that the coefficientsmultiplying 𝜁𝑘,𝑞 and 𝜃𝑘−1,𝑞 in formulas (2.5) are exponentially decreasing in 𝑞.
We recall that lim

𝑞→∞
max(|𝜁0,𝑞|, |𝜂0,𝑞|, |𝜃0,𝑞|) = 0. Hence, for any sufficiently large 𝑞, there exists 0 < 𝑤𝑞 < 1

such thatmax(|𝜂𝑘,𝑞|, |𝜃𝑘,𝑞|, |𝜁𝑘,𝑞|) = 𝑂((𝑤𝑞)
𝑘). Therefore,

lim
𝑘→∞
𝑎(𝑞, 3𝑘 + 1) = 𝑧∗𝑞 ,

lim
𝑘→∞
𝑎(𝑞, 3𝑘 + 2) = 𝑥∗𝑞 ,

lim
𝑘→∞
𝑎(𝑞, 3𝑘 + 3) = 𝑦∗𝑞

for any sufficiently large 𝑞.

We recall that 𝛼𝑞,𝑛 = exp{−
∞
∑
𝑖=1
(ln(𝑎(𝑞, 𝑛 + 𝑖)) ⋅ 𝑞−𝑖)} and that 1 < 𝑥∗𝑞 < 𝑦

∗
𝑞 < 1 + (

3
2 )
−𝑞 and

𝑧∗𝑞 = 2 − 𝑂((
3
2 )
−𝑞) for large 𝑞. If 𝑛 + 1 ≡ 0 (mod 3) and 𝑛, 𝑞 are sufficiently large, then

∞

∑
𝑖=1
(ln(𝑎(𝑞, 𝑛 + 𝑖)) ⋅ 𝑞−𝑖) ≈ (

𝑦∗𝑞
𝑞
+
𝑦∗𝑞
𝑞4
+
𝑦∗𝑞
𝑞7
+ . . .) + (

𝑧∗𝑞
𝑞2
+
𝑧∗𝑞
𝑞5
+
𝑧∗𝑞
𝑞8
+ . . .) + (

𝑥∗𝑞
𝑞3
+
𝑥∗𝑞
𝑞6
+
𝑥∗𝑞
𝑞9
+ . . .) .

The last sum is equal to𝑦∗𝑞 ⋅
𝑞2
𝑞3−1 +𝑧∗𝑞 ⋅ 𝑞𝑞3−1 +𝑥∗𝑞 ⋅ 1𝑞3−1 . Similarly, if 𝑛 + 1 ≡ 1 (mod 3) and if 𝑛, 𝑞 are sufficiently

large, then
∞
∑
𝑖=1
(ln(𝑎(𝑞, 𝑛 + 𝑖)) ⋅ 𝑞−𝑖) is close to 𝑧∗𝑞 ⋅

𝑞2
𝑞3−1 + 𝑥∗𝑞 ⋅ 𝑞𝑞3−1 + 𝑦∗𝑞 ⋅ 1𝑞3−1 . Finally, if 𝑛 + 1 ≡ 2 (mod 3)

and if 𝑛, 𝑞 are sufficiently large, then
∞
∑
𝑖=1
(ln(𝑎(𝑞, 𝑛 + 𝑖)) ⋅ 𝑞−𝑖) is close to

𝑥∗𝑞 ⋅
𝑞2

𝑞3 − 1
+ 𝑦∗𝑞 ⋅

𝑞
𝑞3 − 1
+ 𝑧∗𝑞 ⋅

1
𝑞3 − 1
.

Hence, for large 𝑞 the three above sums are close to

𝑞2 + 2 ⋅ 𝑞 + 1
𝑞3 − 1

,
2 ⋅ 𝑞2 + 𝑞 + 1
𝑞3 − 1

,
𝑞2 + 𝑞 + 2
𝑞3 − 1

,

respectively. Hence, for 𝑞 → ∞, the subsequences {𝛼𝑞,3𝑘}, {𝛼𝑞,3𝑘+1}, {𝛼𝑞,3𝑘+2} converge to three pairwise dif-
ferent limits. This proves Theorem 2.

3 Some remarks
It would be interesting to know from what value of the parameter 𝑞 the relations in the theorem become
approximate equalitieswith different constants. In this regard anumerical experimentwas carried out,which
gave the following results (in the table we give the first three significant figures in the fractional parts of
a number).

The first table shows that for 3 ≤ 𝑞 ≤ 10 it is highly improbable that the sequence {𝑎(𝑞, 𝑛)} splits into
three convergent subsequences whose terms have numbers correspond to the residue classes mod 3. This
observation is supported by the results of numerical experiments with larger 𝑛 and the same 𝑞 (not given in
the tables). At the same time, Tables 2—4 show that the sequences {𝑎(𝑞, 3𝑘)}, {𝑎(𝑞, 3𝑘+1)}, and {𝑎(𝑞, 3𝑘+2)}
converge for𝑞 ∈ {11, 12, 13}. Numerical experiments also show the samephenomenon for larger𝑞 and𝑘. This
supports the conjecture that the conclusion of Theorem 2 (pertaining to the splitting into three convergent
sequences) also holds for any 𝑞 > 10 and fails to hold for 3 ≤ 𝑞 ≤ 10.
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q
n10 20 30 40 50 600 700 800 900 1000

2 1.178 1.284 1.303 1.300 1.298 1.298 1.298 1.298 1.298 1.298
3 1.045 1.194 1.445 1.510 1.290 1.106 1.329 1.411 1.118 1.252
4 1.008 1.226 1.805 1.374 1.028 1.037 1.038 1.040 1.042 1.044
5 1.004 1.466 1.566 1.021 1.001 1.765 1.000 1.790 1.019 1.363
6 1.008 1.790 1.108 1.000 1.309 1.039 1.000 1.000 1.001 1.082
7 1.036 1.691 1.000 1.193 1.410 1.213 1.000 1.694 1.000 1.960
8 1.222 1.113 1.000 1.896 1.000 1.000 1.000 1.000 1.000 1.075
9 1.593 1.018 1.333 1.034 1.025 1.000 1.018 1.996 1.025 1.000
10 1.818 1.000 1.995 1.000 1.053 1.000 1.087 1.000 1.038 1.004

Table 1: The values of some terms of the subsequence {𝑎(𝑞, 𝑛)}

q
k1 2 3 4 5 60 70 80 90 100

11 1.942 1.922 1.913 1.909 1.906 1.904 1.904 1.904 1.904 1.904
12 1.966 1.958 1.956 1.955 1.955 1.955 1.955 1.955 1.955 1.955
13 1.979 1.976 1.976 1.976 1.976 1.976 1.976 1.976 1.976 1.976

Table 2: The values of some terms of the subsequence {𝑎(𝑞, 3𝑘 + 1)}

q
k1 2 3 4 5 60 70 80 90 100

11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0008 1.000
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: The values of some terms of the subsequence {𝑎(𝑞, 3𝑘 + 2)}

q
k1 2 3 4 5 60 70 80 90 100

11 1.005 1.007 1.008 1.008 1.008 1.009 1.009 1.009 1.009 1.009
12 1.003 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.004
13 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001 1.001

Table 4: The values of some terms of the subsequence {𝑎(𝑞, 3𝑘)}
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