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Abstract: A class of graphs is called monotone if it is closed under deletion of vertices and edges. Any such
classmay be defined in terms of forbidden subgraphs. The chromatic index of a graph is the smallest number
of colors required for its edge-coloring such that any two adjacent edges have different colors. We obtain
a complete classification of the complexity of the chromatic index problem for all monotone classes defined
in terms of forbidden subgraphs having at most 6 edges or at most 7 vertices.
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1 Introduction
The paper is concerned with ordinary graphs (that is, with unlabeled undirected graphs without loops and
multiple edges). A graphH is called an induced subgraph of a graph G ifH is obtained by removal from G
some set of its vertices (possibly empty). By the removal of a vertex we shall mean the removal of all edges
that are incident with it. A graphH is called a subgraph of a graph G ifH is obtained from G by removing
some (or none) vertices and edges.

A class of graphs is called hereditarily if it is closed under deletion of vertices. Any hereditarily class (and
only hereditarily classes) of graphs X may be defined by the set of its forbidden induced subgraphs S. This
is usually written X = Free(S). A monotone class of graphs is a hereditarily class which is closed under
deletion of edges. Anymonotone classXmay be defined in terms of its forbidden subgraphs S; this is written
X = Frees(S).

By a vertex coloring of a graph G we shall mean any mapping c : V(G) Ú→ ℕ such that c(u) ̸= c(v)
for any adjacent vertices u and v. An edge-coloring of a graph G is any mapping c : E(G) Ú→ ℕ such
that c(e1) ̸= c(e2) for any consecutive edges e1 and e2. The smallest number of colors in vertex- and edge-
colorings of a graph G are called, respectively, the chromatic number and the chromatic index of G; these
are denoted by ö(G) and ö�(G), respectively. Given a graph G, the k-vertex-coloring problem or simply the
k-VC-problem (respectively, the k-edge-coloring problem or the k-EC-problem) is the assignment of k different
colors to the vertices (edges) of the graph G. For a given graph G, the chromatic number problem and the
chromatic indexes problem (briefly CN- and CI-problems) is to calculate ö(G) and ö�(G), respectively. For an
NP-complete problemÐ on graphs, the class with polynomially solvable problemÐwill be calledÐ-simple;
the class with NP-complete problemÐ will be calledÐ-complex.

The CN- and CI-problems are related via the concept of an edge graph. A graph H is an edge graph of
a graph G (written H = L(G)) if V(H) = E(G) and two vertices of H are adjacent if and only if the cor-
responding edges in G are adjacent. Not any graph is an edge graph, for example, the graph K1,3, which is
a tree with 4 vertices of which one has degree 3, is not not an edge graph. In other words, any edge graph
lies in Free({K1,3}). It is plain that ö(L(G)) = ö�(G) for any graph G. If an edge graphH is connected and
nontriangle, then there exists a unique graphG such thatH = L(G); besides the graphGmay be calculated
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from the graphH in a linear time [12]. It follows that for any monotone class X the CI-problem in the class
X is polynomially equivalent to the CN-problem in the class L(X). According to the well-known Vising the-
orem [1], any graph G satisfies the inequality Ä(G) ≤ ö�(G) ≤ Ä(G) + 1, where Ä(G) is the maximal vertex
degree ofG.

The computational complexities of the 3-VC and 4-VC-problems in the families {Free({G}) : |V(G)| ≤ 6}
and {Free({G}) : |V(G)| ≤ 5} respectively, were calculated in [4, 6]. Moreover, the com-
plete complexity dichotomies for the 3-VC- and 3-EC-problems are known for the families
{Free({G1, G2}) : max(|V(G1)|, |V(G2)|) ≤ 5} and {Free(S): any graph from S contains at most 6 ver-
tices and S contains at most 2 graphs with 6 vertices} [2, 10]. In the present paper we shall be concerned
with the family of monotone classes defined by forbidding the subgraphs having at most 6 edges or at most
7 vertices. We shall show that such a class is CI-simple if one of the forbidden subgraphs is a subcubic forest;
otherwise it is CI-complex. A graph is called subcubic if the degree of any of its vertices is at most 3.

We shall use the following notation: deg(x) is the degree of a vertex x; N(x) is the neighborhood of
a vertex x;G\ {x} is the graph obtained fromG by deleting a vertex x;G1 +G2 is the disjoint union of graphs
G1 andG2 with disjoint sets of vertices;Kn andOn are, respectively, the complete and empty n-vertex graphs;
a bridge Bk is a graph obtained by joining two vertices of two simple three-vertex paths by a simple path of
length k; B+1 is the graph obtained by subdividing the edges of the graph B1 that are incident with vertices
of degrees 2 and 3; the butterfly is the graph obtained by identifying two vertices of two triangles, each of
which lies its own triangle.

2 Auxiliary results

2.1 Simplest graphs and their relevance

A connected graph G will be called simple if any vertex of G has at least two neighbors of degree Ä(G). This
concept is relevant because for any classX the CI-problem is polynomially reducible to the same problem for
the part ofXwhich consists of all simple graphs fromX. This clearly follows from one result of [13]: a graphG
containing a vertex x, for which at most one neighbor has the degree Ä(G), is edge-colorable by Ä(G) colors
if and only if the graphG \ {x} is Ä(G)— colorable.

Lemma 1. If a monotone class X does not contain at least one of the three graphs B1 + K2, B+1 , B2, then the
3-EC-problem is polynomially solvable in the classX.

Proof. We shall first show that the 3-EC-problem in the classX is polynomially reducible to the same problem
in the classX∩ Frees({B1}). LetG be an arbitrary simple graph fromX containingB1 as a subgraph. Next, let
V(B1) = {x1, x2, x3, y1, y2, y3} andE(B1) = {x1x2, x2x3, y1y2, y2y3, x2y2}. Itmay be assumed thatÄ(G) ≤ 3,
for otherwise G is not 3-edge-colorable. If X ⊆ Frees({B+1 }), then |V(G)| ≤ 6, because G is connected and
since Ä(G) ≤ 3. The same argument shows that |V(G)| ≤ 14 if G ∈ Frees({B1 + K2}) (no vertex Gmay be at
distance 3 ormore from the central edge x2y2 of the subgraphB1). By the distance between a vertex v ∈ V(G)
and the edge x2y2 we shall mean the smallest distance between v and x2 and between v and y2.

Let X ⊆ Frees({B2}). Assume that there exists a vertex G lying at distance 4 from x2y2. Then there exist
vertices a, b, c which generate inG a simple 3-vertex path and such that the distances between x2y2 and the
vertices a, b, c are, respectively, 2, 3, 4. Without loss of generality it may be assumed that the vertices x1 and
a are adjacent. Clearly, the vertices x1 and x3 are not adjacent, for otherwise the edges ax1, x1x3, x1x2, x2y2,
y1y2, y2y3 would form B2. Similarly, the vertex a is not adjacent to any of the vertices y1 and y3. Since G is
simple, at least one of the vertices x1 and a is of degree 3.

Let deg(x1) = 3. If a neighbor x of the vertex x1 is distinct from a and x2, then xmust coincide with y1
or with y3, for otherwise the edges ax1, xx1, x1x2, x2y2, y1y2, y2y3 would form B2. We shall assume that
x = y1. It is plain that deg(b) = 2, for otherwise there would exist a vertex fromN(b) \ {a, c} not lying in
V(B1), and hence G would contain the subgraph B2. Since G is simple, we have deg(a) = 3. Clearly, the
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vertices a and x3 are adjacent, for otherwise G would contain the subgraph B2. The degree of the vertex c is
at most 2, for otherwise the edges ab, ax1, ax3 and the 3 edges that are incident with c would form B2. This,
however, contradicts the simplicity ofG, inasmuch as deg(b) = deg(c) = 2.

Assume now that deg(x1) = 2. Then deg(a) = 3 and the vertex a is a neighbor of x3. Again using the fact
that G is simple, we see that there exist vertices b� ∈ N(b) \ {a, c} and x� ∈ N(x3) \ {a, x2}. We recall that
x� ̸= x1. Next, it is plain that x� ∈ {y1, y3}, for otherwise the edges x�x3, ax3, x3x2, x2y2, y3y2, y2y1 would
form a subgraph B2. But then the edges x�x3, x2x3, ax3, ab, bc, bb� form the subgraph B2 of the graph G,
a contradiction.

The reducibility claimed in the first paragraph of the present section does indeed hold. By the above,
any simple graph from X \ Frees({B1}) has at most 2 + 4 ⋅ (1 + 2 + 4) = 30 vertices, because any vertex of
such a graph is at the distance at most 3 from the central edge of the subgraphB1. Hence, the number of such
graphs is finite.

It is clear that the 3-EC-problem in the class X ∩ Frees({B1}) is polynomially equivalent to the 3-VC-
problem in the class L(X ∩ Frees({B1})). Next, it is plain that L(X ∩ Frees({B1})) ⊆ Free({K1,3, butterfly}).
The 3-VC-problem is polynomially solvable in the class Free({K1,3, butterfly}) [11]. Hence, the class X is 3-
EC-simple.

A simple graphGwill be called simplest ifÄ(G) ≥ 4. FromVising theorem and Lemma 1 it follows that for any
class of graphs X the CI-problem is polynomially reducible to the same problem for the part of X consisting
of all possible simplest graphs fromX.

Lemma 2. Any simplest graph from Frees({B+1 }) ∪ Frees({B1 +K2}) ∪ Frees({B2}) contains at most 62 vertices.
Proof. LetG be a simplest graph from Frees({B+1 }) ∪ Frees({B1 +K2}) ∪ Frees({B2}). Being simple, the graph
G contains two adjacent vertices x and y, each of which is of degree Ä(G).

Let Ä(G) ≥ 7 and let z be an arbitrary element of the set N(x) \ {y} of degree Ä(G). Such a ver-
tex z always exists, inasmuch as G is a simplest graph. If G ∈ Frees({B+1 }) ∪ Frees({B1 + K2}), then the
vertex z cannot have a neighbor outside the set N(x) ∪ N(y). If such a vertex z� exists, then the edges
z�z, xz, xz1, xz2, xy, yz3, yz4 (where z1 and z2 are arbitrary vertices from N(x) \ {y, z} and z3 and z4 are
arbitrary vertices fromN(y) \ {x, z, z1, z2}) form the subgraphG� of the graphG. Clearly, B1 +K2 and B+1 are
subgraphs of the graph G�. If G ∈ Frees({B2}), then the vertex z cannot have two neighbors z∗, z∗∗ outside
the setN(x) ∪ N(y), for otherwise the edges zz∗, zz∗∗, zx, xy, yy∗, yy∗∗ would form B2, where y∗ and y∗∗
are arbitrary vertices fromN(y)\{x, z}.Wehavedeg(z) = Ä(G) ≥ 7, andhence, the set (N(x)∪N(y))\{x, y}
contains at least five neighbors of the vertex z. Let a1 and a2 be arbitrary neighbors of the vertex z from this
set. The edges za1, xz1, xz2, xy, yz3, yz4 (where z1 and z2 are arbitrary vertices from N(x) \ {y, z, a1} and
z3 and z4 are arbitrary vertices fromN(y) \ {x, z, a1, z1, z2}) form the subgraph B1 + K2 of the graphG. The
edges za1, za2, xz, xy, yz�, yz��, where z� and z�� are arbitrary vertices from N(y) \ {x, z, a1, a2}, form the
subgraphB2 of the graphG. Besides, the edges za1, xz, xz∗, xy, yz∗∗, yz∗∗∗ (where z∗ is an arbitrary vertex
fromN(x) \ {y, z, a1} and z∗∗ and z∗∗∗ are arbitrary vertices fromN(y) \ {x, z, a1, z∗}) form the subgraph
B+1 of the graphG. This contradiction shows that 4 ≤ Ä(G) ≤ 6.

Let 4 ≤ Ä(G) ≤ 6. It is easily seen that |(N(x) ∪ N(y)) \ {x, y}| ≥ 3 and that if
|(N(x) ∪ N(y)) \ {x, y}| ≥ 4, then G contains the subgraph B1. If |(N(x) ∪ N(y)) \ {x, y}| = 3, then each
vertex from (N(x)∪ N(y))\{x, y} is adjacent to bothx andy. If |V(G)| ≥ 6 and |(N(x)∪ N(y))\{x, y}| = 3,
then some vertex of G does not lie in N(x) ∪ N(y) and is one of the neighbors of the three vertices from
(N(x) ∪ N(y)) \ {x, y}. Hence, G also contains the subgraph B1. If G ∈ Frees({B1 + K2}) ∪ Frees({B+1 }),
then the distance of any vertex of G from the central edge B1 is smaller than 3. Hence, G contains at most
2 ⋅ (1 + 5 + 52) = 62 vertices. Let us assume that G ∈ Frees({B2}). We shall also assume that there exist
a vertex at the distance 3 from the edge xy. Then there exist vertices a, b, c that generate inG a simple 3-path
such that the distances between xy and the vertices a, b, c are, respectively, 1, 2, 3. We shall assume that
the vertices x and a are adjacent. It is easy to see that the vertex b is the only neighbor of a outside the set
N(x) ∪ N(y), for otherwise the three edges that are incident with a (of which one is ax), the edge xy and
some two edges incident with y for the subgraph B2. It is clear that deg(b) = 2, for otherwise, for any vertex
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z ∈ N(b) \ {a, c}, the edges bc, bz, ba, xa, xy, xd would form the subgraph B2, where d is an arbitrary
neighbor of x which is different from a, y, z. Since G is simple, we have deg(c) ≥ 3 and deg(a) ≥ 3. Hence,
there is a neighbor e of the vertex a which is distinct from b and x. Clearly, we have e ∈ N(x) ∪ N(y). It is
further clear that any three edges incident with c (of which one is the edge cb) and the edges ab, ax, ae form
the subgraph B2. This being so, any vertex of G is at the distance at most 2 from xy. Hence, the number of
vertices inG is at most 2 ⋅ (1 + 5 + 52) = 62.
2.2 The clique-width of graphs and its relevance

The clique-width is an important parameter of a graph, because for any constantCmany problems on graphs
are polynomially solvable in the class of all graphs for which the clique-width is majorized by C (see [5]).
The definition of the clique-width of a graph may be found in [5]. Let T be the class of all forests in each of
which any connected component is a tree with atmost three leaves. The next lemma (see [3]) gives a sufficient
conditions for the clique-width to be uniformly bounded.

Lemma 3. For anymonotone classX not including the classT there exists a constantC(X) such that the clique-
width of any graph fromX is at most C(X).

For the CI-problem, it is worth noting that if a monotone class does not contain T, then it is simple.

Lemma 4. IfX is a monotone class and T ⊈ X, thenX is CI-simple.

Proof. The CI-problem in the classX is polynomially equivalent to the CN-problem in the class L(X). By the
previous lemma, the clique-width of graphs from the classX is uniformly bounded. Hence, the clique-width
of graphs from the class L(X) is also uniformly bounded [7]. The CN-problem is polynomially solvable in any
class of graphs with uniformly bounded clique-width [8]. Hence, the CI-problem is polynomially solvable in
the classX.

3 The main result
Lemma 5. IfH is a graph from Frees({G + K1}), thenH ∈ Frees({G}) or |V(H)| = |V(G)|.

Proof. If the graph H does not contain a subgraph of G, then H ∈ Frees({G}). If the graph H contains
a subgraph ofG, thenH cannot contain vertices that fail to lie in this subgraph, becauseH ∈ Frees({G+K1}).
Hence, in this case |V(H)| = |V(G)|.

The main result of the present paper is as follows.

Theorem 1. Let S be an arbitrary set of graphs, each of which has at most 6 edges or at most 7 vertices. Then
the classX = Frees(S) is CI-simple if S contains a subcubic forest. Otherwise,X is CI-complex.

Proof. Let Y3,k denote the set of all possible subcubic graphs not containing cycles of length at most k inclu-
sively. If S does not contain subcubic forests, then Y3,p ⊆ X for some p. According to [9] for any k the class
Y3,k is CI-complex. Hence so is the classX.

Any subcubic forest with at most 6 edges or with at most 7 vertices either lies in T or is of the following
4 types: B1 +Os, B1 +K2 +Os, B+1 +Os, B2 +Os for some s. Hence, by Lemmas 2, 4, 5 the classX is CI-simple.
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