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Abstract: A class of graphs is called monotone if it is closed under deletion of vertices and edges. Any such
class may be defined in terms of forbidden subgraphs. The chromatic index of a graph is the smallest number
of colors required for its edge-coloring such that any two adjacent edges have different colors. We obtain
a complete classification of the complexity of the chromatic index problem for all monotone classes defined
in terms of forbidden subgraphs having at most 6 edges or at most 7 vertices.
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1 Introduction

The paper is concerned with ordinary graphs (that is, with unlabeled undirected graphs without loops and
multiple edges). A graph H is called an induced subgraph of a graph G if H is obtained by removal from G
some set of its vertices (possibly empty). By the removal of a vertex we shall mean the removal of all edges
that are incident with it. A graph H is called a subgraph of a graph G if H is obtained from G by removing
some (or none) vertices and edges.

A class of graphs is called hereditarily if it is closed under deletion of vertices. Any hereditarily class (and
only hereditarily classes) of graphs X may be defined by the set of its forbidden induced subgraphs 8. This
is usually written X = Free(8). A monotone class of graphs is a hereditarily class which is closed under
deletion of edges. Any monotone class X may be defined in terms of its forbidden subgraphs S; this is written
X = Free(8).

By a vertex coloring of a graph G we shall mean any mapping ¢ : V(G) — N such that c(u) # c(v)
for any adjacent vertices u and v. An edge-coloring of a graph G is any mapping ¢ : E(G) — IN such
that c(e;) # c(e,) for any consecutive edges e; and e,. The smallest number of colors in vertex- and edge-
colorings of a graph G are called, respectively, the chromatic number and the chromatic index of G; these
are denoted by x(G) and X'(G), respectively. Given a graph G, the k-vertex-coloring problem or simply the
k-VC-problem (respectively, the k-edge-coloring problem or the k-EC-problem) is the assignment of k different
colors to the vertices (edges) of the graph G. For a given graph G, the chromatic number problem and the
chromatic indexes problem (briefly CN- and CI-problems) is to calculate y(G) and X'(G), respectively. For an
NP-complete problem IT on graphs, the class with polynomially solvable problem IT will be called II-simple;
the class with NP-complete problem IT will be called II-complex.

The CN- and CI-problems are related via the concept of an edge graph. A graph H is an edge graph of
a graph G (written H = L(G)) if V(H) = E(G) and two vertices of H are adjacent if and only if the cor-
responding edges in G are adjacent. Not any graph is an edge graph, for example, the graph K ;, which is
a tree with 4 vertices of which one has degree 3, is not not an edge graph. In other words, any edge graph
lies in Free({K ;}). It is plain that y(L(G)) = X'(G) for any graph G. If an edge graph H is connected and
nontriangle, then there exists a unique graph G such that H = L(G); besides the graph G may be calculated
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from the graph H in a linear time [12]. It follows that for any monotone class X the CI-problem in the class
X is polynomially equivalent to the CN-problem in the class L(X). According to the well-known Vising the-
orem [1], any graph G satisfies the inequality A(G) < X'(G) < A(G) + 1, where A(G) is the maximal vertex
degree of G.

The computational complexities of the 3-VC and 4-VC-problems in the families {Free({G}): |V(G)| < 6}
and {Free({G}): |V(G)| < 5} respectively, were calculated in [4, 6]. Moreover, the com-
plete complexity dichotomies for the 3-VC- and 3-EC-problems are known for the families
{Free({G,,G,}): max(|[V(G))|,|V(G,)]) < 5} and {Free(8): any graph from 8 contains at most 6 ver-
tices and S contains at most 2 graphs with 6 vertices} [2, 10]. In the present paper we shall be concerned
with the family of monotone classes defined by forbidding the subgraphs having at most 6 edges or at most
7 vertices. We shall show that such a class is CI-simple if one of the forbidden subgraphs is a subcubic forest;
otherwise it is CI-complex. A graph is called subcubic if the degree of any of its vertices is at most 3.

We shall use the following notation: deg(x) is the degree of a vertex x; N(x) is the neighborhood of
avertex x; G\ {x} is the graph obtained from G by deleting a vertex x; G, + G, is the disjoint union of graphs
G, and G, with disjoint sets of vertices; K,, and O,, are, respectively, the complete and empty n-vertex graphs;
a bridge B, is a graph obtained by joining two vertices of two simple three-vertex paths by a simple path of
length k; BI’ is the graph obtained by subdividing the edges of the graph B, that are incident with vertices
of degrees 2 and 3; the butterfly is the graph obtained by identifying two vertices of two triangles, each of
which lies its own triangle.

2 Auxiliary results

2.1 Simplest graphs and their relevance

A connected graph G will be called simple if any vertex of G has at least two neighbors of degree A(G). This
concept is relevant because for any class X the CI-problem is polynomially reducible to the same problem for
the part of X which consists of all simple graphs from X. This clearly follows from one result of [13]: a graph G
containing a vertex x, for which at most one neighbor has the degree A(G), is edge-colorable by A(G) colors
if and only if the graph G \ {x} is A(G) — colorable.

Lemma 1. If a monotone class X does not contain at least one of the three graphs B, + K,, Bf, B,, then the
3-EC-problem is polynomially solvable in the class X.

Proof. We shall first show that the 3-EC-problem in the class X is polynomially reducible to the same problem
in the class X N Free ({B,}). Let G be an arbitrary simple graph from X containing B, as a subgraph. Next, let
V(B,) = {x,, %,, X5, ¥1» V2> V31 and E(By) = {x,%,, X,X3, ¥, V> ¥, 3> X, ¥, }. [t may be assumed that A(G) < 3,
for otherwise G is not 3-edge-colorable. If X < Free ({B;}), then |V(G)| < 6, because G is connected and
since A(G) < 3. The same argument shows that |V(G)| < 14 if G € Free ,({B, + K,}) (no vertex G may be at
distance 3 or more from the central edge x, y, of the subgraph B, ). By the distance between a vertex v € V(G)
and the edge x, y, we shall mean the smallest distance between v and x, and between v and y,.

Let X ¢ Free,({B,}). Assume that there exists a vertex G lying at distance 4 from x, y,. Then there exist
vertices a, b, c which generate in G a simple 3-vertex path and such that the distances between x, y, and the
vertices a, b, c are, respectively, 2, 3, 4. Without loss of generality it may be assumed that the vertices x; and
a are adjacent. Clearly, the vertices x, and x, are not adjacent, for otherwise the edges ax,, x, x5, x,x,, X, ¥,,
¥1Y25 ¥, ¥; would form B,. Similarly, the vertex a is not adjacent to any of the vertices y; and y;. Since G is
simple, at least one of the vertices x, and a is of degree 3.

Let deg(x,) = 3. If a neighbor x of the vertex x, is distinct from a and x,, then x must coincide with y,
or with y;, for otherwise the edges ax,, xx,, x,x,, X,¥,, ¥1¥», ¥,y; would form B,. We shall assume that
x = y,.Itis plain that deg(b) = 2, for otherwise there would exist a vertex from N(b) \ {g, c} not lying in
V(B,), and hence G would contain the subgraph B,. Since G is simple, we have deg(a) = 3. Clearly, the

Authenticated | dsmalyshev@rambler.ru author's copy
Download Date | 10/14/17 8:42 AM



DE GRUYTER D. S. Malyshev, Complexity classification of the edge coloring problem =— 99

vertices a and x, are adjacent, for otherwise G would contain the subgraph B,. The degree of the vertex c is
at most 2, for otherwise the edges ab, ax,, ax, and the 3 edges that are incident with ¢ would form B,. This,
however, contradicts the simplicity of G, inasmuch as deg(b) = deg(c) = 2.

Assume now that deg(x;) = 2. Then deg(a) = 3 and the vertex a is a neighbor of x;. Again using the fact
that G is simple, we see that there exist vertices b’ € N(b) \ {a,c} and x' € N (x3) \ {a, x,}. We recall that
x' # x,.Next, it is plain that x' € {y,, y;}, for otherwise the edges x'x;, ax;, x3%,, X, 5, ¥3 V3> ¥, ¥, would
form a subgraph B,. But then the edges x'x;, X,x;, ax,, ab, bc,bb' form the subgraph B, of the graph G,
a contradiction.

The reducibility claimed in the first paragraph of the present section does indeed hold. By the above,
any simple graph from X \ Free ({B,}) has at most 2 + 4 - (1 + 2 + 4) = 30 vertices, because any vertex of
such a graph is at the distance at most 3 from the central edge of the subgraph B, . Hence, the number of such
graphs is finite.

It is clear that the 3-EC-problem in the class X N Free ,({B,}) is polynomially equivalent to the 3-VC-
problem in the class L(X N Free ({B,})). Next, it is plain that L(X N Free,({B,})) < Free({K, 5, butterfly}).
The 3-VC-problem is polynomially solvable in the class Free({K| ;, butterfly}) [11]. Hence, the class X is 3-
EC-simple. O

A simple graph G will be called simplest if A(G) > 4. From Vising theorem and Lemma 1 it follows that for any
class of graphs X the CI-problem is polynomially reducible to the same problem for the part of X consisting
of all possible simplest graphs from X.

Lemma 2. Any simplest graph from Free ({B;}) U Free,({B, + K,}) U Free ({B,}) contains at most 62 vertices.

Proof. Let G be a simplest graph from Free ({B;}) U Free ({B, + K,}) U Free ({B,}). Being simple, the graph
G contains two adjacent vertices x and y, each of which is of degree A(G).

Let A(G) = 7 and let z be an arbitrary element of the set N(x) \ {y} of degree A(G). Such a ver-
tex z always exists, inasmuch as G is a simplest graph. If G € Free ({B]}) U Free ({B; + K,}), then the
vertex z cannot have a neighbor outside the set N(x) U N(y). If such a vertex z' exists, then the edges
Z'z, xz, X2\, X2,, Xy, ¥Z5, ¥z, (where z, and z, are arbitrary vertices from N(x) \ {y,z} and z; and z, are
arbitrary vertices from N(y) \ {x, z, 2, 2,}) form the subgraph G’ of the graph G. Clearly, B, + K, and B are
subgraphs of the graph G'. If G € Free ({B,}), then the vertex z cannot have two neighbors z*, z** outside
the set N(x) U N(y), for otherwise the edges zz", zz**, zx, xy, yy*, yy** would form B,, where y* and y**
are arbitrary vertices from N(y)\{x, z}. We have deg(z) = A(G) = 7, and hence, the set (N(x)UN(y))\{x, y}
contains at least five neighbors of the vertex z. Let a, and a, be arbitrary neighbors of the vertex z from this
set. The edges za,, xz,, xz,, Xy, ¥z5, yz, (Where z, and z, are arbitrary vertices from N(x) \ {y, z,a,} and
z, and z, are arbitrary vertices from N(y) \ {x, z, a;, 2, 2,}) form the subgraph B, + K, of the graph G. The
edges za,, za,, Xz, XY, yz', yz", where z' and z"' are arbitrary vertices from N( )\ {x,z,a,,a,}, form the
subgraph B, of the graph G. Besides, the edges za,, xz, xz*, xy, yz**, yz*** (where z" is an arbitrary vertex
from N(x) \ {y,z,a,} and z** and z*** are arbitrary vertices from N(y) \ {x, z, a,, z*}) form the subgraph
B; of the graph G. This contradiction shows that 4 < A(G) < 6.

Let 4 < A(G) < 6.1t is easily seen that |[(N(x) UN(y))\{x,y} >3 and that if
[(N(x) UN())\ {x, y}| = 4, then G contains the subgraph B,. If [(N(x) U N(»)) \ {x, y}| = 3, then each
vertex from (N (x) UN(y))\ {x, y} is adjacent to both x and y. If [V(G)| = 6 and |[(N(x) UN(y)) \ {x, y}| = 3,
then some vertex of G does not lie in N(x) U N(y) and is one of the neighbors of the three vertices from
(N(x) U N(y)) \ {x, y}. Hence, G also contains the subgraph B,. If G € Free ({B; + K,}) U Free,({B;}),
then the distance of any vertex of G from the central edge B, is smaller than 3. Hence, G contains at most
2-(1 +5+ 5% = 62 vertices. Let us assume that G € Free ({B,}). We shall also assume that there exist
a vertex at the distance 3 from the edge xy. Then there exist vertices a, b, ¢ that generate in G a simple 3-path
such that the distances between xy and the vertices a, b, c are, respectively, 1,2, 3. We shall assume that
the vertices x and a are adjacent. It is easy to see that the vertex b is the only neighbor of a outside the set
N(x) U N(y), for otherwise the three edges that are incident with a (of which one is ax), the edge xy and
some two edges incident with y for the subgraph B,. It is clear that deg(b) = 2, for otherwise, for any vertex
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z € N(b) \ {a,c}, the edges bc, bz, ba, xa, xy, xd would form the subgraph B,, where d is an arbitrary
neighbor of x which is different from a, y, z. Since G is simple, we have deg(c) > 3 and deg(a) > 3. Hence,
there is a neighbor e of the vertex a which is distinct from b and x. Clearly, we have e € N(x) U N(y). Itis
further clear that any three edges incident with ¢ (of which one is the edge cb) and the edges ab, ax, ae form
the subgraph B,. This being so, any vertex of G is at the distance at most 2 from xy. Hence, the number of
vertices in Gis at most 2 - (1 + 5 + 5%) = 62. O

2.2 The clique-width of graphs and its relevance

The clique-width is an important parameter of a graph, because for any constant C many problems on graphs
are polynomially solvable in the class of all graphs for which the clique-width is majorized by C (see [5]).
The definition of the clique-width of a graph may be found in [5]. Let T be the class of all forests in each of
which any connected component is a tree with at most three leaves. The next lemma (see [3]) gives a sufficient
conditions for the clique-width to be uniformly bounded.

Lemma 3. For any monotone class X not including the class 7T there exists a constant C(X) such that the clique-
width of any graph from X is at most C(X).

For the CI-problem, it is worth noting that if a monotone class does not contain 7, then it is simple.
Lemma 4. If X is a monotone class and T ¢ X, then X is CI-simple.

Proof. The Cl-problem in the class X is polynomially equivalent to the CN-problem in the class L(X). By the
previous lemma, the clique-width of graphs from the class X is uniformly bounded. Hence, the clique-width
of graphs from the class L(X) is also uniformly bounded [7]. The CN-problem is polynomially solvable in any
class of graphs with uniformly bounded clique-width [8]. Hence, the CI-problem is polynomially solvable in
the class X. O

3 The main result

Lemma 5. If H is a graph from Free ({G + K,}), then H € Free ({G}) or |[V(H)| = [V(G)|.

Proof. If the graph H does not contain a subgraph of G, then H € Free ({G}). If the graph H contains
asubgraph of G, then H cannot contain vertices that fail to lie in this subgraph, because H € Free ({G+K,}).
Hence, in this case |V(H)| = |[V(G)|. O

The main result of the present paper is as follows.

Theorem 1. Let S be an arbitrary set of graphs, each of which has at most 6 edges or at most 7 vertices. Then
the class X = Free(8) is CI-simple if § contains a subcubic forest. Otherwise, X is CI-complex.

Proof. Let;, denote the set of all possible subcubic graphs not containing cycles of length at most k inclu-

sively. If S does not contain subcubic forests, then Y 3p S X for some p. According to [9] for any k the class
Y5 x is CI-complex. Hence so is the class X.

Any subcubic forest with at most 6 edges or with at most 7 vertices either lies in J or is of the following

4 types: B, + O,, B, + K, + O,, B] + Oy, B, + O, for some s. Hence, by Lemmas 2, 4, 5 the class X is CI-simple.

O

Acknowledgment: This research was carried out with the financial support of the Russian Foundation for
Basic Research (grant no. 16-31-60008-mol_a_dk, the Council on Grants of the President of the Russian Fed-
eration (grant no. MK-4819.2016.1), and the LATNA laboratory at the National Research University Higher
School of Economics.

Authenticated | dsmalyshev@rambler.ru author's copy
Download Date | 10/14/17 8:42 AM



DE GRUYTER D. S. Malyshev, Complexity classification of the edge coloring problem =— 101

References

[1] Vizing V. G., “On the estimate of the chromatic class of the p-graph”, Diskretnyi analiz, 3 (1964), 25-30 (in Russian).
[2] Malyshev D. S., “The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at
most six vertices”, Sib. elektr. matem. izv., 11 (2014), 811-822 (in Russian).
[3] BoliacR., Lozin V. V., “On the clique-width of graphs in hereditary classes”, Lect. Notes Comput. Sci., 2518 (2002), 44-54.
[4] Broersma H. J., Golovach P. A., Paulusma D., Song J., “Updating the complexity status of coloring graphs without a fixed
induced linear forest”, Theor. comput. sci., 414:1 (2012), 9-19.
[5] Courcelle B., Makowsky J., Rotics U., “Linear time solvable optimization problems on graphs of bounded clique-width”,
Theory of Comput. Syst., 33:2 (2000), 125-150.
Golovach P. A., Paulusma D., Song J., “4-coloring H-free graphs when H is small”, Discrete Appl. Math., 161:1-2 (2013), 140—
150.
[7] Gursk, F., Wanke E., “Line graphs of bounded clique-width”, Discrete Mathematics, 307:22 (2007), 2734-2754.
[8] Kobler D., Rotics D., “Edge dominating set and colorings on graphs with fixed clique-width”, Discrete Appl. Math., 126:2-3
(2003), 197-223.
[9] Lozin V. V., Kaminski M., “Coloring edges and vertices of graphs without short or long cycles”, Contrib. to Discr. Math., 2:1
(2007), 61-66.
[10] MalyshevD.S., “The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs”,
Discrete Math., 338:11 (2015), 1860-1865.
[11] Randerath B., Schiermeyer L., Tewes M., “Three-colourability and forbidden subgraphs. II: polynomial algorithms”, Discrete
Math., 251:1-3 (2002), 137-153.
[12] Roussopoulos N., “A max{m, n} algorithm for determining the graph H from its line graph G”, Inf. Process. Lett., 2:4 (1973),
108-112.
[13] Schrijver A., Combinatorial optimization — polyhedra and efficiency, Springer, Berlin, 2003, 1882 pp.

[6

—_

Authenticated | dsmalyshev@rambler.ru author's copy
Download Date | 10/14/17 8:42 AM



	Complexity classification of the edge coloring problem for a family of graph classes
	1 Introduction
	2 Auxiliary results
	2.1 Simplest graphs and their relevance
	2.2 The clique-width of graphs and its relevance

	3 The main result
	References


