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ROUGH DIFFEOMORPHISMS WITH BASIC SETS
OF CODIMENSION ONE

V.Z. Grines, Ye.V. Zhuzhoma, and O.V. Pochinka UDC 517.938

Abstract. The review is devoted to the exposition of results (including those of the authors of the
review) obtained from the 2000s until the present, on topological classification of structurally stable
cascades defined on a smooth closed manifold Mn (n ≥ 3) assuming that their nonwandering sets either
contain an orientable expanding (contracting) attractor (repeller) of codimension one or completely
consist of basic sets of codimension one. The results presented here are a natural continuation of
the topological classification of Anosov diffeomorphisms of codimension one. The review also reflects
progress related to construction of the global Lyapunov function and the energy function for dynamical
systems on manifolds (in particular, a construction of the energy function for structurally stable 3-
cascades with a nonwandering set containing a two-dimensional expanding attractor is described).

To the dear memory of D. V. Anosov

Introduction

The present review has to do with traditional research fields of the Nizhniy Novgorod nonlinear
oscillations school founded by Academician A. A. Andronov. The historical paper by Andronov and
Pontryagin [1] gave an impetus to the development of an important field of qualitative theory of
dynamical systems in Nizhniy Novgorod — namely, of topological classification of rough systems and
systems with hyperbolic structure of the nonwandering set. The first foundational results in this
direction belonged to members of this school: Andronov, Leontovich, Maier, etc. Under a complete
topological classification of a certain class G of dynamical systems we understand the solution of the
following problems:

• finding topological invariants of the dynamical systems from the class G;
• proof of completeness of the set of the found invariants, i.e., proof of the fact that coincidence of

the sets of topological invariants is a necessary and sufficient condition of topological equivalence
(conjugacy) of two dynamical systems from G;
• realization, i.e., construction of a standard representative of G with the given set of topological

invariants.

Solutions of the problem of topological classification in this exact canonical setting are known
only for some classes of structurally stable systems. We restrict ourselves to considering dynamical
systems with discrete time (cascades and diffeomorphisms that generate them) on closed manifolds.
The equivalence class of rough flows on the circle is uniquely determined by the number of its fixed
points. For structurally stable cascades on the circle the complete topological invariant was obtained
by Maier [42] in 1939 and consists of a set of three numbers: the number of periodical orbits, their
period, and the so-called ordinal number.

The early 1960s were distinguished by a revolutionary discovery related to Smale [60] and Anosov [2].
It was found that structurally stable mappings of a surface can possess a countable set of saddle-
type hyperbolic periodic orbits. The dynamics of such systems is chaotic and, unlike regular one,
it means the existence of a dense subset of a nontrivial basic set where trajectories of arbitrary
close points have different asymptotic behavior. It became clear that the study of such systems
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requires new approaches and methods; their topological invariants are not restricted to combinatory
objects but are characterized by algebraic invariants including automorphisms of fundamental groups
of supports of the basic sets. For cascades on manifolds with dimension greater than one, existence
of homoclinic intersections of invariant manifolds of saddle-type periodic motions becomes possible,
which results in the existence of a countable set of periodic trajectories. The first person to discover the
complicated structure of the set of trajectories belonging to a neighborhood of a homoclinic trajectory
was Poincaré [54]. Then Birkhoff [6] studied two-dimensional area-preserving mappings and showed
that the presence of homoclinic intersections implies the existence of infinitely many periodic orbits.
The principal advance in this direction was a paper by Shilnikov, where he gave a complete description
of the set of all trajectories remaining in a certain neighborhood of a transversal homoclinic trajectory
of a flow on a manifold of dimension greater than two. This description, in particular, implies the
presence of a countable set of periodic trajectories in the chosen neighborhood [57, 58].

An essential role in understanding the principal difference of structurally stable cascades on mani-
folds of dimension greater than one and structurally stable flows on surfaces belongs to the example of
a structurally stable diffeomorphism of a two-dimensional sphere with infinitely many periodic orbits,
constructed by Smale in 1961 [62] and called the “Smale horseshoe.” Another very important discovery
was made by Anosov in 1962. He established the structural stability of the geodesic flow on a Riemann
manifold of negative curvature [2]. In the same paper he introduced an important class of structurally
stable flows, and later also diffeomorphisms, which he called U -systems and which later were given the
name of Anosov flows and diffeomorphisms. Smale generalized this concept and introduced a class of
systems with hyperbolic structure of the nonwandering set, namely, the closure of the set of periodic
points [62] (diffeomorphisms with these properties were called A-diffeomorphisms). The nonwandering
set of systems from this class admits a decomposition in a finite number of closed invariant basic sets
such that on each of these sets the system acts transitively. Dynamics on a nontrivial basic set (which
is not a periodic orbit) has properties very similar to those of the diffeomorphism on the nonwandering
set in the example called the “Smale horseshoe.”

A topological classification of one-dimensional basic sets of A-diffeomorphisms of surfaces was ob-
tained by Plykin, Grines, Zhirov, and Kalay. Moreover, necessary and sufficient conditions of topolog-
ical conjugacy for structurally stable diffeomorphisms on surfaces were found in the papers by Grines,
Bonatti, and Langevin.

It follows from papers [10, 41, 63] that the assumption of the existence of a zero-dimensional or
one-dimensional basic set of an A-diffeomorphism f : M3 → M3 does not imply restrictions on the
topology of the ambient manifold. But if the dimension of the basic set is 2 or 3, this is not the case.
Indeed, if the nonwandering set of the diffeomorphism f contains a basic set of dimension three, then
f is an Anosov diffeomorphism, the manifold M3 is a three-dimensional torus T3, and the topological
classification of such diffeomorphisms was obtained by Franks [15] and Newhouse [48].

According to [52], a basic set is an attractor (repeller) if and only if it contains unstable (stable)
manifolds of its points. But in general the dimension of the basic set can differ from that of the
unstable (stable) manifolds of its points. In the case where the dimension of the attractor (repeller)
coincides with that of the unstable (stable) manifolds of its points, the attractor (repeller) is called
expanding (contracting).

The dynamics of diffeomorphisms of 3-manifolds with a nonwandering set containing one-dimensio-
nal expanding attractors (contracting repellers) is studied in the papers by Bothe [9, 10], Williams [64],
Zhuzhoma and Isaenkova [66], etc. Note that the basic sets considered in these papers did not lie on
invariant surfaces (i.e., they were not surface sets). Moreover, all examples of diffeomorphisms of a
three-dimensional manifold with one-dimensional expanding attractors (contracting repellers) from
the aforementioned papers were not structurally stable. The problem of the existence of a structurally
stable diffeomorphism with a basic set of this type is open.

In the paper of Bonatti and Gelman [8] a family of structurally stable partially hyperbolic diffeomor-
phisms was constructed such that their nonwandering sets consisted of exactly one one-dimensional
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attractor and one one-dimensional repeller. Moreover, the attractor and the repeller belonged to
surfaces that were not closed.

In this review we consider A-diffeomorphisms with basic sets Λ of codimension one. Codimension
one means that the topological dimension of the basic set is less than the dimension of the supporting
manifold by one, dim Λ = dimMn − 1. Since further we assume that n ≥ 3, the basic sets under
consideration are at least two-dimensional and hence nontrivial (distinct from a periodic orbit). It is
known that basic sets of codimension one are necessarily either attractors or repellers whose study is
important for applications. An important characteristic of the basic set is its Morse index u(Λ), which
by definition equals the dimension of the unstable manifold of each periodic orbit from Λ. Theoretically,
the Morse index for nontrivial basic sets can take any value from 1 to n−1. For the extremal values of
the Morse index, there has been recent progress in the understanding of the structure of the ambient
manifold, the topological classification, and the existence of an energy function.

The construction of energy functions is related to the “Fundamental theorem of dynamical systems.”
This theorem proven by Conley [14] in 1978 states that any continuous dynamical system (flow or
cascade) has a continuous Lyapunov function, i.e., a function decreasing along the trajectories of the
system outside of the chain recurrent set and constant on the chain components. From many points
of view, it is more meaningful to find information on the existence of an energy function of a smooth
dynamical system, i.e., a smooth Lyapunov function such that the set of its critical points coincides
with the chain recurrent set of the system. The existence of an energy function for any flow follows
from a paper of Wilson and Yorke [65]. Cascades, even those with regular dynamics, generally do
not have an energy function. Such examples were constructed in a paper of Pixton [49] as well as in
papers of Bonatti, Grines, Laudenbach, Pochinka [7, 21, 22]; in the last paper, sufficient conditions
for the existence of a Morse energy function for three-dimensional Morse–Smale cascades were also
found. More surprising is the fact of the existence of an energy function for some discrete dynamical
systems with chaotic behavior.

The structure of the paper is as follows. In Sec. 1, we give basic definitions and construct model
examples of basic sets of codimension one (for simplicity, we restrict ourselves to low-dimensional
examples, but the idea of construction is retained for high-dimensional ones). In Sec. 2, we give some
classical as well as relatively recent results related to the subject under consideration. In Sec. 3, we
consider problems of topological classification. Finally, we construct in Sec. 4 an energy function for
rough 3-diffeomorphisms with a two-dimensional expanding attractor.

1. Preliminary Information and Model Examples

Let f ∈ Diff1(Mn) be a C1-smooth diffeomorphism of a closed n-dimensional (n ≥ 2) manifold
Mn supplied with some Riemann metric d. A set Λ ⊂ Mn invariant w.r.t. f is called hyperbolic if
the restriction TΛM

n of the tangent foliation TMn of the manifold Mn on Λ can be represented as a
Whitney sum EsΛ ⊕EuΛ of df -invariant subfoliations EsΛ, E

u
Λ (dimEsx + dimEux = n, x ∈ Λ), and there

exist constants Cs > 0, Cu > 0, and 0 < λ < 1 such that

‖dfm(v)‖ ≤ Csλm‖v‖ for v ∈ EsΛ, ‖df−m(v)‖ ≤ Cuλm‖v‖ for v ∈ EuΛ, m > 0.

The hyperbolic structure generates the existence of the so-called stable and unstable manifolds that
combine points with similar asymptotic behavior w.r.t. positive (resp., negative) iterations [37, 61].
For any point x ∈ Λ there exists an injective immersion Jsx : Rs → M, whose range W s(x) = Jsx(Rs)
is called the stable manifold of point x, such that the following properties hold:

(1) TxW
s(x) = EsΛ.

(2) Points x, y ∈ M belong to the same manifold W s(x) if and only if d(fn(x), fn(y)) → 0 as
n→∞.

(3) f(W s(x)) = W s(f(x)).
(4) If x, y ∈ Λ, then either W s(x) = W s(y), or W s(x) ∩W s(y) = ∅.
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(5) If points x, y ∈ Λ are close in M, then W s(x), W s(y) are C1-close on compact sets. This
property is usually called the theorem on continuous dependence of stable manifolds on the
initial conditions.

The unstable manifold W u(x) of a point x ∈ Λ is defined as the stable manifold w.r.t. the diffeomor-
phism f−1. Unstable manifolds have similar properties. With reference to property (3), stable and
unstable manifolds are called invariant manifolds.

A point x ∈Mn is called nonwandering if for each its neighborhood U(x) and each natural number
N there exists a n0 ∈ Z, |n0| ≥ N, such that fn0(x) ∈ U(x). The set of nonwandering points of a
diffeomorphism f will be denoted by NW (f). A diffeomorphism f satisfies axiom A (or, which is
the same, is an A-diffeomorphism) if the set NW (f) is hyperbolic, and periodic points are dense in
NW (f).

Smale [62] proved the following statement known as the spectral decomposition theorem. Let a
diffeomorphism f ∈ Diff1(Mn) satisfy axiom A. Then the set NW (f) can be represented as a finite
union of pairwise disjoint closed invariant sets Λ1, . . . ,Λk, called basic sets, each of them containing a
dense orbit. In this case [36], the manifold Mn can be represented as

Mn =
k⋃
i=1

W s(Λi) =
k⋃
i=1

W u(Λi),

where W s(Λi) =
⋃
x∈Λi

W s(x) and W u(Λi) =
⋃
x∈Λi

W u(x). A basic set is called nontrivial if it is not a

periodic orbit (in particular, not a fixed point).
By transitivity of f on each basic set Λi, restrictions of foliations EsΛi , E

u
Λi

on Λi have a constant
dimension at all points x ∈ Λi. The type of a basic set Λi is a pair of numbers (ai, bi), where ai =
dimEux , bi = dimEsx, and x is any point from Λi. Here the number ai is called the Morse index of the
basic set Λi and is denoted u(Λi). Then bi = n− u(Λi).

Results of [4, 11] imply the following specification of the structure of a basic set. Each basic set Λi
is represented as a finite union of disjoint compact sets Λi1, . . . ,Λih, which cyclically pass into each
other under the action of f. Moreover, the stable and unstable manifold of each point x ∈ Λij contains
a dense set in Λij . Each Λij is called a C-dense (or periodic) component of the basic set Λi. A basic
set is called C-dense if it has exactly one periodic component and coincides with it.

A compact f -invariant set A ⊂ M is called an attractor of diffeomorphism f if it has a compact
neighborhood UA such that f(UA) ⊂ int UA and A =

⋂
k≥0

fk(UA). A repeller is defined as an attractor

for f−1.
By [52], a basic set Λ of a diffeomorphism f is an attractor (repeller) if and only if Λ =

⋃
x∈Λ

W u(x)

(Λ =
⋃
x∈Λ

W u(x)).

An attractor Λ of an A-diffeomorphism f is called an expanding attractor if its topological dimension
dim Λ equals the dimension of the unstable manifold W u

x , x ∈ Λ. A repeller of the diffeomorphism f
is called contracting if it is an expanding attractor for f−1.

By [32], a basic set Λ of an A-diffeomorphism f : M3 → M3 is called surface if it belongs to an
f -invariant closed surface M2

Λ (not necessarily connected) topologically embedded into the manifold
M3 and called the support of the set Λ.

Two diffeomorphisms f, g ∈ Diff1(Mn) are called topologically conjugate if there exists a home-
omorphism ϕ : Mn → Mn such that ϕ ◦ f = g ◦ ϕ. A diffeomorphism f ∈ Diff1(Mn) is called
structurally stable if there exists its neighborhood U(f) ⊂ Diff1(Mn) such that each diffeomorphism
g ∈ U(f) is conjugate to f. If we require that the conjugating homeomorphism should be close to the
identical one in the C0-topology, then we come to the definition of a rough diffeomorphism. Now it is
known that the concepts of “roughness” and “structural stability” are equivalent, though the proof of
this fact is quite nontrivial (see [5], where different definitions and respective results are discussed).
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In order to formulate conditions of structural stability, one needs the so-called strong transversality
condition. Let W1, W2 ⊂Mn be two immersed manifolds with a nonempty intersection. By definition,
W1, W2 intersect transversally if for any point x ∈ W1 ∩ W2 the tangent space TxM is generated
by the tangent subspaces TxW1 and TxW2. In particular, if W1, W2 intersect transversally, then
dimTxW1 + dimTxW2 ≥ dimTxM

n.
An A-diffeomorphism is said to satisfy the strong transversality condition if for any two points x,

y ∈ NW (f) the manifolds W s(x), W u(y) intersect only transversally. It is known [43, 55] that a
diffeomorphism is structurally stable if and only if it is an A-diffeomorphism and satisfies the strong
transversality condition. Necessity was proved by Mane [43], sufficiency by Robinson [55].

An important and well enough studied class of structurally stable dynamical systems is the class of
Anosov diffeomorphisms of codimension one [3]. Recall that an Anosov diffeomorphism is a dif-
feomorphism such that its whole supporting manifold is hyperbolic. An Anosov diffeomorphism
f : Mn → Mn is called a diffeomorphism of codimension one if dim EsMn = 1 or dim EuMn = 1.
It is known that each such Anosov diffeomorphism of codimension one is topologically conjugate to a
hyperbolic automorphism of a torus. Moreover, two such diffeomorphisms are topologically conjugate
if and only if they are π1-conjugate [15, 48] (the latter means that they induce conjugate isomorphisms
of the fundamental group of the torus). In this case the n-dimensional torus Tn, n ≥ 2, is the only
basic set of such a diffeomorphism.

Recall that an algebraic automorphism of the torus Tn = Rn/Zn is a diffeomorphism Ĉ given by the

matrix C =

a11 . . . a1n

. . . . . . . . .
an1 . . . ann

 from the set GL(n,Z) of integer matrices with determinant ±1, i.e.,

Ĉ(x1, . . . , xn) = (a11x1 + · · · + a1nxn, . . . , an1x1 + · · · + annxn) (mod 1). An algebraic automorphism

Ĉ is called hyperbolic if the absolute values of the eigenvalues λ1, . . . , λn of the matrix C are distinct
from one. In this case the matrix C is also called hyperbolic. A hyperbolic automorphism is called a
hyperbolic automorphism of codimension one if it has exactly one eigenvalue whose absolute value is
either less than one or greater than one, while the other eigenvalues lie respectively either outside the
unit circle of the complex plane or inside it.

There are several definitions of orientability of a basic set, two of which are used most widely. One
definition is expressed by orientability of the respective subfoliations of the tangent foliation (see,
e.g., [40, 50]). The other one introduced by Grines [16–18] uses the intersection index of invariant
manifolds. We will say that a basic set Λ is orientable if for each point x ∈ Λ and each fixed numbers
α > 0 and β > 0, the intersection index W s

α(x) ∩W u
β (x) is the same (+1 or −1) for all intersection

points. Otherwise the basic set Λ is called nonorientable. Below we will understand orientability of a
basic set in the latter sense.

We pass to construction of model examples. Anosov diffeomorphisms are a base for construction
of expanding attractors of codimension one. Following [62], one can construct a structurally stable
diffeomorphism of the torus Tn such that its nonwandering set consists of a fixed sink and expanding
attractor of codimension one, with the help of the so-called Smale surgery from an Anosov diffeomor-
phism of codimension one of the n-torus Tn. Such a diffeomorphism is called a DA-diffeomorphism.
We give a construction for the case n = 2.

Let fLA : T2 → T2 be the algebraic automorphism of the torus induced by the linear mapping

LA : R2 → R2 given by the matrix

(
2 1
1 1

)
, and let p0 be a fixed saddle point corresponding to the

origin in R2 with the eigenvalues λu = 3+
√

5
2 and λs = 3−

√
5

2 . We introduce local coordinates x1, x2 in
some neighborhood U of the point p0, ensuring a diagonal form of the matrix of the linear mapping
L, i.e., fL(x1, x2) = (λux1, λ

sx2) on U. We choose a value r0 ∈ (0, 1/2) such that the 2-ball Br0(p0) of
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Fig. 1. Smale surgery.

radius r0 centered at p0 is contained in U. Let δ(r) be a function of one variable such that 0 ≤ δ(r) ≤ 1

for all r, δ′(r) < 0 for r0/2 < r < r0, and δ(r) =

{
0, r ≥ r0,

1, r ≤ r0/2.

Consider the system of differential equations ẋ1 = 0, ẋ2 = x2δ(‖ x ‖). Let ϕt be the flow of this

system, ϕt(x1, x2) = (x1, ϕ
t
2(x1, x2)). Then ϕt = id outside the ball Br0(p0) and Dϕtp =

(
1 0
0 et

)
.

Put f = ϕτfLA for some τ > 0 such that eτλs > 1. Note that Dfp0 =

(
λu 0
0 eτλs

)
, so that p0 is a

hyperbolic source. By construction, the diffeomorphism f retains the stable foliation of the Anosov
diffeomorphism, and the coordinate axes are f -invariant. Since the diffeomorphisms ϕτ and fL have
opposite directions of motion on the axis Ox2, the diffeomorphism f has two fixed points q1 and
q2 symmetric w.r.t. p0 on the axis Ox2, being hyperbolic saddle points (see Fig. 1). The following
statement takes place (see, e.g., [56]).

Theorem 1.1. For the diffeomorphism f the set Λ = T2 \W u
p0

is a one-dimensional attractor, and
its spectral decomposition has the form {p0,Λ}.

The one-dimensional attractor constructed this way is expanding, of type (1, 1), and orientable.
We give an example of a two-dimensional surface basic set in the three-dimensional space.
It is easy to construct an A-diffeomorphism f : M3 → M3 with a basic set homeomorphic to

the two-dimensional torus which is a closed two-dimensional submanifold of M3 (Fig. 2). For this
purpose, it suffices to consider a diffeomorphism f : T2 × S1 → T2 × S1 given by the formula
f(t, s) = (fA(t), fNS(s)), where fA : T2 → T2 is an Anosov diffeomorphism and fNS : S1 → S1 is
a diffeomorphism of the form “North Pole — South Pole” (a diffeomorphism whose nonwandering set
consists of a hyperbolic sink and source). Then the diffeomorphism f has a two-dimensional basic set
Λ of type (1, 2), which is an attractor. Moreover, Λ is diffeomorphic to T2, and the diffeomorphism
f |Λ is topologically conjugate to the Anosov diffeomorphism.

2. Williams and Brown Theorems

Using the concept of inverse limit, Williams [64] described the internal dynamics of a restriction of
a diffeomorphism to an expanding attractor. We will briefly explain the approach of Williams and
mention the development of this approach obtained relatively recently by Brown [13].

Let N be a compact neighborhood of an expanding attractor Λ. Following Williams, we put x ∼ y if
(and only if) points x, y ∈ N belong to the same connected component of the intersection N ∩W s(z)
for some point z ∈ Λ. Williams proved that the neighborhood N can be chosen to satisfy the following
conditions:
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Fig. 2. Construction of a diffeomorphism with a two-dimensional surface basic set.

Fig. 3. Branched manifold.

• the factor space N/∼
def
= K is a branched manifold;

• the commutative diagram

f(N)
f←− N

↓ ⊂
N
↓ q

↓ q

K
g←− K

holds, where q : N → N/∼ is the projection onto the factor space. Recall that a branched manifold
is a smooth manifold with an exception of finitely many singularities, which for a one-dimensional
manifold (this is the case we will basically need) have the form shown in Fig. 3.

Recall that the inverse limit w.r.t. mapping g : K → K,

Σg = lim
←−

(K, g) = lim
←−

{
K

g←− K g←− · · · g←− K g←− · · ·
}
,

is defined as the set of unilateral sequences (x0, . . . , xi, . . .), where xi = g(xi+1). On Σg a shift is
defined:

h : Σg → Σg, h(x0, x1, . . .) = (g(x0), x0, x1, . . .).

Note that any unilateral sequence (x0, . . . , xi, . . .) can be considered as a point of the infinite product
∞∏
i=0

Ki, Ki = K, supplied with the Tikhonov topology (of course, K is assumed to have a topological

structure). Thus the inverse limit is a subset of a topological space. Further, while saying that some
basic set is an inverse limit, we mean that the basic set is homeomorphic to one.

Let K be a branched manifold. The definition of a branched manifold implies that such a manifold
has a tangent foliation denoted by T (K). Following Williams [64], we formulate the concept of an
expansion of a branched manifold. A Cr-mapping g : K → K, r ≥ 1, is called an expansion if there
exist constants C > 0 and 0 < λ < 1 such that

|Dgm(v)| ≥ Cλm|v| for all m ∈ N, v ∈ T (K).
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Fig. 4. Smale solenoid

If K is a branched m-manifold and the following conditions hold:

(1) NW (g) = K;
(2) g is an expansion;
(3) for any point z ∈ K, there exists a neighborhood U of the point z and a number j ∈ N such

that gj(U) is an m-ball,

then Σg is called a generalized m-solenoid. Williams [64] proved the following theorem.

Theorem 2.1. Let Λ be an m-dimensional expanding attractor of a diffeomorphism f. Then the
restriction f |Λ of the diffeomorphism f to Λ is conjugate to a shift h of some generalized m-solenoid.
Conversely, given a shift h : Σ → Σ of a generalized m-solenoid Σ, there exist a manifold M and
a diffeomorphism f : M → M such that f has an m-dimensional expanding attractor Λ and its
restriction f |Λ is conjugate to h.

In the special case where K is the circle S1, and g = E2 : x → 2x mod 1 is an expanding en-
domorphism of degree 2, we obtain the well-known Smale solenoid [62]. Namely, Smale constructed
a diffeomorphism of a solid torus onto itself with a one-dimensional expanding attractor that is a
topological solenoid. Schematically, the Smale example can be imagined as the combination of an
expansion of the solid torus along its internal axis and a subsequent contraction in the direction per-
pendicular to that axis. Then the obtained (intermediate) solid torus is embedded into the original
one so that the axis of the intermediate solid torus spins no less than twice along the axis of the
original solid torus and the disk structure is retained (see Fig. 4).

In the case where a basic set Λ is a C-dense attractor with a unit Morse index, Brown [13] showed
that Λ is always an inverse limit, and if Λ is not expanding (i.e., its topological dimension k = dim Λ
is not less than two), then Λ is a special inverse limit w.r.t. a linear endomorphism or diffeomorphism
of the k-dimensional torus Tk. We give a more precise formulation of the Brown theorem.

Theorem 2.2. Let f : Mn → Mn be an A-diffeomorphism of a closed manifold Mn, and let Λ be a
C-dense basic set of the diffeomorphism f. Assume that the Morse index of the set Λ equals one, i.e.,
dimEux = 1 for any point x ∈ Λ. Then either Λ is a one-dimensional expanding attractor, and in this
case Λ is an inverse limit

Σg = lim
←−

(K, g) = lim
←−

{
K

g←− K g←− · · · g←− K g←− · · ·
}

w.r.t. expansion g : K → K of a branched one-dimensional manifold K, or Λ is an inverse limit

ΣA = lim
←−

(Tk, A) = lim
←−

{
Tk A←− Tk A←− · · · A←− Tk A←− · · ·

}
w.r.t. the linear endomorphism A : Tk → Tk, k ≥ 2. Moreover, if Λ is locally connected, then Λ
is homeomorphic to the k-dimensional torus Tk, and the restriction f |Λ is conjugate to the Anosov
automorphism.

The following question by Smale [62, P. 785] remained open until recently: Does there exist a two-
dimensional basic set of a diffeomorphism f : M3 →M3 that is not a compact submanifold and does
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not have the local structure of a direct product of R2 by a Cantor set? In 2010, Brown gave a negative
answer to this question. It follows from [13] that any two-dimensional basic set of a diffeomorphism
f : M3 → M3 is either an expanding attractor (contracting repeller), or a surface attractor (surface
repeller). Moreover, it became possible to give a description of basic sets of diffeomorphisms of three-
dimensional manifolds.

Theorem 2.3. Let f : M3 → M3 be an A-diffeomorphism of a closed three-dimensional manifold
M3, and let Λ be a C-dense basic set being an attractor of the diffeomorphism f. Then:

(1) If dim Λ = 0, then Λ is an isolated attracting fixed point.
(2) If dim Λ = 1, then Λ is a generalized one-dimensional solenoid locally homeomorphic to the

product of a segment by a Cantor set in the two-dimensional plane.
(3) If dim Λ = 2, then

• either dimEu|Λ = 1, and in this case Λ is homeomorphic to the two-dimensional torus T2,
and the restriction f |Λ is conjugate to the Anosov automorphism of the two-dimensional
torus,
• or dimEu|Λ = 2, and in this case Λ is an expanding attractor locally homeomorphic to the

product of the two-dimensional plane by a Cantor set on the line.
(4) If dim Λ = 3, then Λ = M3 = T3 is a three-dimensional torus, and the diffeomorphism f is

conjugate to the Anosov automorphism of the three-dimensional torus.

Note the paper [33], where it is proven that any inverse limit

ΣA = lim
←−

(Tk, A) = lim
←−

{
Tk A←− Tk A←− · · · A←− Tk A←− · · ·

}
w.r.t. a linear endomorphism or diffeomorphism A : Tk → Tk (in other words, the determinant of the
matrix A must be distinct from zero) is homeomorphic to an attractor of a diffeomorphism of some
analytic manifold.

3. Classification of Basic Sets of Codimension One

Let Λ be a basic set of codimension one of an A-diffeomorphism f of a closed n-dimensional manifold
Mn, i.e., the topological dimension of the basic set Λ is n− 1. According to [51, 64], Λ is an attractor
or a repeller. Generally, unless otherwise stated, we will consider Λ as an attractor for the sake
of definiteness. As soon as the dimension n of the supporting manifold equals 2, the topological
classification of basic sets is obtained in [17–19, 52] (see [27] for an extensive bibliography). Therefore,
we consider below the case n ≥ 3. We restrict ourselves to attractors of codimension one whose Morse
index is 1 or n− 1. Since numbers are representatives in the group Zn for ±1(mod n), we will identify
the index n− 1 with the index −1. The Morse index is called the Morse index with unit module if it
equals 1 or n− 1. Note that for n = 3, a basic set of codimension one always has a Morse index with
unit module.

In [38], the inverse limit

Σ = lim
←−

(Tk) = lim
←−

{
Tk A1←− Tk A2←− · · · Am←− Tk Am+1←− · · ·

}
was considered (in fact, the construction considered in this paper was more general, but the cited
one suffices for our purposes), and it was shown that if there is an infinite set of indexes m for which
| detAm| ≥ 2 for the determinant of the matrix Am, then the inverse limit Σ cannot be embedded in
any closed (k + 1)-dimensional manifold. From this and Theorem 2.2 we obtain the following result.

Theorem 3.1. Let f : Mn → Mn be an A-diffeomorphism of a closed n-dimensional manifold Mn,
n ≥ 3, and let Λ be an attractor of codimension one of the diffeomorphism f with the Morse index
with unit module. Then exactly one of the following possibilities takes place:
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• either Λ is an expanding attractor locally homeomorphic to the product of Rn−1 by a Cantor set
on the line;
• or Λ is homeomorphic to the (n− 1)-dimensional torus Tn−1, and the restriction of the diffeo-

morphism f |Λ is conjugate to an Anosov diffeomorphism of codimension one.

Further we consider classification results in the class of structurally stable diffeomorphisms that
have an attractor of codimension one with the Morse index with unit module. By the alternative
given above, we first consider expanding attractors, and then those homeomorphic to tori (here we
restrict ourselves to the case n = 3, where a complete classification is obtained).

3.1. Expanding attractors. A topological classification of structurally stable diffeomorphisms
with orientable expanding attractors of codimension one on closed n-dimensional manifolds for n ≥ 3
is obtained in [28–31].

Let f : Mn →Mn be a structurally stable diffeomorphism such that its nonwandering set contains
an expanding orientable attractor Λ of topological dimension (n − 1). Then dim W s(x) = 1 for any
point x ∈ Λ, which allows one to introduce the notation (y, z)s ([y, z]s) for an open (closed) arc of the
stable manifold W s(x) bounded by points y, z ∈W s(x).

The set W s(x) \ x consists of two connected components. At least one of these components has a
nonempty intersection with the set Λ. A point x ∈ Λ is called a boundary point if one of the connected
components of the set W s(x)\x does not intersect with Λ, we will denote this component by W s∅(x).
The set ΓΛ of all boundary points of the set Λ is nonempty and consists of a finite number of periodic
points that are divided into associated couples (p, q) of points of the same period so that the 2-bunch
Bpq = W u(p) ∪W u(q) is a boundary achievable from inside1 of the connected component of the set
M \ Λ.

For each couple (p, q) of associated boundary points of the set Λ, we construct the so-called char-
acteristic sphere.

Let Bpq be a 2-bunch of the attractor Λ, consisting of two unstable manifolds W u(p) and W u(q) of
associated boundary points p and q respectively, and let mpq be the period of the points p, q. Then
for any point x ∈W u(p) \ p there exists a unique point y ∈ (W u(q)∩W s(x)) such that the arc (x, y)s

does not intersect with the set Λ. We define the mapping

ξpq : Bpq \ {p, q} → Bpq \ {p, q}
by putting ξpq(x) = y and ξpq(y) = x. Then ξpq(W

u(p)\p) = W u(q)\q and ξpq(W
u(q)\q) = W u(p)\p,

i.e., the mapping ξpq takes the pierced unstable manifolds of the 2-bunch into each other and is an
involution (ξ2

pq = id). By the theorem on continuous dependence of invariant manifolds on compact
sets, the mapping ξpq is a homeomorphism.

The restriction fmpq |Wu(p) has exactly one hyperbolic repelling fixed point p; hence there exists a
smooth closed (n − 1)-disk Dp ⊂ W u(p) such that p ∈ Dp ⊂ int(fmpq(Dp)). Then the set Cpq =⋃
x∈∂Dp

(x, ξpq(x))s is homeomorphic to a closed cylinder Sn−2× [0, 1]. The set Cpq is called a connecting

cylinder. The circle ξpq(∂Dp) bounds in W u(q) a two-dimensional (n− 1)-disk Dq such that q ∈ Dq ⊂
int(fmpq(Dq)). The set Spq = Dp ∪ Cpq ∪Dq is homeomorphic to a (n− 1)-dimensional sphere called
the characteristic sphere corresponding to the bunch Bpq (see Fig. 5).

Put T (f) = NW (f) \ Λ and formulate the main dynamic properties of the diffeomorphism f ∈ G
as a theorem.

Theorem 3.2. Let f : Mn →Mn be a structurally stable diffeomorphism such that its nonwandering
set contains an expanding orientable attractor Λ of topological dimension (n− 1). Then the following
facts take place:

1Let G ⊂ M be an open set with boundary ∂G (∂G = cl(G) \ int(G)). A subset δG ⊂ ∂G is called achievable from
inside of the domain G, if for any point x ∈ δG there exists an open arc completely lying in G and such that x is one of
its endpoints.
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Fig. 5. Characteristic sphere.

(1) the ambient manifold Mn is homeomorphic to the n-dimensional torus Tn;
(2) each characteristic sphere Spq bounds an n-ball Qpq such that T (f) ⊂

⋃
(p,q)⊂ΓΛ

Qpq;

(3) for each associated couple (p, q) of boundary points, there exists a natural number kpq such
that T (f) ∩Qpq consists of kpq periodic sources α1, . . . , αkpq and kpq − 1 periodic saddle points

P1, . . . , Pkpq−1 alternate on the simple arc lpq = W s∅(p) ∪
kpq−1⋃
i=1

W s(Pi) ∪
k⋃
i=1

W s(αi) ∪W s∅(q)

(see Fig. 6).

Fig. 6. Arc lpq

After Theorem 3.2, a natural step in classification of structurally stable diffeomorphisms with basic
sets of codimension one is classification of structurally stable diffeomorphisms with expanding attrac-
tors or contracting repellers of codimension one on the torus Tn, n ≥ 3. Let f : Tn → Tn be such
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diffeomorphism. Assume for definiteness that f has an expanding attractor Λ of codimension one.
Denote by

f∗ : H1(Tn,Rn)→ H1(Tn,Rn)

the automorphism of the one-dimensional group of homologies H1(Tn,Rn) ' Rn of the torus Tn

induced by the diffeomorphism f.

Theorem 3.3. Let f : Tn → Tn be an A-diffeomorphism of the n-dimensional torus Tn, n ≥ 3, pos-
sessing an orientable expanding attractor Λ of codimension one. Then f∗ is a hyperbolic automorphism
of codimension one.

Following Franks [15], we will call a diffeomorphism f : M → M a π1-diffeomorphism if for any
homeomorphism g : K → K of a compact CW -complex K onto itself and a continuous mapping
h : K →M such that the relation f∗ ◦ h∗ = h∗ ◦ g∗ holds, there exists a unique mapping h′ : K →M
taking a basis point on K to a basis point on M, homotopic to h, and such that f ◦ h′ = h′ ◦ g.

By Theorem 3.3, there exists an algebraic automorphism A(f) : Tn → Tn with f∗ = A(f)∗, which is
hyperbolic. By [15, Proposition 2.1], a hyperbolic automorphism of the torus is a π1-diffeomorphism.
Hence there exists a continuous mapping h : Tn → Tn, homotopic to an identical one and such that
h ◦ f = A(f) ◦ h. We assume that

P (f, h) = {x ∈ Tn|h−1(x) contains more than one point}.

Lemma 3.1. Let f : Tn → Tn be an A-diffeomorphism of the n-dimensional torus Tn, n ≥ 3, pos-
sessing an orientable expanding attractor Λ of codimension one, and let h : Tn → Tn be a continuous
mapping homotopic to the identity and such that h ◦ f = A(f) ◦ h. Then h satisfies the following
conditions:

• h(Λ) = Tn.
• If {pi, qi}ki=1 is a family of couples of associated boundary periodic points of the diffeomorphism
f, then h(pi) = h(qi) is a periodic point of the automorphism A(f) for each i = 1, . . . , k.
• h(W u(pi)) = h(W u(qi)), i = 1, . . . , k.

• P (f, h) =
k⋃
i=1

h(W u(pi)).

• Let Ki be a component of the set Tn \ Λ; then h(Ki) is the unstable manifold W u(h(pi)) =
W u(h(qi)) of the automorphism A(f), where pi, qi are associated boundary periodic points such
that δ(Ki) = W u(pi) ∪W u(pi). Moreover, h(Ki ∪ δ(Ki)) = W u(h(pi)).

• Let Λ̆ ⊂ Λ be the union of unstable manifolds that do not contain boundary periodic points; then
the restriction h|Λ̆ is a homeomorphism onto its range.

Let Λ be an orientable expanding attractor of codimension one of the structurally stable diffeomor-
phism f, and let Spq be the characteristic sphere that corresponds to the 2-bunch Bpq = W u(p)∪W u(q)
of the attractor Λ, where p, q ∈ Λ are associated boundary periodic points. One can show that inside
the sphere Spq there are d ≥ 1 periodic points of index n and d− 1 ≥ 0 periodic points of index n− 1.
Put d(p, q) = d. If Λ is a repeller, then we denote by d(p, q) the number of periodic points of index 0
inside Spq. In both cases the number d(p, q) is well-defined, since it does not depend on the choice of the
characteristic sphere Spq. It is easy to see that points f j(p), f j(q) are associated boundary and periodic,
and the number of periodic points of the same index inside the spheres Spq and f j(Spq) = Sfj(p),fj(q)

is the same for any j ∈ Z. Therefore, we can assign the number d(O(p, q))
def
= d(p, q) to the union

O(p, q) = O(p) ∪O(q) of the orbits of points p, q.
Boundary periodic points are divided into couples {O(pi, qi)}ki=1 of orbits of associated boundary

points. Let {d(O(pi, qi))}ki=1 be the corresponding numbers defined above that indicate the number
of periodic points of index n (if Λ is an attractor) or of index 0 (if Λ is a repeller) in the cor-
responding characteristic spheres. By Lemma 3.1, h(O(pi)) = h(O(qi)) is a periodic orbit of the
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automorphism A(f). Assign to each orbit h(O(pi)) = h(O(qi)) the number d(O(pi, qi)). The family
{h(O(pi)), d(O(pi, qi))}ki=1 is called the d-signature of the diffeomorphism f and denoted by D(f, h).

Let A be a hyperbolic automorphism of codimension one of the torus Tn, and let {Oj}rj=1 be a finite
set of periodic orbits Oj of the automorphism A. To each orbit Oj we assign a natural number dj ∈ N
in an arbitrary way. The family {Oj , dj}rj=1 is called an admissible d-signature of the automorphism A.
By Theorem 3.2, the d-signature of the structurally stable diffeomorphism f is admissible.

Let {O1
j , d

1
j}
r1
j=1, {O2

j , d
2
j}
r2
j=1 be admissible d-signatures of hyperbolic automorphisms A1 and A2, re-

spectively. These signatures are called equivalent if there exists a linear diffeomorphism (i.e., a composi-

tion of an automorphism and a shift) ψ : Tn → Tn such that ψ(
r1⋃
j=1

(O1
j )) =

r2⋃
j=1

(O2
j ), d(ψ(Oj)) = d(Oj)

for all 1 ≤ j ≤ r1, and there holds the relation ψ ◦ A1 = A2 ◦ ψ. It follows immediately from the
definition that r1 = r2.

The next theorem solves the problem of topological conjugacy in the class of structurally stable
diffeomorphisms on the torus Tn (n ≥ 3) that have orientable expanding attractors or contracting
repellers of codimension one. It shows that the d-signature is a complete invariant of conjugacy in
this class of diffeomorphisms.

Theorem 3.4. Let f1, f2 : Tn → Tn be structurally stable diffeomorphisms that have orientable ex-
panding attractors Λ1 and Λ2 of codimension one, respectively. Then the diffeomorphisms f1, f2 are
conjugate if and only if their d-signatures D(f1, h1), D(f2, h2) are equivalent, where hi : Tn → Tn

(i = 1, 2) are continuous mappings homotopic to the identity and such that hi ◦ fi = A(fi) ◦ hi.

The next theorem solves the implementation problem in the class of structurally stable diffeo-
morphisms on the torus Tn (n ≥ 3) that have orientable basic sets of codimension one (expanding
attractors or contracting repellers). Namely, given an admissible topological invariant (d-signature),
a structurally stable diffeomorphism with this invariant is constructed.

Theorem 3.5. Let A : Tn → Tn be a hyperbolic automorphism with an unstable foliation of codi-
mension one in each leaf of the tangent foliation of the torus Tn, n ≥ 3 (which means that the
stable manifolds of all points are one-dimensional). For each admissible d-signature {Oj , dj}rj=1 of
the automorphism A there exists a structurally stable diffeomorphism f : Tn → Tn possessing an
orientable expanding attractor of codimension one such that D(f, h) = {Oj , dj}rj=1, where f∗ = A∗ and
h : Tn → Tn is a continuous mapping homotopic to the identity and satisfying the relation h◦f = A◦h.

As for nonorientable basic sets of codimension one, the following result holds (see [44, 67]).

Theorem 3.6. Let f : M2m+1 →M2m+1 be a structurally stable diffeomorphism of a closed (2m+1)-
dimensional manifold M2m+1, 2m + 1 ≥ 3. Then the spectral decomposition of the diffeomorphism f
does not contain nonorientable expanding attractors and contracting repellers of codimension one.

The first example of a nonorientable basic set of codimension one that is an expanding attractor
or a contracting repeller was constructed by Plykin [52] on the two-dimensional sphere S2 (hence in
this example the basic set of codimension one is one-dimensional). Note also that the diffeomorphism
in Plykin’s example is structurally stable. This example shows that Theorem 3.6 does not hold true
in the dimension n = 2. For dimensions 2m ≥ 4, the question of existence of nonorientable expanding
attractors and contracting repellers of codimension one for structurally stable diffeomorphisms remains
open. Nevertheless, there exist Ω-stable diffeomorphisms with such basic sets [44, 67].

3.2. Surface basic sets. Let a diffeomorphism f : M3 →M3 defined on a smooth closed orientable
3-manifold M3 satisfy Smale’s axiom A, and let the nonwandering set NW (f) of the diffeomorphism
f contain a two-dimensional surface basic set B. Then according to Plykin, B is either an attractor or
a repeller.

The following statements are proved in [32].
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Theorem 3.7. For any two-dimensional surface attractor (repeller) B of an A-diffeomorphism f :
M3 →M3 the following holds:

• B has type (2, 1) ((1, 2)) and hence is not an expanding attractor (contracting repeller);
• B coincides with its support, which is a union of finitely many manifolds tamely embedded2 into
M3 and homeomorphic to the two-dimensional torus;
• the restriction of some power of the diffeomorphism f to any connected component of the support

is conjugate to a hyperbolic automorphism of the torus.

We will consider the class G of all A-diffeomorphisms f : M3 → M3 whose nonwandering sets
NW (f) consist only of two-dimensional surface basic sets.

Let f ∈ G. Denote by A (R) the union of all attractors (repellers) belonging to NW (f). The next
statement specifies the topology of the manifold M3 (see [25]).

Lemma 3.2. For each diffeomorphism f ∈ G, the sets A and R are nonempty, and the boundary of
each connected component V of the set M3 \(A∪R) consists of exactly one periodic component A ⊂ A
and one periodic component R ⊂ R. In this case the closure cl V is homeomorphic to the manifold
T2 × [0, 1].

Thus the supporting manifold M3 is homeomorphic to the factor space Mτ obtained from T2× [0, 1]
by identification of points (z, 1) and (τ(z), 0), where τ : T2 → T2 is a homeomorphism. Thus Mτ is a
locally trivial bundle over the circle with fiber torus.

The next lemma is a well-known topological fact.

Lemma 3.3. The manifold Mτ is homeomorphic to the manifold M
Ĵ
, where J ∈ GL(2,Z) is the

matrix defined by the action of the automorphism τ∗ : π1(T2)→ π1(T2).

We represent the manifold M
Ĵ

as the space of orbits M
Ĵ

= (T2×R)/Γ, where Γ = {γk, k ∈ Z} is the

group of powers of the diffeomorphism γ : T2×R→ T2×R given by the formula γ(z, r) = (Ĵ(z), r−1).
Denote the natural projection by p

Ĵ
: T2 × R→M

Ĵ
.

Denote by C the set of hyperbolic matrices from GL(2,Z). For C ∈ C, denote by Z(Ĉ) the centralizer

Ĉ, i.e., Z(Ĉ) = {Ĵ : J ∈ GL(2,Z), ĈĴ = Ĵ Ĉ}.
The next result is proved in [53].

Lemma 3.4. The group Z(Ĉ), C ∈ C, is isomorphic to the group Z⊕ Z2.

Put Id =

(
1 0
0 1

)
, −Id =

(
−1 0
0 −1

)
and J = C ∪ Id ∪ (−Id). Since Ĉ and −Ĉ belong to

Z(Ĉ), Lemma 3.4 entails the following fact.

Lemma 3.5. If Ĵ ∈ Z(Ĉ) for C ∈ C, then J ∈ J . Moreover, C and J have the same form in the
following sense: C = (−Id)jCξkC and J = (−Id)jJ ξkJ , where ξ ∈ C, kC , kJ ∈ Z, jC , jJ ∈ {0, 1}.

The next theorem, proved in [25], distinguishes the set of all manifolds that admit diffeomorphisms
from the class G.

2One should stress that the support of a two-dimensional surface set f may be nonsmooth at any point (a corresponding
example is given in [39]), but it is not wild at any point. Recall that a C0-mapping g : B → X is called a topological
embedding of a topological manifold B into a manifold X if it homeomorphically maps B onto a subspace g(B) with
topology induced from X. In this case the image A = g(B) is called a topologically embedded manifold. Note that a
topologically embedded manifold is generally not a topological submanifold. If A is a submanifold, then it is called tame
or tamely embedded; otherwise A is called wild or wildly embedded and the points where the conditions that define a
topological submanifold do not hold are called wildness points. By the results of [47], a topological embedding of an
orientable surface into a 3-manifold is tame if and only if it is cylindrical. Recall that a two-dimensional surface Sg ⊂W
is called cylindrically embedded into the 3-manifold W if there exists a topological embedding h : Sg × [−1, 1]→W such
that h(Sg × {0}) = Sg, where Sg is a standard orientable two-dimensional surface of genus g ≥ 0.
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Theorem 3.8. Let a manifold M3 admit a diffeomorphism f from the class G. Then M3 is diffeo-
morphic to the manifold M

Ĵ
, where J ∈ J .

Remark 3.1. In [35] a similar conclusion on the structure of the manifold is obtained under the
assumption that the manifold M3 be irreducible (i.e., each two-dimensional sphere cylindrically em-
bedded into M3 bounds a three-dimensional ball in it) and admit a diffeomorphism f : M3 → M3

with an invariant Anosov torus (i.e., diffeomorphisms with a smooth f -invariant submanifold homeo-
morphic to the torus and such that f induces hyperbolic action on its fundamental group). Note that
Theorem 3.8 does not require irreducibility of the manifold M3.

Let MS(S1) be the class of structurally stable transformations of the circle, which coincides, ac-
cording to Maier [42], with the class of Morse–Smale diffeomorphisms on S1. We divide MS(S1) into
two subclasses MS+(S1) and MS−(S1) consisting of orientation-preserving and orientation-changing
diffeomorphisms, respectively. We formulate Maier’s results on topological classification of structurally
stable transformations of the circle.

Theorem 3.9.

(1) For each diffeomorphism ϕ ∈ MS+(S1), the nonwandering set NW (ϕ) consists of 2n, n ∈ N,
periodic orbits of period k.

(2) For each diffeomorphism ϕ ∈ MS−(S1), the set NW (ϕ) consists of 2q, q ∈ N, periodic points,
among which two are fixed, and the rest have the period 2.

Let ϕ ∈ MS+(S1). Enumerate the periodic points from NW (ϕ): p0, p1, . . . , p2nk−1, p2nk = p0,
starting from arbitrary periodic point p0 clockwise. Then ϕ(p0) = p2nl, where l is an integer such that
l = 0 for k = 1, l ∈ {1, . . . , k − 1} for k > 1, and (k, l) are coprime3. Note that the number l does not
depend on the point p0. For ϕ ∈MS−(S1) we set ν = −1 if its fixed points are sources, ν = 0 if they
are a sink and a source, and ν = +1 if they are sinks. Note that ν = 0 if q is odd and ν = ±1 if q is
even.

Theorem 3.10.

(1) Two diffeomorphisms ϕ;ϕ′ ∈ MS+(S1) with parameters n, k, l;n′, k′, l′ are topologically conju-
gate if and only if n = n′, k = k′, and at least one of the following assertions holds:
• l = l′ (in this case, if l 6= 0, then the conjugating homeomorphism is preserving orientation),
• l = k′ − l′ (in this case, the conjugating homeomorphism is reversing orientation).

(2) Two diffeomorphisms ϕ;ϕ′ ∈MS−(S1) with parameters q, ν; q′, ν ′ are topologically conjugate if
and only if q = q′ and ν = ν ′.

For n, k ∈ N and an integer l such that l = 0 for k = 1 and l ∈ {1, . . . , k−1} for k > 1, we construct
a standard representative ϕ+ in MS+(S1) with parameters n, k, l. For q ∈ N, ν ∈ {−1, 0,+1} we
construct a standard representative ϕ− in MS−(S1) with parameter q. Let us introduce the following
mappings:
ψm : R→ R is the shift by a time unit of the flow ṙ = sin(2πmr) for m ∈ N;
χk,l : R→ R is the diffeomorphism given by the formula χk,l(r) = r − l

k ;
χ : R→ R is the diffeomorphism given by the formula χ(r) = −r;
ϕ̃n,k,l = ψn·kχk,l : R→ R;
ϕ̃q,0 = ψqχ : R→ R for odd q;

ϕ̃q,+1 = ψqχ : R→ R and ϕ̃q,−1 = ϕ̃−1
q,+1 : R→ R for even q.

Set Π̃+ = {ϕ̃+ = ϕ̃n,k,l} and Π̃− = {ϕ̃− = ϕ̃q,ν}. One can check directly that ϕ̃σ(r+µ) = ϕ̃σ(r) for
σ ∈ {+,−} and µ ∈ Z. Hence, the following diffeomorphisms are well defined: ϕσ = πϕ̃σπ

−1 : S1 → S1.

Set Π+ = {ϕ+}, Π− = {ϕ−} and Π = Π+ ∪Π−. Denote by φ̃σ : T2 × R→ T2 × R the product of the

diffeomorphism ϕ̃σ ∈ Π̃σ and automorphism Ĉ, C ∈ C, i.e., φ̃σ(z, r) = (Ĉ(z), ϕ̃σ(r)).

3Indeed, A. G. Mayer used the number r1 instead of l such that l · r1 ≡ 1(mod k) and called it the ordering number.
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Lemma 3.6. The diffeomorphism φ̃σ can be projected onto the diffeomorphism φσ : M
Ĵ
→M

Ĵ
by the

relation φσ = pJ φ̃σp
−1
J if and only if

• CJ = JC for σ = +,
• J ∈ {Id,−Id} for σ = −.

Thus, we get the following description of the models. Let J+ ∈ J and C+ ∈ C be such that

C+J+ = J+C+. Let J− ∈ {Id,−Id} and C− ∈ C. Set φ̃σ(z, r) = (Ĉσ(z), ϕ̃σ(r)). It is immediately

verified that φ̃σγσ = γσφ̃σ where γσ(z, r) = (Jσ(z), r−1) is the generator of the group Γσ = {γiσ, i ∈ Z}.
Then the following concept is well defined.

Definition 3.1. We say that the diffeomorphism φσ : M
Ĵσ
→ M

Ĵσ
, σ ∈ {+,−} is the locally direct

product of Ĉσ and ϕσ if φσ = pJσ φ̃σp
−1
Jσ

and write φσ = Ĉσ ⊗ ϕσ.

By Φ+ (Φ−) denote the set of all locally direct products φ+ (φ−). Thus, each diffeomorphism
φ+ ∈ Φ+ is uniquely defined by parameters {J+, C+, n, k, l} and each diffeomorphism φ− ∈ Φ− is
uniquely defined by parameters {J−, C−, q, ν}. Set Φ = Φ+ ∪ Φ−. The following result provides
algebraic criteria for topological conjugacy of the diffeomorphisms from Φ (see the proof in [24]).

Theorem 3.11.

(1) Two diffeomorphisms φ+, φ
′
+ ∈ Φ+ with parameters {J+, C+, n, k, l} and {J ′+, C ′+, n′, k′, l′} are

topologically conjugate if and only if n = n′, k = k′, there exists a matrix H ∈ GL(2,Z) such
that C+H = HC ′+, and at least one of the following assertions holds:
• J+H = HJ ′+ and l = l′,

• J−1
+ H = HJ ′+ and either l = l′ = 0 or l = k′ − l′.

(2) Two diffeomorphisms φ−, φ
′
− ∈ Φ− with parameters {J−, C−, q, ν} and {J ′−, C ′−, q′, ν ′} are topo-

logically conjugate if and only if J− = J ′−, q = q′, ν = ν ′, and there exists a matrix H ∈ GL(2,Z)
such that C−H = HC ′−.

(3) There are no topologically conjugate diffeomorphisms φ+ ∈ Φ+ and φ− ∈ Φ−.

Recall that (see, e.g., [12, 34]) a diffeomorphism g on M3 is called4 partially hyperbolic if there exists
a continuous splitting of the tangent bundle TM3 = Es ⊕ Ec ⊕ Eu invariant under the derivative Dg,
where dim Es = dim Ec = dim Eu = 1 and the strong expansion of the unstable bundle Eu and the
strong contraction of the stable bundle Es dominate any expansion or contraction on the center Ec.
Herewith g is dynamically coherent if there are g-invariant foliations tangent to Ecs = Es ⊕ Ec

and Ecu = Ec ⊕ Eu (and consequently there is g-invariant foliation tangent to Ec). Note that
the constructed model is dynamically coherent if we can replace ṙ = sin(2πmr) by the vector field
ṙ = ln(µ) · sin(2πmr) in the construction of φσ ∈ Φσ above, where µ < |λ| and absolute values of
eigenvalues of Cσ are |λ| and 1

|λ| . Thus, by Theorem 3.11, we get the following result.

Corollary 3.1. Any diffeomorphism φ from the class Φ is topologically conjugate to some dynamically
coherent diffeomorphism.

Recall that two diffeomorphisms f : M3 → M3 and f ′ : M ′3 → M ′3 are called ambient Ω-
conjugate if there exists a homeomorphism h : M3 → M ′3 such that h(NW (f)) = NW (f ′) and
hf |NW (f) = f ′h|NW (f). Next theorems are proved in [24].

Theorem 3.12. Any diffeomorphism from the class G is ambient Ω-conjugate to some diffeomorphism
from the class Φ.

Theorem 3.13. Any structurally stable diffeomorphism from the class G is topologically conjugate to
some diffeomorphism from the class Φ.

4More exactly, a diffeomorphism f is partially hyperbolic if there is N ∈ N and a Dg-invariant continuous splitting
TM3 = Es⊕Ec⊕Eu into one-dimensional subbundles such that ||DgN |Es

x
|| < ||DgN |Ec

x
|| < ||DgN |Eu

x
|| and ||DgN |Es

x
|| <

1 < ||DgN |Eu
x
|| for every x ∈M3.
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Fig. 7. Domains Bu and Bs.

Note that there exist diffeomorphisms in the class G that are not topologically conjugate to any
diffeomorphism from the class Φ. The proof of the main classification Theorem 3.13 reduces to the
proof of the existence of a one-dimensional foliation If for a structurally stable diffeomorphism f from
the class G. Since this is the most nontrivial part of the theorem, we give an idea of its proof.

By Theorem 3.12, f is ambiently Ω-conjugate to some diffeomorphism φ : M
Ĵ
→M

Ĵ
from the class

Φ by means of a homeomorphism h : M3 →M
Ĵ
, J ∈ J . For our purposes it suffices to assume that φ

belongs to Φ+ and is determined by parameters C ∈ C, n ∈ N, k = 1, and l = 0 (otherwise one can
choose an adequate power of f). Put ψ = hfh−1 : M

Ĵ
→M

Ĵ
. In connection with the homeomorphism

ψ, we may use the concepts and notations of stable and unstable manifolds of nonwandering points,
understanding them as preimages w.r.t. h of the respective objects of the diffeomorphism f. By
construction, ψ and φ coincide on the nonwandering set, and by Theorem 3.12 there exists a lifting

ψ̃ : T2 × R→ T2 × R of the homeomorphism ψ, which coincides with φ̃ on the set T2 ×
( ⋃
i∈Z

i
2n

)
.

Denote by p : R2 → T2 a universal covering such that p(x, y) = (x(mod 1), y(mod 1)), and by
η : R3 → T2×R the covering η(x, y, z) = (p(x, y), z). Put η

Ĵ
= p

Ĵ
η : R3 →M

Ĵ
. Denote by ψ̌ : R3 → R3

the lifting ψ̃ w.r.t. η. For the stable (unstable) manifold W s(x) (W u(x)) of the nonwandering point
x ∈ NW (ψ), denote by ws(x̌) (wu(x̌)) the connected component of the set η−1

Ĵ
(W s(x)) η−1

Ĵ
(W u(x)),

passing through the point x̌ ∈ η−1

Ĵ
(x). Since each lifting Č : R2 → R2 of the diffeomorphism Ĉ has the

form Č(x, y) = (ax + by + α, cx + dy + β) for some α, β ∈ Z, the homeomorphism ψ̌ has exactly one

fixed saddle point Pi on the plane Πi = R2×
{

i
2n

}
for each i ∈ Z. Note that the homeomorphism ψ̌|Πi

possesses two transversal one-dimensional ψ̌-invariant layerings F si , F
u
i on Πi consisting of parallel

lines with different irrational slopes µs and µu.
Put Nu

γ (P0) =
⋃

x̌∈Lu0 (P0)

wuγ (x̌) (N s
γ(P1) =

⋃
x̌∈Ls1(P1)

wsγ(x̌)) for some fixed γ > 0. Based on the

continuous dependence of invariant manifolds, one can prove the existence of numbers bu1 , b
u
2 , b

s
1, b

s
2 such

that the closed domain Bu (Bs) bounded by the planes Π−1,Π1, Q
u
1 = {(x, y, z) ∈ R3 : y = µux+ bu1},

and Qu2 = {(x, y, z) ∈ R3 : y = µux + bu2} (Π0,Π2, Q
s
1 = {(x, y, z) ∈ R3 : y = µsx + bs1}, Qs2 =
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{(x, y, z) ∈ R3 : y = µsx + bs2}) contains Nu
γ (P0) (N s

γ(P1)) in its interior. Then one can prove that
wu(P0) ∩ ws(P1) 6= ∅ (see Fig. 7) and, moreover, (cl wu(P0)) ∩ Π1 = wu(P1) and (cl ws(P1)) ∩ Π0 =
ws(P0). By density of periodic points in the basic set, we make sure that for any point x ∈ Π0 there
exists a point y ∈ Π1 such that (cl wu(x)) ∩ Π1 = wu(y) and, conversely, for each point y ∈ Π1 there
exists a point x ∈ Π0 such that (cl ws(y)) ∩Π0 = ws(x).

On the set R2 × [0, 1/2n) there exists a ψ̌-invariant two-dimensional foliation R0 (R1) such that
each its leaf G0 (G1) is homeomorphic to a half-plane and coincides with wu(x) ∩ (R2 × [0, 1/2n))
(ws(x) ∩ (R2 × [0, 1/2n))) for some point x ∈ Π0 (x ∈ Π1). Since cl (G1) ∩ Π0 = {(x, y, z) ∈
Π0 : y = µsx + bG1} for some bG1 ∈ R, the intersection Y = G0 ∩ G1 is nonempty for any leaves
G0 ∈ R0, G1 ∈ R1 and cl (Y ) \ Y consists of two points P 0

G0,G1
∈ Π0, P

1
G0,G1

∈ Π1. Due to structural
stability of the diffeomorphism f, any connected component of Y cannot bound a disk in G0, since
otherwise such a disk would be foliated by traces of intersections with leaves of the foliation R1 and this
foliation would necessarily have singularities, which would violate the strong transversality condition.
Thus Y consists of a single curve z such that cl z ∩ (Π0 ∪Π1) = P 0

G0,G1
∪ P 1

G0,G1
. This completes the

proof.

4. Energy Function for Rough Diffeomorphisms with a Two-Dimensional Expanding
Attractor

The most complete results in the field of construction of energy functions are obtained for Morse–
Smale systems, which are structurally stable systems whose chain recurrent set consists of finitely
many hyperbolic fixed points and periodic orbits. In 1961, Smale [59] proved the existence of an
energy function being a Morse function of a gradient-like flow (Morse–Smale flow without closed
trajectories). In 1968, Meyer [45] generalized this result and constructed an energy function that was
a Morse–Bott function for an arbitrary Morse–Smale flow. Recall that a point p ∈ Mn is called a
critical point of a Cr-smooth (r ≥ 2) function ψ : Mn → R if in some local coordinates x1, . . . , xn
(xj(p) = 0 for all j = 1, n) one has ∂ψ

∂x1
(p) = · · · = ∂ψ

∂xn
(p) = 0 (gradψ(p) = 0). A critical point

p is called nondegenerate if the matrix of second derivatives ∂2ψ
∂xi∂xj

(p) (the Hessian matrix) is not

degenerate; otherwise the point p is called degenerate. A function ψ : Mn → R is called a Morse
function if all its critical points are nondegenerate and is called a Morse–Bott function if the Hessian
at each critical point is not degenerate in the normal direction to the critical level set.

In 1977, Pixton [49] established the existence of an energy function, which was a Morse function,
for Morse–Smale diffeomorphisms on surfaces. Moreover, he constructed a diffeomorphism on a 3-
sphere, having no energy function and showed that this effect was related to the wild embedding of
separatrices of saddle points. Conditions for the existence of an energy function for Morse–Smale
cascades on 3-manifolds were studied in [21, 22] . These studies made clear that many Morse–Smale
cascades on 3-manifolds have no energy function.

In the next section, we give the results of [21] (see also [27]) concerning the criterion for the existence
of an energy function in the basin of a one-dimensional attractor of a gradient-like 3-diffeomorphism.

4.1. Existence of an energy function in the basin of a one-dimensional attractor of a
gradient-like 3-diffeomorphism. Let g be a Morse–Smale diffeomorphism on a manifold N, and
a Morse function ϕ : N → R be a Lyapunov function for g. By [49] (see also [27]), any periodic
point β is the maximum of the restriction of ϕ to the unstable manifold W u

β and the minimum of
the restriction of ϕ to the stable manifold W s

β . If these extrema are nondegenerate, then the invariant
manifolds of the point β are transversal to all regular level sets ϕ in some neighborhood Uβ of the
point β. A Lyapunov function ϕ : N → R for a Morse–Smale diffeomorphism f : N → N is called
a Morse–Lyapunov function if any periodic point β is a nondegenerate maximum (minimum) of the
restriction of ϕ to the unstable (stable) manifold W u(β) (W s(β)).
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Among the Lyapunov functions for a Morse–Smale diffeomorphism g, the Morse–Lyapunov functions
form an open set dense in the C∞-topology.

If β is a critical point of a Morse function ϕ : N → R, then by the Morse Lemma (see, e.g., [46]),
in some neighborhood V (β) of the point β there exists a local coordinate system x1, . . . , xn called the
Morse coordinates such that xj(p) = 0 for each j = 1, n and ϕ has the form ϕ(x) = ϕ(β)− x2

1 − · · · −
x2
b+x2

b+1 + · · ·+x2
n, where b is the index5 of the point β. If ϕ is a Lyapunov function for a Morse–Smale

diffeomorphism f : N → N, then by [49], one has b = dim W u(β) for each periodic point β ∈ Per(g).
If ϕ is a Lyapunov function for a Morse–Smale diffeomorphism g, then any periodic point of the

diffeomorphism g is a critical point of the function ϕ. The converse is generally not true: a Lyapunov
function can have critical points that are not periodic points for g. It is proven by Grines, Laudenbach,
and Pochinka [20] that the Lyapunov function in the Pixton example (see Fig. 8) has no less than six
critical points.

Recall that a Morse–Smale diffeomorphism g : N → N is called gradient-like if for any couple of peri-
odic points β, γ (β 6= γ), the condition W u(β)∩W s(γ) 6= ∅ implies that dimW s(β) < dimW s(γ). The
next definition distinguishes for gradient-like diffeomorphisms a class of Morse–Lyapunov functions
with additional properties similar to those ones of functions introduced by Smale [59] for gradient-like
vector fields.

A Morse–Lyapunov function ϕ for a gradient-like diffeomorphism g is called a self-indexing energy
function if the following conditions hold:

(1) the set of critical points of the function ϕ coincides with the set Per(g) of periodic points of
the diffeomorphism g;

(2) ϕ(β) = dim W u(β) for each point β ∈ Per(g).

Note that the concept of a Lyapunov function is well-defined on any g-invariant subset of the
manifold N.

The following considerations deal only with three-dimensional manifolds.
Let g : N → N be a gradient-like diffeomorphism. Let Σ+(Ω+) be a subset of the set of saddle

points with one-dimensional unstable invariant manifolds (sink points) and the set A+ = W u(Σ+)∪Ω+

be closed and g-invariant. Then A+ is an attractor of the diffeomorphism g. The set

W s(A+) =
⋃

β+∈(Σ+∪Ω+)

W s(β+)

is g-invariant and is called the basin of the one-dimensional attractor A+. Denote by c+ the number of
connected components of the attractor A+, by r+ the number of saddle points and by s+ the number
of sink points in A+. Put δ(A+) = c+ + r+ − s+. The attractor A+ is called tightly embedded if it has
a neighborhood P+ with the following properties:

(1) g(P+) ⊂ int P+;
(2) P+ is a disjoint union of c+ handlebodies6 such that the sum of their genera equals δ(A+);
(3) for each saddle point σ+ ∈ Σ+, the intersection W s

σ+ ∩P+ consists of one two-dimensional disk.

Theorem 4.1. A self-indexing energy function ϕA+ of a diffeomorphism g exists in the basin W s(A+)
of the attractor A+ if and only if this attractor is tightly embedded.

A tightly embedded repeller A− of a gradient-like diffeomorphism g : N → N and its basin are
defined as a tightly embedded attractor A+ and its basin for the diffeomorphism g−1. In this case the
function ϕA−(x) = 3− ϕA+(x) is a self-indexing function of the diffeomorphism g in the basin of the
repeller A−.

5The index of a critical point β is the number of negative eigenvalues of the matrix ∂2ϕ
∂xi∂xj

(β).
6A handlebody of genus δ ≥ 0 is a compact three-dimensional manifold with an edge obtained from a 3-ball by pairwise

identification of 2δ two-dimensional pairwise disjoint disks on the boundary of the ball by means of an orientation-changing
mapping.
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In the aforementioned Pixton example the nonwandering set g : S3 → S3 consists of exactly four
fixed points: one source α, two sinks ω1, ω2, and one saddle σ. The one-dimensional attractor A+ of
this diffeomorphism coincides with the closure of the stable manifold of the saddle σ and δ(A+) = 0.
In this case any three-dimensional ball containing the attractor A+ in its interior intersects W s(σ) no
less than by three connected components (see Fig. 8). Thus the attractor A+ is not tightly embedded
and by Proposition 4.1, there exists no energy function in the basin of the one-dimensional Pixton
attractor.

Fig. 8. The Pixton example.

4.2. Construction scheme. In this subsection, we give an idea of the proof of the following theo-
rem (the detailed proof can be found in [26]).

Theorem 4.2. For any structurally stable diffeomorphism f : M3 →M3 such that its nonwandering
set contains a two-dimensional expanding attractor Λ, there exists an energy function that is a Morse
function outside of Λ.

The proof of Theorem 4.2 is based on Theorems 3.2 and 4.1. Here we give an idea of the proof.
Let (p, q) be a couple of associated boundary points of period mpq of the basic set Ω. Put A−pq =

mpq−1⋃
j=0

f j(
kpq−1⋃
i=1

W s(Pi)∪
kpq−1⋃
i=1

W s(αi)). By construction, the set A−pq is a repeller of the diffeomorphism f

and δ(A−pq) = 0. Show that it is tightly embedded. For this purpose, it suffices to show that there exists

a 3-ball P−pq such that f−mpq(P−pq) ⊂ int P−pq and the intersection P−pq ∩W u(Pj) consists of exactly one
two-dimensional disk for each saddle Pj , j ∈ {1, . . . , kpq − 1}.

Due to structural stability of the diffeomorphism f, each arc (x, ϕpq(x))s, x ∈ Dp \ p, intersects
W u(Pj) exactly at one point for all j = 1, . . . , kpq − 1. Indeed, assuming the converse, we find a point
where the stable manifold of this point touches the unstable manifold W u(Pj), which contradicts the
strong transversality condition. Thus the 3-ball Qpq intersects the two-dimensional unstable manifold
of the saddle Pj , j ∈ {1, . . . , kpq − 1} at exactly one two-dimensional disk. The required 3-ball P−pq is
obtained from Qpq by pressing the disks Dp, Dq inside and smoothing the angles (see Fig. 9).

By Lemma 4.1, in the basin W u(A−pq) of the repeller A−pq there exists a self-indexing energy function
ϕA−

pq
of the diffeomorphism f. Put bpq = inf{ϕA−

pq
(z), z ∈ W u

A−
pq
}. Define a function gpq : (bpq, 3] →

(0, 3] in the following way: if bpq > −∞, then we set gpq(x) = 2
(2−bpq)(3−x)

x−bpq 3
(3−bpq)(x−2)

x−bpq and, if bpq =
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Fig. 9. Neighborhood P−pq

−∞, then gpq(x) = 23−x3x−2. By construction, the function gpq is infinitely smooth, has a positive
derivative, gpq(2) = 2, gpq(3) = 3, and lim

x→bpq
gpq(x) = 0. Consider the superposition ϕpq = gpqϕA−

pq
.

Since gradϕpq = g′pq · gradϕA−
pq

and the Hessians ∆ ϕpq and ∆ ϕA−
p q

are connected by the relation

∆ ϕpq = g′′pq · (gradϕA−
pq

) · (gradϕA−
pq

)T + g′pq ·∆ ϕA−
pq
, the function ϕpq is a Morse energy function for

f in the basin W u
A−
pq
.

Set A− =
⋃

(p,q)⊂ΓΛ

A−pq, W
u(A−) =

⋃
(p,q)⊂ΓΛ

W u(A−pq) and denote by ϕA− the function composed of

the functions ϕpq, (p, q) ⊂ ΓΛ. Define a function ϕ on the manifold M3 by the formula

ϕ(z) =

{
ϕA−(z), if z ∈W u(A−);
0, if z ∈ Λ.

By construction, the function ϕ is a Lyapunov function for the diffeomorphism f ; moreover, it
is a Morse function on M3 \ Λ. The required energy function is the superposition ψ = gϕ, where
g : [0, 3]→ [0, 3] is a C2-smooth function constructed as follows.

Let d be a Riemannian metric on the manifold M3, and the distance between sets be defined as the
infimum of distances between the elements of these sets, i.e., ∀X,Y ⊂M : d(X,Y ) = inf{d(x, y) : x ∈
X, y ∈ Y }. For c ∈ (0, 3], put α(c) = min{1, d2(ϕ−1(c),Λ)} and β(c) = max{1, max

x∈ϕ−1([c,3])
| gradϕ(x)|}.

By construction, the functions α(c) and β(c) are continuous, α(c) is nondecreasing on (0, 3] and there
exists a value c∗ ∈ (0, 3] such that α(c) monotonically increases on (0, c∗], and β(c) is nonincreasing.

Then the function α(c)
β(c) is nondecreasing on the half-interval (0, 3] and lim

c→0

α(c)
β(c) = 0.

Using a partition of unity, we construct a C2-smooth function g : [0, 3]→ [0, 3] such that

(1) g′(c) > 0 for any c ∈ (0, 3];

(2) g(c) ≤ α(c)
β(c) for any c ∈ (0, 1/2];

(3) g′(c) ≤ α(c)
β(c) for any c ∈ (0, 1/2];

(4) g(2) = 2 and g(3) = 3.
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Since gradψ = g′·gradϕ and the Hessians ∆ ψ and ∆ ϕ are related by ∆ ψ = g′′·(gradϕ)·(gradϕ)T+
g′ · ∆ ϕ, the function ψ is a Morse energy function for f on the set M3 \ Λ. By construction, ψ is
smooth on the whole manifold M3.
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