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Abstract At the moment reinforcement learning have advanced signi�cantly with

discovering new techniques and instruments for training. This paper is devoted to

the application convolutional and recurrent neural networks in the task of planning

with reinforcement learning problem. The aim of the work is to check whether the

neural networks are �t for this problem. During the experiments in a block envi-

ronment the task was to move blocks to obtain the �nal arrangement which was

the target. Signi�cant part of the problem is connected with the determining on the

reward function and how the results are depending in reward's calculation. The cur-

rent results show that without modifying the initial problem into more straightfor-

ward ones neural networks didn't demonstrate stable learning process. In the paper

a modi�ed reward function with sub-targets and euclidian reward calculation was

used for more precise reward determination. Results have shown that none of the

tested architectures were not able to achieve goal

1 Introduction

In the robotics it is usually assumed the concept that robot is able to perform only

the actions that it is programmed for. It enables them to do their tasks well, but limit

their capacity to perform new actions. That is why the concept of learning robot is

of greater interest, because in will potentially let it perform new complex actions,
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using a few basic ones. The key part in developing such robot is its training, and the

novice of this paper that authors use neural networks with various architectures for

training the robot to perform complex multi-step action.

The work in this area was carried out for a last two decades and especially inten-

si�ed in recent years. It's worth mention the research [1], in which humanoid robot

was taught to play air-hockey using visual processing of the game-�eld, sub-targets

and primitives - simple actions, that �can be combined to complete the task�.

In a last few years neural networks became the catalysts for rapid and widespread

popularity for the area. In the one of the key papers [2] in this �eld author managed

to train agent to play Atari using Deep reinforcement learning. More precisely, agent

received image at every step, preprocess it using 2D convolutions. The Q-Learning

was modelled as neural network with observation as input and vector of separate

units for each possible actions as output. The results show that the model was able

to perform in some games better than the human.

In the [3] authors developed a model which lets robot to foresight consequences

of its actions, analyse them and determine the most preferable action. Robot gets as

input video frames, and what is important - not necessarily from the same point of

view. After model training, the agent is able to move object in new environments.

The authors claim that the agent will able to perform more complex actions if the

more detailed environment picture will be processed for training. The novice of the

work is that authors did not use a special environment. Instead, they feed the net

of a couple LSTM layers with photographs, and predict the new pixels by maximal

likelihood method. The agent copes with the problem of determining the centre of

masses of the object and is able to perform rotation. The only problem is that agent

cannot distinguish its manipulator from the objects.

In another paper [4] the main breakthrough is the training of the agent to reveal

the parts of the picture worth paying attention and process them in high resolution.

It gives a big advantage in using convolutional nets as there is no need to use them

for processing the whole image, so it allows to economy on computations. The idea

is adopted from human vision - the agent as a human, is focused only on a point

from the whole picture. LSTM and Dense layers with ReLU were used for training

the model.

In [5] the author formulated the problem as following: agent should by visual

information rotate by �ngers an object in hand. The uniqueness of the work is that

there are no assumptions on con�gurations of the hand, or its physical parameters,

only pixel data is used. The aim was to provide rotating in only one axis, such that

the rotating in all other axises was minimal. The convolutional and fully connected

layers were trained and eventually the target was designed so that provide movement

only in vertical axis. After 11 mln iterations stable performance was obtained.

Value Iteration Networks, introduced in the [4], et al, are of great interest, as

they let a neural network not just train in the learning process, but to plan agent's

track. The algorithm �learns an explicit planning computations�, which enables it

to generalize better to new domains. In the article authors compare their model

with the fully-connected and convolutional networks and show the training results in
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three different environments and problems, during which VIN shows stable higher

performance, especially when the volume of data increases.

2 Problem Statement

The concept used for solution the stated problem is called Q-learning, which idea is

the modelling the future cumulative reward for each action at every step. Initially,

a zero matrix of dimension nS x nA is created, where nS and nA are the numbers

of states and actions respectfully. At each step the agent chooses the action, such

that the expected reward from it is maximal among all actions. After each step, the

value of the expected reward is modifying by multiplying initial one by coef�cient

γ , usually equal to 0.99, and adding to it the received reward. The process of such

iterations is called Q-learning. The key formula is Q(s,a) = E(R|s,a,π), where Q

is expected total payoff for choosing action a in the state s and if in the future, the

same strategy will be followed.

At every step the future payoff is calculated as Rt = å
T

t ′=t
γ t
′−1rt ′ , where r is the

reward for the current step. The decision function for the agent is

Q∗ (st ,at) = Est
[rt + γmax].

Drawback of the algorithm is that there are situations in which proper action

is depending on the environment, but the Q-learning does not take into account

this point. That is why the hypothesis of the research is that using neural networks

which take as input the whole vector of current state and of the target, the problem

can be solved. Under the consideration three types of neural networks: multilayer

perceptron, recurrent and convolutional networks.

3 Experiments

For conducting experiments the environment based on the OpenAI Gym was devel-

oped, available in https://github.com/cog-isa/deep-blocks.git.

It consists of 30x30 matrix which illustrates the input signal on visual sensor, front-

side view on the environment. There are 11 3x3 blocks in the environment, marked

as '1', all other elements are zeros. The agent also gets target matrix, which also

contains the same 11 blocks, but all collected in the centre. The agent has 8 ac-

tions - by 4 for movements with cubes and without them. The manipulator is also

represented by '1's as reversed letter T in the 3x3 cube. The robot is able to move

cube only when the manipulator is right above the cube. All restrictions, concern-

ing physics of the movements, were imposed. Also every episode is limited to 100

moves. If the robot is aiming to perform prohibited movements, the state does not

change and agent gets zero reward. Otherwise, reward is calculated as element-wise

https://github.com/cog-isa/deep-blocks.git
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product of vectors of current observations and target divided by the total number

of cubes. Multilayer perceptron with such reward-function demonstrated low per-

formance, it hadn't succeed in achieving target, but at least, it was able to move

almost all cubes towards their �nal locations, the problems arise with the cubes at

corners . Also agent often get locked in the upper areas of the environment where

are no cubes, so, such reward function was not informative. The experiments were

also conducted using ordinary Q-learning algorithm.

4 Reward function

Instead of calculating it as proportion of blocks which are at their correct location

at the current state, the euclidian distance is calculated between the manipulator and

the block, which should be moved to its �nal place at current stage (their priorities

are taken as given from initially given sub-targets). If the the manipulator is already

has took the block, then the reward is the distance to block's �nal location. Reward

is normed by dividing by 30
√
(2), to be less than 1. As soon as the block is at its

place, the agent starts to calculate reward with use of the next subtarget. As can be

seen from the algorithm below, the initial task is divided into 4 more simple ones.

There 4 sub-targets because in the target blocks arrangement only 4 blocks are to

be moved. So for each block to be moved a subtarget is designed. The reward is

designed in such way to encourage agent to carry the block and don't do prohibited

movements.
Data: Current State and Subtarget / Target

Result: Reward

Done1, Done2, Done3, Done4 = False, False, Fasle, False;

dones = [Done1, Done2, Done3, Done4];

For i in dones:;

if i is False then

if The manipulator is not above the target block then
Return 10 * ( 1- distance from manipulator to target block in current

subtarget);

else
Return 20 * (1- distance from target block in current subtarget to its

�nal location);

end

else

end

Algorithm 1: Reward Calculation
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5 Implemented Neural Architectures

The architecture of the used network consisted of 1800x1 input vector, two hidden

layers with 1000 and 100 layers respectfully and a output layer of 8x1 dimension.

Input is constructed from 900 element vector for current state and 900 for target,

states are represented as reshaped from 30x30 to 900x1 vectors.

5.1 Convolutional network

The architecture for convolutional network was the following: 1D Convolution layer

with 14 �lter size and kernel = 1 was followed by two Dense layers with Dropout

between them, and output dense layer which returns (1, 8) vector.

The results show that at current stage the performance of model is very low: agent

didn't manage to achieve at least �rst subtarget.

Fig. 1 A model's loss trained on 100 episodes, replayed after each 50 steps.

5.2 Recurrent net

After unsatisfactory results with convolution the agent was trained on recurrent net-

work with one LSTM layer. The architecture consisted of input vector with dimen-

sion (1,1800), LSTM with 1000 output elements, 1000 elements output Dense, 25%

Dropout, Dense with 100 output elements and �nal layer with eight elements for

each action.
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The agent was trained on 10 000 episodes and the results are very unstable, and it

didn't achieved goal. The same with two LSTM layers (second was added just after

the �rst one). It was trained on the less number of episodes, and although it shows

the more apparent downward trend, it also has not won the game.

Fig. 2 Model with 1 LSTM layer Fig. 3 Model with 2 LSTM layers

5.3 Q-learning

Using regular Q-learning table without neural network didn't gave more encourag-

ing results. Using the initial reward function (fraction of cubes in their initial point)

the mean reward was stable and equal roughly 0.5, it is less than initially and it

means that the algorithm is less performative the Deep Q network. The reason for

such result is that at every state the optimal movement depends in the context and

Q-learning table does not consider other cubes location.

6 Testing the hypothesis with simple model

As was stated before, used approach didn't showed adoptable performance. In aim

to check whether is it operates at all, the simple version of the game was designed.

It consisted only of one block in the left corner of the 30x30 �eld and agent's task

was to move it to the right corner. The same reward function was used, with the

following adjustments:

1. Reward is equal to Stage Coef�cient multiplied by 1 � Distance to target;

2. Stage Coef�cient is equal 20 if block is under the manipulator and 10 otherwise;

3. Reward is equal zero if the state has not changed since the last action.
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Conducted experiments using LSTM and 1D Convolution together showed that

agent is able to move the block from left corner to the right one. It was made in

150 steps since the start of training. This result proves the initial hypothesis, that

proposed approach is able to solve the task.

Fig. 4 Loss function of model which managed to

perform task

7 Conclusions

In the designed environment agents was trained on Deep Q-Learning model im-

plementation based on neural network with the used reward function proved to be

unsuccessful for. Among all tested architectures the most promising was the one

with two sequential LSTM and LSTM with 1D convolution layers. Nevertheless

experiments with the same agent in the one block environment with the proposed

approach showed good performance and so it has a potential on a more complex

tasks. Conducted tests lead to a conclusion that the target would be attainable if

more advanced reward policy will be used. The hypothesis of the causes of such

results is that the model is under�tted because of relatively large size of the envi-

ronment and plenty of unsuccessful actions which don't provide information for the

network. Further more advanced agent con�gurations and network architectures are

planned to be tested and other planning tasks are to be worked on.
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