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Abstract We present a model of Reinforcement Learning, which consists of modi-

�ed neural-network architecture with spatio-temporal connections, known as Tem-

poral Hebbian Self-Organizing Map (THSOM). A number of experiments were

conducted to test the model on the maze solving problem. The algorithm demon-

strates sustainable learning, building a near to optimal routes. This work describes

an agents behavior in the mazes of different complexity and also in�uence of models

parameters at the length of formed paths.

1 Introduction

Currently, the problem of increasing a level of robotic systems autonomy due to

integration extended knowledge and learning subsystems into their control systems

becomes an important direction in arti�cial intelligence and cognitive architectures

[6, 7, 8]. Deep Learning with Reinforcement demonstrated impressive results on the

so-called �raw data�, i.e. unprocessed images obtained from sensors of a learning

system [1]. At present, systems developed for simple experiments in the game sim-

ulation environments are beginning to be used in real robotic tasks [3, 4]. The idea

of using an information received from such sensors as visual and sound as a train-

ing data, makes it possible to construct a representation of the environment which

an agent interacts with. Integration of neural networks with traditional Q-learning
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makes it possible to match observed states of environment with reward received

from it for certain actions. An automatic generation of characteristics for a better

description of environment states using neural networks makes it possible to apply

Q-learning to real �raw data� obtained from sensors [5].

In this paper, we present a model combining one of the neural network architec-

tures based on THSOM [2], with Q-learning for the maze solving. Our motivation

is the idea that, in general, all the labyrinths (their images), consist of some patterns

(see Fig. 1), which can be divided into several categories. If an agent understood in

what state of the environment it is, it could determine the most appropriate action for

this state. So, for example, in the case shown in Fig. 2, the agents available actions

are �move left� and �move down�.

Initially, the THSOM algorithm is used to generate Markov sequences (namely,

for recovering the probabilities of transitions between system states) according to

the input data stream. Therefore, it seems intuitively that such an approach could be

successfully integrated into the concept of Q-learning. Due to the clustering of the

input data, we additionally get a reduction in the dimensionality of the environment

states space with the minimal loss of information. In contrast to the traditional ap-

proach [9], where the Q-table stores all environment states, we assert that only a few

states are enough to describe a full motion process of an agent. Using the Q-network

architecture developed in DeepMind [1], we denoted the agent's observed state of

the environment, as an image of a maze section from the top view. While the agent

is moving, it �sees� theM×M �eld around itself. It should be noted that initially the

agent does not know anything about the environment where he moves. The process

of clustering is taking place during the process of an environment exploration by

the agent, thus independence from the map of the labyrinth is achieved. Finally, the

main difference from the classical Q-learning is that all information about move-

ment is stored within neuronal connections without the use of additional Q-tables,

in other words, the connections between sensory and motor parts of the cerebral

cortex are modeled [10].

Fig. 1 Examples of maze patterns

2 Formal problem

Consider a stochastic environment in which an agent can access the following set of

actions: A= [L,R,U,D]. Corresponding spatial increments are ∆ = [(0,−1);(0,1);(−1,0);(1,0)].
Each maze cell is in one of the following states: S= [0,#,F ]. The �rst is for free cell,
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Fig. 2 An agent observes a speci�c environment state

the second is for the wall and the last denotes �nish point. When the agent makes a

step it receives a reward: R= [SR,WR,FR].
Additionally we give the agent a reward for the �nish point approach, we describe

it in the next section. Our target is to achieve an aim with the minimum number of

steps. An example of an emulated environment is attached below.

Fig. 3 An emulated maze. The red area is corresponding to the agent's observation
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3 Neural network architecture

As already mentioned, the model is based on the neural network THSOM (Fig. 4),

which has two types of inter-neural connections - spatial and temporal. The basic

idea is that each input vector is an attractor for neurons, to which some of them

are iteratively converge in the learning process, thus clusters of similar patterns are

formed. This process is controlled by the standard for learning without a teacher

method (for example, Kohonen self-organizing map algorithm). The BMU radius is

calculated using the following equation:

r = r0 ∗ exp
(
−t
r1

)
(1)

but in our experiment it is zero so that only one neuron converges. In this way, the

smallest number of necessary states is required, and there is no signi�cant effect on

the ef�ciency of the algorithm. The strength of neural connections adjusted accord-

ing to the following equation:

x̄+= s0 exp

(
dist2

s1

)
∗ t0 exp

(
−t
t1

)
∗ (ȳ− x̄) (2)

where x̄ represents a neuron, ȳ is an input vector, dist - a distance between the

vectors.

The calculation of distance deserves special attention here, since in our problem

it is a measure of similarity of the labyrinth patterns. Standard metrics are not suit-

able, since they are based on the difference of the corresponding components of the

vector, whereas in the case below, the patterns (see Fig. 5) can be considered the

same, as they correspond to the same available agent actions. However, in Fig. 6

patterns though similar in appearance, but differ in the set of actions available to the

agent. That means, if position of the wall relative to the agent is not important for

him, and he cares only about the form, then, having learned to walk upwards from

a horizontal obstacle, he will do this always and there will be no difference from

which side of the wall he is. In this regard, a metric was introduced that takes into

account both the difference between the structure of the patterns and their location

in the area of visibility. Then the distance is considered as:

dist(P1,P2) = α ∗ shi f t+(1−α)∗di f f (3)

where di f f is the minimum difference between patterns when overlapping them (in

units), shi f t the number of shifts to achieve this difference.

The temporal component of the model consists of 4 connections between each

pair of neurons that determine the probability distribution in the action space. That

is, the stronger the connection, the more likely the action to be taken to move from

one state to another. The calculation of temporary weights is according to the for-

mula:
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Fig. 4 THSOM Architecture

Fig. 5 An example of similar patterns

Fig. 6 Patterns have the same structure, but in the �rst case upward action is impossible
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wt
i, j,a =min(max(wt−1

i, j,a + reward,0),1) (4)

where i and j are environment states, a is an action, reward is an environment feed-

back. It consists of a constant reward / punishment for each step + reward for ap-

proaching to the �nal point. The last component was added to ensure that the agent

is motivated to go exactly to the �nish. The choice of an action at the moment of

time t corresponds to the strongest outgoing link from the current active neuron.

In addition to choosing the optimal action, the model also uses a strategy that

plays an extremely important role in the initial stages. When the process is just

beginning and the agent does not know anything about the patterns, it acts for a while

absolutely randomly, accumulating experience. In the general case, the probability

of a random action is calculated as:

Pε =max

(
exp

(
−t
M1

)
,0.2

)
(5)

3.1 Algorithm

1. Initialize time and space weights with small random values

2. For t=1, T do

2.1. Get an input signal from the sensors (get the current MxM block)

2.2. Find BMU

2.3. Update spatial weights

2.4. if t != 1 then update temporal weights

2.5. Remember current state as prev state

2.6. According to ε −greedy policy choose the best action

2.7. Do the chosen action, remember reward

2.8. If �nish point is not achieved yet goto step 2

3. end for

4 Experiments

We tested our algorithm on various sequences of labyrinths 16x16, differing in com-

plexity of structure. To begin with, it was decided to run the model 5 times on the

same labyrinth (Fig. 3) to understand how well the learning goes. The number of

steps is indicated in the following table:

Table 1

Iteration 1 2 3 4 5

Steps 119 84 49 33 42
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As can be seen, the agent is learning and learning quite quickly. Taking into

account the initial location of the agent and the end point location, the results can be

considered comparable to human. However, in more complex labyrinths, the agent

needs much more steps. For example, if the labyrinth contains dead ends, the agent

is spending extra time in order to get out of it, which affects the total time. In this

case, as in Fig. 7, the statistics are as follows:

Table 2

Maze 1 2 3 4 5

Steps 784 702 522 284 238

Fig. 7 Complex maze

Next, we tested the algorithm on a sequence of �ve different labyrinths several

times and averaged the results:

Table 3

Iteration 1 2 3 4 5

Steps 529 758 329 557 205

It should be noted that all labyrinths were different relative to each other in terms

of the complexity of the patterns and the location of the start and end points. In the

general case, during the experiments, the following circumstances that in�uenced

the operation time of the algorithm were elucidated:
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1. Constants that control the speed of learning, clustering, as well as the number

of neurons and the like. For example, the lower the intensity of clustering, what

means, the lower the strength of spatial connections, the longer, but more qual-

itatively, the algorithm works. Low weights should be considered in the case

of labyrinths with a complex structure of patterns, where individual cells affect

the movements of the agent (for example, narrow passages, non-standard wall

bends).

2. The location of the start and end points. Since the agent is given a reward for

approaching the �nish line, he has his own priorities in the movements when

passing obstacles. Therefore, if the agent is trained �rst on a sample of labyrinths,

where the �nish is at the bottom right, and then given the opportunity to walk

through the labyrinth, the end point in which is located on the left from above,

this can signi�cantly affect the operation time. However, even in this case, the

agent will pass such a labyrinth faster than if he had seen it for the �rst time.

3. The initial location of the agent on the map. The extent to which the experience

of the agent during the research will be varied, following the ε − greedy rule.

The more diverse obstacles that the agent will encounter during this period, what

means, the more he learns, the more accurately he will move, based solely on his

own experience.

5 Conclusion

In this paper, we present an original neural network architecture of an intelligent

agent capable of learning how to build paths in various labyrinths. The architec-

ture is based on the well-known THSOM model, with modi�cations for use in the

learning with reinforcement problems. Based on the results of the conducted experi-

ments, we can conclude that the learning process converges. In general, the agent not

only always �nds a way, but does it reasonably quickly. In the future, it is planned to

more thoroughly analyze each of the model parameters in order to achieve the best

time result. Also we are working on a method that will help the agent to deal with

complicated situations as dead ends and fake ways and not get stuck in them for a

long time.
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