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Abstract

We propose a theoretical model of a round-robin tournament with limited resources motivated by
the fact that in a real-world round-robin sport tournament participating teams are sometimes forced
to distribute their effort over an extended period. We assume that the participating teams have a
limited amount of effort that must be distributed between all matches. We model the outcome of each
match as a first-price sealed-bid auction. Results are aggregated after all matches are played with
respect to the number of wins. The teams distribute their effort striving to maximize the expected
payoff at tournament completion. For a three team tournament, we describe the set of all subgame
perfect Nash equilibria in pure strategies. For tournaments with a relatively low first prize, we found
two types of equilibria: ‘effort-saving’ and ‘burning out’, both leading to unequal payoffs. In contrast,
for tournaments with a large first prize a limited budget of effort, in general, does not allow for the
first or the last move advantage to be exploited.
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advantage.
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1 Introduction

A round-robin tournament is a contest in which participants (teams or individual players) sequentially
play against each other, and prizes are distributed according to an overall ranking at the end. Round-
robin tournaments are quite widespread in sports today and are included in both their pure form and as a
part of more complex formats in soccer competitions, like the FIFA World Cup and the UEFA Champions
League, ice hockey, basketball, and volleyball world championships, chess tournaments, and in many other
sports. During a long tournament, coaches may sometimes leave their leading players on the bench to
give them some rest and let them be better prepared for more important matches. Such decisions can
influence the chances of winning this particular game with a less skilled line-up, as well as the chances of
winning subsequent games with better prepared and more rested leading players. Thus, a team’s choice
of effort level for each game is a strategic decision that is influenced by the gains from winning not only
the current, but also subsequent games and by decisions about the efforts of other teams. In this paper,
we study the economic foundations of teams’ strategic behavior in a round-robin contest with limited
resources (in this case, effort).

We consider a round-robin tournament with 3 teams in which wins and losses are the only possible
results. Each team has a fixed budget of effort normalized to 1. Each team’s objective is to maximize the
expected payoff at the completion of the tournament given the tournament’s prize structure. The payoffs
are determined at the end of the tournament based on rankings by the number of wins. We model each
match as a quasi first-price auction. The word ‘quasi’ reflects the fact that the strategic decision of a
team is how to split the effort across all matches rather than which level of effort to choose for a single
match as happens in a standard contest.

The question we focus on is how the limit of resources and tournament’s prize structure influence the
so-called first-mover advantage and burning out effects which were found in the previous research. If the
first prize is large compared to the second, it is better to split first to third places than to finish second.
Vice versa, if the first prize is low, it is better to ensure the second prize than to split all prizes. It appears
that in the case of the large first prize, typically all teams have exactly one win which means that the
teams split the prizes and that there is no first-mover advantage. The team which does not play in the
first match, observes the result and chooses to defeat the winner of the first match and to lose to the loser.
This strategy allows to split the prize instead of finishing second as it would otherwise happen. For a
relatively low first prize, both teams playing in the first match either spend all or save all their resources
resulting in ‘effort-saving’ and ‘burning out’ equilibria. The team which does not play in the first match
defeats the loser of the first match getting the second place. Thus, in the first match of the tournament
the teams either compete as much as they can or they save all the effort to compete with the remaining

2



team.
Although theoretical models clearly predict various strategic patterns in multi-stage tournament par-

ticipants’ behavior, there is ambiguous evidence from empirical literature. Ferrall and Smith (1999) show
that sports teams do not act strategically and simply do their best in each game in the MLB, NHL, and
NBA. In contrast, various laboratory experiments (for example, Amegashie, Cadsby, and Song (2007))
reveal that individual players who have a fixed budget save a part of the budget for later stages of a
competition. Returning to sports teams, Harbaugh and Klumpp (2005) demonstrate that in elimination
tournaments underdogs prefer to expend more effort in the first round whereas favorites save their efforts
for the final. Using data from the NCAA men’s basketball tournament, the authors illustrate that intro-
ducing a one-day rest period between a regional semi-final and final game increases the favorite’s victory
margin in the semi-final. In our paper, we consider teams strategically distributing a fixed amount of
effort between matches.

An assumption that prizes are distributed according to overall rankings at the end of the tournament
distinguishes a tournament from simply a sequence of independent matches and brings out specific par-
ticipants’ behavior patterns. To the best of our knowledge, most of the existing literature on agents’
behavior in these contests (except for (Krumer, Megdish, and Sela 2016; 2017) and Sahm (2017)) ignores
this. Making the assumption that each participant plays each other is not enough: it is critical that in
a real round-robin, participants maximize the expected payoff after tournament completion rather than
the sum of payoffs from separate games.

We consider a model of a round-robin tournament with three participants and perfect information.
Following the literature on contest theory (for example, Tullock (1980) or Konrad (2009)), we take par-
ticipants’ effort to be their resources. They decide on how to distribute their effort across all tournament
matches. To make this decision, the participants must take into account the type of competition — there
are many different ways to define how success in a single game depends on the chosen level of effort. We
will also illustrate that the payoff structure is important.

A first-price sealed-bid auction is a common way of modeling auctions; the side with the highest stake
wins the prize. According to Muehlheusser (2006), in sports, a first-price auction model is suitable for
situations in which there is some objective standard and in which no strategic choice is made to prevent
an opponent from winning, for example, in sprint running. We think that it can also be applicable to
some team sports tournaments in which coaches select the squad. Coaches could use the squad rotation
if they feel some players need rest, thus distributing players’ effort over tournament matches.

Some papers investigate repeated interactions between two teams. Konrad and Kovenock (2009)
propose a (n, m)-contest consisting of repeated battles between two players in which the first player needs
to win n battles to claim overall victory, and the second player – m battles. There are both prizes both
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for winning the whole contest and for winning a single battle. The winner of the battle is determined in
an all-pay first-price auction. The authors describe a subgame-perfect equilibrium in mixed strategies.
Krumer (2015) considers a (2,2)-contest connected with the ‘best-of-three’ series which are used in various
sports tournaments. He separates home and away matches — each team places a larger value on winning
a match at home and pays additional fixed costs for playing an away match. A stronger team plays two
matches at home; a weaker team hosts only one home match.3 For a case in which the teams can choose,
the author finds an equilibrium order of home and away games that neither team would like to change.

More complex competitions include a larger number of competitors. Often, each stage of the compe-
tition is a contest between two participants (for example, many sports competitions consist of separate
matches between two teams). An interesting problem in these tournaments is fairness: whether the ex-
pected outcome depends on the order of matches. Fairness gets to the heart of whether all teams have
equal chance, irrespective of the tournament calendar. Krumer, Megdish, and Sela (2017) study round-
robin tournaments with 3 and 4 participants, in which players play each other consecutively4, each game
is an all-pay first-price auction. Each player maximizes the probability of winning the tournament. The
authors show that in the case of 3 players a player who plays in the first and third round gets the maximal
payoff, as well as having the highest probability of winning the tournament. In a tournament with four
participants with sequential games in each of three rounds, a player who plays in the first game in both
the first and second rounds has an advantage. This demonstrates the so-called first-mover advantage
phenomenon. After proving the first-mover advantage, the authors question the fairness of these types
of tournaments. However, matters are completely different if instead of a first-price auction, the winning
probabities are set up as a Tullock contest. Sahm (2017) demonstrates that in a tournament with 3 players
and a Tullock contest success function, a player who plays in the first and third round gets the minimal
payoff. In our paper, we will show that the limit on resources (effort) and the structure of tournament
prizes are the other important factors that determine which player has an advantage. Table 1 summarizes
the findings of several 3-players round-robin tournament models.

Though there are many ways to rank a round-robin tournament, usually, in practice, teams are ranked
by the number of their wins or by the number of points gained in all matches. As proved in (Rubinstein,
1980), ranking by the number of wins is the only good approach in some sense.7 In this paper, we follow

3A common practice in sport tournaments is that a team that finishes in a higher place in the previous stage is rewarded
with the opportunity of playing more matches at home in the next stage.

4Note that in some round-robin competitions, like the group stage of the FIFA World Cup, some games are held simul-
taneously. The model presented in our paper can be generalized to account for this situation.

5Contest success function.
6The prize structure is a bundle of prizes for the first, the second and the third places respectively.
7Namely, ranking by the number of wins is the only aggregation method that satisfies anonymity, positive responsiveness,
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This paper Krumer et al (2017) Sahm (2017)
Effort Limited Unlimited Unlimited

Cost function Opportunity costs only Linear Linear
CSF5 First-price auction First-price auction Tullock contest

Prize structure6 (v, 1− v, 0), v ≥ 1
2 (1,0,0) (1,0,0)

Solution concept Subgame perfect NE Subgame perfect NE Subgame perfect NE

Fairness Large first prize — almost fair Unfair UnfairLow first prize — unfair

Table 1: Summary of 3-players round-robin tournament model

a ranking method based on the number of wins.
In a standard contest game formulation, efforts are costly, but, theoretically, not limited. In models of

tournaments with more than one match (contest), another setting is possible: participants have a limited
effort for all tournament matches. In this case, the participants face the challenge of distributing a fixed
amount of effort between the matches they play in. This question is closely connected with the classic
Colonel Blotto game (Roberson, 2006), in which two opposing colonels must distribute their soldiers
across several battlefields. Each battlefield is won by the side that has more soldiers on this particular
battlefield. The player who wins more battlefields wins the game. Kvasov (2007) suggests an all-pay first-
price sealed-bid auction for several objects with limited resources. This contest is similar to a Colonel
Blotto game due to presence of a budget constraint. In our model of a round-robin tournament, a single
match resembles a battlefield. However, the round-robin structure and sequential order of matches makes
a round-robin tournament being a more complex contest.

Erez and Sela (2010) investigate a competition with limited and costless efforts. The players play each
other; each game is a Tullock contest with an exogenously fixed prize. The authors find equilibrium in
pure strategies, as well as an effort-maximizing distribution of prizes between rounds. They show that
each of n teams will spend their full budget of effort equally in each of the first n − 2 matches leaving
0 effort for the last match.8 Our paper differs from the work of Erez and Sela in two key assumptions.
First, in our paper, a team maximizes the expected utility in the round-robin tournament, not the sum
of expected values in separate games. As discussed earlier, this assumption reflects the structure of the
round-robin tournament. Second, in our model, the winner of an individual match is the team that chose
the larger level of effort for this match. Hence, we obtain equilibria which are different from the previous
findings (Erez and Sela, 2010).

and the independence of irrelevant alternatives axioms.
8This corresponds to the case of k = n− 1, α = 1 in Proposition 1 of the mentioned paper.
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In addition to the first-mover advantage, another interesting effect that is found in some types of
multiple-stage contests is the burning out effect. It appears that sometimes it is profitable for participants
to expend all their efforts in the first stage Amegashie, Cadsby, and Song (2007); Harbaugh and Klumpp
(2005). Burning out may potentially lead to additonal Pareto inefficiency in different modifications of
all-pay auctions. We show that in a round-robin tournament with 3 players burning out equilibrium
appears in the case of low first prize.

Surveys of theoretical and experimental research on contests are provided in (Konrad, 2009) and
(Dechenaux, Kovenock, and Sheremeta, 2012), respectively.

The rest of the paper is organized as follows. In Section 2, a general model of a round-robin tournament
with limited effort budgets is defined. Thereafter, Section 3 contains a first-price sealed-bid auction
specification with 3 participants. For the corresponding game, a pure strategy subgame perfect Nash
equilibria are described. The appendix contains all formal proofs of statements in the paper.

2 The Model

Within the contest theory framework, single sports matches are considered to be contests. A contest
is a strategic interaction between N ≥ 2 risk-neutral players (teams, employees etc.) wherein each
player i chooses a non-negative effort level ei, and player i’s probability of finishing in k-th place pi

k =
pi

k(e1, . . . , eN ) depends on the effort exerted by all competitors, i, k = 1, . . . , N . The efforts are costly;
and the cost functions ci(ei), i = 1, . . . , N, are given. Let vk be the prize for finishing in k-th place, k =

1, . . . , N . Then, each player i maximizes their expected utility ui(e1, . . . , eN ) =
N∑

k=1
pi

k(e1, . . . , eN )vk−ci(ei)

with respect to ei. Basic contest models are single shot games which differ in the functional form of winning
probabilities pi

k and the cost functions c(ei), as well as in the existence of random shocks which affect a
player’s actual performance by adding to the chosen effort level. The prize structure is often a matter of
policy – contest organizers often seek to maximize the overall effort level by choosing an optimal prize
distribution.

We model a round-robin tournament as a sequence of matches, in which two teams play a quasi
contest. In each match, teams exert effort, and a winner is determined; no ties are possible. However,
at the moment of stategic choice, the teams take into account not only a particular single match, but
also all subsequent matches they must play (and this distinguishes a quasi contest from a true contest).
The ultimate rankings and respective prizes are determined at the end of the tournament with respect to
the number of wins for each team. We present the definition of a round-robin tournament with limited
resource below.
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Suppose that

• N = {1, . . . , n} is a set of players (teams), n ≥ 2.

• {gt}, t = 1, . . . , n(n−1)
2 , is a sequence of all possible matches — pairs of different elements from the

set N . In a round-robin tournament, each team plays each other once according to a predetermined
schedule. Sometimes we will refer to the match gt as match number t.

• Each team has a budget of effort normalized to 1. Efforts are costless (however, there is an alternative
to use the efforts later) and perfectly divisible.

• Before each match, teams simultaneously choose their effort level {ei}, i ∈ N for this particular
match subject to their budget constraints. In the end, all teams use their entire budget of effort.
Thus, in their last game, a team exerts any remaining effort it has.

• The result of the match between teams i and j, i 6= j, is represented by the realization of a random
variable Rij , taking the values 1 or 0 with the probabilities p and 1−p, respectively. If the realization
rij of the random variable Rij is equal to 1, it means that team i won over j, whereas rij = 0 means
that j defeated i.

• The probability mass function of Rij is defined by the contest success function p = p(ei, ej) given
that player i played ei and player j played ej . We assume that p(ei, ej) : [0, 1]2 → [0, 1], is non-
decreasing in ei and non-increasing in ej . We also assume that the function p is anonymous in the
sense that it does not depend on the names of the teams or the number of the match.

• Et
i is the set of all possible actions (effort levels) et

i of player i, i = i(t), in match t – from 0 to
what is left over from 1 after previous matches. Note that the optimal choice of et

i is subject to
information from matches 1, . . . , t − 1, as observed by all teams. Thus, et

i may depend on teams’
actions and the realization of the results of matches 1, . . . , t− 1.

• v = (v1, . . . , vn) are the prizes that are fixed before the tournament; vk is the prize for the team
which finished in the k-th place. The prizes are allocated at the end of the tournament with respect
to the number of wins. In the case of an equal number of wins, the prizes of the teams that are tied
are split equally.

• ui :
⋃
t,i

Et
i → R, i = 1, ..., n, are the expected utilities given the teams’ strategies. We consider the

teams to be risk-neutral. Note that for a risk-neutral team, the expected utilities are completely
defined by the order of games {gt}, the prizes v, and the contest success function p.
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Thus, we reach the following definition.
A round-robin tournament with n players is a game < N, {gt} , p(·, ·), v >.
Further, we are going to focus on the simple model of a round-robin with just 3 players — teams A, B,

and C. The order of matches is as follows: the first match is played between A and B, the second match —
between A and C, and the third match between B and C. Before each match starts, participating teams
independently decide their level of effort for this match. All information is common knowledge: after each
match ends, the result and chosen effort levels are observed by all three teams. Table 2 summarizes the
order of games and the distribution of effort.

Round\Team A B C
Round 1 (A vs B) ea eb -
Round 2 (A vs C) 1− ea - ec

Round 3 (B vs C) - 1− eb 1− ec

Table 2: Distribution of effort

The outcome of a single match depends on the level of effort exerted by competing teams. Wins and
losses are the only possible outcomes. Denote as p(ex, ey) the probability of winning for a team which
exerts ex units of effort against an opponent that exerts ey units of effort. In this paper, we consider the
first-price auction specification of a contest success function:

p1
1(e1, e2) =


1 if e1 > e2

1
2 if e1 = e2

0 if e1 < e2

.

The timing of the tournament is as follows:
1. Teams A and B choose their effort level for the match A vs B, ea and eb respectively, ea, eb ∈ [0, 1].

All three teams learn the result and the level of effort chosen by all the teams.
2. For the match A vs C, team C chooses their effort level ec ∈ [0, 1], whereas team A expends 1− ea.

The outcome of the second match is realized.
3. For the match B vs C, teams B and C exert effort levels of 1− eb and 1− ec, respectively. Then,

the outcome of the tournament is determined.
The teams’ payoffs are determined after all the games are played and the tournament ends. The team

that collects the maximum number of wins gets the payoff v1, the second best team gets v2, and the worst
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team gets v3. If several teams collect an equal number of wins, they share the corresponding payoffs
equally. Note that teams get nothing for winning a match per se. We assume that teams are risk-neutral
and that they maximize their expected payoff.

In the following chapter, we analyze teams’ equilibrium strategies and payoffs. We also study the
comparative statics of the model with respect to the prize structure.

3 First-price sealed-bid auction with limited effort

3.1 The model

In a first-price auction specification, the team which exerts more effort wins the match with certainty. If the
two opponents exert the same amount of effort, each wins with probability equal to 1

2 . The corresponding
game described above is an extenisve-form game, and we use the subgame perfect equilibrium solution
concept to solve it. We start solving the game by backward induction.

First, we compute the best response of team C to the pair of effort from teams A and B, as well as
to the lottery outcome in the case of equal efforts. Let t(x) : [0, 1] → {A, B} be Nature’s strategy (the
tie-breaking function) that determines the winner of a match between A and B if they exert the same
effort x. For any x, both t(x) = A and t(x) = B can happen with an equal probability of 1

2 . When
making a decision in Round 1, the teams know only the distribution of winning probabilities; after Round
1 is played, they observe the realization of t(x) if they both chose an effort level of x. So, by the structure
of the game, team C knows t when it makes a decision, whereas teams A and B did not. We do not
introduce tie-breaking functions for the other rounds because they do not influence the chosen strategies
(since the teams have already decided on their strategies when Round 2 begins). In the following text,
by ex-ante payoffs, we mean the expected payoffs that teams think of before a tie-break in Round 1 is
realized. By interim payoffs, we mean the expected payoffs when the result of a tie-break in Round 1 is
known, but the results of the other two games have not yet been determined. Ex-ante and interim payoffs
differ only when teams’ efforts in Round 1 are equal.

Let the prizes be (v1, v2, v3) = (v, 1 − v, 0), 1
2 ≤ v ≤ 1. Given the strategies (ea, eb) of teams A and

B, we calculate the best response BRc(ea, eb, t(ea)) of team C and the payoffs of the teams in the profile
(ea, eb, ec(ea, eb, t(ea))), where ec(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea)).

Proposition 1. For any pair (ea, eb), the best response BRc(ea, eb, t(ea)) of team C and the corresponding
payoffs of teams A, B, and C are the following (see also Figures 1,2, and 3, and Tables 3,4, and 5):

• If v > 2
3 , then
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BRc(ea, eb, t(ea)) =



(1− ea, eb), if ea + eb > 1

[1− ea, 1], if (ea > eb = 1− ea) or (ea = eb = 1
2 and t(1

2) = A)

[0, eb], if (eb > ea = 1− eb) or (ea = eb = 1
2 and t(1

2) = B)

(1− ea, 1], if (0 < ea + eb < 1 and ea > eb) or (0 < ea = eb < 1
2 and t(ea) = A)

[0, eb), if (0 < ea + eb < 1 and eb > ea) or (0 < ea = eb < 1
2 and t(ea) = B)

1, if ea = eb = 0 and t(0) = A

0, if ea = eb = 0 and t(0) = B

(1)

• If v = 2
3 , then

BRc(ea, eb, t(ea)) =



(1− ea, eb), if ea + eb > 1

[0, 1], if ea + eb = 1

[0, eb) ∪ (1− ea, 1], if 0 < ea + eb < 1

{0, 1}, if ea = eb = 0

(2)

• If 1
2 < v < 2

3 , then

BRc(ea, eb, t(ea)) =



(1− ea, eb), if ea + eb > 1

[0, eb), if (ea > eb > 0 and ea + eb ≤ 1) or (1 > eb > ea = 0)

or (ea = eb = 1
2 and t(1

2) = A)

(1− ea, 1], if (eb > ea > 0 and ea + eb ≤ 1) or (1 > ea > eb = 0)

or (ea = eb = 1
2 and t(1

2) = B)

[0, 1] if (ea = 1, eb = 0) or (ea = 0, eb = 1)

0, if ea = eb = 0 and t(0) = A

1, if ea = eb = 0 and t(0) = B

(3)

• If v = 1
2 , then
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BRc(ea, eb, t(ea)) =



[0, eb), if (ea > eb > 0 and ea + eb ≤ 1) or (1 > eb > ea = 0) or

or (ea > eb and ea + eb > 1) or (ea + eb ≥ 1 and ea = eb and t(1
2) = A)

(1− ea, 1], if (eb > ea > 0 and ea + eb ≤ 1) or (1 > ea > eb = 0) or

or (eb > ea and ea + eb > 1) or (ea + eb ≥ 1 and ea = eb and t(1
2) = B)

[0, 1] if (ea = 1, eb = 0) or (ea = 0, eb = 1)

0, if ea = eb = 0 and t(0) = A

1, if ea = eb = 0 and t(0) = B

(4)
Figures 1,2, and 3 depict the payoffs after team C plays their best response to teams A and B’s

strategies (ea and eb). Point R has the coordinates of ea = 1
2 , eb = 1

2 . Tables 3,4, and 5 consist of payoffs
at the boundaries from figures 1,2, and 3. Payoffs on the boundaries depicted by the thin lines are the
same as in the corresponding interior region.

All proofs are provided in the Appendix.
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3

)
RN and N

(
1
3 , 1

3 , 1
3

)
or
(

1
3 + 1

4v, 1
3 −

1
4v, 1

3

)
R

(
1
3 , 1

3 , 1
3

)
or
(

1
3 −

1
8v, 1

3 + 1
8v, 1

3

)
or

or
(

1
3 + 1

8v, 1
3 −

1
8v, 1

3

)
RM and M

(
1−v

2 , 1−v
2 , v

)
O

(
5
12 , 5

12 , 1
6

)
Table 5: Case v ∈ (2

3 , 1].

We can now characterize the set of all equilibrium profiles (e∗
a, e∗

b , e∗
c(ea, eb, t(ea))), where e∗

c(ea, eb, t(ea)) ∈
BRc(ea, eb, t(ea)), and the corresponding equilibrium payoffs. Let M1 be the set of the best responses of
team C, such that:

e∗
c(ea, eb, t(ea)) =


1
2 , when ea = eb = 1

2 and t(1
2) = A

z1, when ea = eb = 1
2 and t(1

2) = B
,

where z1 ∈ [0, 1
2). Let M2 be the set of the best responses of team C, such that:

e∗
c(ea, eb, t(ea)) =


1
2 , when ea = eb = 1

2 and t(1
2) = B

z2, when ea = eb = 1
2 and t(1

2) = A
,

where z2 ∈ (1
2 , 1]. Define the following sets of strategy profiles:

S1 = {(e∗
a, e∗

b , e∗
c(ea, eb, t(ea)))|0 < e∗

a, e∗
b < 1

2 , e∗
c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea)), e∗

c(e∗
a, 1− e∗

a, t(e∗
a)) <

1− e∗
a, e∗

c(1− e∗
b , e∗

b , t(e∗
a)) > e∗

b},

S2 = {(e∗
a, e∗

b , e∗
c(ea, eb, t(ea)))|e∗

a + e∗
b < 1, 0 < e∗

a < 1
2 , e∗

b > 1
2 , e∗

c(ea, eb, t(ea)) ∈
BRc(ea, eb, t(ea)), e∗

c(e∗
a, 1− e∗

a) < 1− e∗
a},

13



S3 = {(e∗
a, e∗

b , e∗
c(ea, eb, t(ea)))|e∗

a + e∗
b < 1, 0 < e∗

b < 1
2 , e∗

a > 1
2 , e∗

c(ea, eb, t(ea)) ∈
BRc(ea, eb, t(ea)), e∗

c(1− e∗
b , e∗

b) > e∗
b},

S4 = {(e∗
a, 1

2 , e∗
c(ea, eb, t(ea)))|0 < e∗

a < 1
2 , e∗

c(e∗
a, 1− e∗

a) < 1− e∗
a, e∗

c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea))\M1},

S5 = {(1
2 , e∗

b , e∗
c(ea, eb, t(ea)))|0 < e∗

b < 1
2 , e∗

c(1− e∗
b , e∗

b) > e∗
b , e∗

c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea))\M2},

S6 = {(e∗
a, e∗

b , e∗
c(ea, eb, t(ea)))|e∗

a + e∗
b = 1, e∗

a > e∗
b > 0, e∗

c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea)), e∗
c(e∗

a, e∗
b) >

1− e∗
a},

S7 = {(e∗
a, e∗

b , e∗
c(ea, eb, t(ea))|e∗

a + e∗
b = 1, 0 < e∗

a < e∗
b , e∗

c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea)), e∗
c(e∗

a, e∗
b) <

1− e∗
a},

S8 = {(1
2 , 1

2 , e∗
c(ea, eb, t(ea))|e∗

c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea)), e∗
c(1

2 , 1
2 , A) = 1− e∗

c(1
2 , 1

2 , B)},

S9 = {(0, 0, e∗
c(ea, eb, t(ea)))|e∗

c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea)), e∗
c(0, 1) 6= 1, e∗

c(1, 0) 6= 0},

S10 = {(1, 0, e∗
c(ea, eb, t(ea)))|e∗

c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea)), e∗
c(1, 0) = 0},

S11 = {(0, 1, e∗
c(ea, eb, t(ea)))|e∗

c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea)), e∗
c(0, 1) = 1},

S12 = {(1, 1, e∗
c(ea, eb, t(ea)))|e∗

c(ea, eb, t(ea)) ∈ BRc(ea, eb, t(ea)), e∗
c(0, 1) = 1, e∗

c(1, 0) = 0}.

Theorems 1 and 2 describe the set of all equilibrium profiles if the first prize is large and low, respec-
tively. To avoid excessive formalization and save journal space, for the knife-edge case v = 2

3 , we describe
only equilibrium payoffs. One can find the set of all equilibria in that case with the help of Proposition 1
and Figure 2. Figure 4 and Table 6 summarize the findings.

Theorem 1. Let v > 2
3 . Then, in the first-price sealed-bid auction specification of the round-robin

tournament with a limited effort model with prizes (v1, v2, v3) = (v, 1 − v, 0), the set of all SPE in pure

strategies is
11⋃

i=1
Si. At all SPE from the set

8⋃
i=1
Si all teams get a payoff of 1

3 . At all SPE from the set S9,

teams get
(

5
12 , 5

12 , 1
6

)
. At all SPE from the set S10, teams get

(
1
3 + 1

4v, 1
3 −

1
4v, 1

3

)
, and at all SPE from

the set S11, teams get
(

1
3 −

1
4v, 1

3 + 1
4v, 1

3

)
.
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Theorem 1 shows that in the case of a large first prize, v > 2
3 , there are three types of equilibria. In

the first type of equilibria (S1−S8), neither team is disadvantaged. In the second type of equilibria (S9),
teams that play the first match get larger payoffs at the expense of team C. Teams A and B can try to
exploit their first move by exerting 0 effort in Round 1, which we refer to as effort-saving behavior. It
means that playing 0 is a focal point, and there is only a sort of cooperative first-mover advantage for
teams A and B. In the third type of equilibria (S10 and S11), one of the teams that participates in the
first match gets the largest payoff at the expense of its first round opponent. Comparative statics with
respect to a first prize v suggests that the payoffs in only the third type of equilibria is sensitive to a
change of v in the zone where v > 2

3 . Setting a large first prize produces positive incentives for teams to
commit to exert full effort in the first round if they have such an opportunity.

Theorem 2. Let 1
2 ≤ v < 2

3 . Then, in the first-price sealed-bid auction specification of the round-robin
tournament with a limited effort model with prizes (v1, v2, v3) = (v, 1 − v, 0), the set of all SPE in pure
strategies is S9 ∪ S12. At SPE from the set S9, teams get (1+v

4 , 1+v
4 , 1−v

2 ), whilst in SPE from the set S12,
teams get (1−v

2 , 1−v
2 , v).

If the first prize v is relatively low (v ∈ [1
2 , 2

3)), then according to Theorem 2 there are only two types
of equilibria: S9 and S12. For teams A and B, equilibria from set S9 are better for these teams than those
from set S12. While the former equilibria allow teams A and B in the case of successful coordination to
obtain a payoff larger than team C, the latter equilibria could be considered as a burning out equlibria
with team C getting the highest payoff. Comparative statics with respect to parameter v is different for
these equilibria: in the effort-saving equilibria S9, a higher v means higher profits for teams A and B,
whereas in the burning out equlibria S12, a higher v means higher payoffs for team C.

Theorem 3. Let v = 2
3 . Then, in the first-price sealed-bid auction specification of the round-robin

tournament with a limited effort model with prizes (v1, v2, v3) = (v, 1−v, 0), the following pairs of strategies
for teams A and B enter in at least one SPE:

1. (e∗
a, e∗

b) = (1, 1). The payoffs in the corresponding SPE are
(

1
6 , 1

6 , 2
3

)
.

2. (e∗
a, e∗

b), 0 < e∗
a+e∗

b ≤ 1, (e∗
a, e∗

b) /∈ {(0, 1), (1, 0)}. The payoffs in the corresponding SPE are
(

1
3 , 1

3 , 1
3

)
.

3. (e∗
a, e∗

b) = (0, 0). The payoffs in the corresponding SPE are
(

5
12 , 5

12 , 1
6

)
, or

(
1
2 , 1

3 , 1
6

)
, or

(
1
3 , 1

2 , 1
6

)
.

4. (e∗
a, e∗

b) = (0, 1). The payoffs in the corresponding SPE are
(

1
3 , 1

3 , 1
3

)
or
(

1
2 , 1

6 , 1
3

)
.

5. (e∗
a, e∗

b) = (1, 0). The payoffs in the corresponding SPE are
(

1
3 , 1

3 , 1
3

)
or
(

1
6 , 1

2 , 1
3

)
.

15



ea

eb

1

1

Never

P M

N
O

K

L

R

0

S2
(v ≥ 2

3)

S1
(v ≥ 2

3) S3
(v ≥ 2

3)

Figure 4: Projections of equilibria on (ea, eb), see
also Table 6

v ∈ [1
2 , 2

3) v = 2
3 v ∈ (2

3 , 1]
KR + +
RL + +
RN + +
PR + +
R + +
O + + +
N + +
P + +
M + +

Table 6: Projections of equilibria on (ea, eb), see
also Figure 4

4 Conclusions

In this paper, we consider the model of a round-robin tournament with 3 participants, a limited budget of
effort and a contest success function in the form of a first-price auction. In contrast to (Krumer, Megdish,
and Sela, 2017), under the winner-takes-all tournament prize structure, we did not find any evidence that
team B (which plays the first and third match) has an advantage. Moreover, if the first prize is large
enough, then we find three types of pure strategy subgame perfect Nash equilibria. In the first type of
equilibria, team C (which plays the second and third match) typically defeats the winner of the first
match, which leads to exactly one win for each team, and thus, equal payoffs for all three teams. Second,
there exists an ‘effort-saving’ equilibria in which teams playing in the first match waste zero effort and
save all their efforts for the match against team C. In these equilibria, team C is disadvantaged. Third,
one of the teams playing in the first match can get the largest payoff if it uses all its effort in the first
match, while the opponent saves all its effort for the next match. To make this profile an equilibrium,
team C must equalize opponents’ efforts in both matches. The principal assumption that distinguishes
our model from the one in (Krumer, Megdish, and Sela, 2017) and explains the difference in the outcome
is the limited budget of effort.
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In addition, for tournaments with a relatively low first prize, we found two types of equilibria: ‘effort-
saving’ and ‘burning out’, with teams playing in the first match getting more and less than team C,
respectively. This illustrates that the burning out effect may arise not only in elimination multi-stage
contests as shown in (Amegashie, Cadsby, and Song, 2007) and Harbaugh and Klumpp (2005), but also
in a round-robin tournament with limited resources (effort). These results imply that in a real-world,
a round-robin subtournament of three teams with limted resources and one prize (ticket to the next
tournament phase) is much more fair due to absence of the first or the last mover advantage compared
to the same subtournament with two prizes (tickets).
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Appendix

The appendix contains formal proofs of statements made in the paper.
Proof of Proposition 1. When v > 1

2 , the teams are strictly interested in winning a tournament.
When v = 1

2 , the teams are instead interested in not being last. Consider the following cases:
1. If ea + eb > 1, then C can win the tournament with certainty by allocating efforts ec > 1 − ea

in the second round against A, and 1 − ec > 1 − eb in the third round against B. Then, for v > 1
2 , all

ec ∈ (1−ea, eb) are the best responses for team C. Team C receives payoff v, the winner of the first round
receives 1− v, and the loser of the first round receives 0.

Now, let v = 1
2 . To finish among the top two teams with a probability of 1, it is necessary and

sufficient for team C to defeat the loser of the match between teams A and B. Consequently, if A won
over B in Round 1, any ec, such that 1− ec > 1− eb, or ec < eb, guarantees that team C will finish in at
least second place; if B won over A in Round 1, any ec > 1− ea works.

2. Let ea + eb = 1 and ea > 1
2 . The latter inequality means that A defeats B with certainty. If team

C exerts less than 1− ea of effort in Round 2, then team A wins the tournament, and team C’s payoff is
1− v. Otherwise, team C can either tie the opponents’ efforts in the second and third rounds or win the
second round and lose in the third. The latter strategy allows team C to obtain the expected payoff of 1

3 ,
and the two other teams also get 1

3 . Tying the opponents’ efforts in both rounds by playing ec = 1 − ea

means:

• with a probability of 1
4 , C wins in both rounds and gets a payoff of v; teams A and B get 1− v and

0, respectively;

• with a probability of 1
4 , C wins in Round 2 and loses in Round 3, which means that each team has

1 win and gets a payoff of 1
3 ;

• with a probability of 1
4 , C wins in Round 3, but loses in Round 2. Team C finishes second and gets

1− v, whereas team A receives v and team B — 0;

• with a probability of 1
4 , team C loses in both rounds and gets a payoff of 0. Teams A and B get v

and 1− v, respectively.

Thus, the expected payoff of team C is 1
4 · v + 1

4 ·
1
3 + 1

4 · (1− v) = 1
3 ; the expected payoffs of teams A and

B are 1
3 + 1

4v and 1
3 −

1
4v, respectively. Compare the outcomes:

• If v > 2
3 , all strategies of ec ≥ 1− ea are the best responses for team C. The corresponding payoffs

are (1
3 , 1

3 , 1
3) if C chooses ec > 1− ea and (1

3 + 1
4v, 1

3 −
1
4v, 1

3) if C chooses ec = 1− ea.
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• If 1
2 ≤ v < 2

3 , team C will just win against the loser, team B, if possible. So, when eb > 0, the best
response of team C here is to play ec < eb. When eb = 0 and ea = 1, team C gets 1

3 in any case.
So, BRc(1, 0) = [0, 1]. When ec > 0, every team gets a payoff of 1

3 ; when ec = 0, the payoffs are
(1

3 + 1
4v, 1

3 −
1
4v, 1

3).

• If v = 2
3 , team C is indifferent. Then C can choose any ec ∈ [0, eb] ∪ [1 − ea, 1] = [0, 1]. If ec < eb,

then payoffs are (2
3 , 0, 1

3); if ec = eb, the payoff profile is (1
2 , 1

6 , 1
3); and if ec > eb, then the payoffs

are (1
3 , 1

3 , 1
3).

3. If ea + eb = 1 and ea < 1
2 (B defeats A), the case is symmetric with the previous one.

• If v > 2
3 , all strategies ec ≤ 1− ea are the best responses for team C. The corresponding payoffs are

(1
3 , 1

3 , 1
3) if C chooses ec < 1− ea, and (1

3 −
1
4v, 1

3 + 1
4v, 1

3) if C chooses ec = 1− ea.

• If 1
2 ≤ v < 2

3 , team C will win against the loser, team A, if possible. So, when ea > 0, the best
response of team C here is to play ec > 1 − ea. When ea = 0, and thus eb = 1, then in any case
team C gets 1

3 . So, BRc(0, 1) = [0, 1]. When ec > 0, every team gets payoff of 1
3 , but when ec = 0,

the payoff profile is: (1
3 −

1
4v, 1

3 + 1
4v, 1

3).

• If v = 2
3 , team C is indifferent, then C can choose any ec ∈ [0, 1]. If ec < 1 − ea, then payoffs are

(0, v, 1 − v); if ec = 1 − ea, the payoff profile is (1
3 −

1
4v, 1

3 + 1
4v, 1

3), and if ec > 1 − ea, then the
payoffs are (1

3 , 1
3 , 1

3).

4. If ea = eb = 1
2 , team C must choose one of two actions in each of the two states of the tie-break.

Defeating the winner of Round 1 (say, team A) leads to payoffs of (1
3 , 1

3 , 1
3). Defeating the loser of Round

1 (say, team B) gives payoffs of (v, 0, 1− v). The best decision for team C here is similar to the previous
case:

• If 1
2 ≤ v < 2

3 , it is better for C to win against the loser of Round 1.

• If v = 2
3 , any action is equally good for C: to defeat the winner, to defeat the loser, or to split its

effort equally between both games. Three symmetric actions with respect to teams A and B bring
the payoffs (1

3 , 1
3 , 1

3). If C always prefers to defeat A, then the teams get (1
6 , 1

2 , 1
3), if C always prefers

to defeat B, then the teams get (1
2 , 1

6 , 1
3). If C defeats the winner A and splits its effort in case B

wins, then the expected payoffs are (1
4 , 5

12 , 1
3). The same payoffs appear if C defeats the loser A and

splits its effort in case B wins. Similarly, the two opposite actions result in ( 5
12 , 1

4 , 1
3).

• If v > 2
3 , and A defeated B in a tie break, then all ec ∈ [1

2 , 1] are equally good for team C. If
C chooses ec ∈ (1

2 , 1], then the payoff profile is (1
3 , 1

3 , 1
3), and if C exerts an effort level of 1

2 , the
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interim payoff profile is (1
3 + 1

4v, 1
3 −

1
4v, 1

3). The same works for the case in which B defeated A in a
tie-break in Round 1. So, when C does play symmertic actions (with respect to a lottery outcome),
the ex-ante payoffs are (1

3 , 1
3 , 1

3). If C plays ec > 1
2 when A won in Round 1, but plays ec = 1

2 when
B won in Round 1, then the ex-ante payoffs are

(
1
3 −

1
8v, 1

3 + 1
8v, 1

3

)
. Symmetrically, if C plays

ec < 1
2 when B won in Round 1, but plays ec = 1

2 when A won in Round 1, then the ex-ante payoffs
are

(
1
3 + 1

8v, 1
3 −

1
8v, 1

3

)
.

5. If 0 < ea + eb < 1, team C cannot do better than to win one game and to lose another one.

• When v > 2
3 , the best decision is to defeat the winner of the first round and to get a payoff of 1

3 .

• When 1
2 ≤ v < 2

3 , then for team C it is best to win over the loser of Round 1 (if possible; i.e., a
loser spends strictly more than 0 in Round 1), getting payoffs (v, 0, 1 − v) if A won Round 1 and
(0, v, 1− v) if B won Round 1. If ea = 0 and eb ∈ (0, 1), then winning over B is better, since it gives
1
3 , but a tying effort against A will give only 1

2(1− v) < 1
3 . The same applies symmetrically to the

case in which eb = 0 and ea 6= 0.

• When v = 2
3 , team C is indifferent between defeating the winner and beating the loser of Round 1.

To defeat the winner of Round 1, team C can choose any effort x > 1− ea if A won over B and any
x < eb if B won over A. All teams get 1

3 . To beat the loser of Round 1, team C can choose any
effort x < eb if A won over B and any x > 1 − ea if B won over A. So, the best action is to play
x ∈ [0, eb) ∪ (1− ea, 1].

6. If ea = eb = 0, then

• If v > 2
3 , team C should spend all its effort in a game against the winner of Round 1. In this case,

C gets a payoff of 1
2 ·

1
3 = 1

6 , whereas both other teams get an ex-ante payoff of 5
12 .

• If 1
2 ≤ v < 2

3 , it is better for team C to spend all its effort on the loser of Round 1, getting a payoff
of 1

2(1− v). The two other teams will get ex-ante payoffs of 1
2(1− 1

2(1− v)) = 1+v
4 .

• If v = 2
3 , C is indifferent between spending all its effort either in one or another game. 2

Proof of Theorem 1. Let v > 2
3 . We check all pairs (e∗

a, e∗
b) for the profitability of deviations assuming

that C plays their best response.

• If e∗
a + e∗

b > 1, the corresponding profile cannot be an equilibrium because playing 0 for one of the
teams is certainly better.
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• If e∗
a = 0, 0 < e∗

b < 1 or e∗
b = 0, 0 < e∗

a < 1, all teams get 1
3 . However, a team that exerts a positive

level of effort can gain by decreasing it to 0. Thus, the corresponding strategies do not constitute
an equilibrium.

• If 0 < e∗
a, e∗

b < 1
2 , the payoffs are

(
1
3 , 1

3 , 1
3

)
. Deviation is unprofitable for both teams A and B if and

only if team C chooses to defeat the winner of the first game in points (e∗
a, 1− e∗

a) and (1− e∗
b , e∗

b).
This leads to a set of equilibria S1.

• Analogously, if 0 < e∗
a < 1

2 and 1
2 < e∗

b < 1 − e∗
a, we obtain a set of equilibria S2, whilst case

0 < e∗
b < 1

2 and 1
2 < e∗

a < 1− e∗
b brings a set of equilibria S3.

• Suppose that 0 < e∗
a < 1

2 and e∗
b = 1

2 . Team B would not deviate if e∗
c(e∗

a, 1 − e∗
a) < 1 − e∗

a. It is
necessary and sufficient for the existence of a profitable deviation for team A that team C responds
to (1

2 , 1
2) in such a way that C defeats B if B is the winner of the first game, but equalizes the efforts

of opponents if A won the first game. Thus, S4 is the set of equilibria in this case. Similarly, S5 is
the set of equilibria if 0 < e∗

b < 1
2 and e∗

a = 1
2 .

• If e∗
a + e∗

b = 1, 0 < e∗
a, e∗

b < 1, both teams A and B must receive 1
3 in equilibrium because both can

guarantee a payoff of 1
3 by deviating. This is possible if and only if the strategy profile belongs to

the set S6 ∪ S7 ∪ S8.

• All strategy profiles from the set S9 are SPE: neither A, nor B, can get more than 5
12 .

• If e∗
a = 0, e∗

b = 1 and e∗
c 6= 1, the payoffs are (1

3 , 1
3 , 1

3), and team B would prefer to decrease their
effort to 0. If e∗

a = 0, e∗
b = 1 and e∗

c = 1, the payoffs are (1
3 −

1
4v, 1

3 + 1
4v, 1

3), and no team is better
off by deviating. This leads to a set of equilibria S11. Case e∗

b = 0, e∗
a = 1 is symmetric and leads

to a set of equilibria S10.2

Proof of Theorem 2. We check all pairs (e∗
a, e∗

b) for the profitability of deviations, assuming that C

plays their best response.

• If 2 > e∗
a + e∗

b > 1, the corresponding profile cannot be an equilibrium because playing 0 for one of
the teams is certainly better since it allows it to get at least 1

3 .

• If e∗
a = e∗

b = 1, neither team can profitably deviate if and only if team C ties the winners’ efforts at
(1, 0) and (0, 1). This brings out equilibria from the set S12.

• Any strategy profile such that 0 < e∗
a, e∗

b < 1 or any strategy profile such that e∗
a = 1, 0 < e∗

b < 1
or e∗

b = 1, 0 < e∗
a < 1 can not be an equilibrium because each of the teams A and B is able to

guarantee a payoff of 1
3 by decreasing their efforts to 0.
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• If e∗
a = 0, 0 < e∗

b < 1 or e∗
b = 0, 0 < e∗

a < 1, all teams get 1
3 . However, a team that exerts a

positive level of effort can gain by decreasing its effort to 0. Thus, the corresponding strategies do
not constitute an equilibrium.

• If e∗
a = 0, e∗

b = 1 and e∗
c 6= 1, the payoffs are (1

3 , 1
3 , 1

3), and team B would prefer to decrease their
effort to 0. If e∗

a = 0, e∗
b = 1 and e∗

c = 1, the payoffs are (1
3 −

1
4v, 1

3 + 1
4v, 1

3), and team A is better off
by exerting all its effort in the first game against B, changing its own payoff to 1−v

2 . Case e∗
b = 0,

e∗
a = 1 is symmetric. There are no equilibria here.

• It is easy to check that the strategy profiles from the set S9 are SPE: neither A, nor B, can enlarge
their payoffs.

• Other profiles that include e∗
a = e∗

b = 0 are not equilibria since either A would prefer ea = 1 instead
of e∗

a = 0, or B would prefer eb = 1 instead of e∗
b = 0.2

Proof of Theorem 3. An internal point of the square PMNO could be an equilibrium only if all teams
get a payoff of 1

3 : teams A and B can guarantee this payoff by decreaing their efforts in the first game to
0.

• If e∗
a = e∗

b = 1, then no team has an incentive to deviate, if and only if team C ties the winners’
efforts at (1, 0) and (0, 1).

• If 2 > e∗
a + e∗

b > 1, these points do not satisfy the necessary condition. Hence, this is not an
equilibrium.

• If 0 < e∗
a + e∗

b ≤ 1, (e∗
a, e∗

b) /∈ {(0, 1), (1, 0)}, there exists an equilibrium in which team C always
defeats the winner of the first round (if possible). The payoffs are (1

3 , 1
3 , 1

3).

• If e∗
a = e∗

b = 0, all payoffs can occur in equilibrium if team C defeats the winner of the first round
in points P and N .

• Suppose that e∗
a = 0, e∗

b = 1. If e∗
c 6= 1, the payoffs are (1

3 , 1
3 , 1

3), and if e∗
c = 1, the payoffs are

(1
6 , 1

2 , 1
3). In both cases, team A can not deviate profitably. If e∗

c = 1, team B can not deviate. If
e∗

c 6= 1, team B would not prefer to decrease their effort if the payoffs at point (0, 0) are (1
3 , 1

3 , 1
3).

This brings two types of equilibria. Case e∗
b = 0, e∗

a = 1 is symmetric.2
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