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Abstract:
Debt, as one of basic human relations, has profound effects on economic growth. Debt accumulation in the
global economy was modeled by the stochastic logistic equation reflecting causality between leverage and its
rate of change. The model, identifying interactions and feedbacks in aggregate behaviour of creditors and
borrowers, addressed various issues of macrofinancial stability. Qualitatively diverse patterns, including the
Wicksellian (normal) market, the Minsky financial bubbles and the Fisherian debt-deflation, were discerned
by appropriate combinations of rates of return, spreads and leverage. The Kolmogorov-Fokker-Plank equation
was used to find out the stationary gamma distribution of leverage that was instrumental for the evaluation
of appropriate failure and survival functions. Two patterns corresponding to different forms of a stationary
gamma distribution were recognized in the long run leverage dynamics and were simulated as scenarios of
a possible system evolution. In particular, empirically parameterized asymptotical distribution indicated ex-
cessive leverage and unsustainable global debt accumulation. It underlined the necessity of comprehensive
reforms aiming to decrease uncertainty, debt and leverage. Assuming these reforms were successfully imple-
mented, global leverage distributions would have converged in the long run to a peaked gamma distribution
with the mode identical to the anchor leverage. The latter corresponded to a balanced long run debt demand
and supply, hence to fairly evaluated financial assets fully collateralized by real resources. A particular case of
macrofinancial Tobin’s q-coefficients following the Ornstein-Ulenbeck process was studied to evaluate a rea-
sonable range of squeezing the bloated world finance. The model was verified on data published by the IMF in
Global Financial Stability Reports for the period 2003–2013.
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Lex parsimoniae

1 Introduction

Financial intermediation, intertwined with real markets activity, has for many centuries been one of the major
factors of economic development and growth. Historical experience of countries with sophisticated financial
markets has convincingly demonstrated their advantages over economies without such structures. According
to statistics of the International Monetary Fund (IMF), summarized in Table 1, contemporary world finance is
an immensely huge and complex system. The total amount of the world financial assets in the year 2013, about
$283 trillion, was almost four times the world GDP. These staggering numbers reflected the functioning of a
bewilderingly complicated network of banks, companies, markets and instruments encompassing actions of
innumerable producers, consumers, investors, creditors and borrowers operated on different financial and real
markets.

Table 1: Global financial system in 2003–2013 (US dollars, trillion).

Years 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Alexander D. Smirnov is the corresponding author.
© 2017Walter de Gruyter GmbH, Berlin/Boston.
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Total
Assets,
u�u�

128.3 144.7 151.8 190.4 229.7 214.4 232.2 250.1 255.9 268.6 282.8

Stocks,
u�u�

31.2 37.2 37.2 50.8 65.1 33.5 47.2 55.1 47.1 52.5 62.6

Debts,
u�1

u�

52.0 57.9 58.9 68.7 79.8 83.5 92.1 94.8 98.4 99.1 99.8

Bank
assets,
u�2

u�

40.6 49.6 55.7 70.9 84.8 97.4 93.0 100.1 110.4 117.0 120.4

World
GDP,
u�u�

36.2 40.9 44.5 48.2 54.5 60.9 57.8 62.9 69.9 72.2 74.6

Source: IMF, Global financial stability report, annual issues (International Monetary Fund 2004–2014).

The global financial system is beyond the scope of any supranational regulation; even the well-coordinated
efforts ofmajor central bankswere only able to produce very limited results. It has been expanded as if governed
by its own laws, exclusively, though, since time immemorial, financial practice, in order to diminish risks, tried
to balance financial assets with their collaterals. Being subordinated to the real economy in the long run, a
mere “contrivance for sparing of time and labour”, in the words of John Stuart Mill (1909, III, 7.8), money and
finance has been transformed into a dominant force. It made persistent debt accumulation, probably, the most
prominent feature of the world economic system. Global debt, growing by 5.3 percent annually in 2007–2014
according to McKinsey Global Institute (2015) and outpacing the world GDP, pushed the aggregate leverage
persistently up, and became one of the major economic concerns.

Debt, as one of the fundamental relations in the economy, has profound effects on all of humanity and has,
naturally, been studied extensively. It was treated within the broad philosophical context comprising of differ-
ent social activities (Anderson 2014). In particular, leverage, as a general measure of financial intermediation
and indebtedness, has attracted a lot of attention recently. An excessive leverage had been considered among
themajor culprits of the credit crunch 2007–2008 (Cassidy 2009), and since then vivid discussionswere going on
in both the academic and banking communities about its systemic monitoring and management (Holmstrom
2015). Modeling financial leverage has become a noticeable feature of modern academic research (Adrian and
Shin 2010; Geanakoplos 2010; Peters 2010; Thurner, Farmer, and Geanakoplos 2012; Aumanns et al. 2015); and
logistic models in economics and finance drew attention recently (Mao, Marion, and Renshaw 2000; Solomon
and Richmond 2001; Kwasnicki 2013). In our opinion, these works, by revealing important relationships and
feedbacks in leveraged financial processes, has stressed the necessity for a general systemic approach to un-
derstanding their complicated dynamics. Macrofinance, an integral part of it, has its own domain of research
since the behaviour of vast aggregates of borrowers and creditors deviates, and sometimes dramatically, from
the activity of any particular market entity.

This paper is an attempt, by means of studying basic relations among leverage, its rate of change, various
rates of return and uncertainty, to recognize regular patterns in the behaviour of macrofinancial systems. In
particular, consistent analysis of interactions, feedbacks and uncertainty in the global leverage dynamics was
facilitated by application of deterministic and stochastic logisticmodels.Models of leveragewere verified on the
IMF statistics about the global financial system for the period of 2003–2013 andwere illustrated with numerical
simulations using Wolfram Mathematica 10.

Asymptotics of random leverage was modeled via stationary gamma distribution that helped to identify
some pivots in its stable behaviour, including anchor leverage, collateral and debt-to-capital ratios. Survival and
failure functions of stationary gamma distribution indicated different scenarios of global debt accumulation,
including sustainable in the long term, associated with much lower, relative to contemporary, leverage. Condi-
tions of convergence to a stationary leverage distributionwere studied in detail in order to evaluate benchmarks
for implementation effective assets/debt management and control. Assuming macrofinancial equity-to-capital
coefficients, analogous to Tobin’s q, follow the Ornstein-Uhlenbeck process, the “true value” of global financial
assets was estimated.

The paper deals with continuous logistic models since enormous size, plentiful instruments and liquidmar-
kets made assumptions of continuity (and differentiability in a deterministic case) of macrofinancial processes
quite plausible1; in this respect the discrete sample of Table 1 merely reflects our restricted ability to measure
macrofinancial processes. Hence presently empirical estimations are of tentative character and they serve rather
as numerical illustrations intended to make the model more perceptible and convincing.

Continuous logistic models, proposed in economic literature, proved to be very demanding conceptually.
Had this requirement been satisfied, these models provided better understanding of nonlinear feedbacks en-
gendered by interactions of aggregate creditors and borrowers in uncertain debt processes (Smirnov 2012, 2014,

2
Authenticated | adsmir@hse.ru author's copy

Download Date | 8/12/17 12:02 PM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Smirnov

2016). Run-of-the-mill assertion should be added, though: as a rule, advantages of macrofinancial logistic mod-
eling came at a cost of abstracting away, in the short run especially, from many realistic features and factors of
diversified markets.

2 Logistic Hypothesis Testing

Empirical evidence pro et contra for logistic hypothesis was checked in standard statistical tests of a linear rela-
tionship between global leverage, 𝑙u�, and its relative rate of change, Δ𝑙u�/𝑙u�:

Δ𝑙u�/𝑙u� = ⌢𝑎 −
⌢
𝑏𝑙u� + 𝜀u� (1)

where ⌢𝑎,
⌢
𝑏 are regression parameters and 𝜀u�is the normally and independently distributed noise factor of

the debt accumulation process. Equation (1) reflects cumulative effects, Δ𝑙u�/𝑙u�, as they are captured by empirical
data in the subsequent period, of interactions between aggregates of borrowers and creditors that formed debt
and leverage, 𝑙u�, in the preceding period.

Statistics to be tested are given in columns 2 and 3 of Table 2 that was compiled on the IMF data represented
in Table 1. Empirical leverage values, 𝑙u�, in Table 2 were considered as observations of a random sample from
its general population, and their first differences were calculated as Δ𝑙u� = 𝑙u�+1 − 𝑙u�. The sample was kept de-
liberately small in order to preserve relative homogeneity of general economic conditions: during the period
under consideration only one major disruption took place, namely the “credit crunch” of 2008–2009, and it was
largely attributed to the excesses of financial leverage.

Table 2: Leverage, its relative rate of change, spreads and capital intensity.

Years Leverage, u�u� Relative
Rate, Δu�u�/u�u�

Capital
Intensity,
u�u�

Relative
Rate,
Δu�u�/u�u�

Spread,
u�u� = u�u� − u�u�

Spread,
u�u� = u�u� − u�u�

Parameter,
u�u� = u�2

u�/u�u�

2003 3.97 −0.020 0.252 0.02
2004 3.89 0.049 0.257 −0.047 0.0207 0.0852 0.005
2005 4.08 −0.083 0.245 0.089 −0.0169 −0.066 −0.0043
2006 3.74 −0.056 0.267 0.059 0.0363 0.1474 0.0088
2007 3.53 0.813 0.283 −0.449 0.0273 0.1024 0.0072
2008 6.4 −0.231 0.156 0.301 −0.1656 −0.5844 −0.0468
2009 4.92 −0.077 0.203 0.084 0.0598 0.3858 0.0093
2010 4.54 0.196 0.220 −0.164 0.0242 0.1145 0.0051
2011 5.43 −0.057 0.184 0.059 −0.0481 −0.2165 −0.0107
2012 5.12 −0.117 0.195 0.133 0.0146 0.0797 0.0027
2013 4.52 0.221 0.033 0.1734 0.0063

Empirically given sequence of pairs {Δ𝑙u�/𝑙u�; 𝑙u�}, 𝑡 = 1, 2, ..., 10 suggested that the variateΔ𝑙u�/𝑙u� might randomly
depend upon the variate 𝑙u�. Indeed, observations of global leverage and its relative rate of change in 2003–2013
were correlated with a coefficient of correlation, 𝑅 = −0.5652.

A non-parametric test was performed on the bivariate sample with null hypothesis 𝐻0 ∶ 𝑅 = −0.5652 against
its alternative 𝐻u� ∶ 𝑅 ≠ −0.5652. The CorrelationTest procedure of Mathematica10 recovered a p-value, 𝑝 =
0.4848, associated with the hypothesis 𝐻0; it was large enough not to reject the existence of a strongly non-zero
correlation between global leverage and its relative rate of change.2 For comparison, the null hypothesis of a
zero correlation between the same observations recovered a small p-value (𝑝 = 0.0133) and was rejected.

represented in Figure 1.
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Figure 1: Linear regression of leverage and its relative rate of change.

The linear regression was tested against the null hypothesis, 𝐻0 ∶
⌢
𝑏 = 0, assuming negative feedbacks in the

debt market (parameter ̂𝑏). In a one-sided test the null hypothesis was rejected at a 10 % significance level (the
critical value of the t-statistic with 8 degrees of freedom was 1.397). Thus the hypothesis of a linear regression
between leverage and its relative rates of change did not contradict to the empirical information about the
process under consideration. The test results are given in Table 3.

Table 3: Characteristics of the linear model fit.

Estimate Standard error u� statistic u� value
⌢u� 0.877112 0.438707 1.99931 0.080602
⌢
u� −0.183159 0.0945117 −1.93795 0.0886262

The simple statistical exercise pursued a limited goal. It was shown, on one hand that empirical evidence
did not impede exploration of the logistic hypothesis notwithstanding deficiencies engendered by a small sam-
ple. However, direct calibration of the model (1) did not contribute to its economic cogency: debt process was
explained in too general terms to be convincing. In particular, regression coefficients bore no resemblance to the
rates of return nor contained any recipe of their recovering out of the empirical data. Yet the core of financial
dynamics is constituted by combinations of leverage and rates of return (or their spreads). Modeling various
configurations among leverage and rates of return seems to be the most promising way of providing conclu-
sive explanations with regard to underlying processes.3 To facilitate analysis along this avenue, the logistic
hypothesis has to be consistently reconstructed from scratch in economic terms.

3 Basic Macrofinancial Rates and Equations

Logistic modeling of a continuous macrofinancial system was started with the following assertion of (Gold-
smith 1959, 116): “The two main – and related – tools of comparative financial morphology and dynamics are
sectoral balance sheets for stocks and sources-and-uses-of-funds statements for each sector for flows”. Accord-
ingly, data in Table 1 was structured as a sequence of scalar financial balances:

𝐴(𝑡) = 𝑥(𝑡) + 𝑒(𝑡) (2)

including variables of assets, 𝐴(𝑡); debt, 𝑥(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡); and capital, 𝑒(𝑡). Due to relations:
limu�→u�𝐴(𝑡, 𝑇) = 𝐴(𝑡) and limu�→u�𝑥(𝑡, 𝑇) = 𝑥(𝑡) where 𝑇 is the time to maturity, aggregate debt and financial
assets were considered functions of astronomical time, 𝑡, only. Aggregate financial flows, subject to the balance
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between saving and investment, were represented as:

𝑑𝐴(𝑡) = 𝑑𝑥(𝑡) + 𝑑𝑒(𝑡) (3)

where 𝑑 was the operator of taking differentials.
Actual data from Table 1 was used to evaluate three instantaneous (in terms of future value) rates of return:

on assets, 𝜇 = 𝑑𝐴(𝑡)/𝐴(𝑡)𝑑𝑡, on aggregate debt, 𝑟 = 𝑑𝑥(𝑡)/𝑥(𝑡)𝑑𝑡, and on equity, 𝜌 = 𝑑𝑒(𝑡)/𝑒(𝑡)𝑑𝑡. These rates,
because of ignoring the “time-to-maturity” coordinate and due to the impossibility to fix a “macrofinancial
portfolio”, are inexact analogues to the widely used yields on assets, on investment, and on equities. Denoted
respectfully as ROA (red curve), ROI (green curve) and ROE (blue curve) structural parameters of macrofinan-
cial system are reproduced in Figure 2.

Figure 2: Global rates of return (computed on the GFSR data).

As seen, empirical macrofinancial rates could be positive or negative. For example, the “credit crunch”
of 2008 took place for both negative ROA and ROE while negative ROE alone corresponded to the market
correction in 2011. Parameter ROI remained positive though decreasing persistently over the analysed period.

The balance of financial flows (3) being parameterized by rates of return, takes a simple form:

𝜇𝐴 = 𝑟 𝑥 + 𝜌 𝑒 (4)

Given parameters and a vector of any two known variables, eqs (2) and (3) could be solved simultaneously for
any year, as was confirmed by the data in Table 1. Yet it is more appealing to get a scalar representation of
system (2–3) by introducing macrofinancial leverage – a ratio of assets to equities:

𝑙(𝑡) = 𝐴(𝑡)/𝑒(𝑡) and/or 𝑥(𝑡)/𝑒(𝑡) = 𝑙(𝑡) − 1 (5)

as a major variable reflecting the process of debt accumulation. Thus, it is easy to see (omitting time for the
moment) that the combined actions of aggregates of creditors and borrowers in a balanced financial market are
given by the linear equation:

𝜌 = 𝑟 + (𝜇 − 𝑟)𝑙 (6)

where 𝜌 ≥ 𝜇 for any 1 ≤ 𝑙 < ∞. Given parameters 𝑟, 𝜇, 𝜌 the root of eq. (6)

𝑙∗ = (
𝜌 − 𝑟
𝜇 − 𝑟

) ≡ 𝑐
𝑎

represents macrofinancial leverage as a ratio of two spreads, or relative expected net revenue of aggregate
capital holders, 𝑐 = 𝜌 − 𝑟, and of aggregate asset holders, 𝑎 = (𝜇 − 𝑟). Spreads are negative, simultaneously, in
the periods of critical market turbulence when leverage multiplies losses of capital and asset holders. It was,
once again painfully, shown in the last credit crunch.4 Empirical value of financial spreads were given in Table
2.
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The microfinancial analogue of eq. (6):

𝜌 = 𝜇 + (𝜇 − 𝑟)[𝑙 − 1] (7)

is widely used by market participants to boost their 𝑅𝑂𝐸 for any given positive spread (𝜇 − 𝑟). Equation (6)
appears in the Modigliani-Miller Theorem, and, implying 𝑟 = 0, it constitutes the widespread DuPont model,
𝜌 = 𝜇 𝑙.

If parameter 𝑟 ≡ 𝑅𝑂𝐼 is an investment return, then parameters 𝜇 ≡ 𝑅𝑂𝐴 and 𝜌 ≡ 𝑅𝑂𝐸are related to the
standard rates like yield-to-maturity (YTM), 𝛾, and current yield, 𝛿. The rate return on investment is equal to the
difference between YTM and current yield, or 𝑑𝑥/𝑥 ≡ 𝑟 = 𝛾 −𝛿, in the linear debt model: 𝑑𝑥(𝑡) = (𝛾 −𝛿)𝑥(𝑡)𝑑𝑡.
Comparing the latter to model (6) ties up different rates into the following relation:

𝛾 − 𝛿 = (𝑙 − 1)−1[𝜇𝑙 − 𝜌] (8)

Relations, established above, incorporated consistently leverage and different rates of return into the struc-
ture of amacrofinancial process thus helping to explain its behavior in standard terms of financial analytics and
practice. Now, let us show that the root of eq. (6) coincides with the stationary solution to the dynamic logistic
model.

4 Logistic Leverage and its Phase Portrait

Persistent interactions of collective borrowers and creditors gave rise to the emergence of feedbacks among
assets, debt and capital. In the continuous context their decisions about instantaneous (expected) leverage could
be modeled by a simple linear equation:

𝑑 𝑙(𝑡) = [𝜇 − 𝜌] 𝑙(𝑡)𝑑𝑡 (9)

that appears after differentiation of leverage, 𝑙(𝑡), with respect to time. Equation (9) connects current leverage
to its expected instantaneous rate of change, but has a trivial (zero) stationary solution. However, historically,
even the Dutch Wisselbank (1603) took non-zero deposits, having them kept fully reserved though (Galbraith
1975; Ferguson 2009). In 2003–2013 macrofinancial leverage was no smaller than 3.9. To preserve this important
feature, the point corresponded to stationary leverage was translated onto the balanced financial market line:

𝑙∗ ≡ 𝐾 = 𝑎/𝑏 = 𝑐/𝑎; 𝑙∗/𝑔𝑡1 (10)

after substituting an expression (6) for parameter 𝜌 into eq. (9). These operations transformed (8) into a
nonlinear two-parametric, or logistic, model of leverage:

𝑑𝑙(𝑡)/𝑑𝑡 = [𝑎 − 𝑏 𝑙(𝑡)] 𝑙(𝑡) ; 𝑙(0) = 𝑙0 (11)

Precise economic meaning of the model parameters, explained in Section 3, makes ODE (10) much more
informative than its analogue (1). Parameter 𝑎 = 𝜇 − 𝑟, associated with expected relative revenue of asset
holders, defines a tendency of leverage to grow (or decrease) while parameter, 𝑏 = (𝜇 − 𝑟)2/(𝜌 − 𝑟), measures
intensity of feedbacks between current and future (expected) leverage. Since leverage is a positive number,
parameters {𝑎, 𝑏}are either positive or negative, simultaneously. By the model construction one of its steady
states is located to the right of the point 𝑙 = 1; the other steady state, 𝑙1 = 0, is associated, by definition, with
the market collapse.

The model (10) was illustrated by the phase diagram (Figure 3) drawn on empirical data of the “credit
crunch” 2007–2008 given in Table 2. In the pre-crisis year 2007 parameters {𝑎, 𝑏} were positive, and the RHS
of eq. (11), viewed as a function of the leverage, 𝑓 (𝑙) = 0.0273 𝑙 − 0.0072 𝑙2, was represented by the upper curve
in Figure 3. At the stationary point 𝑙∗ = 𝑎/𝑏 = 3.79the Jacobian of the dynamical system (10) is negative,
𝜕𝑓 /𝜕𝑙 = −0.0273 < 0, and, in the vicinity of the stationary point, its behaviour is stable. Negative feedbacks
forced the leverage to converge to its stationary value though difficulties for borrowers overloaded with large
debts were increased and financial frictions were intensified. Thus, arrows along the upper curve were pointed
towards stationary leverage.
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Figure 3: Phase portrait of the global financial system in 2007–2008.

The “credit crunch” of 2008 made parameters of the logistic model negative, transforming the RHS of (10)
into function: 𝑓 (𝑙) = −0.1656 𝑙 + 0.0469 𝑙2 (the lower curve in (Figure 3). At the stationary point 𝑙∗ = 3.53 the
system’s Jacobian was positive, 𝜕𝑓 /𝜕𝑙 = 0.1656/𝑔𝑡0, signaling the “irrational exuberance” of the debt market;
its instability was depicted by the outward pointed arrows on the lower curve in Figure 3. Hence the “credit
crunch” of 2008 could be modeled similar to a “trans-critical” bifurcation that is generic for the logistic dy-
namical systems. Theoretically, the number of stationary (critical) points in a transcritical bifurcation remains
fixed though some of them might change their stability as parameters vary. In our example, due to roughness
of empirical information the point of bifurcation appeared to be “blurred”, 𝑙∗ ∈ [3.53; 3.79], yet the dramatic
transformation of a stable stationary leverage into the unstable one was reproduced rather convincingly.

5 Deterministic Leverage Dynamics

The aggregate behaviour of creditors and borrowers, as drawn on the empirical data in Figure 4, could be
explained in standard economic terms. The short run dynamics (near stationary leverage) of an aggregate of
investors is represented by indicators of debt supply, (𝜇−𝑟), and demand for debt, (𝜌−𝑟)/𝑙, which are balanced
at stationary leverage:

(𝜌 − 𝑟)/𝑙∗ = (𝜇 − 𝑟) (12)

Figure 4: Attractor and repeller of the global finance in 2007–2008.

At a stable stationary leverage (upper part of Figure 4, 𝑙∗ = 3.79) the Jacobian of (10) is negative, 𝜕𝑓 /𝜕𝑙 =
−𝑎 < 0. In its vicinity for any leverage, 𝑙1 < 𝑙∗, the demand for debt exceeds its supply, (𝜌 − 𝑟) 𝑙1/𝑔𝑡(𝜇 − 𝑟), and
investors in aggregate would borrow additional funds thus increasing leverage until it reaches the stationary
point. On the other hand, at any 𝑙2/𝑔𝑡𝑙∗, the demand for loans is less than their supply, and investors, by selling
their assets, would drive the leverage down. Thus, in the market with positive spreads creditors and borrowers
behave in accordance with the analysis originally developed by Knut Wicksell (1898).
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Negative parameters {𝑎, 𝑏} make the Jacobian of (10) positive, 𝜕𝑓 /𝜕𝑙 = −𝑎/𝑔𝑡0, thus the stationary leverage
became unstable, as in the lower part in Figure 4(𝑙∗ = 3.53). In the vicinity of a stationary point they apply
the same strategies: pursuing positive effects at 𝑙/𝑔𝑡𝑙∗ they increase leverage, and short their debt positions
minimizing net losses at 𝑙 < 𝑙∗. But in the disturbed financial market their strategies produce dramatically
different consequences: contrary to the “normal” market, purchases or sales do not end up at the stationary
point; once started they are going on unboundedly (theoretically, at least). When a typical investor (in 𝑙1 < 𝑙∗)
decreases her/his debt exposure by selling-off spasmodically large chunks of their assets, this process quickly
degenerates into a vicious debt deflation, as was convincingly explained by Irving Fisher (1933). On the other
hand, the hectic purchases of new assets on borrowed funds in 𝑙2/𝑔𝑡𝑙∗ provoke assets overvaluation and blowing
financial bubbles, as was described by Hayman Minsky (2008).

All in all, stationary leverage reflects market processes of valuation and payment of excess returns in the
global financial system. Market participants use leverage as a measure of valuation, by equating two spreads
in either one of the following relations:

(𝜌 − 𝑟) = (𝜇 − 𝑟)𝑙∗ or (𝜌 − 𝑟)𝑙
∗−1 = (𝜇 − 𝑟)

.One of these relations is redundant since they define the same leverage; yet, their alternative usage might
accentuate differences in market conditions if spreads are treated as a rude measure of market riskiness.

On a sample of given (anddifferent) empirical rates of return stationary leverage (9), as a ratio of two spreads,
is evaluated either in the speculative, overvalued (bull) market, or in the shaky, undervalued (bear) financial
market. In other words, stationary leverage per se does not imply balancing the total debt demand against its
supply in the near term, though it would be difficult, if possible, to explain their permanent deviation from each
other. Thus, the long run behavior of the financial market is subject to different rules to be studied in Section 9.

Debt market regimes, or patterns, are consistently represented by the family of logistic trajectories:

𝑙(𝑡) = 𝐾{1 + (𝐾
𝑙0

− 1) exp[−𝑎𝑡]}
−1

(13)

where each trajectory 𝑙(𝑡) is specified by a particular initial state, 𝑙0, and parameters, 𝑎 and 𝑏. Alternatively, any
particular solution to the logistic eq. (11) can be written as a weighted harmonic average of initial leverage, 𝑙0,
and its stationary state, 𝐾:

𝑙(𝑡) = 1/ {𝐾−1(1 − exp[−𝑎𝑡]) + 𝑙−1
0 exp[−𝑎𝑡]} . (14)

The family of trajectories (12) with empirical parameters: 𝑙∗ ≡ 𝐾 = 5.27; 𝑙10 = 6.45; 𝑙20 = 4.52; 𝑎1 ≡ 𝑎u� =
0.0598; 𝑎2 = −0.1656 is represented in Figure 5. Different market patterns5 are explained as follows: trajectories
of financial leverage are stable for positive parameters {𝑎, 𝑏}; financial bubbles appear for 𝑙0/𝑔𝑡𝑙∗and negative
parameters; and the debt-deflation spirals exist for 𝑙0 < 𝑙∗ and negative parameters.

Figure 5: Deterministic logistic leverage trajectories.6

In the normal, or Wicksellian, market investors borrow additional funds (thus increasing leverage) and sell
en masse their assets in the opposite case. The market exists for positive spreads,7 and leverage trajectories
(blue and yellow curves) approach asymptotically their attractor, or stable long run leverage (light blue curve).
Accordingly, stationary leverage is unstable (the repeller) on the abnormal market where either assets overval-
uation would lead to the Minsky bubble of unboundedly increasing demand for assets (red curve), or falling
asset prices would drive investors to collapse along the Fisherian debt deflation trajectory (green curve).
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Note, in addition, that reflecting economic realities, the logistic leverage model allows for negative parame-
ters (spreads) – however abnormal, short lived, and highly undesirable – as quite feasible and legitimate char-
acteristics of financial markets. Addressing, via negative spreads, the phenomena of an irrationally exuberant
market – bubbles and collapses – makes the financial logistic model very different from its biological or ecolog-
ical analogues where, as a rule, negative parameters are not feasible (Gabriel, Sausy, and Bersier 2003).

6 Leverage and Capital Intensity

Aggregate debt, as a component of financial liabilities, plays an important but passive role in macrofinancial
dynamics for it multiplies the effects of capital investment that are realized in future income. Logistic eq. (11),
describing the evolution of aggregate assets per unit of capital, is complementary to the equation of capital
dynamics as well. Since the product of the capital intensity variable, 𝑤(𝑡) = 𝑒(𝑡)/𝐴(𝑡) = 𝑙−1(𝑡), and the leverage
is equal to one:

𝑤(𝑡) ∗ 𝑙(𝑡) = 1 (15)

their marginal changes (with respect to time), �̇�(𝑡) and ̇𝑙(𝑡), are subject to the following equation:

�̇�(𝑡)𝑙2(𝑡) + ̇𝑙(𝑡) = 0 (16)

where 𝑙2(𝑡) plays a role of a scale factor since units for the rates of change are different. Equation (16) means
that in a riskless world the marginal increase in leverage, ̇𝑙(𝑡), is equivalent to a decrease in 𝑙2 units of the
marginal intensity of capital, �̇�(𝑡), and vice versa. Instantaneous changes in capital intensity and leverage in the
absolute terms are subject to differential equations:

̇𝑙(𝑡) = 𝑎𝑙(𝑡) − 𝑏𝑙2(𝑡) (17)

�̇�(𝑡) = −𝑎𝑤(𝑡) + 𝑏 (18)

which havedifferent dynamics, scales and stationary points. Figure 6 gives the phase portraits of the leverage
(blue curve) and the capital intensity (red line) for stable solutions to both systems (10) and (15), stationary
leverage 𝑙∗ ≡ 𝐾 = 𝑎/𝑏, and stationary capital intensity 𝑤∗ = 𝑏/𝑎.

Figure 6: Phase portraits of leverage and capital intensity.

By economic meaning, the rate of change of capital intensity in recessions is negative while the rate of
leverage change is positive; in booms signs of these rates would become the opposite. Thus, their relative rates
of growth are subject to equality:

̇𝑙(𝑡)
𝑙(𝑡)

𝑤 (𝑡)
�̇�(𝑡)

= −1 (19)
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which for random rates is modified into an expectation of their respective product. It follows that the expected
rate of leverage change depends upon correlation between the rates of growth of capital intensity and leverage:

E [
̇𝑙(𝑡)

𝑙(𝑡)
] = − 1

E [ u̇�(u�)
u�(u�)]

(1 + 𝐶𝑜𝑣 [
̇𝑙(𝑡)

𝑙(𝑡)
, �̇�(𝑡)
𝑤(𝑡)

]) (20)

Analogues of eq. (20) were extensively studied within the framework of the CCAPM model containing a
“stochastic discounting factor; it was concisely described, for example, in (Campbell, Lo, and MacKinlay 1997
Economic Sciences Prize Committee 2013). In our case, an expectation (17), according to data in Table 2, indi-
cated a tendency of leverage to grow at the rate 0.065 annually: −1/8.83 ∗ (1 − 1.57) = 0.065, which cast doubt
on the stability of the process. This preliminary result will be elaborated in Section 8.

7 Gamma Distributed Stochastic Leverage

The deterministic logisticmodel revealed important interconnections among leverage, its relative rate of change
and rates of return that might be found in a single trajectory with zero volatility. Deterministic model per se is
a bad predictor since the leverage sample (Table 2) has by no means negligible annualized volatility.8 Looking
from another angle, the same data might be viewed as a sample from an ensemble of up to 11 random real-
izations of a stochastic leverage process. Stochastic approach provides powerful instruments of the leverage
analysis and prediction, namely, the diffusion and the Kolmogorov-Fokker-Planck equations as different repre-
sentations of the same process. Since both of them contain information about deterministic and random parts
of the system all the preceding analysis of leverage is valid and important. More of that, an asymptotic leverage
distribution could be returned by solving the stationary KFP equation, and in a particular form of the gamma
distribution it is useful in the long term financial management and control.

Continuous random logistic leverage process 𝑙(𝑡) is generalized as a diffusive process following a stochastic
differential equation, SDE:

𝑑𝑙(𝑡) = [𝑎 − 𝑏𝑙(𝑡)]𝑙(𝑡)𝑑𝑡 + 𝜎 𝑙(𝑡)𝑑𝑊(𝑡) (21)

where 𝜎 is a constant parameter of volatility, and 𝑊(𝑡) =
u�

∫
0

𝑑𝑊u� is the standard Brownian motion.9 The

random future leverage change, 𝑑𝑙(𝑡), consists of the deterministic drift, [𝑎 − 𝑏𝑙(𝑡)]𝑙(𝑡)𝑑𝑡, and a diffusion com-
ponent, 𝜎𝑙(𝑡)𝑑𝑊(𝑡), linearly dependent on leverage; hence the SDE for the leverage relative rate of change,
𝑑𝑙(𝑡)/𝑙(𝑡), contains drift, linearly dependent upon leverage, and independent of leverage noise fluctuations,
𝜎 𝑑𝑊(𝑡)). This simple structure resembles eq. (1) tested against empirical data in Section 2. As a result, logis-
tic SDE (18) preserves economic interpretation of the deterministic model (10) and facilitates realistic leverage
dynamics in the long run.

The strong solution to (18) is represented by a family of admissible random realizations:

𝑙(𝑡) =
𝑙0 𝐾 exp[(𝑎 − 0.5𝜎2)𝑡 + 𝜎𝑊(𝑡)]

𝐾 + 𝑎 𝑙0
u�

∫
0
exp[(𝑎 − 0.5𝜎2)𝑢 + 𝜎𝑊(𝑢)]𝑑𝑢

that coincide with solution of the deterministic model for zero volatility, 𝜎 = 0, (Skiadas 2010). A sample of five
leverage realizations is shown in Figure 7 where the red curve represents the trajectory of expected leverage.
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Figure 7: Five realizations of stochastic leverage.

General information about the ensemble of leverage realizations following SDE (18) is contained in the prob-
ability density function, 𝑝[𝑙(𝑡), 𝑡] which is a solution to the forward Kolmogorov (or Fokker-Planck) equation:

𝜕
𝜕𝑡

𝑝[𝑙(𝑡), 𝑡] = − 𝜕
𝜕𝑙

{[𝑙(𝑡)(𝑎 − 𝑏𝑙(𝑡)]𝑝[𝑙(𝑡), 𝑡]} + 1
2

𝜕2

𝜕𝑙2
{𝜎2𝑙2(𝑡)𝑝[𝑙(𝑡), 𝑡]} (22)

with boundaries and initial conditions specified from the actual process considerations.
Equations (21) and (22) are closely related to each other; namely, the process satisfying SDE (18) has the

probability density function which is the solution to the KFP eq. (22). Generally, if the drift and the noise co-
efficients of a random process 𝑥(𝑡) are given by the Ito processes 𝐴[𝑥(𝑡), 𝑡] and 𝐵[𝑥(𝑡), 𝑡], respectively, then its
SDE:

𝑑𝑥(𝑡) = 𝐴[𝑥(𝑡), 𝑡] 𝑑𝑡 + √𝐵[𝑥(𝑡), 𝑡] 𝑑𝑊(𝑡),

and the KFP equation with regard to the probability density function, 𝑝[𝑥(𝑡), 𝑡]:

𝜕
𝜕𝑡

𝑝[𝑥(𝑡), 𝑡] = − 𝜕
𝜕𝑙

{𝐴[𝑥(𝑡), 𝑦] 𝑝[𝑙(𝑡), 𝑡]} + 1
2

𝜕2

𝜕𝑙2
{𝐵[𝑥(𝑡), 𝑡] 𝑝[𝑥(𝑡), 𝑡]} ,

are equivalent in the representation of the process (Gardiner 1997, 118).
Accordingly, the quadratic noise coefficient, 𝜎2𝑙2(𝑡), in the KFP equation of the logistic leverage model im-

plies that its SDE (18) has the linear noise coefficient, 𝜎 𝑙(𝑡). It follows that the SDE for the relative leverage rate
of change, 𝑑𝑙(𝑡)/𝑙(𝑡), has to have the drift, linearly dependent upon leverage while its noise is independent of
leverage. Any other plausible noise and drift structuring, like analysed thoroughly in (Pasquali 2001), would
have led to different models and, as such, are subject to appropriate economic validation.10

Solving the KFP eq. (22) poses a formidable problem, and it is easier to infer information about asymptotic
leverage out of its stationary distribution which is independent of time and initial state, 𝑙(𝑡0). This approach
is widely used in finance to study asymptotical characteristics of instruments with different maturities, and,
quite evidently, the stationary distribution of leverage might reveal important long term characteristics of the
global financial system. Existence of a stationary distribution for logistic stochastic processes with structural
parameters and volatility independent of time is a firmly established fact (Dennis and Patil 1984; Liu and Shen
2015) though ergodic qualities of these processes require further economic investigation.

Stationary probability density function, 𝑝(𝑙), of a random process that follows SDE (18) is a non-trivial so-
lution to the ordinary differential KFP equation:

− 𝜕
𝜕𝑙

[𝑙(𝑎 − 𝑏𝑙)𝑝(𝑙)] + 1
2

𝜕2

𝜕𝑙2
[𝜎2𝑙2𝑝(𝑙)] = 0 (23)
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The straightforward (though complicated) solving ODE (20) defines a two-parametric probability density
function of asymptotical gamma distribution of leverage:

𝑝(𝑙; 𝛼, 𝛽) = [𝛽u�/Γ(𝛼)] 𝑙u�−1𝑒−u�u� (24)

The shape of the distribution depends upon parameter, 𝛼 = (2𝑎/𝜎2) − 1 , and its rate, or scale 1/𝛽, is defined
by parameter, 𝛽 = 2𝑏/𝜎2. Stationary distribution exists for the positive parameter 𝛼, or 0 < 𝜎2 < 2𝑎 (Pasquali
2001). Three forms of gamma distribution that could be met in the leverage analysis are shown in Figure 8.

Figure 8: Three forms of gamma distribution.

Probability density function (21) is associated with unimodal gamma distribution (red curve) if 𝜎2 < 𝑎;
it is transformed into an exponential distribution (yellow curve) for 𝜎2 − 𝑎 = 0, and becomes a decreasing
“J-shaped” distribution (blue curve) for 𝑎 < 𝜎2 < 2𝑎 (Walck 1996). The two-parametric gamma distribution is
no more complicated than the widely used Gaussian distribution and, due to its asymmetry and long tails is
well-suited to financial applications.

Themost probable value of a peaked (unimodal) gamma and exponentially distributed leverage is its mode:

𝑀𝑜𝑑𝑒[𝐿] = (𝛼 − 1)/𝛽 = 𝐾 − 𝜎2/𝑏; 𝛼 ≥ 1 (25)

which is not defined for a decreasing “J-shaped” distribution. Themode, if it exists, is smaller than expectation:

⟨𝐿⟩ = 𝛼/𝛽 = 𝐾 − (𝜎2/2𝑏)

due to skewness of the gamma distribution to the right.
Stability of leverage dynamics is measured by the stochastic Lyapunov exponent (SLE), 𝜆, which is a gener-

alization of the deterministic Jacobian:

𝜆 = [𝛽u�/Γ(𝛼)]
∞

∫
0

(𝑎 − 2𝑏𝑙)𝑙u�−1 exp[−𝛽𝑙]𝑑𝑙 (26)

Since the averaging in (23) goes over the ensemble of asymptotic leverages with stationary gamma distri-
bution, SLE takes a very simple form:

𝜆 = ✀��𝑎 − 2𝑏𝐿✀�� = 𝑎 − 2𝑏 ⟨𝐿⟩ = 𝜎2 − 𝑎 (27)

where ⟨.⟩ means the ensemble averaging (Dennis et al. 2003). Roughly speaking, distributions of a random
leverage process, associated with negative SLE (23), converge in the long run to a unimodal stationary distri-
bution with a well-defined mode. Otherwise, divergent realizations of leverage would have positive SLE: their
stationary distribution is a decreasing “J-shaped” distribution for 𝑎 < 𝜎2 < 2𝑎. The zero Lyapunov exponent
forms a boundary case of a one-parametric exponential distribution with its mode at the origin.

SLE (23) in the logistic leverage model could be viewed as a simple measure of the market confidence in the
debt sustainability. In the case of inequality, 𝜎2 < 𝑎, the aggregate of creditors are expecting to receive positive
spreads on their investments because they are confident, implicitly, in the ultimate debt redemption. Otherwise,
the variance, larger than the structural parameter 𝑎, would undermine their beliefs in the debt sustainability
thus convincing creditors either to tighten the terms of credit or to refuse making loans outright.

Thus, the focus of our interests, from the economic point of view, is illustrated by Figure 8. If the stationary
leverage distribution is given by the decreasing “J-shaped” gamma distribution (blue curve), the uncertainty is
high, and the debt accumulation is unsustainable; leverage cannot be stabilized at any value, 𝑙/𝑔𝑡1, admissible
in themodern financial system. Hence economic policies decreasing the uncertainty of financial intermediation
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have to be implemented: their impact would transform the leverage distribution into a peaked gamma distri-
bution (red curve) thus stabilizing the long term leverage around its most probable value. The boundary case
between these two scenarios is formed by the exponential distribution (yellow curve).

In the subsequent sections two scenarios, or patterns, of stochastic long run leverage dynamics are investi-
gated assuming constant positive spreads and different variances.

8 Scenario of “Empirical” Leverage Dynamics

One of the most intricate issues of stochastic dynamics is a relationship between leverage, as a measure of debt
accumulation, and the system riskiness that depends upon perspectives of debt redemption. For example, it
is a well-recognized fact that, ceteris paribus, larger debt and leverage would make the financial system riskier.
But is the reverse always true, as well? For example, was the global financial system riskier in 2011 when its
leverage was 5.43 than in 2007, when the leverage was 3.53?

A conceivable answer to these questions could be found via the computation of standard hazard, failure and
survival functions associated with asymptotical leverage distribution. If a debt system characteristic “lifetime”
is measured by its leverage, then its probability density function, 𝑝(𝑙) = Pr[𝑙 < 𝐿 ≤ 𝑙 + 𝑑𝑙], by implication,
would carry information about instantaneous unconditional failures that might happen in a process of debt
redemption. It follows that the conditional instantaneous rate of the global debt default is given by its hazard
rate, ℎ(𝑙):

ℎ(𝑙) = 𝑝(𝑙)/(1 − 𝐶𝐷𝐹(𝑙)) ≡ 𝑝(𝑙)/𝑆(𝑙) (28)

where unconditional probability of a failure to redeem debt outstanding is recovered from the leverage
cumulative distribution, 𝐶𝐷𝐹(𝑙) = Pr[𝐿 ≤ 𝑙]. Accordingly, the system would survive with probability 𝑆(𝑙) =
1−𝐶𝐷𝐹(𝑙) = Pr[𝐿/𝑔𝑡𝑙] if the global debt is redeemed at any particular leverage. Note, that the survival function,

𝑆(𝑙) = exp[−
u�

∫
0

ℎ(𝑧)𝑑𝑧], measuring debt sustainability, should be evaluated under boundary condition 𝑙 = 1, if

the modern financial system is analyzed.
Given parameters 𝑎u� = 0.058, 𝑏u� = 0.011, 𝜎2 = 0.0735, 𝛼 = 0.578, 𝛽 = 0.272, 1/𝛽 = 3.676, estimated on the

GFSR data, the random global leverage process following SDE (18) had asymptotical probability density func-
tion 𝑝(𝑙) = 0.306 𝑙−0.478 exp[−0.272 𝑙]. For the modern financial system containing debts, a boundary condition,
𝑆(𝑙0) = 1, 𝑙0 = 1.062, was introduced that shifted to the right asymptotic pdf and other risk-related functions in
Figure 9.

Figure 9: Scenario of “empirical” leverage dynamics.

As seen, positive Lyapunov exponent, 𝜆 = 0.016, yielded to a decreasing, or “J-shaped”, stationary gamma
distribution (green curve) that has no mode: with time the bulk of the leverage realizations would concentrate
around 𝑙 = 1 meaning the collapse of the modern financial system since all debts would be extinct; hence the
debt system cannot be stabilized in any pragmatic sense of this term.11 The form of stationary distribution sug-
gested interpretation of unconditional debt redemption: failure rates associated with smaller, typically new,
debts were higher than instantaneous failures of larger (and more mature) ones. In other words, the high riski-
ness of loaning to the new small enterprises, the dominant feature of the current debt system, was extrapolated
into the distant future.12
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Quick decrease of the survival function indicated poor debt performance and foreboded its extreme fragility
in the future. Were the future volatility as high as in the period of 2003–2013, leverage realizations would con-
centrate with high probability around 𝑙 = 1 (or zero without the system translation to the right) in the long run,
thus simulating stochastic analogue of a Fisherian debt-deflation process. The failure and survival functions
warns about debt unsustainability: as seen in Figure 9, the global debt had (approximately) equal chances to
survive, or to fail, at a low leverage, 𝑙u� = 2.18, which is the root of equation 𝑆(𝑙) = 𝐶𝐷𝐹(𝑙) = 0.5. This equa-
tion has another economic interpretation: deleveraging from its current macrofinancial level, 𝑙 = 4, is desirable
only if accomplished without alarmingly high volatility in the debt markets. Five important points of empirical
asymptotic distribution are given in Table 4; particular leverage 𝑙u� = 2.18 has an important economic meaning
to be explained in Section 9.

Table 4: Empirical scenario of leverage dynamics.

u�u�u�u�u�u�u�u� u�1 = 1.062 u�u� = 2.18 * u�2 = 2.45 u�3 = 4.0 u� = 5.27

u�u�u�u�u�u�u�u�u� u�u�u� 5.637 0.215 0.182 0.087 0.053
u�u�u�u�u�u�u� u� u�u�u�u�u�u�u� 0.0 0.507 0.561 0.756 0.843
u�u�u�u�u�u�u�u� u� u�u�u�u�u�u�u� 1.0 0.493 0.439 0.244 0.157

Parameter u�u�is estimated as the mode of stationary gamma distribution.

Does it mean that the global leverage would evolve according to the “pessimistic” scenario? The answer
is: it depends. The gloomy perspectives, produced by high empirical volatility, 𝜎2 = 0.0735 per annum, could
be negated by smaller uncertainty, driving distributions of stochastic leverage to its peaked stationary gamma
distribution. Smaller noise, facilitating leverage convergence, in its turn, could result from the more efficient
balancing of supply and demand for debts by market forces in the long run.

9 The Long Run and Anchor Leverage

Annually calculated empirical macrofinancial rates of return, 𝑅𝑂𝐸 and 𝑅𝑂𝐴, are not equal to each other imply-
ing the existence of unbalanced debt supply and demand. But, if the true wealth (pretium verum) of any society
consists of its real resources (including knowledge, culture and social organization), then the “fair” value of
financial assets (pretium justum) exists only subject to a balance between debt supply and demand; otherwise,
the entiremankind could have been enriched by amere issuance ofmoney and other “paper” instruments – in a
way similar to Baron Munchausen pulling himself out of a mire by his hair. Since, fortunately or unfortunately,
it is impossible, revenues of creditors and borrowers cannot deviate significantly from each other in the longer
term.

In the long run aggregate borrowers are assumed to be taking additional debts contingent on a current
weighted average cost of capital, 𝜇, and on the expected rate of investment return, 𝑟, thus on spread, 𝑎 = 𝜇 − 𝑟.
In other words, for any viable leverage the expected rate of return on equity, 𝜌(𝑙), is an indicator of the long run
supply of debt:

𝜌(𝑙) = 𝑟 + (𝜇 − 𝑟)𝑙 (29)

Simultaneously, but independently of borrowers, the collective of debt holders (creditors) are expecting to
receive a positive return on assets, given the current rate of return on equity, 𝜌, and another spread, 𝑐 = 𝜌 − 𝑟.
Hence the long term demand for debt, measured in the leverage scale, is indicated as:

𝜇(𝑙−1) = 𝑟 + (𝜌 − 𝑟)𝑙−1 (30)

where the demand for debt follows changes in its major factor, capital, implicitly,13 hence should be mea-
sured along the leverage scale as 𝑙−1.

Generally, at any stationary leverage, 𝑙∗/𝑔𝑡1, current rates of return on assets and on equities are different,
as for example, 𝑟 < 𝜇 < 𝜌. Contrary to that, in the long term competitive adjustments between creditors and
borrowers would balance the demand for debt with its supply. Thus the expected future rates of return of
creditors and borrowers, 𝑅𝑂𝐴 and 𝑅𝑂𝐸, as functions of leverage, should be equal:

𝜇(𝑙−1
u� ) = 𝜌(𝑙u�) (31)
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The positive root of equality (27), 𝑙u� , by its economic meaning, defines the anchor leverage:

𝑙u� ≡ 𝐾0.5 = (𝑎/𝑏)0.5 (32)

at which indicators of the long run supply of and demand for debts are equal.
In fact, eq. (32), taking into account financial balances of states and flows (2–3), generalizes the microfinan-

cial collateralized loan balance, 𝑙 = 𝑙/(𝑙 − 1), that follows from a single eq. (2). By definition, a robust long term
relation between aggregate debt and aggregate capital exists at the anchor leverage, 𝑙u� , and it forms an equilib-
rium betweenmarginal effects of additional debts for collective borrowers and creditors, 𝑑 𝜌(𝑙)+𝑑𝜇(𝑙−1) = 0. To
the left of anchor leverage, relatively abundant capital backs up a relatively scarce debt. This process is reflected
in ROE larger than ROA, and could be considered as a definition of an overcapitalized financial system.14 If the
system moves to the right of anchor leverage, then the increase in ROE is accompanied by decreasing ROA,
and their changes would reflect growing debts and decreasing capital. Hence the region to the right of anchor
leverage defines, generally, an overindebted financial system.

The above said is easily adapted to the standard macroeconomic analysis of aggregate saving and invest-
ment. Firstly, for the constant leverage, indicators of the demand for debt, 𝜇(𝑙−1), and the supply of debt, 𝜌(𝑙),
are easily transformed into linear functions of the long interest rate (investment return), 𝑟; and secondly, appro-
priate equations are to be interpreted asymmetrically as indicators of the supply of funds, 𝜇(𝑟), (saving) and of
the demand for funds (investment), 𝜌(𝑟), accordingly.

10 Scenario of Leverage Convergence

In a stochastic context the anchor leverage is be interpreted as the most probable value of leverage at which
market forces tend to equalize the demand and supply of debts in the very long run. Hence, if leverage dis-
tributions converged to the unimodal stationary gamma distribution, it would tantamount to the long run
leverage stabilization around its anchor value associated, by economic meaning, with the mode of stationary
distribution. Such an “optimistic” scenario of financial evolution could have been realized, for example, via
coordinated, comprehensive and consistent reforms of financial markets decreasing dramatically the global
uncertainty. Smaller uncertainty, in its turn, would transform stationary gammadistribution into a peaked (uni-
modal) one, with well-defined mode. In short, the mode of stationary distribution, if it exists, is to be identified
with the anchor leverage:

𝑀𝑜𝑑𝑒[𝐿] = 𝑙u� (33)

From the definition of the mode (22) equality (29), in its turn, implies, with necessity, that the expected variance
has to be no larger than its critical value:

𝜎2
u� = 𝑎 − √𝑎𝑏 (34)

Thus the structure of leverage dynamics defines the critical variance necessary to secure its convergence in the
long run. If satisfied, condition (30) facilitates simulation of the debt sustainabilitywith the same, as in Section 8,
structural parameters but smaller variance, 𝜎2

u� = 0.034. The peaked gamma distribution of leverage, simulated
on the empirical data, is given by the following pdf: 𝑝(𝑙) = 0.279 𝑙1.412 exp[−0.647 𝑙], and the boundary condition,
𝑆(𝑙0) = 1, that is satisfied for 𝑙0 ≅ 0. Scenario of leverage convergence is presented in Figure 10 and Table 5.

Figure 10: Scenario of leverage convergence.
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Table 5: The “optimistic” scenario of leverage dynamics.

u�u�u�u�u�u�u�u� u�1 = 1.0 u�u� = 2.18 * u�4 = 3.23 ⟨u�⟩ = 3.73 u� = 5.27

u�u�u�u�u�u�u�u�u� u�u�u� 0.146 0.205 0.181 0.155 0.097
u�u�u�u�u�u�u� u� u�u�u�u�u�u�u� 0.074 0.294 0.5 0.586 0.782
u�u�u�u�u�u�u�u� u� u�u�u�u�u�u�u� 0.926 0.706 0.5 0.414 0.218

Parameter u�u�is estimated as the mode of stationary gamma distribution.

As seen in Figure 10, the failure and survival functions are very different from their analogues in the “pes-
simistic” scenario. Contrary to the “new debt high fragility” system, this scenario simulated riskiness of the
“mature” debt. As a consequence, the survival function of the mature debt system (0.706) at the anchor lever-
age is much higher than its unconditional failure function (0.294); even at the expected leverage (3.73) the debt
system survival is a bit smaller than its failure. It suggested that the sustainable debt market could have existed
(in the medium term, perhaps) around much higher leverage, 𝑙4 = 3.23, at which chances of the global debt
survival and failure are equal.

Asymptotic leverage probability density functions of “pessimistic” and “optimistic” scenarios, togetherwith
the long term debt demand and supply indicators, are presented in Figure 11. If stationary probability density
function is an “empirical” one, given by the decreasing green curve, then the debt cannot be stabilized, and
the system would have gone towards its imminent collapse. The global leverage, after fluctuating without dis-
cernible tendencies around 4.6 in a period of 2003–2013, could have, nevertheless, decreased asymptotically to
some positive value, depending upon the sign of its SLE. As it was seen, a variance no larger than 0.034, would
drive the global leverage from its initial position (4.52) in the year 2013 towards anchor value, 𝑙u� = 2.18.

Figure 11: Gamma distributed leverage and its anchor.

Many runs of simulation validated the model structure, includingmagnitudes and location of anchor lever-
age, 𝑙u� , expected value, ⟨𝐿⟩, and the deterministic attractor, 𝐾, as in Figure 11. Their comparison with empirical
leverage, showing overindebtedness of the current financial system, stressed the necessity of comprehensive fi-
nancial reforms fostering smaller uncertainty and leverage convergence in distribution to the unimodal gamma
distribution with anchor leverage as its most probable value. It follows, in paricular, that a small, no-zero vari-
ance, by influencing market participants to be wary and cautious, would lead to the leverage lesser than in a
completely deterministic environment.

11 Collateral ratio for the Global Finance

Development of financial markets is intertwined with the evolution of real markets. As a small step towards a
unified macrofinancial-cum-macroeconomic theory we propose to solve this general problem as an estimation
of the expected aggregate collateral ratio. Collateral ratio, 𝑙u�, is a measure of correspondence between total
financial assets and real resources (approximated by the world GDP) that can be decomposed as a product:

𝑙u� = 𝑙u� ∗ 𝑞u� (35)
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where ratio of equities-to-the world GDP,15𝑞u� = 𝑒u�/𝑌u�, reflects the market valuation of global equities. Infor-
mation about decomposition (31) is given in Table 6.

Table 6: The global collateral ratio components.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

u� u� 3.97 3.89 4.08 3.74 3.53 6.4 4.92 4.54 5.43 5.12 4.52
qt 0.87 0.91 0.84 1.05 1.19 0.55 0.82 0.88 0.67 0.73 0.84
lY 3.45 3.54 3.42 3.93 4.2 3.52 4.03 3.99 3.64 3.74 3.79

As it was shown above, financial leverage, 𝑙u�, in the long run converges to the anchor leverage, 𝑙u� , hence
the problem of global financial assets valuation might be reduced to valuation of the global equity market. The
latter, in its turn, could be viewed as a value of market fundamentals, 𝑌, associated with the global GDP, that is
multiplied by the coefficient of valuation, 𝑞, as shown by the breakdown of the long run value of global equities,
𝑒 = 𝑌 ∗ 𝑞.

Coefficients of valuation, 𝑞, were originally introduced by J. Tobin (Tobin and Brainard 1977) to explain
fluctuations in equity values by intensity of the firms financing activities. Extended to macrofinance, Tobin’s
hypothesis would imply that parameter 𝑞, if growing, would reflect increases in the value of equities due to
“optimistic” business expectations regarding future profits and dividends fostered by subsequent growth of
aggregate investment and GDP. Accordingly, the expectations of a stagnated economy would drive the value
of equities, hence the Tobin coefficients 𝑞, down.

As seen in Table 6, macrofinancial coefficient 𝑞u� fluctuated around 0.85 in the period of 2003–2013 due to
huge losses in the year of the “credit crunch”. Assuming that the long run valuation of the equities market is
“fair”, random fluctuations of the Tobin’s coefficients are conceivably cancelled out with the high probability
of making the fully collateralized equity market equal (approximately) to the world GDP. Formally, the above
said is equivalent to the assumption of global equity-to-GDP coefficients,𝑄(𝑡), following theOrnstein-Ulenbeck
stochastic process:

𝑄(𝑡) = 1 + (𝑄0 − 1) exp[−𝜅𝑡] + 𝜎
u�

∫
0

exp[𝜅(𝑢 − 𝑡)]𝑑𝑊(𝑢) (36)

where 1.0 is the long run average, 𝜅is the mean reverting parameter, and 𝜎is the diffusion parameter. Some
realizations of this process with 𝑄0 = 0.87 ; 𝜅 = 0.5 ; 𝜎 = 0.055 are represented in Figure 12 where the black
curve shows the expected values of Tobin’s coefficients up to ten years.16

Figure 12: Global equity-to-GDP realizations.
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The immediate corollary from the above deliberations is as follows: a fully collateralized equity market
would make the expected long term ratio, 𝑙u�, to be asymptotically the same, or close to the anchor leverage:

lim
u�→∞

𝑙u�(𝑡) = 𝑙u� (37)

Relation (33) could be used at the preliminary stages of numerical evaluations of different configurations
between financial and real markets. For example, if the global equity market is evaluated properly, ⟨𝑄⟩ = 1.0,
then the global anchor leverage (equaled to the mode of its stationary distribution, 𝑙u� = 2.18) would define
the “fair” long run value of financial assets. Accordingly, the “true” debt-to-capital ratio 1.18, indicating the
upper limit of sustainable global debt accumulation in the long run, made operational the idea of a reasonable
squeezing of the bloated financial system (Kay 2015) to the size supported by real resources.

12 Discussion and Some Comments

Regarding complexity of the global financial system its logistic model was very simple, yet nevertheless, it
addressed properly important issues of debt dynamics and stability. In particular, rapid debt accumulation in
the period of 2003–2013 was explained as a consequence of excessive leveraging that had caused the global
“credit crunch” (the system bifurcation) in 2007–2008. Patterns of sustainable and unsustainable debt accumu-
lation, resembling economic realities, were recognized by the model simulations. Thus, positive SLE indicated
highly uncertain perspectives of debt amortization: high volatility, similar to a heavy tax, would force market
participants either to restrict lending or refuse it altogether. Such outcome, foreboding ultimate collapse of the
system, could be avoided only by the implementation of comprehensive market reforms, decreasing leverage
and improving debt servicing and redemption (BIS 2014). Accordingly, negative SLE would imply realization
of effective macroeconomic and macroprudential policies fostering the leverage convergence in distribution to
the stationary gamma distribution. The anchor leverage is much smaller than its actual values hence stochas-
tic convergence is tantamount to the system restructuring towards a stable configuration of financial and real
markets with slower debt accumulation.

An interesting aspect of the model application might be outlined briefly. Many financial experts expressed
recently their concerns about hectic market speculation being fostered by the policy of “quantitative easing”,
QE. In particular, J. Hussman, the well-known trader and analyst, persuasively stated that by decreasing ROI
almost to zero monetary policy convinced investors to equate current yields to YTM and distorted their expec-
tations. Meanwhile expected future investment returns might remain positive only due to overvalued financial
assets and bloated leverage (Weekly Market Comments, May 16, Hussman). The same story is said by the lo-
gistic model if speculative activities were propagated by the increased liquidity. Under the circumstances, as
seen in Figure 5, the stable leverage trajectory (yellow curve) would be translated upward to coincide with a
convex trajectory representing the blowing Minsky bubble (red curve).

Methodologically, the model simulations were based on two basic hypotheses. Firstly, different patterns in
macrofinancial behaviour were formed by particular combinations of leverage and rates of return. The model
parameterswere subject to sampling errors and their reliabilitywas expected to increase as far as sampleswould
enlarge, and their expert evaluations would improve in further explorations of financial systems. Secondly, the
noise was incorporated into logistic model in a particular way: it was linearly dependent upon leverage in
the SDE (18). This presumption made it possible to recognize different patterns of economic growth and debt
accumulation. Looking from this angle, the anchor leverage implied a healthy and robust debt accumulation
that was directly opposed to economic stagnation of the extinct indebtness (which is also stable). It follows
that the stable growth is not contingent on the debt extermination; instead, indebtness has to be kept within
reasonable limits, justified by appropriate economic conditions.

All in all, themodel recommendations are not excessively detailed at themoment, but everything is relative.
The logistic methodology has produced many mathematically sophisticated models and their generalizations
like the Lotka-Volterra system. Exploring along these lines could provide new theoretically substantiated ar-
guments helping to address more rigorously the important issues of debt stabilization.
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Notes
1Logistic maps (difference equations), once popular in economic literature about chaos, are beyond the scope of the paper. Besides, a

continuous one-dimensional logistic equation does not produce chaotic behavior.
2The t-test gave the same result though it required an a priori assumption of each observation to be sampled from a bivariate normal

population.
3In our opinion, the adherence to the straightforward, and very general, interpretations of equations similar to (1) was a cause of

economists’ indifference to logistic models, especially, in their continuous form.
4Numerical values of themodel parameters, as represented in Figure 2,were calculated to satisfy equation:u�u� = u�u�+(u�u�−u�u�)u�u�−1 for every

year in the period of 2003–2013. It follows the economic logic of the market participants: their current leverage decisions predetermine, by
and large, financial parameters in a subsequent year.

5The long term dynamics will be studied later for a particular regime with the steady leverage defined by the balance between long
term debt demand and supply.

6A vertical asymptote in Figure 5 exists only for negative parameters and l0 > l*.
7Wicksellian “differentials”, analogous to spreads in our model, were thoroughly investigated by Aubrey (2013).
8The latter, probably, is another reason of the economists’ indifference towards logistic models.
9Since Brownian motion has no derivative, eq. (21), in fact, is a symbolic representation of the integral equation: u�(u�) − u�(0) =

u�
∫
0

u�(u�)[u� −

u�u�(u�)]u�u� +
u�

∫
0

u�u�(u�)u�u�(u�).
10For example, a general logistic SDE with quadratic noise component was analysed in (Mao, Marion, and Renshaw 2000). This process

has a stationary pdf which is very different from the gamma distribution (Pasquali 2001; Gora 2005). Economic substantiation of this
particular noise structuring and the subsequent behaviour of the model are to be investigated specially.

11Since noise suppresses deterministic drift of the system this pattern is in agreement with the general logistic model proposed in (Mao,
Marion, and Renshaw 2000). But the latter has noise structuring different from our model (18–19) hence its stationary pdf is not of the
gamma distribution as well.

12This scenario seems to be similar to the “high infant mortality” version routinely considered in the theory of system reliability.
13Note that a “benign” coordinate transformation: from leverage to capital intensity, like in Section 6, changed the system, its dynamics

and its steady states.
14Many modern equity markets operate with LtV (loan-to-value ratio) up to 50 percent for collateralized loans with margin calls.
15J. Hussman (Weekly Market Comment, September 12, 2016b) used the ratio of nonfinancial market capitalization to nominal GDP

as a measure of long run valuation on the US equity market. His index is, evidently, qualitatively the same as the global equity-to-GDP
coefficient, u�. In the log scale Hussman’s index fluctuated around 1.0 for the last 20 years.

16The detailed analysis might come with any constant, close to 1.0, as a “fair” long run coefficient of the global equity market valuation.
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