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ENDOMORPHISMS OF PROJECTIVE BUNDLES OVER A
CERTAIN CLASS OF VARIETIES

EKATERINA AMERIK AND ALEXANDRA KUZNETSOVA

ABSTRACT. Let B be a simply-connected projective variety such that the
first cohomology groups of all line bundles on B are zero. Let E be a
vector bundle over B and X = P(E). It is easily seen that a power of any
endomorphism of X takes fibers to fibers. We prove that if X admits an
endomorphism which is of degree greater than one on the fibers, then E
splits into a direct sum of line bundles.

Introduction

During the last 20 years, the question which smooth projective varieties
have endomorphisms of degree greater than one (which we shall sometimes
simply call “endomorphisms”, as opposed to automorphisms) has attracted
some attention for both geometric and dynamical reasons (see e.g. [3], [4], [9],
[10] - this is only a beginning of the list). Though in this generality it is still far
from being solved, there is a number of partial results suggesting that varieties
with such endomorphisms generally come from two obvious cases (abelian and
toric varieties) by means of simple geometric constructions such as taking a
product with another smooth projective variety or taking a quotient by a finite
freely acting group. For instance, Nakayama proved in the beginning of 2000’s
that a rational smooth projective surface with endomorphisms must be toric.
Around the same time, one of the authors of the present note has considered
the case of a projective bundle X over a projective base B, p : X — B, and
proved the following result.

Theorem 1 ([1, p. 17]). X has an endomorphism commuting with the projec-
tion onto the base if and only if X is a quotient of a product B’ x P" by a finite
freely acting group.

A simple remark on endomorphisms of projective bundles X = P(FE), where
E is a vector bundle ([1, p. 18]) is that a power of any f: X — X sends fibers
to fibers and thus must be over an endomorphism of the base; so if by any
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chance we know that all endomorphisms of B are of finite order - for instance
when B is of general type (see for example [8]) - then this result describes the
situation completely.

The argument in Theorem 1 (the “only if” part, the “if” part being rather
standard) proceeds as follows. One considers the space of all morphisms
R™(P(V)) from P" = P(V) to itself given by degree m polynomials (well-
known to be an affine variety) and its quotient M by PGL(V') (that is, the
spectrum of the ring of the invariants). It turns out that for m big enough,
PGL(V) acts with finite stabilizers, so M is the geometric quotient (i.e., actu-
ally parameterizes the orbits of the action). Now let X = P(E) be a projective
bundle over B. An endomorphism f of X over B naturally induces a morphism
from B to M. Its image must be a point since B is projective and M is affine.
Let ¢ be a lift of this point to R™(P(V)). Trivializing the bundle over a suitably
fine open covering (U,) of B we have, denoting by f, the restriction of f to
p~1(U,) written in the trivialization: f, = he-t, where h,, is in PGL,+1(Oy.).
Denote by gos the transition functions of our projective bundle, it follows that
hy'gaghs € Stab(t), in other words, by changing the trivialization we make
the transition functions of X constant with values in a finite group.

In general, for an endomorphism f of P(E) we may suppose that f is over
an endomorphism ® of the base; there are then two cases to be treated: the
case where f induces isomorphisms of fibers (considered as exceptional; when
X = P(E) it means that ®*F is a twist of F by a line bundle) and the case
where the degree of f on the fibers is greater than one. In [1], only the rank-
two case (that of projective line bundles) was considered. It was established
that either X is a finite quotient of a product or F has a subbundle. This
last statement has been pursued further to yield that F must split into a
direct sum of line bundles after a finite, not necessarily étale, base change ([1],
theorem 2); from a different point of view, one can restrict to a specific class of
bases to obtain a stronger statement. For instance, if B satisfies the condition
HY(B, L) = 0 for any line bundle L, then having a subbundle is equivalent to
splitting for rank-two bundles. It therefore follows from the results of [1] that
if B is simply connected and H*(B, L) = 0 for any line bundle L on B, then
an X with endomorphisms of degree greater than one on fibers must be the
projectivization of a split rank-two bundle.

The purpose of the present note is to prove this result in the case of arbitrary
rank projective bundles over such specific bases.

Theorem 2. Let B be a simply-connected projective variety such that for any
line bundle L its first cohomology H'(B,L) = 0. Let E be a vector bundle of
rank n+ 1 on B. If there exists a fiberwise endomorphism

(1) P(E) — > P(E)
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of degree greater than one on the fibers, then E splits into a direct sum of line
bundles:

2) E=® L

What we show is in fact slightly more general, as in [1].

Theorem 3. Let B be as in the previous theorem and E and F vector bundles
of the same rank n+ 1 on B. If there exists a morphism

(3) ¢ :P(E) = P(F)

over B which is of degree greater than n + 1, then E and F both split into a
direct sum of line bundles.

Obviously, Theorem 2 follows from this statement: consider the endomor-
phism ¢ as a morphism P(E) — P(®*(F)), and apply Theorem 3 after replacing
¢ by a suitably high power.

To sum up, one has the following.

Corollary 1. Let B be as in the previous theorems and E a vector bundle
over B. Assume that P(E) has an endomorphism f of degree greater than one.
Then either g*FE =2 ER L for some endomorphism g of B and some line bundle
L over B (and then a power of f is induced by that pull-back), or E splits into
a direct sum of line bundles.

Indeed, a power of f is over an endomorphism of B; according to Theorem
2, we are in the second case whenever the degree of this power on the fibers is
greater than one. If this degree is equal to one, this means that we are in the
first case.

In the ideal situation, one would like to prove the statement of Theorem
2 for an arbitrary toric base B. The reason is that the projectivization of a
vector bundle over a toric base is itself toric if and only if the bundle is split
([7]). This would therefore strongly support the principle that varieties with
endomorphisms are closely related to toric or abelian varieties. However few
toric bases (e.g. P, n > 2, or products of such) actually satisfy the cohomology
vanishing condition as above; so more work is needed to obtain such a result.
It is probably related to the fact that we never make use of a condition like
F = ¢g*F in Theorem 3.

The paper is organized as follows. We recall the general set-up in Sec-
tion 1 and make a fiberwise invariant-theoretic calculation in Section 2. This
calculation implies the fiberwise existence of invariant subspaces with certain
properties. In Section 3, we glue them together in a subbundle and conclude
by induction.
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1. Reduction to invariant theory

Let V and W be vector spaces of dimension n+1. Denote by R™(P(V),P(W))
the set of all morphisms between P(V') and P(WW) given by homogeneous poly-

nomials of degree m without a common zero except at (0,0,...,0):
Yo = fo(x07x17 s )mn);
= fl(x07‘r17 e 7$n);

(4)
Yn = fn(xo,:cl, e ,Qin).

This is an affine variety, indeed the complement to the hypersurface defined
by the resultant of the f; in the projective space P(Hom(W™*, S™V*)), with the
action of PGL(V) x PGL(W) given by

() ((g9:h) - F)(@) = = (f(g(2)))-

The quotient M of R™(P(V),P(W)) by this action (i.e., the spectrum of the
ring of invariants), in contrast with the case of the action of PGL(V) when
V = W (see [1], Proposition 1.1) is not a geometric quotient: indeed some
points have infinite stabilizers, and all the adherent orbits give the same point
on the quotient. Let us denote by My the “bad subset” of M (by definition it
consists of points corresponding to orbits not separated by the invariants).

When some fiber of a vector bundle E over B is identified with V' and that
of F with W, a morphism of projective bundles P(E) — P(F) over a base B
gives, in the same way as in the paper [1], a map from B to M, which must be
constant as soon as B is projective.

The following claim is proved exactly as in [1, p. 22] (this argument is also
recalled in the introduction to the present paper).

Claim 1. If the image point is not in My, then P(E) and P(F) trivialize after
a finite unramified base change.

If B is simply-connected, this yields that these are already trivial on B, and
in particular they split into a direct sum of line bundles.

So the interesting case is when the image point lands in Mj. In this situation,
we strive to deduce some information about the geometry of our morphism.
We aim to show that E and F have subbundles E’ and F’ such that the
inverse image of P(F”) is P(E’) and that the map f induces a morphism on the
quotients. This shall enable us to conclude by induction in the case when the
cohomological condition on B is satisfied.

Let us also remark that replacing our original endomorphism ¢ of P(F) by
a power, we may assume that m is greater than the rank n + 1 of the vector
bundles F and F, as we shall for the computations in the next section.
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2. Unstable morphisms

In this section we consider two vector spaces V and W of dimension n + 1
and a morphism f between their projectivisations of degree d = m™. First of all
assume f is stabilized by an infinite subgroup Stab(f) in PGL(V) x PGL(W).
Recall from [1]:

Lemma 1 ([1], Lemma 1.2). If m > n + 1, then a unipotent element u of
PGL(V) x PGL(W) does not stabilize any element of R™(P(V),P(W)).

By this lemma the subgroup Stab(f) € PGL(V) x PGL(W) consists of
semisimple elements. Take any of these elements and consider the minimal
subgroup in the stabilizer that contains this element. The connected component
of the unity of this subgroup is an algebraic torus or trivial. If it is trivial for
any element in Stab(f), then the stabilizer is discrete and therefore is finite. If
Stab(f) is infinite, it contains a subgroup isomorphic to G,,. Lifting its action

on P(V) and P(W) to an action on V and W we assume that it is given by
Gbc : Gy = GL(V) x GL(W)

6

© Go.e(N) = (diag( A, A, ... A )i diag(A", A", ..., A")

in appropriate coordinates on V and W.
In these coordinates, let the morphism f be given by (fo, f1,--., fn) with

Yo = fo(zo, ... an) = Z ao,le,

Y1 = fl(x07"'7xn) = Z al,lxla

Yn = fu(z0,- ) = Y apga’

Here I = (ig,41,.-.,i,) is a multiindex and |I| = ig + 41 + -+ + ip-
Applying an element of the diagonal group in gy .(A) € Stab(f), we get the
following formulae for g, - f:

(8) y; = Z )\<C’I>_bfaj,[xl.

Here (—, —) denotes the scalar product between multiindexes:
(9) F(I) = (c,I) =) cjij.
j=0

Since gy . stabilizes f there exists a constant C, such that for any j, I with
aj 1 75 0
(10) (¢, I) —b; =C.
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Consider the (n+ 1)-dimensional lattice A =2 Z"*1 ¢ R"*! = A®R. Denote
by p; € A the vertex corresponding to the i-th base vector (0, ...,0,m,0,...,0).
For any subset {p;,,...,pi,} denote by A(p;,,...,p;,) C A the simplex of

dimension k — 1 with vertexes p;,,...,pi,. Set
(11) A:A(poupla"'7pn)CA-
(P

FIGURE 1. The simplex A in the case n = 2

Equations (10) define n+ 1 hyperplanes in R™ (not necessarily distinct). Let
us denote them by II;.
Now let us consider the Newton polyhedron of f;:

(12) NP(f;) = Conv{l € A|aj#0}
and prove some easy facts about Newton polyhedra of the morphism f.
Proposition 1. If f has infinite stabilizer, then NP(f;) C II; N A.

Proof. As the degree of f; equals m, the polyhedron N P(f;) lies in the simplex
A. By the previous calculation we see that if g . stabilizes f, then (10) holds
and consequently the multi-indices of the monomials of f; lies in the hyperplane
II;. O

Lemma 2. If f is a morphism of projective spaces, then every vertex of A is
contained in one of the hyperplanes II;.
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Proof. Assume the vertex pg = (m,0,...,0) does not lie in any II;. Conse-
quently no polynomial f; contains the monomial z{*. Then all f; vanish at the
point (1:0:---:0) € P(V), so f is not a morphism. O

Lemma 3. FEach hyperplane 1I; contains some vertex of A. Moreover a hy-
perplane repeated exactly k + 1 times (i.e., corresponding to the polynomials
fos--vy [, up to renumbering) contains exactly k + 1 vertices of A.

Proof. Since all the hyperplanes II; are parallel, if they contain a common
vertex they coincide. There is a natural partition of the set H(f) of equations

(13) HyUHyU---UH = H(f),

where a subset H; consists of equations corresponding to the same hyperplane
II;, as well as of the set of vertices

(14) VA =ViuWu---uV,

where V; consists of vertices lying in II;.

Since |V(A)| = n+1 = |H(f)| it follows that either the statement of the
lemma is true or k+ 1 = |V;| > |H;| = s+ 1 for some i.

Assume |V;| > |H;|. The polynomials f; indexed by H; contain monomials
depending only on the variables indexed by V;, but the others do not: up to
renumbering, fsy1,...,fn are zero as soon as xx11 = -+ = &, = 0. Then
fos- .., fs define a regular map of the subspace of P(V') given by the vanishing
of Zg41,. .., T, to the subspace of P(W) given by the vanishing of ysi1, ..., Yn,
but this is impossible since the dimension of the source would then be greater
than that of the target. O

From these assertions we deduce the following statement.

Proposition 2. Let f be a morphism between P(V') and P(W) with infinite
stabilizer in PGL(V) x PGL(W). There exist V! C V(A) and H' C H(f) such
that |V'| = |H'| <n+1 and

(15) NP(f;) c A(V')

for any f; € H'.

Proof. Let us recall the function F' from (9). Denote M’ = max{F(p;)}, where
p; runs through the set of vertices of A. Set

(16) H' ={f; | Flu, = M'}.

As F is not constant on A, ) C H' C H(f). Denote by V' the set of vertices on
the hyperplane corresponding to the equations in H’. By the previous lemma
|[V'| = |H'|. Obviously, II; N A = A(V’) and so the polynomials f; € H’
depend only on the variables corresponding to the vertices in V. (I

So far, we have discussed the morphisms of projective spaces with infinite
stabilizer in PGL(V) x PGL(W). But our goal is to study the morphisms
f with non-closed orbits under the group action. By a generalization of the
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/o

FIGURE 2. Two types of Newton polyhedra of fy, f1 and fs
in the case n = 2.

Hilbert—Mumford criterion ([5] Theorem 4.2), we reach the boundary of the
orbit (PGL(V) x PGL(W)) - f while acting on f by one-parameter subgroups
9b,c(G) asin (6). As earlier, the map gp (\) - f is given by the equations (8).
Let us introduce a new notation

17 K; = min c,I) —0b;}.

(1) = min, {(e.) =B}

Set K = min;{K;}. Then we can describe the limit of g, () - f when A goes
to zero.

Lemma 4. Denote f = limy_o(gp.c(\) - f), then
(18) fi(@o, ..., @) = Z aj o’
(c,I)=b;=K
and the original map was of type:
(19) fi= Z aijI + Z ale‘I.
(e,T)—bo=K (e,])—bo>K

The proof is a straightforward calculation.

Obviously, the group g..(Gy,) stabilizes the morphism f, so f has infinite
stabilizer and in Proposition 2 we have a description of its Newton polyhedron.
Now consider the set of half-spaces

(20) M ={IcA@R| () —b; > K CR"}.

Lemma 4 implies that NP(f;) = Hj+ N A. From the proof of Proposition 2 we
see that there is always a hyperplane II; intersecting our simplex A by a face
and such that the rest of the simplex is below II;. Thus the following holds.

Proposition 3. If f is an unstable morphism between P(V) and P(W), then
there are nonempty sets V' C V(A) and H' C H(f) such that |V'| = |H'| <
n+1 and

(21) NP(f;) C A(V')
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for any f; € H'.

NP(f)

NP(f1)

NP(fy)

FIGURE 3. Here are Newton polyhedra of f; in the case n = 2.
On each picture N P(f;) is shadowed.

Proof. Actually, consider the set H' from the previous lemma. As for any
Il; € H', the restriction of function F' to II; equals M’ = max{F(p;)}, then

(22) AC{I| F(I)<M'}.
Therefore for any II; € H' the half-space H;“ also intersects A by A(V'). O

In the language of equations this means that the first s+ 1 equations depend
only on the first s + 1 variables.

3. Proof of the theorem

By our analysis from the previous section, the fiberwise morphisms have
the following property: after a suitable identification P(V) = P(W) = P",
there is a projective subspace Z = P¥ C P" such that f~1(Z) = Z. We
would like to show that these fiberwise subspaces glue into global subbundles
P(Ey) C P(E), P(Fy) C P(F), and proceed by induction. The problem here
is that the subspace Z is in general not unique, and so the above claim is not
obvious. Our strategy is to show that these subspaces are finitely many in each
fiber, and that the variety Z parameterizing them in the relative Grassmannian
Gri(P(E)) is unramified over B. Since we consider a simply-connected B, this
means that a component of Z is a section, producing a subbundle of P(E), and
similarly for P(F).

If h: P — P" is an endomorphism given by degree m polynomials, then
the subspaces P¥ = Z C P" with the property h™'Z = Z, sometimes called
completely invariant, have been considered before, in particular, because of
their importance for holomorphic dynamics (see for example [2], [6]). If Z is
such a subspace, then at a general point 2 € Z one has deg, (h) = m" % where
deg,, is the local degree at x, which means the number of branches of h coming
together at 2. More precisely, one defines deg, (h) as the number of preimages
of a general point y close to h(z) in a small neighbourhood of z. The set of
points « where the local degree deg, (h) > N is a closed algebraic subset, so for
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any irreducible algebraic subset A it makes sense to define deg 4 (h) as the local

degree at a general point of A. In our case, deg,(h) = djg%,g}lg) =m" %, The

following lemma on local degrees is due to Briend and Duval ([6], Erratum).

Lemma 5. Possibly after replacing h by a power, one has deg4(h) < mP for
all codimension-p subvarieties A.

As an immediate consequence, one gets:
Corollary 2. The number of completely invariant P*’s is finite for any k.

Proof. Indeed, as any subset completely invariant by A is also completely in-
variant by A" for any m, one may suppose that h itself satisfies the conclusion
of the lemma. Let A be a component of the Zariski closure of the union of the
completely invariant subspaces of dimension k. If A is of dimension > k, we
have deg 4 h < m"”~%. On the other hand A has a Zariski-dense subset along
which the local degree is at least m™ %, but this is a contradiction since the
subsets {z| deg, (h) > N} are closed. O

Remark 1. Note also that given a family of endomorphisms f; : P* — P”
parameterized by a base T and a point 0 € T, two distinct codimension-p
totally invariant subspaces for f; cannot converge to the same subspace in the
limit f;. Indeed otherwise the local degree of any iterate f} at this limiting
subspace would be strictly greater than m!? (the local degree of f! along each
of the two subspaces), contradicting Lemma 5.

Now we are ready to deduce from the previous section a key proposition
about morphisms between projective bundles:

Proposition 4. Assume ¢ : P(E) — P(F) is a morphism over the base B of
degree d > 1, such that its restriction to a fiber corresponds to an unstable orbit
in R™(P(V),P(W)). Then there are subbundles Ey C E and Fy C F, such
that

(23) ¢~ (P(Fp)) = P(Ey)
and 0 < rk(Egy) = rk(Fy) < rk(E) = rk(F).

Proof. By the results in the previous section, in any fiber of P(F) there are
coordinates in which for any 0 < j <s

(24) yj :fj(l‘o,...,xs).

We claim that the preimage of the subspace H = {yg = --- = y; = 0} is the
subspace {zg = --- = z; = 0}. Indeed the last subspace is certainly contained
in the preimage of the first one. If there is another point P = (pg : -+« : ps :
Ps+1 : -+ ¢ pp) in that preimage, consider the projective subspace generated
by P and the last n — s base vectors: its dimension is n — s, so it must have
nonempty intersection with the subvariety given by the equations

(25) fsr1(zo, . yzn) =+ = fulzo,...,2n) =0
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which has dimension at least s. Any point in this intersection must be an
indeterminacy point of f, a contradiction.

It remains to show that these subspaces H fit together in a subbundle Fiy C
F and the same happens to their preimages, giving a subbundle ¢~ (F,) =
Ey € E. Our source of inspiration is Corollary 2 together with Remark 1.
These have to be adjusted since our source and target are not canonically
identified and the subspace H becomes completely invariant only after a choice
of such an identification; if another choice is taken, H ceases to be completely
invariant and a new completely invariant subspace might appear. Nevertheless
all such subspaces H have a geometric property independent on choices: the
local degree along H is m%™(H) and its image is again a projective subspace.
This property also subsists under iteration. The argument of Corollary 2 thus
shows the finiteness of possible such H in each fiber of our projective bundle.

Finally, consider the parameter space for such subspaces in the fibers of,
say, P(E), finite over the base B. Take any of its irreducible components Z
dominating B. If Z ramifies over b € B, this means, after trivializing and
identifying both projective bundles over a small analytic neighbourhood of b,
that two projective subspaces of a neighbouring fiber, with the largest possible
(for a subvariety of given codimension) local degree along them, tend to the
same limit projective subspace in the central fiber. This gives a contradiction
as the local degree along this limit subspace must be even greater (as in Remark
1). In conclusion, since B is simply-connected, Z maps one-to-one to B and
the universal family over Z gives a gluing of the subspaces in the fibers into a
subbundle of P(E). O

To complete the proof of the theorem let us consider a linear mapping in-
duced by the morphism ¢:
(26) Q" F* — STE*.
As we have shown we have subbundles FEy and Fj, such that the following
diagram commutes:

(27) 0—— (F/Fy)* F* Fy 0
(¢/¢0)*l ¢*l ¢al
00— (SME/S™Ey)* —> SME* SME 0

Consider the bundle (S™E/S™FEy)* and write

(28) (S"E/S"E)* = @] S'E; @ S™TH(E/Ey)*.
In particular there is a projection

(29) (S™B/S™ Eo)" #2 S™(E/Eo)*

and prg o (¢/dp)* = ¥* induces a map between projective bundles P(E/Ep)
and P(F'/Fy) given by degree m polynomials. In fact this map is regular, that
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is, a morphism. To check this one observes that one may view (zg : --- : xy)
and (yg : - -+ : ys) from Corollary 4 as coordinates on the projectivization of the
quotients, and the map of these projectivizations is then given by fy,... fs. To
say that this map has no indeterminacy point (pg : --- : ps) is the same as to
say that the preimage of P(Fp) from Corollary 4 contains nothing but P(Ej).

Proof of Theorem 3. We argue by induction on n+ 1 =rkE. If rkE = 1, then
E is already linear, so the base of induction is trivial.

Suppose now, that for all ranks less then n + 1 the statement is true. The
restriction of the morphism ¢ to a fiber gives us an element in R™(P(V), P(W))/
(PGL(V) x PGL(W)).

If this element corresponds to a stable orbit in R™(P(V'),P(W)), then the
argument in the proof of Theorem 1 in [1, p. 22] (see also Claim 1 and intro-
duction of loc.cit.), proves that after a finite étale base change both P(E) and
P(F) trivialize. As the variety B is simply-connected, there are no nontrivial
étale base changes, so both P(E) and P(F') are trivial and hence split.

If we get an unstable orbit, then by Corollary 4 the bundles E and F sit in
short exact sequences:

0—-Ey—FE— E/Ey—0,
0—Fy—~F—F/Fy—0

and there are morphisms given by polynomials of the same degree m > 1
between the projectivisations of bundles Fy, Fy, E/Ey and F/Fy, namely

¢o : P(Eo) — P(Fp),

v :P(E/Eo) — P(F/Fp).

By the inductive assumption all these bundles must split into direct sums of line

bundles. Since for any line bundle £ on B, its first cohomology H' (B, L) = 0,
we see that

(30)

(31)

(32) Ext'(E/Ey, Ey) = Ext'(F/Fy, Fy) = 0.
So the extensions are trivial too. Consequently F and F split into a direct sum
of line bundles. 0
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