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Abstract

Vassiliev (finite type) invariants of knots can be described in terms
of weight systems. These are functions on chord diagrams satisfying
so-called 4-term relations. The goal of the present paper is to show
that one can define both the first and the second Vassiliev moves for
binary delta-matroids and introduce a 4-term relation for them in such
a way that the mapping taking a chord diagram to its delta-matroid
respects the corresponding 4-term relations.

Understanding how the 4-term relation can be written out for arbi-
trary binary delta-matroids motivates introduction of the graded Hopf
algebra of binary delta-matroids modulo the 4-term relations so that
the mapping taking a chord diagram to its delta-matroid extends to
a morphism of Hopf algebras. One can hope that studying this Hopf
algebra will allow one to clarify the structure of the Hopf algebra of
weight systems, in particular, to find reasonable new estimates for the
dimensions of the spaces of weight systems of given degree.

Vassiliev (finite type) invariants of knots can be described in terms of
weight systems. These are functions on chord diagrams satisfying so-called
4-term relations. In the study of the sl weight system in [8], it was shown
that its value on a chord diagram depends on the intersection graph of the
diagram rather than on the diagram itself. Moreover, it was shown that
the value of this weight system on an intersection graph depends on the cy-
cle matroid of the graph rather than on the graph itself. This result arose
the question whether there is a natural way to introduce a 4-term relation
on the space spanned by matroids, similar to the one for graphs [13]. It
happened however that the answer is negative: there are graphs having iso-
morphic cycle matroids such that applying the “second Vassiliev move” to a

*National Research University Higher School of Economics, Independent University of
Moscow, lando@hse.ru
fNational Research University Higher School of Economics, slava.zhukov@list.ru



pair of corresponding vertices a, b of the graphs we obtain two graphs with
nonisomorphic matroids.

The goal of the present paper is to show that the situation is different for
binary delta-matroids: one can define both the first and the second Vassiliev
moves for binary delta-matroids and introduce a 4-term relation for them in
such a way that the mapping taking a chord diagram to its delta-matroid
respects the corresponding 4-term relations. Moreover, this mapping admits
a natural extension to chord diagrams on several circles, which correspond to
singular links. Delta-matroids were introduced by A. Bouchét [4]. Bouchét
used them, in particular, to study embedded graphs, whence their relation-
ship with (multiloop) chord diagrams is by no means unexpected. Some
evidence for the existence of such a relationship can be found, for example,
in [2], where an analogue of the Tutte polynomial for embedded graphs has
been introduced. The authors show that this polynomial satisfies the Vas-
silev 4-term relation when restricted to chord diagrams, and it is shown in [9]
that the polynomial is, in fact, delta-matroidal.

Understanding how the 4-term relation can be written out for arbitrary
binary delta-matroids motivates introduction of the graded Hopf algebra of
binary delta-matroids modulo the 4-term relations so that the mapping tak-
ing a chord diagram to its delta-matroid extends to a morphism of Hopf
algebras. One can hope that studying this Hopf algebra will allow one to
clarify the structure of the Hopf algebra of weight systems, in particular,
to find reasonable new estimates for the dimensions of the spaces of weight
systems of given degree. Note that the classical approach to study links
through link diagrams also leads to a connection with delta=matroids, see,
for example, [18]. Also it would be interesting to find a relationship between
the Hopf algebras arising in this paper with a very close to them in spirit
bialgebras of Lagrangian subspaces in [11].

The authors are grateful to participants of the seminar “Combinatorics
of Vassiliev invariants” at the Department of mathematics, Higher School
of Economics and Sergei Chmutov for useful discussions. Very stimulating
comments on the first version of the present paper are due to L. Traldi and,
especially, to I. Moffatt, to whom the authors also express their gratitude.
The article was prepared within the framework of the Academic Fund Pro-
gram at the National Research University Higher School of Economics (HSE)
in 2016—2016 (grant 16-05-0007) and supported within the framework of a
subsidy granted to the HSE by the Government of the Russian Federation
for the implementation of the Global Competitiveness Program.



1 Algebra of set systems

A set system (E;®) is a finite set E together with a subset ® of the set 2F
of subsets in E. The set E is called the ground set of the set system, and
elements of ® are its feasible sets. Two set systems (Eq; ®q), (Eq; ®o) are
said to be isomorphic if there is a one-to-one map E; — FEs identifying the
subset ®; C 21 with the subset ®, C 2¥2. Below, we make no difference
between isomorphic set systems.

A set system (E; ®) is proper if ® is nonempty. Below, we consider only
proper set systems, without indicating this explicitly.

1.1 The graded vector space of set systems

Let S, denote the vector space (over the field of complex numbers C, for
definiteness) freely spanned by set systems whose ground set consists of n
elements, Sy being the field C itself. The direct sum

S=858505:6...
is an infinite dimensional graded vector space.

Example 1.1 The vector space Sy is 1-dimensional. It is spanned by the
only set system on zero elements, namely, the set system {0; {(}}.

The vector space &7 is 3-dimensional. It is spanned by the three set
systems

s ={{115{0}}, s ={{11{0,{1}}}, s = {15 {{1}}}-

Here and below, in our notation s;; for set systems, the first index i
denotes the number of elements in the ground set, while the second one is
chosen ambiguously.

Remark 1.2 Note that the set systems {0; {0} } and s1; are proper. Indeed,
in both cases the corresponding set of subsets is not empty: it contains one
element, namely, the empty set.

1.2 Multiplication of set systems

The direct sum of two set systems Dy = (Eq; ®1), Dy = (Eq; ®3) with disjoint
ground sets Fi, Ey is defined to be

D1 Dy = (Ey U Ey; {¢1 U ¢a|¢r € P1, ¢ € Po}). (1)



Since we consider set systems up to isomorphism, we will always assume that,
when considering direct sums, the ground sets E; and F5 of the summands
are disjoint. Below, we will also refer to the direct sum as to the product of
set systems. This operation extends by linearity to a bilinear multiplication

m:S®S — S, m(Dy ® Dy) = Dy Do,

which is graded (meaning that m : Sy ® Sy — Sy for all k,¢ > 0), and
commutative. The unit of this multiplication is the set system (0; {#}), which
is the generator of .

Example 1.3 The vector space Sy is 11-dimensional. It is spanned by the
six set systems that are products of set systems on one element sets, namely,

sho= {L2h{{0}}}
st = {121 {0, {1}, {2}, {1,2}}},
sis = {{L2h{{1,2}}},
susiz = {{L25{0, {11} = {{1,2}; {0, {2}}},
susis = {125 {{1}}} = {{1. 2} {{2}}},
sizs1iz = {1,215 {1}, {1,2}}} = {{1,2}; {{2}, {1, 2}}},

and the five other set systems

sa = {{1,2};{0,{1,2}}},

szo = {{1,2}:{0, {1}, {1,2}}} = {{1,2}, {0, {2}, {1, 2} } },
ssz = {125 {0,{1},{2}}},

saa = {L2h{{1} {2}}},

sss = {{1,2}; {{1}, {2}, {1, 2}}}.

2 Generalities on delta-matroids

In this section we briefly reproduce the general facts about delta-matroids
that we will require further. We follow the approach and terminology of [9],
but use slightly different notation.

2.1 Delta-matroids

Let A denote the symmetric difference of sets, AAB = (A\ B)U(B\ A). A
delta-matroid is a set system D = (E; ®) satisfying the following Symmetric
Exchange Axiom (SEA):



For any ¢1,02 € ® and for any e € (p1Aps) there is an element € €
(p2A1) such that p1A{e,e'} € D.

It is easy to check that all the set systems on 1 or 2 elements, which
are enlisted in Sec. 1, are delta-matroids. However, there are set systems
that are not delta-matroids already among set systems on three elements.
For example, if, for the set system ({1,2,3};{0,{1,2,3}}) we take ¢; = 0,
¢o = {1,2,3}, then the SEA will not be satisfied.

2.2 Delta-matroids of embedded graphs

An embedded graph is, essentially, a graph drawn on a compact surface in
such a way that its complement is a disjoint union of disks. We will always
assume that the graph is connected. Edges in an embedded graph are also
called ribbons, or handles, and we make no distinction between embedded and
ribbon graphs. Generalities on embedded graphs can be found, for example,
in [15].

If otherwise is not stated explicitly, we allow both orientable and nonori-
entable surfaces. A loop in an embedded graph, that is, an edge connecting
a vertex with itself, can be orientable or disorienting (half-twisted). If there
is a disorienting loop in an embedded graph, then the graph itself is nonori-
entable. However, a nonorientable ribbon graph does not necessarily contain
a disorienting loop: it suffices that there exists a disorienting cycle, not nec-
essarily of length 1, in it.

To each embedded graph T, its delta-matroid D(I') = (E(I'); ®(I")) is
associated. The ground set of the delta-matroid is the set F(I") of the edges
of I'. A subset ¢ C E(I') is feasible, ¢ € ®(I"), if the boundary of the
embedded spanning subgraph of I' formed by the set ¢ is connected, that is,
consists of a single connected component. This means, in particular, that
the spanning subgraph of I' formed by the set ¢ is connected (otherwise,
each connected component of the spanning subgraph would add at least
one connected component to the boundary). Since, for a plane graph, this
requirement coincides with the requirement that ¢ is a spanning tree, feasible
sets for graphs embedded into a surface of arbitrary genus are called quasi-
trees. For graphs embedded in surfaces of positive genus, not all of quasi-trees
necessarily are trees, although each subset of edges forming a spanning tree
is feasible.

Delta-matroids of orientable embedded graphs are even, meaning that all
the feasible sets in them have cardinality of the same parity.

Example 2.1 All the set systems in Sec. 1 are delta-matroids of embedded
graphs. Thus, s1; is the delta-matroid of the embedded graph with one vertex



and an orientable loop, s;5 is the delta-matroid of the embedded graph with
one vertex and a half-twisted loop, while s;3 is the delta-matroid of the
embedded graph with two vertices and an edge connecting them. The delta-
matroids s11, s13 correspond to orientable embedded graphs, and are even,
while s15 is not even.

The following statement is straightforward.

Proposition 2.2 ([9]) If 'y, Ty are two embedded graphs with the delta-
matroids D(T'1), D(T'y), respectively, then the delta-matroid of the embedded

graph T'1#1'y obtained by gluing I'1,T's along a vertex is the product of the
delta-matroids of the summands, D(I'1#1'y) = D(I'1)D(T'y).

Here the gluing I'y #1'; of embedded graphs I'y, I'; along a vertex is defined
in the following way: we choose an arbitrary vertex in ['; and an arbitrary
vertex in 'y, and glue the two vertices together so that the half-edges of I'y
leave the joint vertex in the same cyclic order, followed by the those of I's.
The above proposition means, in particular, that the delta-matroid of the
resulting graph depends neither on the choice of the two vertices to be glued,
nor on the choice of the breaking point inside each vertex. Note that the
number of vertices in the result of gluing of two graphs is one less than the
total number of vertices in the graphs.

Example 2.3 The delta-matroid s?; is represented by the only embedded
graph with three vertices and two edges.

3 A-matroids of abstract graphs and binary
delta-matroids

Certain abstract graphs can be represented as intersection graphs of chord di-
agrams, which are embedded graphs with a single vertex. In spite of the fact
that one graph can be the intersection graph of different chord diagrams, all
these diagrams have one and the same delta-matroid, which is, therefore, as-
sociated to the graph itself. Bouchét extended this construction to arbitrary
abstract graphs.

3.1 Binary delta-matroids

Let G be an (abstract) undirected graph. We say that G is nondegenerate
if its adjacency matrix A(G), considered as a matrix over the field of two



elements, is nondegenerate. Define the set system (V(G); ®(G)), ®(G) C
2V(G’)7 by

V(G) is  the set of vertices of G,
®(G) = {U cC V(G)|Gy is nondegenerate},

where Gy is the subgraph in G induced by the subset U of vertices.

Theorem 3.1 ([4]) The set system (V(G); ®(G)) is a delta-matroid.

We call this delta-matroid the nondegeneracy delta-matroid of the
graph G.

For an orientable embedded graph I' with a single vertex, denote by ~(I)
its intersection graph, that is, the graph whose vertices correspond one-to
one to the ribbons of I', and two vertices are connected by an edge iff the
ends of the corresponding ribbons alternate along the vertex.

Theorem 3.2 ([4]) Let T be an orientable ribbon graph with a single vertex.
Then its A-matroid (E(I'); ®(I")) coincides with the nondegeneracy delta-
matroid of the intersection graph v(I') of G.

According to the theorem from [17], the number of connected compo-
nents of the boundary of a ribbon graph I' with a single vertex is equal to
corank(A(y(T"))) 4+ 1, where the adjacency matrix is considered over the field
with two elements. In particular, the boundary has a single component iff
the matrix A(y(I")) is nondegenerate.

Theorem 3.1 is naturally generalized to framed graphs and nonorientable
embedded graphs. Recall the definition of a framed graph from [14].

Definition 3.1 A framed graph is an (abstract) graph G together with a
framing, that is; a mapping f : V(G) — {0,1}. In the adjacency matrix
A(G) of a framed graph, the diagonal element corresponding to a vertex
v € V(G) is f(v), while nondiagonal elements are defined as usual.

For a framed graph G, the set system (V(G);®(G)), is defined in the
same way as for an unframed one.

Now let I" be a ribbon graph with a single vertex, not necessarily ori-
entable. The intersection graph (I') of the ribbon graph I' is the framed
graph such that each nonoriented loop is taken to a vertex with framing 1.
The theorem from [17] has the following framed analogue.

Theorem 3.3 For an embedded graph I' with a single vertex, not necessarily
orientable, let A(y(I')) be the adjacency matriz of its framed intersection



graph. Then the number of connected components of the boundary of T' is
equal to corank(A(~(T))) + 1.

As a consequence, we obtain a generalization of Theorem 3.2 for not
necessarily orientable ribbon graph with a single vertex.

Corollary 3.2 Let I' be a ribbon graph with a single vertex. Then its delta-
matroid (E(T"); ®(I")) coincides with the nondegeneracy A-matroid of the in-
tersection graph y(I') of T'.

Nondegeneracy delta-matroids of abstract framed graphs are examples of
binary delta-matroids. In order to define the notion of binary delta-matroid,
we will need the twist operation. For a set system D = (E;®) and a subset
E' C E define the twist D x E' of D with respect to E’ by

D« E' = (E;®AFE'") = (E; {¢pAF'|¢ € D}).
Theorem 3.4 ([6]) Any twist of a nondegeneracy delta-matroid of a framed
graph is a delta-matroid.

Bouchét calls the delta-matroids obtained as twists of nondegenracy delta-
matroids of framed graphs binary delta-matroids. In particular, he shows
that

Theorem 3.5 ([6]) Delta-matroids of embedded graphs are binary.

Below, we will consider the algebra of binary delta-matroids. It is well-
defined due to the following statement.

Theorem 3.6 ([9]) The product of two binary delta-matroids is a binary
delta-matroid.

This theorem means that we can consider the graded commutative algebra
of binary delta-matroids, which is a graded subalgebra in the algebra S of
set systems. We will denote this algebra by B:

B=By®&B®&B@....

The graded subalgebra B¢ in B is spanned by even binary delta-matroids.
Recall that a delta-matroid (F;®) is even if the parity of the cardinality is
the same for all sets in ®.



3.2 Comultiplication of binary delta-matroids

In addition to multiplication, we are going to introduce a comultiplication u
on the space B of binary delta-matroids, p : B — B ® B. By definition, the
coproduct (D) of a delta-matroid D = (E; ®) is

w(D) = Z Dpr @ Dp\pr.- (2)

E'CE

Here, for a subset £/ C E of the ground set E of a delta-matroid D, we
denote by Dpg: the restriction of D to E'.

Let us recall the definition of restriction from [9]. It requires some other
notions, which we collect together in a single paragraph.

Definition 3.3 Let D = (E;®) be a delta-matroid. An element e € F is
a coloop if it enters all feasible sets in D. If e is not a coloop, then the
delta-matroid D delete e, D\ {e} is

D\ {e} = (E\{e};{¢ € ®lp C B\ {e}}).

An element e € E is a loop if it does not enter any feasible set in D. If e is
not a loop, then the delta-matroid D contract e, D/{e} is

D/{e} = (E\{e}; {0\ {e}|¢ € P and ¢ > e}).

If e is a coloop, then, by definition, D \ {e} = D/{e}. If e is a loop, then,
by definition, D/{e} = D\ {e}. A minor of D is a delta-matroid obtained
from D by a sequence of deletions and contractions. The restriction Dpg
of D to a subset £/ C E is the result of deleting all elements in (E'\ E') C £
in D.

All these notions are well-defined. This means, in particular, that the
deletion and contraction of a delta-matroid are delta-matroids as well, and
any sequence of deletions and contractions leads to the same delta-matroid
independently of the order of the elements in the sequence (which are assumed
to be pairwise distinct). In the notation below, we will often omit braces
around one-element sets, writing E \ e instead of E'\ {e}, and so on.

Proposition 3.4 ([9]) If D(I') = (E(T"); ®(T")) is the delta-matroid of an
embedded graph T' and E' C E(T') is a subset of its edges such that the
corresponding spanning subgraph is connected, then Dy is the delta-matroid
of the spanning subgraph (V(I'); E'). Moreover, if E' C E(I') is an arbitrary
subset, and I'},... "} are the connected components of the corresponding
spanning subgraph of I, then the delta-matroid D(I')g: coincides with the
product D(I'}) ... D(I'}) of the delta-matroids D(I'}), ..., D(I}).

9



Theorem 3.7 ([9]) For a binary delta-matroid D = (E;®), its restriction
Dg: to an arbitrary subset E' C E is a binary delta-matroid.

The following statement shows that the coproduct defined above is com-
patible with the product.

Proposition 3.5 Let Dy = (Ey;®1), Dy = (Eq; ) be two delta-matroids.
Then

(D1 D) = pu(D1) pu(D2).

Proof. Consider a subset £ C E; U FE,. Such a subset is represented as
E' = E] U E) with E] C Ey, Ej C E,. Therefore,

(D1 Do) = Z D Dopy @ Dipp\py D2p,\£y

Ei CFEq ,Eé CE>

since (D1 Ds)piug, = Dy g, Dapy. Therefore,

(D1 Dy) = Z Dig; & Dip\g; Z Dopy ® Dapy\gy-
E{CE ELCE-

The converse statement also is clear, which proves the Proposition.

The coproduct p extends by linearity to a comultiplication of the graded
vector space spanned freely by the delta-matroids. Below, we will use it only
for binary delta-matroids, and we consider the comultiplication

w:B—Bx®B.

The counit for the comultiplication is the algebra homomorphism B — C,
which is isomorphism when restricted to By, and zero when restricted to B;
fori=1,2,....

The proof of the following theorem is a routine checking of axioms, which
we omit.

Theorem 3.8 The vector space B endowed with the comultiplication (2) and
the multiplication (1) is a graded commutative cocommutative Hopf algebra.
The subalgebra B¢ C B spanned by even binary delta-matroids forms a Hopf
subalgebra in this Hopf algbera.

According to the Milnor—-Moore theorem, each commutative cocommuta-
tive graded Hopf algebra is nothing but the Hopf algebra of polynomials in
its primitive elements. Recall that an element p of a Hopf algebra is primitive
if

pp) =1@p+p®1,
and that primitive elements form a vector subspace in the algebra. For a
graded Hopf algebra, its vector subspace of primitive elements also is graded.

10



Example 3.6 The elements si1, S12, 813 in By are primitive, and B; coin-
cides with its primitive subspace. The elements so1, S99, S23, So4, So5 are not
primitive. Nevertheless, the dimension of the primitive subspace in By is 5:
any space B,, can be represented as the direct sum of its primitive subspace
and subspace of decomposable elements, which is spanned by polynomials in
elements of smaller degrees. In By, the subspace spanned by decomposable
elements is 6-dimensional and spanned by s?,, s2,, 55, 511512, $11513, S12513-

Similarly, Bf coincides with its subspace of primitive elements and is
2-dimensional, while B§ is the direct sum of the 3-dimensional subspace
spanned by decomposable elements and the 2-dimensional primitive sub-
space.

Due to the proposition below, the Hopf algebra structure above can be
restricted to binary delta-matroids such that the empty set is feasible.

Proposition 3.7 Let D = (E;®) be a binary delta-matroid such that the
empty set is feasible, ) € ®. Then for the restriction of D to any subset
in E, the empty set also is feasible.

Indeed, D cannot contain coloops: otherwise () would not be feasible.
And if e € F is not a coloop, then () is a feasible set for D \ e as well.

Therefore, both multiplication and comultiplication in B and B¢ preserve
the subspaces spanned by binary delta-matroids with feasible emptysets. We
denote the corresponding Hopf algebras by K = Ko ® K1 & Ky & ... and
Ke=K5d KD KD ..., respectively. (The notation reflects the fact that
these Hopf algebras are related to chord diagrams and embedded graphs with
a single vertex, that is, to knots, rather than to links). The corresponding
dimensions of the spaces of primitive elements are 2 for Ky, 3 for Ky, 1 for X,
and 1 for £§.

4 Four-term relations

Vassiliev’s theory of finite order knot invariants [19] associates to a knot in-
variant of order at most n a weight system of order n, that is, a function
on chord diagrams (= embedded graphs with a single vertex) with n chords
satisfying 4-term relations. This construction has a straightforward gener-
alization to chord diagrams of links, which are essentially embedded graphs
with the number of vertices equal to the number of connected components
of the link.

The definition of the 4-term relations requires the definition of two op-
erations, namely, exchanging of handle ends (the first Vassiliev move) and

11



handle sliding (the second Vassiliev move). The handle sliding for binary
delta-matroids was defined in [16]. Below, we give the description of this
operation, and define the operation of exchanging handle ends. As a result,
we can introduce 4-term relations for binary delta-matroids and the corre-
sponding quotient Hopf algebra.

It was shown in [16] that for the delta-matroids of embedded graphs, the
operation of handle sliding, when applied to two ribbons with neighboring
ends, coincides with the handle sliding for embedded graphs. We prove a
similar statement for the operation of exchanging handle ends. Although
handle sliding and exchanging handle ends do not preserve the class of delta-
matroids of embedded graphs, they preserve a wider class of binary delta
matroids. As a result, we are able to construct a Hopf algebra of binary
delta-matroids modulo 4-term relations.

Any function on binary delta-matroids satisfying the 4-term relations
defines a weight system, whence a link invariant. Therefore, studying these
functions can help to construct knot invariants and clarify their nature.

Note that the connected sum of chord diagrams is well defined only if
4-term relations are imposed. This property allows one to define the Hopf
algebra of chord diagrams modulo 4-term relations. It was asked in [14]
whether imposing the 4-term relations allows one to define multiplication
on framed chord diagrams as well. Recently, D. P. Ilyutko and V. O. Man-
turov [10] answered this question in negative. The results of the present
section show, however, that on the level of (binary) delta-matroids we obtain
Hopf algebra structures not only for framed chord diagrams, but for arbi-
trary embedded graphs as well. Multiplication in these Hopf algebras is well
defined independently of whether the 4-term relations are imposed.

4.1 The second Vassiliev move: handle sliding

Let D = (E;®) be a set system, a,b € E be two different elements.

Definition 4.1 ([16]) The result of sliding of the element a over the ele-
ment b is the set system Dy, = (E; @), where &, = PA{p LI {a}|p U {b} €
® and ¢ C F'\ {a,b}}.

It is proved in [16] that if D = (E(I"); ®(I")) is the delta-matroid of an
embedded graph I' and a, b are two ribbons in I" with neighboring ends, then
the delta-matroid of the ribbon graph I'y, obtained from I' by sliding the
handle a over the handle b coincides with the delta-matroid D,,. However, if
the ends of the ribbons a, b in I' are not neighboring, then the handle sliding
of the above definition can lead to a set system that is not isomorphic to

12



the delta-matroid of any embedded graph. Moreover, the following example
from [16] shows that a handle sliding applied to a delta-matroid can produce
a set system that is not a delta-matroid.

Example 4.2 For the delta-matroid

D = ({17 2, 3}7 {@7 {17 2}7 {17 3}7 {27 3}7 {17 2, 3}})

the set system Dip = ({1,2,3}; {0, {1,2},{2,3},{1,2,3}}) is a delta-matroid
no longer.

Nevertheless, the following theorem is valid.

Theorem 4.1 ([16]) If D = (E;®) is a binary delta-matroid and a,b are
two distinct elements in E, then Dy, is a binary delta-matroid.

In the next section we prove a similar theorem for the other Vassiliev
move, the first one.

In [13], the second Vassiliev move was defined for abstract graphs. We are
going to show that this definition is, in fact, consistent with the definition
above. Let us recall the definition from [13] (together with its extension
to framed graphs in [14]). For a framed abstract graph G and a pair of
vertices a,b € V(G) in it, the graph CN}’ab is defined as a graph on the same
set V(G) of vertices such that the adjacency of any vertex ¢ to a, ¢ # a,b,
toggles iff ¢ is adjacent to b in GG. In addition, the adjacency of a and b
toggles if the framing of b is 1.

If G is the intersection graph of a chord diagram, and a, b are two chords
with neighboring ends in the diagram, then this move indeed corresponds to
sliding of the handle a along the handle b [14].

Theorem 4.2 For an abstract framed graph G, we have

—~—

D<éab) = D(G)ab'

Proof. Indeed, the adjacency matrix A(G) of an abstract framed graph G
can be considered as the matrix of a symmetric binary form over the field
of two elements [y in the vector space IF;/ (@) spanned by the vertices of the
graph. The second Vassiliev move G — éab does not modify the form, but
changes the basis:

(a,b,c,...)—~ (a+bbc,...).

(Note that this property justifies the name of the move: on the homology
level the second Kirby move in topology of 3-manifolds does exactly the same
thing, but over Z rather than over Fy).

13



Of course, this change of basis does not affect the (non)degeneracy prop-
erty of any subset of vertices in G not containing a or containing both {a, b}.
Now, if a subset U U {b} C V(G) does not contain a and is nondegenerate,
then the nondegeneracy of U LI {a} toggles between G and Gop.

4.2 The first Vassiliev move: exchanging handle ends

For an embedded graph I' and two distinct ribbons a,b € E(I') such that
one of the ends of a is a neighbor of one of the ends of b along some vertex,
the first Vassiliev move consists in exchanging these neighboring ends. The
following definition mimics what happens with the underlying delta-matroids
under this operation.

Let D = (E;®) be a set system, a,b € E be two different elements.

Definition 4.3 The result of exchanging of the ends of the ribbon a and the
ribbon b is the set system D!, = (E;®!,), where @/, = (& *b), * b.

Note that, in contrast to the second Vassiliev move, the first Vassiliev
move is symmetric with respect to the ribbons a,b whose neighboring ends
we exchange, D!, = Dj .

Since the operation * preserves the class of binary delta-matroids, Theo-
rem 4.1 immediately implies

Proposition 4.4 If D = (E;®) is a binary delta-matroid and a,b are two

distinct elements in E, then D!, is a binary delta-matroid.

Theorem 4.3 If D = (E(I');®(I")) is the delta-matroid of an embedded
graph I' and a,b are two ribbons in I' with neighboring ends, then the delta-
matroid of the ribbon graph I, obtained from I' by exchanging the ends of
the handles a and b coincides with the delta-matroid D,.

Proof. The set system D % b is the delta-matroid of the partial dual
embedded graph T, see [7] or [9]. After taking the partial dual along b,
sliding the neighboring end of the handle a along the new b and returning b
to its original place, we obtain exactly the neighboring ends exchange move.

Vassiliev moves for binary delta-matroids possess properties similar to
those for embedded graphs:

Proposition 4.5 The following statements about the Vassiliev moves are
valid:

o the first Vassiliev move is an involution, (D)), = D;
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o the second Vassiliev move is an involution, (Dy),, = D;

~ —_~—

e the first and the second Vassiliev moves commute, (Dap)ry = (Dhy) -

4.3 The four-term relation for binary delta-matroids

As usual, we say that an invariant f of embedded graphs satisfies the four-
term relation if for any embedded graph I' and any pair a, b of its distinct
edges having neighboring ends we have

f) = f(Te) = f(Ta) — f(Ia). (3)

Similarly, we say that an invariant f of binary delta-matroids satisfies the
four-term relation if for any binary delta-matroid D and a pair of distinct
elements a, b in its ground set we have

f(D) = f(Diy) = (D) = f(Dl) (4)
Theorem in [16] and Theorem 4.3 above mean that

Theorem 4.4 Any invariant of binary delta-matroids satisfying the 4-term
relation (4) defines a weight system, whence a link invariant.

4.4 Hopf algebras of binary delta-matroids modulo 4-
term relations

The Hopf algebra B of binary delta-matroids, as well as its Hopf subalge-

bra B¢ of even binary delta-matroids can be factorized modulo the 4-term

relations. Denote by FB (respectively, FB¢) the graded quotient space of

the space of binary matroids (respectively, even binary matroids) modulo the
4-term relations:

FB; = Bi/(D—D,—Da+D,), i=0,1.2,...
FB = Bi/(D~Dy—Da+Dy), i=012,....

Theorem 4.5 The multiplication m and the comultiplication p induce on
the spaces FB and FB¢ the structure of graded commutative cocommutative
Hopf algebras.

Example 4.6 The vector spaces FI5{ for i = 0,1, and 2 coincide with the
vector space B, since the even 4-term relations are trivial for these values
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of i. In contrast, there is a (single) nontrivial 4-term relation for i = 2 in the
noneven case:

2
511812 — S22 = 523 — Sqo.

Therefore, FBy = By/{s11512 — S22 — Sa3 + S%), dim FBy = 10, and the
primitive subspace in it is 4-dimensional. Indeed, none of the elements s99, o3
is decomposable, but their sum is.

Since both the first and the second Vassiliev move preserve the class of
binary delta-matroids with feasible empty set, the quotients FK and FK¢
of the Hopf algebras K and K¢, respectively, modulo the 4-term relations
also are Hopf algebras. For n = 1,2 the corresponding 4-term relations are
trivial.

Let us collect the computed dimensions of the spaces of primitive elements
into a table.

B, | B | FB, | FB;. | K, | K | FK, | FK,
3] 2 3 2 2 1 2 1
5| 2 4 2 3 1 3 1

N~ B

Table 1: Dimensions of the primitive subspaces

Example 4.7 The weight system we on framed chord diagrams correspond-
ing to the Conway invariant of knots can be defined as the function taking
on a chord diagram value 1 if the corresponding one-vertex ribbon graph has
a connected boundary and 0 otherwise. This weight system admits a natural
extension to binary delta-matroids: for a binary delta-matroid D = (E; ®),
define we(D) = 1 if E € ® and 0 otherwise. This function satisfies the
2-term relation: we (D) = wc(ﬁab) for any pair of distinct elements a,b € E,
whence the 4-term relation. We extend it to FB by linearity.

The function we obviously is multiplicative, wg (D1, Ds) =
we(D1)we(Dy) for any pair of binary delta-matroids Dy, Dy. There-
fore, its logarithm is well defined. The value of this logarithm on chord
diagrams is known to be related to the weight system sls, see details
in [1, 12]. Hence, the value of logwes on binary delta-matroids can be
considered as a manifestation of the existence of a yet unknown construction
of an slo-weight system on binary delta-matroids extending that for chord

diagrams. This construction is unknown yet even for (framed) graphs,
see [12].

16



References

1]

[10]

[11]

[12]

D. Bar-Natan, H. Vo, Proof of a conjecture of Kulakova et al. related to
the slo2 weight system, European Journal of Combinatorics, Volume 45,
April 2015, Pages 65-70, arXiv:1401.0754

B. Bollobés, O. Riordan, A polynomial invariant of graphs on orientable
surfaces, Proc. London Math. Soc. (3) 83 (2001), no. 3, 513531.

B. Bollobas, O. Riordan, A polynomial of graphs on surfaces. Math.
Ann. 323 (2002), no. 1, 8196.

A.Bouchet, Greedy algorithms and symmetric matroids, Math. Pro-
gramm. 38 (1987), 147-159

A.Bouchet, Representability of A-matroids, in: Proceedings of the 6th
Hungarian Colloquium of Combinatorics, Colloq. Math. Soc. Jénos
Bolyai 38 (1987), 167-182

A.Bouchet, Maps and delta-matroids, Discrete Math. 78 (1989), 59-71

S. Chmutov, Generalized duality for graphs on surfaces and the signed
Bollobds—Riordan polynomial, J. of Combin. Theory Ser. B 99 (2009)
617-638

S. Chmutov, S. Lando, Mutant knots and intersection graphs, Algebraic
& Geometric Topology 7 (2007) 1579-1598

C. Chun, I. Moffatt, S. D. Noble, R. Rueckriemen, Matroids, delta-
matrotds and embedded graphs, arXiv: 1403.0920v1, 45 pp.

D. P. llyutko, V. O. Manturov, A parity map of framed chord diagrams,
arXiv: 1506.0918

V. Kleptsyn, E. Smirnov Ribbon graphs and bialgebra of Lagrangian sub-
spaces, arxiv:1401.6160

E. Kulakova, S. Lando, T. Mukhutdinova, G. Rybnikov, On a weight
system conjecturally related to sls, European Journal of Combinatorics,
Volume 41, October 2014, Pages 266277

S. K. Lando, On a Hopf algebra in graph theory, J. Comb. Theory, Ser.
B, vol. 80 (2000), 104-121.

S. K. Lando, J-invariants of ornaments and framed chord diagrams,
Funct. Anal. Appl., 40(1) (2006), 1-13.

17



[15]

[16]

[17]

[18]

[19]

S. Lando, A. Zvonkin, Graphs on surfaces and their applications,
Springer, 2004.

Iain Moffatt, Eunice Mphako-Banda, Handle slides for delta-matroids,
arXiv:1510.07224, 12 pp.

E. Soboleva Vassiliev knot invariants coming from Lie algebras and 4-
invariants, Journal of Knot Theory and Its Ramifications, Volume 10,
Issue 01, February 2001, 161-169

L.Traldi, The transition matroid of a 4-regular graph: An introduc-
tion, European Journal of Combinatorics, Vol. 50, 180-207 (2015);
arXiv:1307.8097

V. A. Vassiliev, Cohomology of knot spaces, in: Theory of singularities
and its applications, 23-69, Adv. Soviet Math., 1, Amer. Math. Soc.,
Providence, RI, 1990.

18



