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Aldehydes as reducing agents: Reductive alkylation of ketones
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A B S T R A C T

Aldehydes are key building blocks in organic synthesis due to their high availability and diverse reactivity. 
However, their intrinsic reducing ability remains underutilized. Herein, we illustrate a possibility to use alde
hydes as dual-purpose reagents in redox transformations: as alkylating agents and reductants. This concept is 
supported by a ruthenium-catalyzed reductive alkylation of ketones and other nucleophiles using aldehydes. This 
operationally simple protocol proceeds under neat conditions without any external reductants providing a 
convenient, selective and eco-friendly C–C and C–N bond formation protocol. The utility of the protocol was 
illustrated by the synthesis of pharmaceutically relevant scaffolds, including Nabumetone and a derivative of 
pregnenolone acetate. Mechanistic experiments along with DFT-calculations were conducted to investigate 
mechanism of this transformation.

1. Introduction

Due to the diverse reactivity profile, aldehydes are among the most 
useful synthetic equivalents in organic chemistry giving the way to a 
large number of bond-forming strategies [1–4]. Despite the high reac
tivity, many aldehydes are industrial multiton compounds. For instance, 
6 million tons of butyraldehyde is manufactured per year [5]. Other 
aldehydes like acetaldehyde [6], citronellal [7], furfural [8], cinna
maldehyde [9], vanillin [10], and glucose are also available in multiton 
amounts and are applied in a variety of fields including food industry 
and manufacture of flavouring agents and plastics, dyes, and pharma
ceuticals [11–15] (Scheme 1).

There are two principal modes of aldehyde reactivity (Scheme 2): 
being an electrophile in different addition reactions or being a substrate 
for oxidation. Electrophilic behavior [16] is widely applied starting from 
classical reactions, such as aldol condensation [17], Wittig olefination 
[18], Knoevenagel [19], Henry [20], Corey-Chaykovsky [21], reduction 
reactions [22–24] etc., ending with state-of-the-art aldehyde trans
formations [25–28]. Such a diverse reactivity is based on high electro
philicity parameters E of aromatic (− 19.5) and aliphatic (− 18.7) [29] 

aldehydes.
Oxidative transformations of aldehydes are likewise common. For 

example, selective oxidation of aldehydes [30–32] is a crucial industrial 
reaction, often employed in the synthesis of carboxylic acids and related 
derivatives. However, despite the prospectively reducing ability of the 
aldehyde group, it is rarely used as reducing agent in chemical reaction. 
Only some examples are known, like well-established reduction silver 
(+1) [33] and copper (+2) cations leading to formation of silver metal 
and copper (+1) oxide. Finally, use of aldehydes as reducing agents (not 
as substrates, but as reagents) in organic transformations is under
estimated and understudied [34,35].

Herein we demonstrate the possibility to combine two types of 
aldehyde reactivity in one reaction leading to the external reductant-free 
reductive addition of different nucleophiles to carbonyl compounds 
(Scheme 2).

The reductive addition reactions represent a highly important class 
of transformations, widely used in synthetic chemistry [3,36,37]. 
However, the classical approach relies on an external source of hydrogen 
atoms such as molecular hydrogen [38–42], hydrides [43–45], alcohols 
[46–48] and some more exotic examples [49–53] (Scheme 3).
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While each of external reducing system has benefits, they introduce 
practical disadvantages. Table 1 summarizes advantages and disadvan
tages of existing classical and state-of-the-art reducing agents [54]. 
Hydrogen (H2/Pd) is a universal reducing agent for all kinds of chem
istry, it often delivers high rates. However, its intrinsic problem (without 
catalyst tuning – just using a simple Pd/C catalyst) is over-reduction and 
competitive hydrogenolysis of the C–Nu bond [55]. Stoichiometric 
borohydrides such as NaBH4 are broadly available and easy to handle. 
Yet they are typically nonselective (e.g. they could reduce aldehyde to 
alcohol) and generate inorganic by-products that complicate quench and 
extraction, increasing waste and unit operations. CO-based systems (e. 
g., CO/[Ru] [49,51,56,57]) enhance chemoselectivity and make workup 
easier. Nevertheless, carbon monoxide introduces acute toxicity and 
requires gas-handling hardware, which limits generality outside 
specialized settings. Alcohol donors (ROH) likewise tend to improve 
selectivity and operational simplicity, however, from a supply-chain 
perspective, they are frequently less accessible than the corresponding 
aldehydes. In many synthetic routes the alcohol is prepared from the 

aldehyde, so choosing the alcohol as a reductant can be logically and 
logistically circular when the aldehyde precursor is already available.

In contrast, aldehydes are indispensable and inherently present in 
such transformations as key reactants, meaning that their dual function 
as both alkylating agents and reductants introduces no additional haz
ard, logistical barrier, or cost. This feature is especially valuable when 
other reductants – particularly exotic, expensive, or sensitive ones – may 
be inaccessible to researchers or impractical for routine use. We hy
pothesized that aldehydes could play a dual role in alkylation reaction of 
ketones with aldehydes. Herein, we disclose the way for alkylating nu
cleophiles with aldehydes as electrophiles and reductants at the same 
time (Scheme 4). This concept was illustrated by the reductive addition 
of five different nucleophiles.

2. Results and discussion

Our investigation started from conditions optimization for the 
reductive alkylation of ketones by aldehyde – important C–C bond 

Scheme 1. Examples of important aldehydes in industry and medicine.

Scheme 2. Modes of aldehyde reactivity.

Scheme 3. Classical approach to the reductive addition: external reductant.

Table 1 
Comparison of classical reducing systems.

[H] H2/Pd NaBH4 CO/[Ru] ROH RCHO

Selectivity

Workup

Flammability

Toxicity

Availability
±a

a Accordingly to Sigma-Aldrich (sigmaaldrich.com) product catalog (accessed 
October 2025), approximately 812 benzaldehydes and 387 primary benzylic 
alcohols are listed as commercially available compounds [58].

Scheme 4. This work. No external reductant is applied – Dual role of aldehyde 
as electrophile and reductant.

Table 2 
Selected optimization results.

Entrya Deviation from standard conditions Yield of 3b, %

1 None 87 (75)c

2 1 equiv. of 1 17
3 5 % of catalyst 75
4 1 % of catalyst 61
5 1 h d 56
6 K2CO3, 1 h d 33
7 NaOAc, DIPEA, DABCO or CsF, 1 h d 0

a 0.16 mmol scale, 1 (3 equiv.), 2 (1 equiv.). bYields were determined by GC 
with external standard. cIsolated yield is given in parentheses. d8 mol% [Ru 
(cymene)Cl2]2, 48 mol% of base, 1 h. Full optimization data is provided in ESI.
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forming strategy, useful in the pharmaceutical chemistry [36,49,51] in 
the benchmark reaction between 4-chlorobenzaldehyde and acetophe
none (Table 2). Full optimization details are provided in ESI. Optimal 
conditions imply the simple [Ru(cymene)Cl2]2 [59] catalyst without any 
ligands, along with Cs2CO3 as a base under solvent-free conditions. 
Reducing aldehyde amount from 3 to 1 equivalent (Entry 2) significantly 
decreased the yield to 17 %, emphasizing the dual role of aldehyde – as 
electrophile and reductant. Increasing the catalyst amount to 5 mol% 
(Entry 3) unexpectedly lowered the yield to 75 %. Conversely, 
decreasing the catalyst concentration to 1 mol% (Entry 4) led to insuf
ficient catalytic activity, reducing the yield significantly to 61 %.

The base choice significantly influenced the reaction outcome. 
Replacing Cs2CO3 with K2CO3 under similar conditions (Entry 5 vs 6) 
reduced the yield to 42 %, reflecting the unique solubility and coordi
nating characteristics of base critical to the reaction outcome. Other 
bases tested (Entry 7), including NaOAc, DIPEA, DABCO, and CsF, failed 
to yield the desired product, due to their insufficient basicity and weaker 

coordination ability. The reaction was performed in various solvents 
(see ESI); however, the method remains effective even under neat con
ditions, which makes it attractive from the perspective of process E- 
factors (~3 for synthesis of compound 3).

With the optimized conditions in hand, we switched to the substrate 
scope investigations (Scheme 5). Reductive alkylation reaction of ke
tones using aldehydes as alkylating agent and reductant was conducted 
with different combinations of ketones and aldehydes – reaction pro
ceeded with primary aromatic ketones (3–12), secondary aromatic ke
tones and aromatic aldehydes (13–15); aromatic ketones and aliphatic 
aldehydes (16–18); secondary aliphatic ketone and aliphatic aldehyde 
(20); primary aliphatic ketones and aromatic aldehydes (19, 21, 22).

We found that relatively electron-rich aldehydes are less active than 
electron-neutral or electron-deficient aldehydes in this process, for 
example 9 vs. 5, however this issue could be solved using prolonged 
reaction as it was shown in examples 6–8. Electron-deficient benzo[b] 
thiophene-2-carboxaldehyde yielded product 11 in a better yield, which 

Scheme 5. Scope of alkylation of ketones using aldehydes as reductants. 0.4 mmol scale, aldehyde (3 equiv.), ketone (1 equiv.). yields were determined by NMR with 
internal standard; isolated yields given in parentheses. a48 h. b4 mol.% of [Ru(cymene)Cl2]2. c60 equiv. of acetone. d5 mmol scale.
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additionally confirms the positive impact of electron-withdrawing group 
in aldehydes.

Noteworthy, despite aliphatic aldehydes (i.e. butyraldehyde) being 
prone to conduct self-condensation reaction under basic thermal con
ditions [60], they could be used as reductants and alkylating agents 
(16–18, 20). Moderate drop of yield in case of pivaldehyde (18) is 
related to steric hindrance of tert-butyl group. The power of this 
approach was illustrated by preparation of anti-inflammatory drug 

Nabumetone 21, noteworthy, its synthesis was scaled up for gram-scale. 
Moreover, derivatization of natural pregnenolone acetate giving prod
uct 22 is available. Overall, the developed protocol showed functional 
group tolerance to relatively labile OBn (9), C=C (10, 22), C-Br (14), C- 
Cl (3, 12, 13, 19, 22), OAc (22), and cyclopropyl (19). Moreover, the 
process was not inhibited by sulfur-containing (11) groups [61].

To further develop the suggested idea of using aldehydes as a 
reducing agent we have expanded the reaction scope by another four N- 

Scheme 6. Usage of other N- and C-nucleophiles. 0.4 mmol scale, 1 equiv. of nucleophile, 3 equiv. of 1, 2 mol.% of [Ru(cymene)Cl2]2, 64 mol% of Cs2CO3, 160 ◦C, 
Ar atmosphere, neat, 20 h; isolated yields. a 5 mol.% of [Ru(cymene)Cl2]2, 16 mol% of Cs2CO3.

Scheme 7. Mechanistic considerations.
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and C-nucleophiles. We have additionally demonstrated the possibility 
of aldehydes utilization in reductive amidation (23, 25), reductive 
Knoevenagel addition (24) and reductive amination (26) (Scheme 6). In 
all these cases aldehydes serve in a dual role – reducing agent and 
electrophile. Further investigations of different nucleophiles alkylation 
are ongoing.

Several mechanistic investigations were carried out (Scheme 7). We 
assume that the real catalytically active species in this process is 
ruthenium chlorocarbonyl complex, modelled as [Ru(CO)3Cl2] (A) for 
simplicity, which can form CO via its dissociation. However, other 
similar complexes may occur (like [Ru(CO)3Cl3]− ), which formation in 
the reaction mixture was observed by IR-spectroscopy (see ESI). For
mation of such species and carbon monoxide could be explained by 
several times occurring Tsuji-Wilkinson decarbonylation reaction 
[62,63] of aldehydes with [Ru(cymene)Cl2]2. Overall, according to our 
observations [64–68], this catalytic system should be considered as 
‘cocktail-type’ [69,70], i.e. containing a plenty of ruthenium species 
with different catalytic activity.

We propose two distinct mechanistic pathways operating concur
rently, path I and path II (Scheme 7). Their feasibility was assessed by 
DFT calculations at the PBE/TZVP (QZVP on Ru atom) level of theory 
using solvent model density with acetone in Orca 6.0 software [71] (see 
ESI). Reaction of benzaldehyde with acetone was chosen as a model 
reaction to reduce computational cost. Path I is based on the previous 
work of our group [49]. Reaction of benzaldehyde with acetone provides 
formation of aldol which forms a complex B. Enolization of B to C allows 
elimination of the aldol OH group, forming a new double bond and 
furnishing the hydroxo-ruthenium specie D with a very low barrier 
(ΔΔG1≠ = 2.1 kcal/mol). Next the migratory insertion of the hydroxyl 
group into the CO ligand leads to the carboxyl complex E. Rearrange
ment of E to hydride G occurs with release of CO2. Further hydride- 
transfer and product release closes this catalytic cycle. The overall for
mation of complex G from complex D is the part of classical ruthenium 
catalyzed water–gas shift reaction and was recently well studied 
experimentally and theoretically [65,66,72].

Path II is based on disproportionation of aldehyde in the presence of 
base, which provides formation of carboxylate-anion and primary 
alcohol. Further coordination of alcohol to complex A gives complex I, 
which then undergoes β-hydride elimination [73] to give J. Ligand ex
change from aldehyde to enone forms a complex G, where the key step of 
hydrogen transfer occurs with transition state ΔΔG2≠ 11.96 kcal/mol, 
providing enolate complex H. Protonation of enolate with free alcohol 
forms product and encloses the catalytic cycle leading to formation of 
the initial complex I.

Mechanistic experiments supporting theoretical studies were carried 
out. It has been found that both enone and aldol could be reduced to the 
resulting product using both aldehyde and corresponding benzylic 
alcohol (Scheme 7b-e). Aldehyde reduced aldol intermediate faster than 
enone (Scheme 7b vs 7c). However, alcohol 29 was more efficient 
reductant for enone 27 and less efficient for aldol 28 (Scheme 7d vs 7e). 
These results are consistent with paths I and II, where reduction of aldol 
occurs with one equivalent of CO formed via decarbonylation reaction of 
aldehyde and reduction of enone proceeds with alcohol. Nevertheless, in 
all cases it is proved that these species could play role as intermediates in 
this transformation.

Additionally, D-labeling experiments were carried out (Scheme 7f, 
7g). In both cases benzylic position is isotope enriched more than it 
should be. Observed kinetic isotope effect (KIE) in both D-labeling re
actions is moderate (2.6 and 3.3 respectively) proving primary KIE and 
postulating that the key transition state is the formation of benzylic C–H 
bond (G → H, ΔΔG2≠ 11.96 kcal/mol). An additional 52 % D-incorpora
tion in case of reaction on Scheme 7f could be explained by large amount 
of acetone-D6 in the reaction mixture which could provide formation of 
deuterated water via its condensation in basic conditions (Scheme 7h), 
which plays role in the protonation step of ruthenium enolate forming in 
both mechanisms I and II. This proves our hypothesis that two 

mechanisms operate at the same time.
Moreover, reaction mixtures contained decarbonylative products 

(Scheme 7i), for example, chlorobenzene, which formation supports 
mechanism I and products of aldehyde conversion – cesium carboxyl
ates, alcohols and their transformations products (i.e., esters), which 
supports mechanism II.

3. Conclusions

In summary, we developed a conceptually novel reductive alkylation 
methodology that employs readily available aldehydes in a dual role: 
alkylating and reducing agent. In contrast to conventional approaches, 
our ruthenium-catalyzed protocol operates under neat conditions and 
employs readily available aldehydes themselves as internal reductants. 
This simplifies the reaction conditions and enhances sustainability by 
eliminating hazardous or sensitive reducing agents.

The applicability of developed method is demonstrated by reductive 
alkylation of five different nucleophiles: ketones, amines, amides, sul
fonamides and nitriles. In the case of ketones alkylation this method
ology demonstrates broad applicability across diverse classes of ketones 
and aldehydes, including challenging aliphatic aldehydes and substrates 
bearing sensitive functional groups. Possible ways of the target process 
were proposed, supported by DFT-calculations and control experiments. 
Overall, this work challenges the traditional perception of aldehydes as 
merely electrophilic partners by positioning them as versatile and sus
tainable reducing agents. It opens new trajectories for aldehyde-based 
redox processes and expands the conceptual borders of reductive 
alkylation chemistry.
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