https://doi.org/10.34883/PI.2025.15.3.049

Кулеш А.А. 1 \bowtie , Мехряков С.А. 1 , Демин Д.А. 2 , Кайлева Н.А. 1 , Сыромятникова Л.И. 1 , Крапивин С. 1 , Куликова С.П. 3 , Каракулова Ю.В. 1

- ¹ Пермский государственный медицинский университет имени академика Е.А. Вагнера, Пермь, Россия
- ² Федеральный центр сердечно-сосудистой хирургии, Астрахань, Россия
- ³ Высшая школа экономики, Пермь, Россия

Роль очага инфаркта мозга в определении этиологии ишемического инсульта: обзор литературы

Конфликт интересов: не заявлен.

Вклад авторов: концепция статьи, редактирование, сбор материала, обработка, написание текста – Кулеш А.А.; концепция статьи, редактирование, обработка, написание текста – Мехряков С.А.; концепция статьи, редактирование, написание текста – Демин Д.А.; концепция статьи, редактирование, сбор материала, написание текста – Кайлева Н.А.; концепция статьи, редактирование, написание текста – Сыромятникова Л.И.; сбор материала, написание текста – Крапивин С.; концепция статьи, редактирование, обработка – Куликова С.П.; концепция статьи, редактирование – Каракулова Ю.В.

Финансирование: статья написана в рамках программы государственного задания «Разработка технологий снижения смертности населения от сердечно-сосудистых заболеваний в целях их применения в системе здравоохранения (диспансеризация) на основе ранней диагностики, профилактики и телемедицинской оценки реабилитационных мероприятий».

Подана: 22.05.2025 Принята: 29.08.2025

. Контакты: aleksey.kulesh@gmail.com

Резюме

Этиология ишемического инсульта чрезвычайно многообразна. В соответствии с классификацией SSS-TOAST ишемический инсульт может быть обусловлен атеросклеротическим поражением крупных артерий, кардиогенной тромбоэмболией, окклюзией мелких артерий (лакунарный), другой причиной – установленной (диссекцией, церебральным венозным тромбозом, мигренью, синдромом обратимой церебральной вазоконстрикции, антифосфолипидным синдромом др.) и неустановленной. В основе инсульта неизвестной этиологии может лежать предсердная кардиопатия, парадоксальная эмболия, канцер-ассоциированная эмболия и нестенозирующий атеросклероз. Раннее установление патогенетического механизма инсульта (типирование) позволяет спланировать индивидуальную стратегию вторичной профилактики, которая включает широкий спектр медикаментозных и хирургических методов. Основная задача данной статьи заключается в формулировании типичных радиологических паттернов основных патогенетических подтипов ишемического инсульта. Наличие у основных патогенетических подтипов ишемического инсульта достаточно специфичного радиологического почерка позволяет расценивать очагориентированный подход в установлении этиологии инсульта как весьма перспективный, что особенно важно в первые дни госпитализации пациента.

Ключевые слова: ишемический инсульт, этиология, очаг, МРТ, паттерн

Kulesh A.¹⊠, Mekhryakov S.¹, Demin D.², Kaileva N.¹, Syromyatnikova L.¹, Krapivin S.¹, Kulikova S.³, Karakulova Yu.¹

- ¹ Perm State Medical University named after Academician E.A. Wagner, Perm, Russia
- ² Federal Center for Cardiovascular Surgery, Astrakhan, Russia
- ³ Higher School of Economics, Perm, Russia

Role of the Cerebral Infarction Focus in Determining Ischemic Stroke Etiology: A Literature Review

Conflict of interest: nothing to declare.

Authors' contribution: article concept, editing, material collecting, processing, text writing – Kulesh A.; article concept, editing, processing, text writing – Mekhryakov S.; article concept, editing, text writing – Demin D.; article concept, editing, material collecting, text writing – Kaileva N.; article concept, editing, text writing – Syromyatnikova L.; material collecting, text writing – Krapivin S.; article concept, editing, processing – Kulikova S.; article concept, editing – Karakulova Yu.

Funding: the article was written within the framework of the state assignment program "Designing technologies for reducing mortality from cardiovascular diseases based on early diagnosis, prevention and telemedical assessment of rehabilitation measures for the purpose of their implementation in the healthcare system (clinical examination)".

Submitted: 22.05.2025 Accepted: 29.08.2025

Contacts: aleksey.kulesh@gmail.com

Abstract

The etiology of ischemic stroke is extremely diverse. According to the SSS-TOAST classification, ischemic stroke can be caused by atherosclerotic lesions of large arteries, cardiogenic thromboembolism, occlusion of small arteries (lacunar), other established (dissection, cerebral venous thrombosis, migraine, reversible cerebral vasoconstriction syndrome, antiphospholipid syndrome, etc.), and unspecified causes. Strokes of unknown etiology may be caused by atrial cardiopathy, paradoxical embolism, cancerassociated embolism, and non-stenotic atherosclerosis. An early identification of the stroke pathogenetic mechanism (typing) allows planning an individualized strategy for secondary prevention, which includes a wide range of pharmaceutical and surgical methods. The main objective of this article is to formulate typical radiological patterns of the main pathogenetic subtypes of ischemic stroke. The presence of a fairly specific "radiological signature" in the main pathogenetic subtypes of ischemic stroke allows evaluating the focus-oriented approach for establishing the stroke etiology as very promising one, which is especially important in the first days of a patient's hospitalization. **Keywords:** ischemic stroke, etiology, focus, MRI, pattern

■ ВВЕДЕНИЕ

Этиология ишемического инсульта чрезвычайно многообразна. В настоящее время в практике используется классификация SSS-TOAST [1], в соответствии с которой ишемический инсульт может быть обусловлен атеросклеротическим поражением крупных артерий (атеротромботический, АТИ), кардиогенной тромбоэмболией (кардиоэмболический, КЭИ), окклюзией мелких артерий (лакунарный, ЛИ), другой установленной причиной (другой установленной этиологии, включающей диссекцию [2],

церебральный венозный тромбоз [3], мигрень [4], синдром обратимой церебральной вазоконстрикции [5], антифосфолипидный синдром [6] и др.) и неустановленной причиной (неустановленной этиологии). В основе инсульта неизвестной этиологии может лежать предсердная кардиопатия [7], парадоксальная эмболия [8], канцер-ассоциированная эмболия [6] и нестенозирующий атеросклероз [9]. Раннее определение патогенетического механизма инсульта (типирование) позволяет спланировать индивидуальную стратегию вторичной профилактики, которая включает широкий спектр медикаментозных и хирургических методов. Принципиально важно, чтобы этиология ишемического инсульта устанавливалась уже на первом этапе лечения в первичном сосудистом отделении или региональном сосудистом центре, где сосредоточены наибольшие диагностические ресурсы [10]. На наш взгляд, эффективной диагностической стратегией является очаг-ориентированный этиологический поиск, т. е. интенсификация обследования в том или ином направлении в соответствии с особенностями очагового поражения головного мозга по данным нейровизуализации, которые отражают патогенез мозговой катастрофы [11, 12]. Для внедрения очагориентированного диагностического поиска в ежедневную клиническую практику необходимо развитие визуальной компетенции, или насмотренности, врачей-неврологов, для чего первостепенным является формулирование типичных радиологических паттернов основных патогенетических подтипов ишемического инсульта. Решению настоящей задачи и посвящена данная статья.

■ ПАТТЕРНЫ КАРДИОЭМБОЛИЧЕСКОГО ИНСУЛЬТА

К основным радиологическим подсказкам при КЭИ можно отнести: вовлечение разных артериальных бассейнов, поражение коры островка, наличие геморрагической трансформации инфаркта на первичных томограммах, а также симптом гиперденсивной артерии на КТ / «черной» артерии на МРТ (рис. 1).

Вовлечение разных артериальных бассейнов (в том числе с развитием двусторонних инфарктов) обусловлено фрагментацией тромба левого предсердия с пассажем эмболов в несколько церебральных артерий. Наиболее ярким проявлением становятся «диагональные инфаркты» (например, поражение бассейнов правой средней и левой задней мозговых артерий). Если пациент с кардиальным источником эмболии не получает необходимой профилактики, церебральные эмболические события рецидивируют, и в ряде случаев возможно наблюдать феномен «диссеминации в месте и времени». В то же время следует помнить, что двусторонний паттерн инфарктов наблюдается и при других причинах инсульта: эмболии из атером аорты (таким образом, выделяют так называемый кардиоаортальный источник эмболии), васкулите, церебральном венозном тромбозе, коагулопатии (например, при раке). Ложное представление о кардиоэмболии также может возникнуть при особенностях анатомии — передней или задней трифуркации, при которой АТИ может привести к инфаркту в бассейне контралатеральной передней или ипсилатеральной задней мозговой артерии соответственно [13].

Вовлечение коры островка (чаще задней) наблюдается у трети пациентов с КЭИ. Наличие признака позволяет идентифицировать 3 из 5 пациентов с данным подтипом инсульта. Частое инсулярное поражение при кардиальной эмболии обусловлено тем, что островок снабжается кровью через небольшие ветви, отходящие от проксимальных отделов сегментов М2 средней мозговой артерии (именно в этой

зоне часто происходит фиксация кардиоэмбола). При этом островок чувствителен к ишемии, так как лишен пиального коллатерального кровотока [14, 15].

Геморрагическая трансформация инфаркта на первичных томограммах связана с миграцией эмбола от проксимального отдела М1 до дистального с развитием реперфузионного повреждения в бассейне лентикулостриарных ветвей. Также реперфузионному повреждению могут способствовать корковые коллатерали [16].

Симптом гиперденсивной артерии на КТ / «черной» артерии на MPT (susceptibility vessel sign) связан с гистологическими особенностями эмболического материала при КЭИ. Данные эмболы являются «красными» (содержат много эритроцитов), что приводит к повышению плотности от окклюзированной артерии на КТ и снижению сигнала на T2*/SWI/SWAN-последовательностях MPT (зона гипоинтенсивности при этом должна выходить за пределы просвета артерии – «эффект цветения») [11, 17–19]. Симптом гиперденсивной мозговой артерии, описанный в 1983 г. Gyula Gács и соавт. в серии из 8 наблюдений, также является наиболее надежным ранним признаком ишемического инсульта, определяемым на нативной КТ [20]. Симптом гиперденсивной артерии может быть ложноположительным при повышении гематокрита

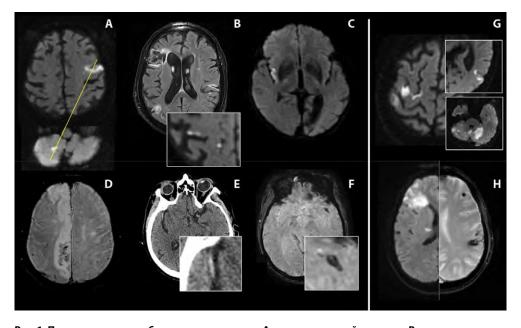
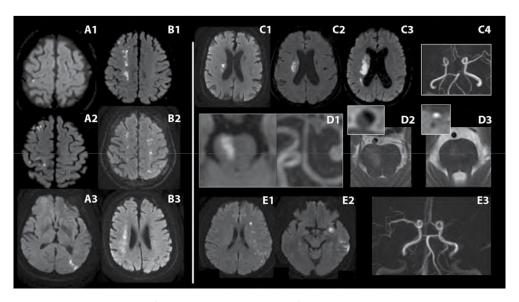


Рис. 1. Паттерны кардиоэмболического инсульта: А – «диагональный инсульт»; В – «диссеминация в месте и времени»; С – инфаркт островка; D – первичная геморрагическая трансформация (SWAN); Е – гиперденсивная средняя мозговая артерия (КТ); F – «черная» средняя мозговая артерия; G – эмболические инфаркты на фоне тромбоза левого желудочка; Н – сочетание эмболических инфарктов с кортикальными микрокровоизлияниями и субарахноидальным кровоизлиянием при инфекционном эндокардите

Fig. 1. Patterns of cardioembolic stroke: A – "diagonal stroke"; B – "time and place dissemination"; C – infarction of the insula; D – primary hemorrhagic transformation (SWAN); E – hyperdensive middle cerebral artery (CT); F – "black" middle cerebral artery; G – embolic infarctions due to left ventricular thrombosis; H – combination of embolic infarctions with cortical microbleeds and subarachnoid hemorrhage in infective endocarditis

или недавнем проведении контрастного исследования, например коронарографии (в таких случаях симптом положителен с 2 сторон), артефактах (особенно в артериях задней черепной ямки), кальцификации, а также снижении плотности прилежащих областей головного мозга (например, при энцефалите) [21].

При развитии КЭИ на фоне высокоэмбологенного источника (например, тромбоза левого желудочка, эндокардита, миксомы) возможно рассеянное поражение головного мозга с паттерном «звездного неба» на ДВИ МРТ. Кроме того, для инфекционного эндокардита характерно сочетание кортикально-субкортикального инфаркта с долевыми микрокровоизлияниями и/или субарахноидальным кровоизлиянием, что связано с особенностью эмбола: его инфекционная природа приводит к развитию ангиита церебральных артерий с повышением сосудистой проницаемости, а также формированию аневризм [22].


■ ПАТТЕРНЫ АТЕРОТРОМБОТИЧЕСКОГО ИНСУЛЬТА

АТИ может развиваться на фоне экстракраниального атеросклероза (ЭКАС), интракраниального атеросклероза (ИКАС), а также их сочетания (тандемное поражение). ЭКАС- и ИКАС-ассоциированный инсульт зачастую имеет схожий радиологический паттерн, обусловленный эмболией, гипоперфузией или их комбинацией [23] (рис. 2).

Для эмболического паттерна характерны небольшие кортикальные инфаркты, часто расположенные в наружных пограничных зонах (зоны-водоразделы). Наружные пограничные зоны располагаются между бассейнами передней и средней (стык центральной и прецентральной борозд), средней и задней (кзади и латерально от постцентральной борозды) мозговых артерий. Инфаркты в этих зонах обычно имеют треугольную форму и могут сопровождаться кортикальным ламинарным некрозом [24–28].

Гипоперфузионный паттерн характеризуется преимущественным поражением внутренних пограничных зон, которые располагаются между областями кровоснабжения дистальных ветвей средней, передней и задней мозговых артерий (корковые пенетрирующие артерии) и лентикулостриарных артерий, возвратной артерии Губнера, ветвей передней ворсинчатой артерии. Данные зоны особенно чувствительны к церебральной гипоперфузии. При гипоперфузионном варианте АТИ несколько мелких ишемических очагов распространяются линейно, параллельно боковому желудочку, располагаясь на уровне семиовального центра или лучистого венца. Инфаркты могут сливаться, создавая рисунок нитей жемчуга или четок. Тесная ассоциация инфаркта внутренних пограничных зон с гипоперфузией объясняется тем, что лентикулостриарные артерии, снабжающие кровью семиовальные центры, имеют относительно небольшое коллатеральное кровообращение, в отличие от корковых территорий [24–26, 28–30].

Небольшие инфаркты пограничных зон могут формироваться в мозжечке на границе бассейнов мозжечковых артерий. Также инфаркты водораздела развиваются при системной гипоперфузии, при этом характерно двустороннее и часто симметричное поражение [31, 32]. Важно отметить, что вовлечение пограничных зон может происходить и по механизму микроэмболии за счет нарушения вымывания эмболов при тяжелой гемодинамической недостаточности [33–35].

Puc. 2. Паттерны атеротромботического инсульта: A – эмболические паттерны; B – гипоперфузионные паттерны; C – глубинные полушарные ИКАС-инфаркты; D – парамедианные мостовые ИКАС-инфаркты; E – многоуровневый ИКАС-инфаркт Fig. 2. Patterns of atherothrombotic stroke: A – embolic patterns; B – hypoperfusion patterns; C – deep hemispheric ICAS infarctions; D – paramedian pontine ICAS infarctions; E – multilevel ICAS infarction

Для ИКАС-ассоциированного инсульта характерны следующие паттерны [36]: 1) большие глубинные инфаркты и лакунарные лентикулостриарные инфаркты при отсутствии признаков церебральной микроангиопатии (ЦМА); 2) парамедианные инфаркты моста; 3) медуллярные инфаркты; 4) инфаркты внутренних пограничных зон при отсутствии значимых экстракраниальных стенозов и 5) многоуровневые инфаркты [37–40].

Развитие лакунарного ИКАС-ассоциированного инсульта часто обусловлено атероматозом перфорантов, при котором происходит обструкция устьев пенетрирующих артерий. Данный механизм был впервые описан Luis Caplan в 1989 г. на основании патологоанатомических исследований Miller Fisher 1971 г. [41, 42]. Трудности клинической интерпретации возникают в ситуации сосуществования ИКАС и ЦМА [43]. В отличие от липогиалиноза (основного патологического процесса, лежащего в основе ЦМА), атероматоз вовлекает более крупные перфорирующие (в пределах континуума мелких) артерии – диаметром 700–800 мкм. Атерома часто располагается вблизи устья «материнской» артерии, что способствует формированию инфаркта особой формы. Для ИКАС характерно развитие более крупного инфаркта, чем при ЦМА, поскольку атерома распространяется на устья нескольких перфорантов. Также при атероматозе и тромбозе перфоранта можно обнаружить симптом «черной» артерии (точнее – «черного перфоранта») [44].

Атероматоз перфорантов, равно как и стеноз базилярной артерии, может лежать в основе парамедианного мостового инфаркта [40, 45]. ИКАС также является основной причиной латеральных и медиальных медуллярных инфарктов [46].

Формирование инфарктов внутренних пограничных зон при отсутствии значимых экстракраниальных стенозов типично для поражения средней мозговой артерии. Многоуровневый инфаркт (комбинация перфорантного, пиального, пограничного, лептоменингеального очагов) развивается при проксимальном стенозе / окклюзии сегмента М1 вследствие разрыва бляшки. В основе лежит сочетание артерио-артериальной эмболии, гипоперфузии и тромбоза in situ [37–40].

■ ПАТТЕРНЫ ИНСУЛЬТА НА ФОНЕ ЦЕРЕБРАЛЬНОЙ МИКРОАНГИОПАТИИ

Спорадическая церебральная микроангиопатия

Для установления лакунарного инсульта на фоне ЦМА необходимо, помимо визуализации лакунарного инфаркта (очаг размером менее 2 см, располагающийся в глубинных отделах головного мозга / мосту), доказать наличие «хронических» МРТ-проявлений заболевания в соответствии с критериями STRIVE: гиперинтенсивности белого вещества, лакун, расширенных периваскулярных пространств

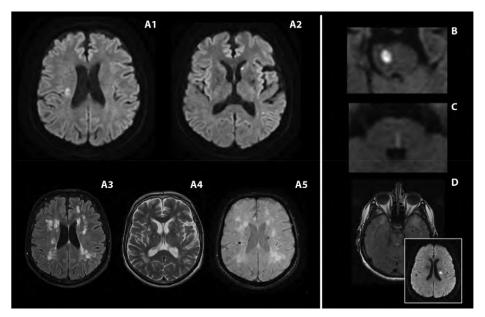


Рис. 3. Паттерны лакунарного инсульта на фоне церебральной микроангиопатии:
A1 – острый лакунарный инфаркт (ДВИ); A2 – инцидентальный лакунарный инфаркт (ДВИ);
A3 – гиперинтенсивность белого вещества (FLAIR); A4 – расширение глубинных периваскулярных пространств (T2-BИ); A5 – глубинные церебральные микрокровоизлияния; В – глубинный мостовой инфаркт (ДВИ); С – инфаркт медиального продольного пучка на уровне моста (ДВИ); D – гиперинтенсивность белого вещества передних отделов височных долей при CADASIL (FLAIR), в рамочке – острый лакунарный инфаркт (ДВИ)

Fig. 3. Patterns of lacunar stroke in cerebral microangiopathy: A1 – acute lacunar infarction (DWI); A2 – incidental lacunar infarction (DWI); A3 – white matter hyperintensity (FLAIR); A4 – enlarged of deep perivascular spaces (T2-WI); A5 – deep cerebral microbleeds; B – deep pontine infarction (DWI); C – infarction of the medial longitudinal fasciculus at the level of the pons (DWI); D – white matter hyperintensity of the anterior temporal lobes in CADASIL (FLAIR), in the frame – acute lacunar infarction (DWI)

и глубинных церебральных микрокровоизлияний (рис. 3) [47]. Вопрос о минимальном количестве маркеров, необходимых для постановки диагноза, остается нерешенным; на наш взгляд, достаточно наличия хотя бы одного дополнительного критерия. При отсутствии признаков ЦМА следует подозревать ИКАС как причину лакунарного инсульта. У каждого 5–6-го пациента с ЛИ наблюдается дополнительная зона мелкого острого/подострого инфаркта, что может свидетельствовать как об эмболической этиологии инсульта (особенно при нетипичной локализации второго очага), так и о тяжести ЦМА – наличие дополнительного очага (чаще в лучистом венце) ассоциировано с гипертензией и выраженностью других маркеров микроангиопатии [48]. Также для ЦМА характерно развитие глубинных мостовых инфарктов [40] и инфарктов медиального продольного пучка (что клинически проявляется синдромом межъядерной офтальмоплегии).

CADASIL

Изменения на MPT соответствуют спорадической ЦМА, однако имеются отличительные черты: гиперинтенсивность белого вещества в полюсе височной доли (у 9 из 10 пациентов) и наружной капсуле на T2 и FLAIR [49].

■ ПАТТЕРНЫ ИНСУЛЬТА ДРУГОЙ УСТАНОВЛЕННОЙ ПРИЧИНЫ

При парадоксальной эмболии право-левый шунт ассоциирован с небольшими (менее 1 см) кортикальными инфарктами и множественным характером поражения. Небольшие размеры инфарктов потенциально могут объясняться пропускающей способностью открытого овального окна [50, 51]. Есть данные о более частом вовлечении вертебрально-базилярного бассейна (за счет того, что при маневре Вальсальвы скорость кровотока в задней системе циркуляции становится выше, чем в передней), однако они требуют подтверждения в современных исследованиях с более строгим отбором пациентов [52, 53]. Для канцер-ассоциированного инсульта характерны множественные инфаркты размером от 0,5 до 2 см на ДВИ, вовлекающие разные артериальные бассейны – симптом трех бассейнов, связанный с механизмом внутрисосудистой гиперкоагуляции [54–56]. Такой мультитерриториальный паттерн поражения наблюдается у 2 из 3 пациентов с инсультом на фоне активного рака, встречается в 6 раз чаще, чем при кардиоэмболии, и имеет высокую специфичность (96,4%) для канцер-ассоциированного инсульта [55, 57].

■ ЗАКЛЮЧЕНИЕ

Наличие у основных патогенетических подтипов ишемического инсульта достаточно специфичного радиологического почерка позволяет расценивать очаг-ориентированный подход в установлении этиологии инсульта как весьма перспективный. На наш взгляд, данный подход наиболее уместен в первые дни пребывания в стационаре, когда необходимо определиться с ведущим направлением обследования пациента.

■ ЛИТЕРАТУРА/REFERENCES

- Ay H, Benner T, Arsava EM, et al. A computerized algorithm for etiologic classification of ischemic stroke: the Causative Classification of Stroke System. Stroke. 2007 Nov;38(11):2979–84. doi: 10.1161/STROKEAHA.107.490896
- Kulesh AA, Demin DA, Vinogradov OI. Cervical dissection in emergency neurology: diagnostic and treatment algorithms. Russian neurological journal. 2022;27(4):86–96. (In Russ.) https://doi.org/10.30629/2658-7947-2022-27-4-86-96
- Kulesh AA. Cerebral venous thrombosis and its hemorrhagic complications. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(2):10–18. https://doi.org/10.14412/2074-2711-2021-2-10-18
- Kulesh AA, Starikova NL, Demin DA, et al. Migraine with prolonged aura vs migraineassociated stroke: a case series. Case report. Consilium Medicum. 2025;27(2):75–80. doi: 10.26442/20751753.2025.2.203175
- Kulesh AA, Demin DA, Starikova NL, et al. Reversible cerebral vasoconstriction syndrome: A review. Consilium Medicum. 2025;27(2):63–69. doi: 10.26442/20751753.2025.2.203150
- Kulesh AA, Belopasova AV, Demin DA, et al. Cryptogenic stroke. Part 4: Antiphospholipid syndrome and cancer. Medical Council. 2023;(10):21–31. (In Russ.) https://doi.org/10.21518/ms2023-186
- Demin DA, Kulesh AA, Yanishevskiy SN, et al. Cryptogenic stroke. Part 3: atrial cardiopathy and silent atrial fibrillation. Medical Council. 2022;(21):8–18. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-21-8-18
- Kulesh AA, Demin DA, Belopasova AV, et al. Cryptogenic stroke. Part 2: paradoxical embolism. Medical Council. 2021;(19):16–33. (In Russ.) https://doi.org/10.21518/2079-701X-2021-19-16-33
- Kulesh AA, Demin DA, Vinogradov OI. Cryptogenic stroke. Part 1: Aorto-arterial embolism. Medical Council. 2021;(4):78–87. (In Russ.) https://doi. org/10.21518/2079-701X-2021-4-78-87
- Kulesh AA, Demin DA, Vinogradov OI. Pathogenetic mechanisms of ischemic stroke: from verification to secondary prevention. Consilium Medicum. 2021;23(11):792–799. doi: 10.26442/20751753.2021.11.201153
- Fitzgerald S, Mereuta OM, Doyle KM, et al. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome. J Neurosura Sci. 2019 Jun;63(3):292–300. doi: 10.23736/S0390-5616.18.04629-5
- Jose J, James J. An MRI Based Ischemic Stroke Classification A Mechanism Oriented Approach. Ann Indian Acad Neurol. 2022 Nov Dec;25(6):1019–1028. doi: 10.4103/aian.aian_365_22
- Sharobeam A, Churilov L, Parsons M, et al. Patterns of Infarction on MRI in Patients with Acute Ischemic Stroke and Cardio-Embolism: A Systematic Review and Meta-Analysis. Front Neurol. 2020 Dec 8;11:606521. doi: 10.3389/fneur.2020.606521
- 14. Türe U, Yaşargil MG, Al-Mefty O, et al. Arteries of the insula. J Neurosurg. 2000 Apr;92(4):676–87. doi: 10.3171/jns.2000.92.4.0676
- Kulesh AA, Kulikova SP, Drobakha VE, et al. Role of insular cortex lesions in determining the pathogenetic subtype of ischemic stroke. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(2):11–17. https://doi.org/10.14412/2074-2711-2022-2-11-17
- Chen CH, Lee M, Weng HH, et al. Identification of magnetic resonance imaging features for the prediction of unrecognized atrial fibrillation in acute ischemic stroke. Front Neurol. 2022 Sep 13;13:952462. doi: 10.3389/fneur.2022.952462
- Cho KH, Kim JS, Kwon SU, et al. Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke. 2005 Nov;36(11):2379–83. doi: 10.1161/01.STR.0000185932.73486.7a
- Bourcier R, Derraz I, Delasalle B, et al.; THRACE investigators. Susceptibility Vessel Sign and Cardioembolic Etiology in the THRACE Trial. Clin Neuroradiol. 2019 Dec;29(4):685–692. doi: 10.1007/s00062-018-0699-8
- Chen J, Zhang Z, Nie X, et al. Predictive value of thrombus susceptibility for cardioembolic stroke by quantitative susceptibility mapping. Quant Imagina Med Sura. 2022 Jan:12(1):550–557. doi: 10.21037/gims-21-235
- Gács G, Fox AJ, Barnett HJ, et al. CT visualization of intracranial arterial thromboembolism. Stroke. 1983 Sep Oct;14(5):756–62. doi: 10.1161/01. str.14.5.756
- Chieng JSL, Singh DR, Chawla A, et al. The hyperdense vessel sign in cerebral computed tomography: pearls and pitfalls. Singapore Med J. 2020 May;61(5):230–237. doi: 10.11622/smedj.2020074
- 22. Demin DA, Kulesh AA, Nikolaeva EV, et al. Combination of cortical-subcortical infarction with lobar microbleeds as a specific MRI pattern in patients with infective endocarditis. Consilium Medicum. 2023;25(2):86–90. doi: 10.26442/20751753.2023.2.202320
- 23. Kulesh AA, Yanishevsky SN, Demin DA, et al. Patient with non-cardioembolic ischemic stroke or high-risk transient ischemic attack. Part 1. Neurology, Neuropsychiatry, Psychosomatics. 2023;15(2):10–18. (In Russ.) https://doi.org/10.14412/2074-2711-2023-2-10-18
- Yong SW, Bang OY, Lee PH, et al. Internal and cortical border-zone infarction: clinical and diffusion-weighted imaging features. Stroke. 2006 Mar;37(3):841–6. doi: 10.1161/01.STR.0000202590.75972.39
- 25. Chen H, Hong H, Liu D, et al. Lesion patterns and mechanism of cerebral infarction caused by severe atherosclerotic intracranial internal carotid artery stenosis. *J Neurol Sci.* 2011 Aug 15;307(1–2):79–85. doi: 10.1016/j.jns.2011.05.012
- El Sadek A, Gaber A, Afifi H, et al. Microemboli versus hypoperfusion as an etiology of acute ischemic stroke in Egyptian patients with watershed zone infarction. Egypt J Neurol Psychiatr Neurosurg. 2019;55(1):2. doi: 10.1186/s41983-018-0045-8
- Hashemilar M, Tohidi P, Forghani N, et al. Cerebral border zone infarctions: An etiologic study. Curr J Neurol. 2022 Jan 5;21(1):1–6. doi: 10.18502/cjn.v21i1.9353
- Dogariu OA, Dogariu I, Vasile CM, et al. Diagnosis and treatment of Watershed strokes: a narrative review. J Med Life. 2023 Jun;16(6):842–850. doi: 10.25122/jml-2023-0127
- Wang Y, Wang J. Clinical and imaging features in different inner border-zone infarct patterns. Int J Neurosci. 2015 Mar;125(3):208–12. doi: 10.3109/00207454.2014.921785
- Kaczmarz S, Göttler J, Petr J, et al. Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI. J Cereb Blood Flow Metab. 2021 Feb;41(2):380–396. doi: 10.1177/0271678X20912364
- $31. \quad Bladin CF, Chambers BR. Frequency and pathogenesis of hemodynamic stroke. \textit{Stroke}. 1994 Nov; 25(11): 2179-82. doi: 10.1161/01.str. 25.11.2179-82. doi: 10.1161/01.str. 25.1179-82. doi: 10.1161/01.8179-82. doi: 10.1161/01.str. 25.1179-82. doi: 10.116$
- 32. Kurowski D, Mullen MT, Messé SR. Pearls & Oysters: latrogenic relative hypotension leading to diffuse internal borderzone infarctions and coma. Neurology. 2016 Jun 14;86(24):e245–7. doi: 10.1212/WNL.000000000002769
- 33. Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998 Nov;55(11):1475–82. doi: 10.1001/archneur.55.11.1475
- 34. Moustafa RR, Momjian-Mayor I, Jones PS, et al. Microembolism versus hemodynamic impairment in rosary-like deep watershed infarcts: a combined positron emission tomography and transcranial Doppler study. Stroke. 2011 Nov;42(11):3138–43. doi: 10.1161/STROKEAHA.111.616334

- Liberman AL, Zandieh A, Loomis C, et al. Symptomatic Carotid Occlusion Is Frequently Associated with Microembolization. Stroke. 2017 Feb;48(2):394–399. doi: 10.1161/STROKEAHA.116.015375
- Wilson LK, Pearce LA, Arauz A, et al.; SPS3 Investigators. Morphological classification of penetrating artery pontine infarcts and association with risk factors and prognosis: The SPS3 trial. Int J Stroke. 2016 Jun;11(4):412–9. doi: 10.1177/1747493016637366
- 37. López-Cancio E, Matheus MG, Romano JG, et al. Infarct patterns, collaterals and likely causative mechanisms of stroke in symptomatic intracranial atherosclerosis. *Cerebrovasc Dis.* 2014;37(6):417–22. doi: 10.1159/000362922
- 38. Sangha RS, Prabhakaran S, Feldmann E, et al. Imaging Patterns of Recurrent Infarction in the Mechanisms of Early Recurrence in Intracranial Atherosclerotic Disease (MyRIAD) Study. Front Neurol. 2021 Jan 21;11:615094. doi: 10.3389/fneur.2020.615094
- Das S, Shu L, Morgan RJ, et al. Borderzone Infarcts and Recurrent Cerebrovascular Events in Symptomatic Intracranial Arterial Stenosis: A Systematic Review and Meta-Analysis. J Stroke. 2023 May;25(2):223–232. doi: 10.5853/jos.2023.00185
- Xia C, Chen HS, Wu SW, et al. Etiology of isolated pontine infarctions: a study based on high-resolution MRI and brain small vessel disease scores. BMC Neurol. 2017 Dec 12;17(1):216. doi: 10.1186/s12883-017-0999-7
- Caplan LR. Intracranial branch atheromatous disease: a neglected, understudied, and underused concept. Neurology. 1989 Sep;39(9):1246–50. doi: 10.1212/wnl.39.9.1246
- 42. Fisher CM, Caplan LR. Basilar artery branch occlusion: a cause of pontine infarction. Neurology. 1971 Sep;21(9):900–5. doi: 10.1212/wnl.21.9.900
- 43. Li Q, Yu M, Yang D, et al. Association of the coexistence of intracranial atherosclerotic disease and cerebral small vessel disease with acute ischemic stroke. Eur J Radiol. 2023 Jun 3;165:110915. doi: 10.1016/j.ejrad.2023.110915
- 44. Al-Zghloul M, Wenz H, Maros M, et al. Susceptibility Vessel Sign on T2*-Weighted Gradient Echo Imaging in Lacunar Infarction. *In Vivo*. 2018 Jul Aug;32(4):973–976. doi: 10.21873/invivo.11337
- 45. Liu S, Huang Y, Zou Y, et al. Characteristics of basilar artery atherosclerotic plaques in pontine infarctions: A high-resolution magnetic resonance imaging study. Cereb Circ Cogn Behav. 2021 Feb 4;2:100005. doi: 10.1016/j.cccb.2021.100005
- 46. Tao LS, Lin JJ, Zou M, et al. A comparative analysis of 375 patients with lateral and medial medullary infarction. *Brain Behav*. 2021 Aug;11(8):e2224. doi: 10.1002/brb3.2224
- Wardlaw JM, Smith EE, Biessels GJ, et al.; STandards for Reporting Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. *Lancet Neurol.* 2013 Aug;12(8):822–38. doi: 10.1016/ S1474-4422(13)70124-8
- Arsava EM, Yilmaz E, Topcuoglu MA. Incidental DWI Lesions in Patients with Recent Small Subcortical Infarctions. J Stroke Cerebrovasc Dis. 2022 Apr;31(4):106304. doi: 10.1016/j.jstrokecerebrovasdis.2022.106304
- Yamamoto Y, Liao YC, Lee YC, et al. Update on the Epidemiology, Pathogenesis, and Biomarkers of Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. J Clin Neurol. 2023 Jan; 19(1):12–27.
- Nam KW, Guk HS, Kwon HM, et al. Diffusion-Weighted Imaging Patterns According to the Right-to-Left Shunt Amount in Cryptogenic Stroke. Cerebrovasc Dis. 2019;48(1–2):45–52. doi: 10.1159/000502882
- 51. Kim JW, Kim SJ, Yoon CW, et al. Association between the amount of right-to-left shunt and infarct patterns in patients with cryptogenic embolic stroke: a transcranial Doppler study. *Int J Stroke*. 2013 Dec;8(8):657–62. doi: 10.1111/j.1747-4949.2012.00846.x
- 52. Jauss M, et al. Embolic lesion pattern in stroke patients with patent foramen ovale compared with patients lacking an embolic source. Stroke. 2006;37:2159–2161.
- Hayashida K, Fukuchi K, Inubushi M, et al. Embolic distribution through patent foramen ovale demonstrated by (99m) Tc-MAA brain SPECT after Valsalva radionuclide venography. J Nucl Med. 2001;42(6):859–863. https://jnm.snmjournals.org/content/42/6/859.long
- Finelli PF, Nouh A. Three-Territory DWI Acute Infarcts: Diagnostic Value in Cancer-Associated Hypercoagulation Stroke (Trousseau Syndrome). AJNR Am J Neuroradiol. 2016 Nov;37(11):2033–2036. doi: 10.3174/ajnr.A4846
- 55. Nouh AM, Staff I, Finelli PF. Three Territory Sign: An MRI marker of malignancy-related ischemic stroke (Trousseau syndrome). Neurol Clin Pract. 2019 Apr;9(2):124–128. doi: 10.1212/CPJ.000000000000603
- 56. Kolukisa M, Koyuncu BA, Bayrakoglu A, et al. Does Diffusion Restriction Pattern on MRI Predict Stroke Etiology in a Cancer Patient? Curr Med Imaging. 2023;19(8):931–938. doi: 10.2174/1573405619666221230115119
- 57. Hong CT, Tsai LK, Jeng JS. Patterns of acute cerebral infarcts in patients with active malignancy using diffusion-weighted imaging. Cerebrovasc Dis. 2009;28(4):411–6. doi: 10.1159/000235629