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ABSTRACT
Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry
(CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional
changes. We tested the hypothesis that distinct agricultural ecosystems—with different combinations of agrochemical exposure,
pathogen loads, and floral resources—elicit ecosystem-specific, tissue-level molecular responses in honey bees. We conducted an

Abbreviations: A205, absorbance at 205 nm; ACN, acetonitrile; BAM, binary alignment map; BC, British Columbia; BCA, bicinchoninic acid; BH, Benjamini-Hochberg; BP, biological processes;
BQCV, black queen cell virus; CAA, chloroacetamide; CC, cellular components; COLOSS, prevention of honey bee COlony LOSSes; CRA, cranberry; CSI, cold-spray ionization; DDA, data-dependent
acquisition; DEGs, differentially expressed genes; DEPs, differentially expressed proteins; DIA, data-independent acquisition; DTT, dithiothreitol; DWV, deformed wing virus; DWV-A, deformed wing
virus types A; DWV-B, deformed wing virus types B; FDR, false discovery rate; GO, gene ontology; HBB, highbush blueberry; HPLC, high-performance liquid chromatography; IAPV, Israeli acute
paralysis virus; IEC, International Electrotechnical Commission; ISO, International Organization for Standardization; KEGG, Kyoto Encyclopedia of Genes and Genomes; lncRNA, long non-coding
RNA; MassIVE, Mass Spectrometry Interactive Virtual Environment; MF, molecular functions; MS/MS, tandem mass spectrometry; NCBI, National Center for Biotechnology Information; ncRNA,
non-coding RNA; OIE, Office International des Epizooties; PAGE, polyacrylamide gel electrophoresis; PASEF, parallel accumulation-serial fragmentation; PCoA, principal coordinate analysis; PSM,
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integrated multi-omics analysis using RNA-sequencing (RNA-seq), proteomics, and gut microbiome profiling across three key
tissue types (head, abdomen, and gut) of honey bees collected from two agroecosystems over two field seasons. Quantification
was performed for pesticide residues, pathogen loads (Nosema spp., Varroa destructor, and multiple viruses), and gut microbiota.
Weighted gene co-expression network analysis (WGCNA) revealed tissue-specific protein modules with ecosystem-associated
patterns, which differed fromRNA co-expression networks. Microbiome composition also varied, with key genera likeGilliamella,
Snodgrassella, and Bartonella correlating with metabolic modules. These findings underscore the complex, environment-
dependent impacts of agroecosystem conditions on bee health. Our study provides a system-level understanding of how
combined pesticide, pathogen, and parasitic stressors, mediated by diet and microbiome, shape molecular phenotypes in honey
bees—informing strategies for pollinator protection in managed landscapes.

1 Introduction

Honey bees (Apis mellifera) play a crucial role in maintaining
ecosystem stability and agricultural productivity by serving as
primary pollinators for a diverse range of plant species. Their
pollination services sustain biodiversity, facilitate plant repro-
duction, and contribute to global food security [1, 2]. Among
economically significant crops, blueberries (Vaccinium spp.) and
cranberries (Vacciniummacrocarpon) are particularly dependent
on honey bee pollination [3, 4], as their fruit set, yield, and quality
are directly influenced by pollinator activity [5, 6]. In British
Columbia (BC), highbush blueberry (HBB) and cranberry (CRA)
crops are cultivated in overlapping landscapes—particularly in
the Fraser Valley—but exhibit distinct bloom periods, typi-
cally separated by five weeks. This temporal separation allows
assessment of ecosystem-level exposures without direct crop
comparisons. Moreover, recent studies [7] have shown that BC
blueberry fields are frequently pollinator-limited, with insuffi-
cient bee activity constraining yield [8]. Similarly, in Québec,
cranberry fields also depend heavily on managed pollination
services [9, 10]. These systems, therefore, represent agriculturally
intensive, pollination-dependent environments that are ideal for
studying how exposure to real-world agroecosystem stressors
affects honey bee physiology.

Given the increasing reliance on managed pollination services
for these crops, ensuring honey bee health is essential for
both ecological and agricultural sustainability [8]. Despite their
ecological and economic importance, honey bees face increasing
physiological and ecological stress due to a complex interplay
of environmental factors, including habitat loss, climate change,
pesticide exposure, and pathogen infections [11]. While global
stocks of managed honey bees are increasing in number, par-
ticularly due to commercial beekeeping, this growth has not
kept pace with the rising demand for pollination services in
agriculture [12]. Moreover, colony health and survival remain
under pressure, with high annual losses reported inmany regions
[13]. Agricultural intensification and monoculture practices have
reduced floral diversity, leading to nutritional deficiencies in
bees [14]. Simultaneously, widespread pesticide application has
introduced chronic chemical exposure affecting colony health
and profitability [15], while globalization has facilitated the
spread of parasites and infectious diseases such as V. destructor
and V. destructor-vectored viruses [16, 17]. The combination of
these stressors has been linked to increased colony losses and
a growing mismatch between the rising demand for pollination

and the availability of healthy pollinator populations [18]. Despite
extensive research, a critical gap remains in understanding how
these stressors interact at themolecular and tissue-specific levels.

Honey bee physiology is highly compartmentalized, with differ-
ent tissues performing distinct biological functions. The head
governs neural processing and sensory perception [19], the thorax
houses the muscles responsible for locomotion and flight [20, 21],
while the abdomen regulates metabolic and immune responses
[22]. The gut, located within the abdomen, plays a key role in
digestion, detoxification, andmicrobiome interactions [23]. Stud-
ies have shown that stressors such as pesticides and pathogens
exert distinct effects on different tissues, suggesting that whole-
body analyses may overlook important physiological responses
[24]. For instance, chronic pesticide exposure has been associated
with neurological impairments in the head, immune suppression
in the abdomen, andmicrobiomedysbiosis in the gut [25]. Despite
these insights, integrated, tissue-specific investigations into the
molecular mechanisms underlying stressor interactions remain
limited.

Recent advances in multi-omics technologies, including tran-
scriptomics, proteomics, and microbiome profiling, offer power-
ful tools for unraveling the molecular basis of stress responses
in honey bees. Transcriptomic analysis provides insights into
changes in gene expression patterns in response to environmental
stressors [26, 27], proteomics identifies alterations in protein
abundance and function related to stress adaptation [28], and
metagenomics reveals shifts in gut microbial composition that
may influence detoxification, digestion, and immune responses
in honey bees and other agricultural organisms [29, 30]. While
omics-based studies have enhanced our understanding of honey
bee physiology, integrative, tissue-specific multi-omics studies
remain scarce, making it difficult to comprehensively assess how
different stressors interact across biological layers.

Among the most significant environmental threats to honey bees
are pesticides and pathogens, which often act synergistically to
exacerbate physiological stress [31]. Neonicotinoids, fungicides,
and insect growth regulators have been shown to impair detox-
ification mechanisms, disrupt neurological function, and alter
immune pathways [32]. Additionally, pesticide exposure has been
linked to increased susceptibility to pathogens such as Nosema
spp. and deformed wing virus (DWV), leading to higher mortality
rates and reduced colony viability [25]. Experimental studies have
demonstrated that pesticide exposure can compromise immune
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Summary
∙ This study provides a comprehensive multi-omics anal-
ysis of honey bees foraging in blueberry and cranberry
agroecosystems, offering novel insights into the molecular
mechanisms underlying pollinator health in managed
crop environments.

∙ By integrating transcriptomic, proteomic, andmicrobiome
profiling across key tissues—head, abdomen, and gut—we
reveal how environmental stressors, including pesticide
exposure, pathogen infections, and parasitic infestations
(e.g., Varroa destructor), differentially impact bee physiol-
ogy and microbiome composition.

∙ Our findings highlight tissue-specific responses to these
stressors, with distinct metabolic pathway alterations
observed in each tissue.

∙ Proteomic and transcriptomic analyses uncovered dys-
regulated pathways linked to oxidative phosphorylation
and protein synthesis, while microbiome analysis revealed
crop-dependent shifts in gut bacterial communities, sug-
gesting potential roles in pesticide detoxification and
immune modulation.

∙ Notably, we identified key molecular biomarkers asso-
ciated with stress adaptation, which may serve as early
indicators of colony health deterioration.

∙ This research underscores the need for a system-level
approach to understanding pollinator stress in agricultural
landscapes.

∙ By elucidating the interactions between diet, pesticide
residues, pathogen loads, and molecular stress responses,
our study provides a foundation for targeted conservation
strategies aimed at mitigating environmental risks and
improving pollination sustainability in agroecosystems.

defenses, making bees more vulnerable to viral replication and
parasitic infections [33]. Despite this evidence, the molecular
mechanisms underlying pesticide-pathogen interactions remain
poorly characterized, particularly at the tissue level.

This study integrates 2 years of field-collected data with multi-
omics profiling of the head, abdomen, and gut of honey bees
exposed to pesticides and pathogens in highbush blueberry
and cranberry pollination environments. We characterize tissue-
specific molecular responses, assess potential synergistic effects
of these stressors on honey bee physiology, and identify key
biological pathways underlying resilience and vulnerability. We
are utilizing theWeighted Gene Co-ExpressionNetwork Analysis
(WGCNA) [34] to construct the protein co-expression networks
as well as the transcriptome co-expression networks in order
to reduce the feature dimensionality to seven key modules.
By linking molecular data with real-world exposure conditions,
this study offers a system-level perspective on honey bee stress
responses. These insights can help guide pollinator conservation
strategies and sustainable agricultural practices while inform-
ing targeted interventions to mitigate environmental stressors
affecting bee populations.

2 Materials andMethods

2.1 Sample Collection and Processing

Field sampling was conducted to evaluate the molecular and
physiological responses of honey bees in two types of ecosystems.
The study investigated apiaries across 10 sites in 2020 and another
10 sites in 2021 (locations were shown in Figure 1 and Figure
S1, and some sites were sampled in both years). Each site was
considered an apiary replicate, with five near blueberry fields
and five near cranberry fields. These apiaries were labeled “near”
highbush blueberries or cranberries in previous studies [5, 35].
During the pollination period, samples were collected at the peak
of blueberry bloom fromcolonies located near the blueberry fields
[36].

There were four colonies at each apiary, and three nurse bees
were collected from each colony. Nurse bees from each apiary
were dissected into three tissue categories for proteomics and
transcriptomics: the head (antennae removed), the abdomen (gut
and stinger removed), and the midgut. For microbiome analysis,
the entire digestive system (gut), excluding the honey crop, was
dissected.Within each replicate apiary and tissue type, we pooled
dissections from 12 individuals to generate a single sample for
each tissue and apiary replicate. These pooled samples were used
for proteomics analysis (n = 60), transcriptome analysis (n = 60),
and for microbiome profiling (using only whole gut samples, n =
20) (Figure 1).

2.2 Transcriptome

The pooled samples were then homogenized with ceramic beads
in a Fisherbrand Bead Mill 24 (Thermo Fisher) according to
the RNeasy (Qiagen) manual. RNA was then extracted with the
KingFisher Flex system according to the NucleoMag RNA kit
(Thermo Fisher). Purified RNA samples were sent to Genome
Québec (Montreal, Québec) for library preparation and paired-
end sequencing on a NovaSeq 6000 (Illumina) with an average
depth of 50 million reads. The reads were aligned to the current
honey bee genome (Amel HAv3.1 [37]) using STAR v2.9.7a [38]
with default parameters. Afterwards, the resultingBAM fileswere
used to generate count matrices via HTSeq-Count v0.13.5 [39]
with parameters: “non-strandedness” and the feature counting
mode set to “intersection-nonempty”. The count files were used
to perform differential expression analysis with edgeR [40].
Differentially expressed genes (DEGs) were determined from the
model if they had an adjusted p value (false discovery rate (FDR)
using a Benjamini-Hochberg (BH) correction [41]) less than
0.05.

2.3 Proteome

2.3.1 Library Generation

To generate the spectral library for data-independent acquisi-
tion (DIA) proteomics, we created a pooled protein sample by
randomly selecting three bee samples across a representative
combination of ecosystems, tissues, sites, and years. Specifically,
three samples were randomly chosen from our overall test pool
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FIGURE 1 Experimental design and multi-omics workflow for honey bee sampling across agroecosystems. (a) Sampling sites near Vancouver, BC
and Québec City, Québec, the number of samples collected from each site is labelled on each dot, sampling details are available in Figure S1. (b) Nurse
bees were collected in 2020 and 2021 from colonies located in highbush blueberry and cranberry fields. LC-MS/MS was applied to obtain proteomes,
RNA sequencing for transcriptomics and DNA metagenomic sequencing for microbiome profiling as described in materials and methods. Multi-omics
integration and biomarkers and functional analysis were performed. The figure was created in Biorender (https://BioRender.com/3k3xj93).

to capture general protein representation across tissue types.
The dissected tissues were lysed, homogenized, and quantified
as described below. Briefly, dissected tissues were lysed in lysis
buffer (4% SDS, 100 mM Tris pH 6.8, 1X protease inhibitors—
Thermo Scientific Halt Protease Inhibitor Cocktail & cOmplete
Protease Inhibitor Cocktail), homogenized in a Precellys 24 bead
mill with 2.8 mm ceramic beads using three cycles of 30 s at
6.5 m/s, and followed by BCA protein quantification [42].

Next, 600 µg of the pooled protein sample of head, abdomen and
720 µg from the gut were used for further processing. Samples

were reconstituted in 5 mM NH4HCO2, 2% ACN, pH 10, for
HPLC separation of 50 µg in total on‑column. The digest was
separated using Agilent 1100 LC series (Agilent) with InfinityLab
Poroshell HPH-C18 (2.1 × 100 mm, 4 µm) narrow bore LC
column (Agilent) coupled to a UV detector. Two kinds of buffer
were used in the following process: buffer A consisted of 5 mM
NH4HCO2, 2% ACN in water, pH 10, and buffer B consisted
of 5 mM NH4HCO2, 90% ACN. A standard 80-minute run was
performed with the following gradient: 0% to 13% solvent B over
the first 30 min, then increased to 40% B from 30 to 60 min,
followed by a ramp to 90% B over 2 min. The gradient was
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held at 90% B for 6 min, then increased to 100% B over 1 min
and held for the final 11 min. Before each run, the analytical
column was conditioned with 4 µL of buffer A. The Agilent
thermostat temperature was maintained at 6◦C. The flow rate
was set to 100 µL/min. Fraction collection was triggered in time-
based mode with 1-min slices. Fractions were dried down after
collection [43–45]. The concatenated fractions were separated
using a NanoElute UHPLC system (Bruker Daltonics) coupled to
timsTOF Pro (Bruker Daltonics) operated in DDA-PASEF mode,
with parameters as previously described in Kolic et al. [46]

2.3.2 Experimental Samples

Samples were processed, and proteins were extracted and mea-
sured as described above. Next, 40 µg of lysate from head and
abdomen and 60 µg from gut lysed sample were taken for further
processing. Reduction of disulfide bonds was done by incubation
with 30 mM dithiothreitol (DTT) for 30 min at 37◦C, followed by
alkylationwith 50mMchloroacetamide (CAA) for 20min at 37◦C
in the dark. Samples were then protein purified by SDS-PAGE
(10%Mini-PROTEANTGXPrecast ProteinGels, Biorad [47]), and
in-gel digested with a total of 0.45 µg of trypsin (Promega) at
37◦C [48]. Peptides were cleaned up via STAGE-Tip purification
[49]. Each of the samples was forced through a conditioned and
equilibrated homemade column with 11 mm of C18 packing,
washed with 0.1% TFA twice, and eluted into clean tubes by a
buffer containing 40% ACN and 0.1% TFA, then dried down.

As described in [46], before LC-MS/MS analysis, each sample was
reconstituted in 0.5% ACN and 0.1% formic acid. Final peptide
concentration was measured at final concentration at A205 using
NanoDrop One (ThermoFisher), and 150 ng was injected. The
digestwas separated using theNanoEluteUHPLC system (Bruker
Daltonics) with the Aurora Series Gen2 (CSI) analytical column
(25 cm × 75 µm 1.6 µm FSC C18, with Gen2 nanoZero and
CSI fitting; Ion Opticks, Parkville, Victoria, Australia) heated to
50◦C and coupled to timsTOF Pro (Bruker Daltonics) operated in
DIA-PASEF mode. A standard 30-min gradient was run, starting
from 2% to 12% solvent B over the first 15 min, followed by an
increase to 33% B from 15 to 30 min. The gradient was then
ramped to 95% B over 0.5 min and held at 95% B for 7.72 min.
Before each run, the analytical column was conditioned with
4 column volumes of buffer A. Where buffer A consisted of
0.1% aqueous formic acid and 0.5% acetonitrile in water, and
buffer B consisted of 0.1% formic acid in 99.4% acetonitrile. The
NanoElute thermostat temperature was set at 7◦C. The analysis
was performed at 0.3 µL/min flow rate. TimsTOF Pro was run
with timsControl v. 4.1.12 (Bruker). LC and MS were controlled
with HyStar 6.0 (6.2.1.13, Bruker).

2.3.3 Search

Acquired library data were searched using FragPipe [50] compu-
tational platform with MSFragger [50, 51], Philosopher (v. 4.2.1
[52]), and EasyPQP (v. 0.1.27) components to build a spectral
library. The protein sequence database for the honey bee (A.
mellifera) from NCBI (2021) and common contaminant proteins,
containing a total of 37,281 sequences, were used, where reversed

protein sequences were appended to the original database as
decoys. Precursor mass tolerance was set to 50 ppm and fragment
mass tolerance to 20 ppm. Protease specificitywas set to “trypsin,”
with up to 2 missed cleavages. The MS/MS search results were
further processed for each analysis using Philosopher, where final
reports were generated and filtered at 1% protein FDR plus 1%
PSM/ion/peptide-level-FDR [53]. Then the resulting reports were
used as input to EasyPQP to generate consensus spectral libraries.
The final library was filtered at a 1% FDR at the protein level.

For experimental samples, dia-PASEF data were analyzed using
parameters similar to those applied in the library search on
FragPipe [50], with additional DIA quantification performed
using DIA-NN (v1.8 [54]). A spectral library generated from the
previously mentioned highly fractionated samples was used for
analysis. DIA-quantification mode was set to “Any LC (high
precision).” All other settings remained default. The mass spec-
trometry data were deposited to the ProteomeXchange via the
MassIVE (Mass Spectrometry Interactive Virtual Environment)
partner repository with the dataset identifier PXD060401.

2.3.4 Pre-Processing of Protein Intensity Matrix

We applied a two-step procedure for feature selection. The data
processing involved filtering rows from the original proteomics
intensity table to ensure each sample contains at least two non-
missing values for either highbush blueberry or cranberry. The
filtered data was then processed using log2 transformation to
reduce skewness, followed by quantile normalization to stan-
dardize distributions across samples and minimize technical
bias.

The protein intensity matrix has undergone the preprocessing
steps; first the contaminant features, including common lab
contaminants (e.g., keratin, trypsin, and actin) were removed
from the dataset. Features present in at least 50% of the sam-
ples were retained for downstream analysis. For the remaining
proteins, all missing values were imputed with a small number,
except in cases where proteins were consistently identified in
one ecosystem but not in another. In these instances, the mean
values from the replicates were used as the imputed value for the
expressed ecosystem. For the proteins that passed quality control
and low-abundance filtering, differential expression analysis was
conducted using the limma package [55] in R (v 4.3.1) [56]. A
linear model was applied to account for tissue type, year, and
plate effects as covariates. Proteins with significantly different
expression between the HBB and CRA ecosystems were identi-
fied using empirical Bayes moderation. Differentially expressed
proteins (DEPs; HBB comparedwith CRA)were determinedwith
an adjusted p value less than 0.05 (BH corrected [41]).

2.4 Microbiome

Gut sample processing, shotgun metagenomic sequencing, and
taxonomic classification were performed as described in Tran
et al. [57]. In total, 20 homogenized gut samples were sent to
the Genome Quebec Centre of Expertise and Services (Montreal,
Québec, Canada) for DNA extraction, library preparation, and
paired-end sequencing on a NovaSeq 6000 (Illumina). The 20
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samples analyzed in this study had a mean read depth of 56.3
million paired-end reads and a range of 40.8–84.0 million reads
after quality control and the removal of PhiX bacteriophage reads.

For taxonomic classification, raw sequencing reads were adapter-
trimmed and quality-filtered using Fastp (v0.23.2) [58]. Reads
were taxonomically classified as bacterial using Kraken 2 (v2.1.2)
[59] in conjunction with the BeeRoLaMa v1 Honey Bee Micro-
biota Database [57]. In total, 57 bacterial species were identified
across all samples. On average, 12.3% of reads remained unclassi-
fied, with a range of 8.9% to 32.1%. In each sample, an average
of 72.3% (maximum 79.2%) of reads were mapped to the host
genome, while the remaining reads were assigned to bacterial
taxa.

Analyses of microbial community composition, alpha- and beta-
diversity metrics, and statistics were performed using R. For
microbiome analysis, only sequences from bacteria were used.
Relative abundances were calculated, and genera with average
proportions below 0.01% were excluded from downstream anal-
ysis. Rarefaction and diversity analysis of microbial community
composition were performed with vegan [60] and base R pack-
ages. For principal coordinate analysis (PCoA), the data were
normalized using centered log-ratio (CLR) transformation via
the “transform” function from the microbiome package [61, 62].
Euclidean distances were then computed using the “ordinate”
function from the phyloseq package (v1.50.0) [63].

2.5 Pathogen and Agrochemical Analysis

From each colony, another batch of worker bees (n = 15 per
colony) was sampled and pooled for pathogen [35] and agrochem-
ical residue [15] analysis (Figure S1). Pathogen detection followed
Office International des Epizooties (OIE) and Prevention of
Honey Bee COlony LOSSes (COLOSS) Bee Book guidelines [64],
with Nosema spores quantified via microscopy. While Lotmaria
passim and major honey bee viruses (black queen cell virus
= BQCV, deformed wing virus types A and B = DWV-A and
DWV-B, Israeli acute paralysis virus = IAPV, and sacbrood
virus = SBV) were assessed via real-time qPCR, primers and
detailed methods were available in a previous study in the
Supporting Information ofMcAfee et al.’s paper [35]. Varroamites
were quantified using the alcohol wash method, and disease
symptoms were recorded during colony inspections [36, 65].
Agrochemical residue analysis was performed using LC-MS/MS
at the Agriculture and Food Laboratory, University of Guelph,
an ISO/IEC 17025 accredited laboratory. The analysis covered
232 unique pesticide compounds. Strict quality control measures,
including method blanks, blind proficiency testing, and second-
person validation, were implemented to ensure data accuracy and
prevent transcription errors.

2.6 Functional Annotation

Gene Ontology (GO) Term Enrichment Analysis and KEGG
pathway enrichment analyses were performed using the differ-
entially expressed proteins. The R package g:Profiler [66] was
used to identify GO terms in biological processes (BP), molecular
functions (MF), and cellular components (CC). Additionally,

KEGG pathway analysis was conducted to explore functional
pathways. GO terms and pathways with an FDR < 0.05 were
considered statistically significant.

2.7 WGCNA Analysis

WGCNAwas used to construct co-expression networks and iden-
tifymodules of co-regulated proteins. A protein expressionmatrix
was generated using normalized intensity data after regressing
out the tissue, plates, and year effects, and the signed similarity
matrix was calculated using Pearson correlation coefficients. Net-
work construction was performed using the default parameters
of WGCNA package in R [34]. Modules consisting of at least 30
proteins were retained for downstream analysis.

The first step of the co-expression network construction involved
calculating the eigengene based on the absolute expression values
of the respective proteins. This approach was used to capture
the dominant expression trend within each module, focusing
on the overall direction of change across the blueberry versus
cranberry comparison, regardless of whether individual proteins
were upregulated in blueberry or cranberry. To better interpret
modules with mixed expression patterns, submodules were gen-
erated. In some cases, proteinswith opposing expression trends—
i.e., proteins upregulated in the blueberry ecosystem and those
upregulated in the cranberry ecosystem—were grouped within
the samemodule due to their strong negative correlation patterns.
This strong correlation suggests potential biological interactions,
such as positive or negative feedback loops or compensatory
mechanisms. To explore these interactions further, proteins that
were upregulated in the HBB ecosystem and those upregulated in
the CRA ecosystemwere separated into distinct submodules. The
eigengene for each submodule was then recalculated based on
their expression values of the respective proteins. Subsequently,
these recalculated submodule eigengenes were correlated with
environmental and physiological traits, with their p values and
correlation coefficients calculated.

Similarly, for transcriptomics analysis, proteins within each
module were mapped to their corresponding genes, and RNA-
seq expression data were used to recalculate module eigengenes.
Given that modules can contain genes with opposing expression
trends, similar to the protein analysis, submodules were also
generated for transcriptomic data. Genes thatwere upregulated in
the HBB ecosystem and those upregulated in the CRA ecosystem
were separated into distinct submodules. The eigengene for
each submodule was recalculated to better represent the specific
expression pattern of each group. The recalculated RNA-derived
submodule eigengenes were then correlated with traits, with
their p values and correlation coefficients calculated to explore
the associations between transcriptomic expression patterns and
environmental or physiological factors.

2.8 Data Visualization

Geographic mapping was visualized using the plot_ordination
function. A heatmap of the differentially expressed genes was
generated using the heatmap.2 functions in the gplots [67] pack-
age and the pheatmap function in pheatmap [68] package. The
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heatmap of the co-regulation of gene expression was generated
using the TOMplot function in the WGCNA package in R. Bar
charts for GO term and pathway enrichment analysis were gener-
ated using GraphPad Prism v 8.0.2 [69]. Module-trait correlation
plots were made using functions in WGCNA packages, showing
only significant correlations. Plots in microbiome analysis were
produced using ggplot2 [70].

3 Results

3.1 Measuring Pollination Ecosystem Effects on
Honey Bee Gene Expression

To explore global gene expression profiles across various bee
tissues under blueberry and cranberry pollination ecosystems,
we conducted an integrative analysis of RNA and protein
data. Among the transcriptomic data, we identified transcripts
assigned to 11,334 genes, of which 9258 were protein-coding.
Proteomic profiling identified 5893 unique proteins, mapped to
5687 genes. Both transcriptome and proteome data were highly
reproducible, with Pearson correlation scores typically greater
than 0.9 (Figures S2 and S3a).

3.2 The Proteome and Transcriptome Atlases of
Bees Exposed to Blueberry and Cranberry
Ecosystems

Joint analysis of transcriptomic and proteomic datasets revealed
substantial overlap in gene product detection. A total of 5445
out of 9258 protein-coding genes whose transcripts were detected
were also detected at the proteome level (Figure 2a). Notably,
the identification of 5445 proteins constitutes one of the most
comprehensive proteomic datasets generated to date for A.
mellifera. The transcriptome had a wider spread, with more
frequent lower values, while the proteome had a tighter distri-
bution around a slightly higher value range, which aligns with
biological expectations—transcripts are typically more variable,
while protein profiling is more stable and regulated (Figure
S3b). Due to the wider range of expression levels at the protein
level versus the transcript level and the fundamental differences
in how proteins and transcripts are detected, the ratio of pro-
teins:transcripts is roughlywhatwould be expected based onprior
studies, which show that proteomics typically captures 30%–50%
of corresponding transcripts due to differences in stability and
detection sensitivity [71, 72].

To systematically determine the differences between the
detectable proteome and the transcriptome, we compared the
expression levels of co-identified and exclusively identified
genes between two omics datasets (Figure 2b,c). Transcripts
from 5889 genes were identified without corresponding protein
detection, including a large number of metabolic and motor
proteins that were not expected to be functionally expressed in
these bee populations (Figure S3c,d). While one would expect
to identify some transcripts where the encoded protein was
not detected, it is less typical to identify a protein without
finding the transcript. Even so, we identified 242 genes whose
corresponding proteins (n = 263) were detected, but no matching
transcripts were found. These proteins tended to be expressed

at moderate levels, although they were not universally detected
across all samples. This discrepancy may arise from multiple
factors, including differences in molecular half-lives, detection
sensitivity, translational control, and sample heterogeneity.
Notably, long-lived proteins can persist after their mRNAs have
degraded, while low-abundance transcripts may fall below
RNA-seq detection thresholds. And most of these proteins were
related to monoatomic ion transmembrane transport as well as
the immune-related Toll and Imd signaling pathways (Figure
S3c,d), which are essential for innate immune responses in
honey bees. These pathways might particularly rely on rapid,
post-transcriptionally regulated responses, allowing bees to
quickly adapt to pathogen exposures and environmental stresses.
Further targeted studies involving sRNA sequencing, protein
stability assays, mRNA degradation rates, or ribosome profiling
could help clarify these regulatory mechanisms.

We then surveyed both the gene-wise and sample-wise corre-
lations of 5445 co-identified genes in the transcriptome and
proteome. The results revealed moderate correlations between
quantified transcripts and proteins among different groups of
samples (Spearman correlation coefficient rho values from 0.35 to
0.45) (Figure 2e). Only 24% of the proteins displayed a significant
correlation with the cognate RNA (1322 proteins, Spearman rho
> 0.5 or Spearman rho < −0.5, p value < 0.05) (Figure 2f).

3.3 Dysregulation of Proteins and Pathways in
the Bees Exposed to Two Crop Ecosystems

To understand the molecular changes in bee physiology when
acting as pollinators of different crop systems, we began by exam-
ining the differences at the proteome level. After preprocessing
mentioned in the Methods section, we analyzed 4101 proteins
and identified dysregulations between the two bee populations
using a linear model that incorporated tissue, plate effects, and
year as covariates. Not surprising given the differences in both
crop and time, 2369 significantly differentially expressed proteins
(sigDEPs) were identified in the blueberry ecosystem compared
with the cranberry ecosystem, including 1153 proteinswith higher
abundance in the blueberry ecosystem and 1216 proteins with
higher abundance in the cranberry ecosystem (adjusted p value
< 0.05; Figure 3a). We subsequently conducted GO term enrich-
ment analysis to examine the GO terms and pathways associated
with those differentially expressed proteins. The proteins upreg-
ulated in the blueberry ecosystem were involved in the biological
processes including translation (FDR = 3.31 × 10−9), localization
(FDR = 2.84 × 10−5 to 1.58 × 10−4), generation of precursor
metabolites and energy (FDR = 1.31 × 10−4), intracellular trans-
port (FDR= 1.58 ×10−4), and oxidative phosphorylation pathways
(FDR = 6.91 ×10−4) (Figure 3b). And the proteins upregulated in
the cranberry ecosystem were involved in the translation (FDR
= 7.27 × 10−7), mRNA metabolic process (FDR = 1.99 × 10−4),
localization (FDR = 2.60 × 10−3) and other biological processes,
as well as in the pathways such as ribosome (FDR = 8.12 ×10−6),
Protein processing in endoplasmic reticulum (FDR= 7.09× 10−3),
nucleocytoplasmic transport (FDR = 7.09 × 10−3), aminoacyl-
tRNA biosynthesis (FDR = 2.25 × 10−2), and endocytosis (FDR =
4.81 × 10−2) pathways (Figure 3b). Proteins that were upregulated
in either the blueberry or cranberry ecosystem were indepen-
dently enriched for the biological process “translation.” This dual
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FIGURE 2 The proteomic and transcriptomic atlases of bees exposed to blueberry and cranberry ecosystems from three tissues across 2 years.
(a) Venn diagram of the identified gene numbers at the protein (purple) and mRNA (red) levels among the two ecosystems. (b,c) Density distribution
for the transcripts of missing proteins (b) and the protein products of missing mRNA transcripts (c) according to their average expression values and
identification frequencies across the two ecosystems. The color scale (blue to red) represents density from low to high, with warmer colors (yellow/red)
indicating more frequent transcripts/proteins detection at higher expression levels. (d) The overlapping genes between mRNA and proteome, with
a density scatterplot illustrating protein intensities versus mRNA abundance, based on the mean copy number values. The color scale (blue to red)
represents density from low to high. (e) Histogram showing the Spearman correlation coefficients between the average expression levels of matched
proteins and transcripts for each group. There are 20 groups spanning two ecosystems (CRA and HBB), three tissues (abdomen [A], gut [G], and head
[H]), and two sampling years (2020 and 2021). Each bar represents one group’s transcriptome–proteome correlation, calculated using five biological
replicates per omics layer. Correlation values were computed using a two-sided Spearman’s rank test, based on genes jointly detected in both datasets. (f)
Histogram showing the distribution of gene-wise Spearman correlation coefficients between RNA and protein expression levels (two-sided Spearman’s
rank correlation test, p value < 0.05), highlighting genes with high or low RNA-to-protein correlation.

enrichment likely reflects the complex, multi-component nature
of the translational machinery, which involves numerous genes
operating in distinct sub-processes (e.g., initiation, elongation,
termination, and ribosome assembly). Different subsets of these
components may respond in opposite directions under varying
environmental stressors and energetic demands, leading to their
concurrent enrichment in both the blueberry-upregulated and
cranberry-upregulated groups. Together, these findings suggest
that bees foraging in blueberry ecosystems exhibit enhanced
metabolic and transport activity, potentially reflecting increased
energetic demand, whereas those in cranberry ecosystems show
stronger enrichment for biosynthetic and translational machin-
ery, possibly indicating cellular stress responses or recovery
processes. Hence, by identifying which proteins and pathways
are altered in two populations of bees, these results reflect the
presence of molecular responses in honey bees associated with
their environmental context.

PCA plot shows that there was more difference between tissues
for the same ecosystem than between ecosystems of the same

tissue (Figure S4). Through meta-analysis, the overall hetero-
geneity varies across tissues (head = 0.45, gut = 1.3, abdomen
= 0.58) (Figure 3c, Figure S4), indicating that the crop systems’
differences are relatively inconsistent across the different tissue
types. Gut samples exhibited a larger τ2 value (denoted as
heterogeneity score), indicating greater variability in the effect
size compared to the head and abdomen tissues. This suggests
that the effect observed in the gut is less consistent across
studies or conditions, suggesting greater variability and potential
context-dependence.We also observed seven transcription factors
differentially expressed in the proteome, with their changes
within the ecosystems (HBB/CRA) consistent across three tissues
(Figure 3d).

Notably, our transcriptomic profiling uncovered ecosystem-
specific changes (HBB/CRA) not only in protein-coding tran-
scripts but also in small regulatory RNAs (sRNAs), including long
non-coding RNAs (lncRNAs) and small nuclear RNAs (snRNAs),
suggesting their potential roles in environmental adaptation.
Approximately 7% of the significantly differentially expressed
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FIGURE 3 Proteins and pathways that were alternatively regulated in blueberry ecosystems compared with cranberry ecosystems. (a) Volcano
plot depicting significantly differentially expressed proteins (sigDEPs) in blueberry ecosystem compared with cranberry ecosystem, adjusted for tissue
and years. Red color indicates the significantly differentially expressed proteins with adjusted p value less than 0.05. (b) GO term enrichment analysis
for biological process, molecular function, and cellular component, along with pathway enrichment analysis for proteins with higher abundance in
the HBB ecosystem and proteins with higher abundance in the CRA ecosystem. (c) Meta-analysis of differential expression between ecosystems across
three tissue types. The τ2 was denoted as heterogeneity, and the log2 fold change (effect size), as well as the 95% confidence intervals, were shown. (d)
Transcription factors found in the sigDEPs, with their log2 fold change in all tissues or within specific tissues displayed.

transcripts were annotated as lncRNAs, while small fractions
(<1%) included non-translating coding sequences, ribosomal
RNAs (rRNAs), and snRNAs (Figure S5). Although our analysis
mainly focused on protein-coding genes, these non-coding RNAs
(ncRNAs) may exert important regulatory functions. lncRNAs
canmodulate gene expression at multiple levels, and snRNAs are
involved in splicing, potentially influencing transcript diversity
under agroecosystem-related stress.

3.4 Comparative Proteome Analysis of Bee
Colonies Revealed the Tissue-Specific and Tissue
Non-Specific Functions in Different Ecosystems

Given the involvement of the above-mentioned differentially
expressed proteins in diverse biological pathways, it is important
to identify protein modules to focus on understanding the key
biological processes for bees in different ecosystems. As genes
involved in a common biological process often share regulatory
mechanisms and expression patterns, we applied WGCNA to
identify co-regulated protein modules. These modules exhibited

altered expression between blueberry and cranberry ecosystems
and showed high intra-module correlation. In brief, we con-
structed a co-expression network (Figure 4a) from the 2369
differentially regulated proteins in the bee samples and iden-
tified seven protein modules, which we designated MEblack,
MEred, MEturquoise, MEgreen, MEblue, MEbrown, and MEyel-
low (Figure 4b). Module sizes ranged from 72 to 889 proteins. For
each module, the first principal component—referred to as the
“eigengene”—was calculated and visualized as bar graphs in the
Circos plot (Figure 4b).

Gene Ontology analysis revealed that many of these gene mod-
ules are associated with biosynthesis and metabolic pathways
(Figure 4c). For example, MEturquoise is in Ribosomal Structure
& Protein Synthesis (FDR = 1.12×10−12), MEbrown is involved
in Protein Transport & Degradation (FDR = 3.56 ×10−2), and
MEred in Diol biosynthetic process (FDR = 1.77 × 10−2), MEblue
in Organophosphate metabolic process (FDR = 2.62 ×10−2), and
MEyellow in Oxidoreductase activity (FDR = 2.15 ×10−2). Hub
genes (biomarkers) were selected using module membership p
values (MMp) less than 0.05 and module membership (MM)
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FIGURE 4 Classification of identified modules as tissue-specific or non-specific and their associated pathways. (a) Topological overlap matrix
(TOM) plot showing the hierarchical clustering of 2369 differentially expressed proteins across all samples. The heatmap illustrates pairwise correlation
coefficients among proteins, with module colors aligned on the top and left axes representing identified protein co-expression modules. (b) Circos
plot visualizing four concentric data layers of WGCNA protein modules: Outer ring: Colored sectors represent individual WGCNA modules; each
color corresponds to a module. Module names are displayed within each sector. Second ring: Bar plots show the eigengene values (i.e., first principal
component of protein expression) for each sample within the module. Bars above the axis (purple) indicate positive eigengene values, while bars
below the axis (blue) indicate negative values. Samples are ordered by group: HBB-Abdomen, HBB-Gut, HBB-Head, CRA-Abdomen, CRA-Gut, CRA-
Head. Third ring: Orange dots represent the average eigengene value for each module across all samples. Fourth ring: Text annotations indicate the
number of proteins (n) assigned to eachmodule. Links betweenmodules: Lines connectingmodules represent the pairwise correlations betweenmodule
eigengenes. Line thickness encodes the strength of the correlation. Red lines denote positive correlations, and blue lines indicate negative correlations. (c)
Representative biological processes enriched in each module, based on Gene Ontology term enrichment analysis. Nodes represent individual proteins
within a given module, with edges denoting co-expression relationships. (d) Heatmap of normalized protein expression profiles within each module
across ecosystems (HBB, CRA) and tissue types (head, gut, abdomen). Z-score scaling was applied per protein. Rows are grouped by protein expression
within each module and color-coded on the left; columns are annotated by ecosystem and tissue type above.
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scores larger than 0.8, denoted as the potential biomarkers in
each module (Figure 4c). These results highlight that different
ecosystems not only drive tissue-specific molecular responses
in honey bees but also alter core functional networks related
to protein synthesis and energy metabolism. The identification
of ecosystem-associated protein modules and their hub genes
provides candidate molecular biomarkers for understanding how
crop environments shape bee physiology.

Modules were then classified as either tissue-specific or tissue
non-specific (Figure 4d). The MEblack module exhibited con-
siderable variance between ecosystems in the abdomen. Besides,
the MEred module displayed the highest variance in the gut.
The MEblue module showed the greatest variance between
ecosystems in both the abdomen and head. In contrast, the
MEturquoise and MEbrownmodules did not demonstrate strong
tissue specificity. Overall, our network-based analysis reveals
how ecosystem context modulates core proteomic programs in
honey bees, providing insight into the biological processes driving
resilience or vulnerability across tissues.

3.5 Associations Between Pesticides and
Pathogens in Bee Protein Profiles (Figure 5)

The interplay between pesticides and pathogens may be critical
in influencing bee health, potentially serving as both cause and
effect in the observed physiology dynamics. In our pesticide
screening (Figure 5a), herbicides, fungicides,miticides, and insec-
ticides displayed ecosystem-specific and year-specific variation
in abundance, reflecting differences in local crop management
practices and chemical application regimes. We observed relative
shifts in pathogen profiles between ecosystems, including lower
standardized Varroamite abundance but higherNosema levels in
the blueberry compared to cranberry ecosystems (Figure 5b).

3.5.1 Protein Co-Expression Networks

To further dissect ecosystem-specific patterns, we stratified the
proteins in each co-expression module into two subgroups
based on their direction of differential expression: those upreg-
ulated in the CRA ecosystem and those upregulated in the
HBB ecosystem. For each subgroup, we recalculated eigengene
values—representing the first principal component of protein
expressionwithin that subgroup—and assessed their correlations
with key environmental and physiological traits (e.g., pesticide
residues, pathogen load, ecosystem identity) (Figure 5c). To avoid
dominant tissue-specific effects masking environmental signals,
tissue identity (along with plate and year) was regressed out prior
to this analysis. This ensured that the observed correlations more
directly reflected ecosystem-driven molecular responses.

Further analysis identified specific modules that correlated with
higher levels of pesticides, suggesting possible synergistic effects
that impact bee activity. For example, the pesticides pyrimethanil,
fluopyram, and flupyradifurone showed positive correlations
with the MEturquoise module, which was higher expressed
in HBB. In contrast, chlorantraniliprole and clothianidin were
negatively correlated with the same module. Conversely, the

MEturquoise module with higher expression in CRA exhibited
the opposite patterns of association.

In addition, pathogens, including mites and some bee viruses,
also had disparate relationships with the identified protein mod-
ules (Figure 5c). For instance, the MEturquoise module (higher
in HBB) was positively correlated with Nosema and two viruses
(DWV-B, BQCV), but negatively associated with three other
viruses (DWV-A, KBV, SBV). The MEred module was negatively
associated with mite infestations but positively associated with
Nosema.

Of particular interest, the MEgreen module demonstrated a
strong negative correlation with two pesticides (chlorantranilip-
role and clothianidin) and two viruses (KBV and SBV), highlight-
ing potential protective or mitigating factors within this protein
module.

3.5.2 Protein and RNA Co-Expression Networks

Correlation analyses using module eigengenes from co-
expression networks revealed significant but opposing trends
between proteomics and transcriptomics data in response to
pesticide and pathogen exposure (Figure 5d).

In the MEturquoise module, a significant correlation with DWV-
A was observed in both datasets. While protein expression
levels in the HBB or CRA ecosystems showed a significant
increase, the corresponding transcriptomic data demonstrated a
significant negative correlation. This inverse relationship sug-
gests potential post-transcriptional regulation or compensatory
mechanisms in response to viral infection. In the MEred module,
significant positive correlations were identified for the pesticides
methoxyfenozide and thiamethoxam in both the proteome and
transcriptome data. However, the trends were reversed: negative
correlations between these two pesticides and protein levels were
detected in the HBB ecosystem, while transcript levels exhibited
significant positive correlations. This divergence indicates possi-
ble regulatory feedbackmechanisms or protein-level stabilization
despite transcriptional suppression.

These findings suggest that honey bee molecular responses to
environmental stressors involve complex regulatory processes.
The significant but opposing trends between transcriptomic and
proteomic responses highlight the need for integrative analyses
to capture the full scope of ecosystem-specific adaptations.
Further functional investigation into the pathways within the
MEturquoise and MEred modules may provide insights into
the molecular mechanisms underlying pesticide and pathogen
interactions.

3.6 Specific MicrobiomesWere Correlated with
Protein Modules (Figure 6)

Microbiome classification using the BeeRoLaMa v1 database
identified core bacterial genera in the honey bee gut, including
Bifidobacterium, Gilliamella, Snodgrassella, Lactobacillus Firm5,
and Lactobacillus Firm4 (Figure 6a). Additionally, non-core
genera such as Commensalibacter, Frischella, and Bartonella
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FIGURE 5 Effects of pesticide and pathogen/mite exposure on bee protein and transcript profiles. (a) Pesticides: Heatmap representing normalized
relative pesticide residues detected in pooled bees from each colony across 2 years (2020, 2021) and ecosystems (HBB, CRA). Residues are grouped
by pesticide class: herbicides (e.g., linuron), fungicides (e.g., pyrimethanil, fluopyram, metconazole, pyraclostrobin, and boscalid), miticides (e.g.,
coumaphos, chlorantraniliprole, and hexythiazox), and insecticides (e.g., clothianidin, flupyradifurone, thiamethoxam, and methoxyfenozide). Color
intensity indicates z-score transformed values; negative values represent below-average concentrations relative to other samples. (b) Pathogen andmites:
Stacked bar chart showing the relative abundance of major honey bee pathogens and Varroa mites across replicates, grouped by ecosystem (HBB and
CRA) and year (2020, 2021). Each color represents a distinct pathogen or parasite (e.g., Nosema spp., Varroa destructor, DWV, LSV, etc.). The Y-axis
shows standardized abundance values (Z-scores) derived from original pathogen quantification datasets (e.g., mite counts, spore counts, and viral load
from qPCR Ct values). This normalization ensures comparability across taxa with different units. (c) Proteomics: Heatmap showing module–phenotype
correlations derived from WGCNA. Rows represent protein modules identified from the proteome data, and columns represent phenotypic traits (e.g.,
pesticides, pathogens and so on). The color scale indicates correlation strength (red for positive and blue for negative correlations), with significance
levels denoted by asterisks (*p value< 0.05, **p value< 0.01, ***p value< 0.001). For each protein co-expression module, proteins were stratified based
on direction of change (upregulated in CRA or upregulated in HBB ecosystems). Eigengene values were separately calculated for each subgroup and
correlated with environmental and physiological traits. The upper panels show modules with higher protein expression in the CRA ecosystem; the
lower panels show those elevated in the HBB ecosystem. (d) Each transcriptomic module was constructed using the same gene sets as the corresponding
proteomic modules shown in panel c, based on matched gene identifiers. Module eigengenes, representing the first principal component of expression
within each gene module, were correlated with phenotypic traits including ecosystem type, pesticide exposure, and pathogen levels. The color scale and
significance annotations follow the same conventions as in panel c, highlighting concordance between proteomics and transcriptomics.
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FIGURE 6 Relationship between proteome and microbiome. (a) Barplots with relative bacterial abundance in the guts of bees from HBB or CRA
ecosystems on the genus level. (b) PCoA based on Aitchison distance dissimilarities on the gut communities of different ecosystems based on Kraken
2-classified shotgun metagenomes. (c) Box-plots with relative bacterial abundance in the guts of bees from the two ecosystems expressed as the number
of genome equivalents calculated with Kraken 2. Only taxa with significantly different levels were plotted (for not-significant bacteria see Supporting
Information) on the species level. (d) Spearman rho heatmap showing associations between microbial taxa abundance and proteomic co-expression
modules identified by previous WGCNA analysis. Only taxa with significant correlations are annotated with asterisks (*p value< 0.05, **p value< 0.01,
***p value < 0.001). Each ME module is color-coded and represents a group of co-expressed proteins. The upper panel shows proteomic modules that
are up-regulated in the HBB ecosystem, while the lower panel represents those up-regulated in the CRA ecosystem.

were detected [73–75]. The relative abundance of these core
genera was consistent with previously reported beemicrobiomes,
where Gilliamella and Snodgrassella dominated, particularly
in bees during May–July [76]. Lower levels of Lactobacillus
and Bifidobacterium further supported these expected microbial
distributions.

A permutation multivariate analysis of variance revealed sig-
nificant differences in gut microbial composition between bees
from HBB and CRA agroecosystems (adjusted p value = 0.019,
r2 = 0.13). PCoA (Figure 6b) demonstrated distinct clustering
of microbial communities, confirming that gut microbiomes
differ significantly between the two crop environments. Notably,
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microbiome compositions did not show significant interannual
variation (p value > 0.05, Figure S6), suggesting that these
microbial differences are primarily driven by crop-specific envi-
ronmental factors rather than year-to-year fluctuations.

Differential abundance analysis (Figure 6c) identified microbial
taxa with significant shifts in bees from blueberry and cranberry
ecosystems (adjusted t-test p value < 0.05). Key differentially
abundant species included Bartonella apis, Commensalibacter
spp. ESL0284, Snodgrassella alvi, Gilliamella apicola, and several
species from the Lactobacillus genus.

To further explore functional interactions, we examined correla-
tions between microbial taxa and proteomic modules. Heatmap
analysis (Figure 6d) revealed significant associations between
gut microbiota and proteomic profiles, highlighting poten-
tial microbiome-driven effects on honey bee metabolism and
immune function.

Additionally, microbial associations with pesticides and
pathogens (Figure S7) further support the hypothesis that
gut microbiota influence honey bee resilience to environmental
stressors. Certain bacterial species displayed strong correlations
with pesticide residues and pathogen loads, suggesting potential
microbiome-mediated processes or pathogen susceptibility,
which also were shown in other studies [66–68, 70, 77, 78]. These
findings demonstrate that honey bee gut microbiomes vary
significantly between ecosystems and are functionally linked to
host proteomic responses.

4 Discussion

Our study presents a novel multi-omics framework for investi-
gating honey bee health, integrating proteomics, transcriptomics,
and microbiome profiling across distinct tissues to capture the
complex interplay of stressors in agricultural environments.
By employing a module-based, systems biology approach, we
connect multi-omics datasets to identify key regulatory networks
and stress-response pathways, providing a deeper understanding
of environmental determinants of bee resilience. This integrative
strategy enables a more precise characterization of stressor
interactions that would be overlooked in traditional whole-body
studies, highlighting the potential for omics-based biomarkers in
pollinator conservation.

Honey bee populations exhibit a high degree of genomic simi-
larity across global regions. Although some geographic variation
exists, overall genomic differences among A. mellifera popula-
tions are relatively minor [79, 80]. Therefore, in bees originating
from different regions but exposed to similar agroecosystem
contexts, gene expression patterns are more likely to reflect
ecosystem-level factors (e.g., crop type, pesticide exposure, nutri-
tional resources) rather than regional genetic background.

Although our study includes colonies placed in different crop
systems (e.g., highbush blueberry vs. cranberry), we do not
interpret the observed differences in bee physiology as a direct
effect of crop species per se. Instead, we interpret the observed
omics signatures as emergent outcomes of ecosystem-level expo-
sures, which encompass not only the crop type but also the

surrounding landscape, management practices (e.g., pesticide
use), and pathogen pressures. Indeed, previous studies [81] have
shown that pesticide risk during blueberry pollination can be
driven by off-farm exposures. Thus, the differences between
highbush blueberry and cranberry ecosystems may reflect the
integrated agroecological context in which bees operated, rather
than intrinsic properties of the crop alone.

A key innovation in our study is the use of co-expression network
analysis to integrate proteomic, transcriptomic, and microbiomic
data into shared functional modules. Rather than analyzing each
omics layer in isolation, we applied WGCNA to identify modules
of co-regulated features across tissues and modalities, allowing
us to uncover coordinated molecular responses to environmental
stressors. This network-based approach enabled cross-modal
integration and revealed functionally connected patterns linking
host gene and protein expression with microbial composition.

Several modules identified through co-expression networks
showed consistent associations with immune-related stres-
sors, including key honey bee viruses (e.g., DWV, SBV) and
immunomodulatory pesticides (e.g., thiamethoxam).Notably, the
MEred and MEblack modules exhibited strong correlations with
both pathogen load and pesticide residues in both the proteome
and transcriptome layers (Figure 5c,d), suggesting that these co-
regulated gene/protein clusters may represent a potential core
role in immune response.

Our study provides new molecular evidence supporting the
hypothesis that pesticide exposure exacerbates pathogen suscep-
tibility in honey bees. We detected multiple agrochemicals—
including neonicotinoids, fungicides, and miticides—in bee tis-
sues,with significant correlations between pesticide presence and
proteomic alterations in metabolic pathways. Notably, increased
Nosema prevalence in pesticide-exposed bees suggests that
agrochemicals may compromise immune defenses, facilitating
pathogen proliferation [31].

While our study provides novel insights into honey bee
health, several limitations must be acknowledged. First, our
data were collected over a 2-year period; extended longitudi-
nal studies will be essential to assess interannual variability
and the lasting effects of environmental stressors. Second,
although our multi-omics approach captures broad molecu-
lar changes, additional functional validation of differentially
expressed genes and proteins is necessary to establish causal
relationships.

The microbiome analysis further underscores these differences.
We observed a higher abundance of S. alvi and G. apicola in bees
from cranberry fields, which are bacterial taxa that have been
involved in metabolic pathways and pathogen protection [23].
This shift in microbial composition aligns with previous research
[23, 82] and might indicate that gut microbiota play a crucial
role in host adaptation to environmental stressors (Figure S7),
including agrochemical exposure and dietary variation.

Future research should investigate the effects of specific agro-
chemical formulations on honey bee physiology across different
developmental stages and seasonal conditions. Given that nutri-
tional availability fluctuates with floral phenology, agrochemicals
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may exert both acute and cumulative effects, and pathogen
prevalence can vary seasonally, it is essential to consider time as
a dynamic component of environmental exposure. Longitudinal,
multi-season studies are therefore needed to assess the delayed
and additive impacts of agroecosystem conditions. However,
tracking colonies across extended periods poses substantial com-
plexity, as bees continually transition through changing floral
sources and environmental contexts, potentially confounding
causal inference. Expanding the microbiome analysis to include
functional metagenomics could provide deeper insights into the
role of gut bacteria in detoxification and immune modulation.
Furthermore, comparative studies involving wild pollinators
would help determine whether similar molecular adaptations
occur across different bee species, contributing to broader polli-
nator conservation efforts.

In conclusion, our study presents a comprehensive system-
level analysis of honey bee health in blueberry and cranberry
agroecosystems, integrating proteomics, transcriptomics, and
microbiome profiling through amodule-based network approach
to elucidate the complex interactions between environmental
stressors and pollinator physiology. By uncovering tissue-specific
molecular responses and identifying key regulatory pathways, our
findings advance the understanding of honey bee resilience and
inform science-based conservation strategies. Moving forward,
the integration of multi-omics data into pollinator health assess-
ments will be crucial for developing targeted interventions to
mitigate environmental stressors and ensure the sustainability of
agricultural pollination services.
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