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Sparse Sensor Layout Design via Recursive
Orthogonalization of the Forward Solution Matrix

With a Realistic Noises Environment in MEG
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Alexei Ossadtchi , and Nikolay Koshev

Abstract— The trend toward sensor miniaturization has height-
ened interest in optimizing sensor array configurations across
various scientific and industrial applications that imply multi-
channel measurements. In this article, we present a novel method
for sensor array layout optimization for the needs of the modern
real-life magnetoencephalographic (MEG) applications. Starting
from a superset of potential locations, we form a multisensor
probe comprising sensors placed at the given number of distinct
locations so that the signal-to-noise ratio (SNR) of the resulting
multichannel array is maximized. We achieve this using a fixed
number of iterations equal to the number of available sensors.
At each step, the method places a sensor to the location that
maximizes the region of interest (ROI)-related SNR and then
applies the projection operation to the rows of the forward model
matrix to orthogonalize the subsequent stereotypic iterations with
respect to the sources served by the already-selected sensors.
Within a selected ROI, the developed approach allows for
the performance comparable to that of 102-sensor industrial
standard (Elekta Neuromag MEG system) in terms of SNR that
is from −0.83 to 2.13 dB for different types of compact sensors.
Our approach requires significantly less computational resources
and is 50×–70× faster as compared to the previously developed
methods. Due to high flexibility, RALFE sparse sensor design,
demonstrated in application to MEG, is readily applicable to
many other multichannel measurement challenges with linear
observation models.

Index Terms— Compact magnetometers, Cramér–Rao lower
bound (CRLB), forward model, localization error, magne-
toencephalography (MEG), optically pumped magnetometers,
optimal design of sensor arrays, signal-to-noise ratio (SNR),
yttrium iron garnet magnetometers.
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I. INTRODUCTION

CONVENTIONAL magnetoencephalography (MEG)
setups employing superconducting quantum interference

device (SQUID) [1] sensors offer outstanding sensitivity
and reliability in detecting weak magnetic fields generated
by neuronal activity, which is essential for brain function
research. However, rigid arrangement of sensors in the probe
placed in the liquid helium dewar tanks prevents from sensor
array adaptation to different head geometries and experimental
conditions which in turn limits the applicability of cryogenic
MEG across diverse populations and experimental conditions.

Recent technological advances have introduced new gener-
ations of MEG-compatible sensors, such as optically pumped
magnetometers (OPMs, see [2], [3], [4], [5], [6], [7]) and
yttrium iron garnet-based magnetometers (YIGMs, see [8], [9],
[10]). While these compact, mobile, and non-cryogenic sen-
sors present promising alternatives to conventional SQUIDs,
they also introduce several metrological challenges. These
challenges include development of a new measurement
infrastructure [11], [12], [13], [14], [15], precise sensor posi-
tioning [16], building more accurate mathematical models
and exploring their influence on the inverse solution accuracy
with respect to noise and artifacts [17], [18] and, importantly,
optimization of sensor arrangements to enhance the reliability
and reproducibility of measurements [19], [20] at reasonable
costs.

In this article we introduce a novel method for the design
of sparse sensor layouts using recursively applied leadfield
elimination (RALFE) procedure. RALFE finds a sparse layout
comprising a limited number of sensors that efficiently capture
brain activity from a cortical region of interest (ROI) so
that signal-to-noise ratio (SNR) and total information capacity
(TIC) metrics are maximized. The method is computationally
efficient, flexibly accommodating additional physical con-
straints such as sensor geometry and sensitive axis orientation.
RALFE naturally adapts to different spatial arrangements
of signal and noise sources depending on the chosen ROI,
frequency band(s) of interest and the magnetically shielded
room properties. For example, we show that a layout with
only 15 OPM sensors whose positions and sensitive axis
orientations were optimized with RALFE algorithm captures
neural activity emanating from a user-specified ROI in terms
of SNR as efficiently as the standardized cryogenic probe
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with 102-SQUID magnetometers. We also demonstrated that
our approach asymptotically reaches the results of the greedy
minimization of localization error Cramér–Rao lower bound
(CRLB) algorithm described in [19].

The article is organized as follows. In Section II, we provide
the description and a comparative analysis of the existing
methods for sensor array optimization. Section III formally
states the problem including the expressions for the perfor-
mance metrics designed to evaluate the effectiveness of the
sensor systems. Next, in Section IV, we list a full set of
underlying assumptions and methods, including the RALFE
technique. In Sections V and VI, we describe the results of
our numerical experiments, discuss the obtained results and
limitations, and outline the future development trends.

II. STATE OF THE ART

Advances in sensor technology and tailored research
methodologies offer promising opportunities to optimize
MEG measurements. By integrating sensor properties with
research-specific requirements grounded in neuroanatomy and
neurophysiology, such as to focus on a specific functional
brain’s zone and to listen to a particular brain rhythm,
it becomes possible to enhance spatial precision and sensi-
tivity of the measurements. This integration enables acquiring
comprehensive data that efficiently capture a specific brain’s
function, supporting both cognitive and clinical research and
diagnostics. Furthermore, the use of sparse sensor arrays with
limited channel counts tuned to a specific brain function
reduces the cost and complexity of the recording technologies
and yields high information transfer rates.

The optimization of sensor array is not a new concept
and has been previously studied for SQUID and OPM mul-
tichannel probes. For example, early works, such as [21]
and [22], addressed the orientation of sensors’ sensitive axes
in SQUID arrays. However, in the context of SQUID-based
MEG systems, the sensor array optimization results had been
of utility only at the design and production stages when the
sensitive elements were rigidly placed within the dewar vessel
of all-purpose MEG systems. This shifted the optimization
focus toward universal placement satisfying the potential needs
of the majority of MEG customers.

The advent of novel compact and wearable MEG-
compatible sensors, such as OPM and YIGM, has opened
novel practical opportunities for sensor array customization
to meet specific measurement requirements on the level of
individual experiments. To guide this process, several sensor
array efficiency metrics were developed and utilized. These
metrics can be divided into two main categories. Forward
metrics, such as SNR [23] and total information capacity (TIC)
[10], [24] that evaluate signal’s strength, prominence, and
informativeness at the level of sensor signals. Inverse metrics,
including the CRLB [25], [26] and condition number-based
(CN) gauges [20], [27] that either explicitly or implicitly assess
the source localization accuracy achievable with a given sensor
array. In turn, these metrics have inspired the development of
optimization algorithms.

Correspondingly, the first class of algorithms for optimal
sensor arrays design focuses on maximizing the SNR. For

example, Zhdanov et al. [28] show that the performance of
the sensor system depends primarily on its ability to suppress
spatially coherent noise. The authors introduce a novel figure-
of-merit and propose an optimization algorithm to refine
sensor positions and sensitive axis orientations. While mathe-
matically elegant, the proposed approach relies on spherical
harmonics decomposition, which is effective only when a
relatively large number of sensors are employed.

Takeda et al. [29] proposed the optimization approach
that maximizes the diagonal elements of the SORM matrix,
a version of the resolution kernel matrix [30], and presented an
impressive set of benchmarks. While valuable, this approach
relies on inverse filtering and is therefore sensitive to the
choice of the regularization parameter.

Signal theory offers an approach for optimizing sensor
arrays through greedy search over the SNR matrix elements
based on the general signal quality criteria, as proposed in the
recent theoretical work [31]. Yeo et al. [32], on the other hand,
employed singular value decomposition (SVD) of real signals
to recover their most powerful components with a restricted
number of sensors. However, these methods do not distinguish
between external and brain-generated noise, a distinction that
is pivotal to our contribution.

The second group of methods includes algorithms based
on inverse metrics. The CRLB, which represents the min-
imal achievable error in parameter estimation from noisy
data, has been explored as an efficiency metric in [33] and
used for sensors’ position optimization in [19]. Although
computationally intensive, this method is highly effective as
it directly minimizes the source localization error. In this
article, the CRLB-based approach is used as the reference
method.

Optimization techniques based on the CN of the forward
solution (gain matrix) provide an elegant alternative to the
SNR maximization strategy [20], [34]. However, this approach
neglects the spatial–temporal noise structure, limiting its use
to designing arrays with minimally overlapping lead fields.
Its application to magnetocardiography demonstrates effective-
ness in higher-SNR scenarios compared to brain activity data.

Finally, Dugue-Mũnos et al. [35] proposed a Bayesian
optimization approach for OPM sensors based on free energy
computation. This work is noteworthy for its reliance on
existing data and algorithms for both forward and inverse
modeling, which enhances its realism. However, the optimiza-
tion algorithm is also characterized by high computational
demands [35].

In this work, we propose an optimization approach that
builds upon [7], [10], [36]. The core idea aligns with [37], [38],
and [39], which is to maximize registered information while
limiting sensor count through non-overlapping signal com-
ponents. Our method, the RALFE, draws upon the leadfield
projection procedure introduced in [7] to form sparse sensor
layouts. We now tailor these layouts to specific ROIs and
associated frequency bands, enabling targeted optimization for
distinct neurophysiological tasks, such as investigating β-band
desynchronization in the motor cortex or α-band dynamics in
occipital regions. Unlike earlier studies, this specialized frame-
work incorporates realistic noise models, spatial constraints,

Authorized licensed use limited to: Higher School of Economics. Downloaded on September 05,2025 at 15:46:42 UTC from IEEE Xplore.  Restrictions apply. 



RAZORENOVA et al.: SPARSE SENSOR LAYOUT DESIGN VIA RECURSIVE ORTHOGONALIZATION 9506013

and sensor geometry factors, providing a more effective and
practical solution for MEG experiments.

The RALFE method relies solely on forward metrics (e.g.,
SNR and TIC) and reduces the CN via sensitivity pattern
orthogonalization, thus avoiding dependence on inverse filter-
ing which vary for different regularization strategies and noise
environments. It also achieves high computational efficiency,
generalizes to various sensor types (e.g., OPM, SQUID, and
YIGM), and supports sensor noise analyses similar to [40].
Minimizing sensor overlap in the optimal layout implic-
itly addresses the inverse problem, as confirmed by CRLB
analysis. The algorithm’s flexibility accommodates diverse
constraints, including ROI-specific noise characteristics and
restrictions on sensor orientation due to background magnetic
contamination. These features further enhance RALFE’s appli-
cability to a wide range of multichannel systems beyond MEG.

III. STATEMENT OF THE PROBLEM

A. Computational Domain and the Gain Matrix
The techniques for representing human head in the form of

a set of triangulated surfaces are well-established and widely
known, as well as the computational techniques for modeling
external magnetic fields produced by arbitrary configuration of
sources within volumetric conductors [17]. For brevity, we will
not describe these techniques in detail and limit ourselves to
outlining several concepts necessary for further consideration.

In our mathematical model of the head as a volume conduc-
tor, we assume the cortex area to contain Nd current dipoles,
represented with some computational mesh of sources. The
dipoles moment values are organized in an Nd × 1 vector
j ∈ RNd , whose dth element represents the moment of the
dipole located in the dth node of the cortical mesh and oriented
normally to the surface. Then, we consider Ns sensors located
near the top of the head surface, that is, in the direct vicinity
to the scalp. Magnetic field values at sensor locations form
the vector of measurements b ∈ RNs , whose sth element
represents the magnetic field registered by the sth sensor.
Due to the linearity of the magnetic induction, the introduced
two vectors are linked through a system of linear algebraic
equations with matrix G = {gsd} ∈ RNs×Nd of the forward
model coefficients depending on the electric, magnetic, and
geometric properties of head tissues as well as the mutual
positions of sources and sensors. Element gsd of the forward
model matrix represents contribution of the dth cortical source
to the signal registered by the sth sensor in the array. Formally,
this can be expressed as gain matrix as follows: G

b = Gj + n (1)

where n ∈ RNs is a white Gaussian noise vector that models
both: noises associated with measurement and sensor intrinsic
noise and the forward model inaccuracies. Equation (1) is
referred as forward model.

B. Forward Performance Metrics

Appearance of the first MEG-feasible non-cryogenic sensors
(OPMs) on the market in 2017 has boosted the interest
to MEG simulation studies including the research on per-
formance of novel sensors and sensor arrays composed of

them. These explorations involve construction of performance
metrics based on the mathematical physics, information theory,
and statistical signal processing. The metrics depend on the
head inner geometry, sensor characteristics such as intrinsic
noise, and, very importantly, on mutual arrangement of the
head and the sensors including sensors’ locations and ori-
entations of their sensitive axes. In this work, we consider
three common performance metrics: SNR, Shannon’s channel
capacity (or TIC), and CRLBs, which we further refer to as
CRLB.

The first two metrics, which we consider as forward metrics,
are SNR and TIC. These metrics are presented in various sim-
ulation studies on MEG (see [7], [10], [24]). The SNR metric
is related to the signal power, represented with coefficients of
the gain matrix. The current dipole at the dth position produces
the SNR at the sth sensor as follows ([10], [22]):

SNRsd =

[
G2

sd

σ 2
s

]
(2)

where σ 2
s is the variance of the interference signal measured

by each sth sensor of the layout with Ns sensors.
The variance of interference σ 2

s comprises the variance of
the sensor’s intrinsic noise σ 2

I and the variance p2
s of the signal

measured by the sth sensor due to the interfering activity of
cortical sources. Commonly (see [21], [22]), the intrinsic noise
is considered to be negligibly small compared to the cortical
sources noise; in our study, however, the intrinsic noise is
crucial since we are going to optimize and compare sensor
arrays built using three different family of sensors, SQUID,
OPM, and YIGM, each with its own intrinsic noise level.

To separate contributions of the intrinsic sensor noise and
the interference signal registered by the sensor due to the
background brain activity, we assume that the latter can be
modeled as the vector of i.i.d. random variables ([10], [23],
[24], [41], [42], [43]) with variance σ 2

B and the diagonal covari-
ance Rn = σ 2

BI. Then, under the assumption of independence,
the total variance of the interfering signal measured by the sth
sensor can be written as σ 2

s = σ 2
I + p2

s , where

p2
s = σ 2

B

Nd∑
i=1

G2
sd (3)

is sth diagonal element of the sensor space brain background
activity covariance matrix P = GRnGT

= σ 2
BGGT (see [22]).

In this model, we assume that all Nd locations emit interfering
background brain activity signals, each with variance σ 2

B .
Taking the above into account, the SNR in the sth sensor

due to a unit variance target source with index d can be written
as follows:

SNRsd =

[
12

× G2
sd

σ 2
I + p2

s

]
. (4)

Note that, from (3), it follows that, in the dth cortical loca-
tion, we have background brain activity signal with variance
σ 2

B . In addition, as evident from (4), we placed unit variance
target signal in location with index d. To emphasize reflect
this in (4), we have explicitly included the product of 12 with
the corresponding forward matrix coefficient gsd “connecting”
the dth dipolar source and the sth sensor.
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The variances σ 2
I and σ 2

B , and therefore values p2
s can be

estimated from the measurements. The technique for estima-
tion will be described further, in Section IV-A.

Each row of the matrix from (4) represents the cortical
sensitivity map for a specific sensor. By averaging the SNR
matrix along the sensor dimension, we obtain an overall
cortical sensitivity map of the sensor system, expressed in
decibels as follows:

SNRs = 10 log10

[
1
Ns

Ns∑
s=1

G2
sd

σ 2
I + σ 2

B[diag
(
GGT

)
]s

]
. (5)

The averaged cortical map, represented by (5), provides a
convenient metric for assessing the sensor system’s overall
performance in decibels. However, for optimization purposes,
it is useful to compute the SNR metric, which is averaged over
cortical dipoles and based on the whitening transformation.
Therefore, we further consider the whitened version of the
ROI-related matrix expression for the SNR (see [7], [10],
[42]), derived as follows.

Let matrix C be sensor-space covariance matrix of the
interference and R� be the sensor-space covariance matrix of
the target signal. As before, C contains contributions from
the intrinsic sensor noise modeled as σ 2

I I and the background
brain activity sources assumed to be i.i.d. with variance σ 2

B .
This results in C = σ 2

I I + σ 2
BGGT . To model the statistics

of target sources, we will assume that they are confined to a
specific brain ROI � and their activity can be described as a
vector of i.i.d. random variables each with unit variance and
identity covariance matrix. This results in sensor-space target
signal covariance R� = σ 2

B × G�GT
� where G� = {Gsd}, d ∈

�. Finally, we can write the expression for SNR matrix as
follows:

A = C−1/2R�C−1/2

=
(
σ 2

I I + σ 2
BGGT )−1/2G�GT

�

(
σ 2

I I + σ 2
BGGT )−1/2

.

(6)

Then, the TIC of the sensor array can be written using the
eigenvalue decomposition of A as follows:

TIC(A) = 0.5
Ns∑

i=1

log 2(λi (A) + 1) (7)

where λi (A), i = 1, . . . , Ns denotes the i th eigen-
value of A. Note, under the assumption of normality this
equation combined with the definitions given above is the
most general form of the expression for the amount of
information in the MEG sensor measurements about cor-
tical sources located in ROI � with i.i.d. unit variance
timeseries.

C. Inverse Performance Metric: CRLB

One more metric we are considering in the current work
comes from statistical data processing: the Cramér–Rao lower
bound or CRLB.

The Cramér–Rao inequality allows us to obtain a CRLB for
the variance of the recovered parameters θ by expressing the
parameters’ variance through the Fisher information matrix

J with use of measurement covariance matrix C defined
previously in Section III-B [44].

CRLB(θ) = J−1(θ), with

Ji j =
∂bT

∂2i
C−1 ∂b

∂2 j
. (8)

The Cramér–Rao approach is used to estimate the dipole
localization error on the basis of the gain matrix G, similar
to [45]. We estimate CRLB with respect to dipole location
parameter (v, J11) and dipole magnitude (dv , J22) using
approximate gain matrix derivatives calculated for neighbor-
ing dipoles L : l ∈ N+v of each vertex v of dipole
mesh; the detailed calculation is presented in [36]. The
localization accuracy was evaluated as the worst estimate
of the CRLB calculated in the area of nearest neighboring
dipoles L : l ∈ N+v of a dipole placed in a node v as
follows:

CRLB′
= max

l∈N+v

[
J−1

11

]
l . (9)

IV. METHODS

The performance metric (6) used in our optimization
algorithm involves computation of the gain matrix and depends
on the variances σ 2

I and σ 2
B of intrinsic and background

neuronal noise correspondingly. Since the computation of the
gain matrix is a well-established procedure, we do not pay
attention to it, and start the current section with description of
noise variances evaluation.

A. Evaluation of the Noise Variance From the Measurements

Numerous simulation studies on sensor systems (e.g., [7],
[10], [19], [42]) focus on comparing sensor arrays rather
than optimizing them. Consequently, the σ 2

I values for dif-
ferent sensors are typically sourced from the literature, while
the variation of neuronal noise σ 2

B is estimated assuming a
mean SNR of 0 dB for the reference system (SQUID-based
Elekta Neuromag MEG). Although useful for comparisons,
this method may affect optimization algorithms. In our study,
we experimentally estimate σ 2

I and σ 2
B to improve the realism

of optimal sensor layouts.
The σ 2

I values differ between sensor types, whereas σ 2
B is

sensor independent and chosen once for the chosen ROI and
frequency band. Evaluating the noise, it is reasonable to take
into account the frequency band specific for the particular
MEG experiment, its objective, and target ROI. Therefore,
we filter signals within 16–26 Hz for the primary motor (PM)
cortex and 10–15 Hz for the basal temporal ROI, assuming that
noise variation assessments are already filtered within these
target ranges.

For the SQUID-based Elekta Neuromag system, σ 2
I is

estimated by computing the covariance matrix Ce of mea-
surements in empty rooms. Estimation σ 2

B also requires the
covariance matrix Cr of the resting state experiment. The
diagonals of these covariance matrices contain the squared
variances of all the sensors. After applying the Maxwell and
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Fig. 1. (a) Covariance matrix Ce of empty room measurements. (b) Covari-
ance matrix Cr of resting state recording. (c) and (d) Histograms of diagonal
values of the matrices Ce and Cr, respectively.

frequency filters to both measurements, we can write the
following:

diag(Cr ) = diag(Ce) + σ 2
Bdiag(GGT ) ⇒

⇒ σ 2
B =

diag(Cr ) − diag(Ce)

diag(GGT )
. (10)

As Cr includes brain activity signal and its magnitude exceeds
empty room signal on several orders, Cr ≫ Ce ⇒ σ 2

B >

0 is always fulfilled. Note that this process yields a vector
σ 2

B with σ 2
B values for different sensors. Ideally, these values

should be identical, but measurement imperfections cause
slight variations. Examples of covariance matrices Ce and Cr

are shown in Fig. 1(a) and (b), respectively. Fig. 1(c) and (d)
presents the corresponding histograms of diagonal elements of
these matrices. The final σ 2

I and σ 2
B values are calculated as

the median of the obtained vectors.
Usage of covariance matrices is motivated by accuracy of

the noise variation evaluation in case of a big number of sen-
sors. For the OPMs and YIGMs, we, however, conducted the
empty room measurements with only one sensor, which allows
us to evaluate the corresponding background noise variation
in a straightforward way, just using a variance of band-filtered
signal of empty-room measurement. Refer Section V-A for the
estimated values.

B. Dense Sensor Layout

To construct the optimal layout based on forward metrics,
we first create an extremely dense array of sensors. From
this array, we then select an appropriate number of “optimal”
sensors in terms of the algorithm applied.

Firstly, we define a dense grid of points uniformly dis-
tributed over the measurement area—the scalp. We use
the Fibonacci longitude lattices algorithm for this purpose
(see [46]). In this study, we opted for 1400 points, as illustrated

TABLE I
GEOMETRY OF ALL SENSORS USED IN THE STUDY (FROM LEFT TO

RIGHT): DISTANCE TO SCALP d , SIDE LENGTH D, AND NUMBER OF
INTEGRATION POINTS Ni

in Fig. 2(a). Since our optimization algorithm requires com-
puting the gain matrix G only once, the initial grid density is
primarily determined by the available RAM on the computer,
with computation time having a much lesser impact.

At every point of the dense grid, we place several
sensors with sensitivity axes sampling various orientations.
Specifically, as shown in Fig. 2(b), we use the FEM/BEM
triangulation of the scalp to find the triangular mesh element
closest to each sensor location point. We position the sensor so
that the distance from the triangle’s plane to the nearest edge
of the sensor is equal to d, measured along the normal to the
triangle. The sensor’s center of mass is located over the center
of mass of the chosen triangle with vertices. The distance d
varies for different sensor types, as shown in Table I.

The scheme of various sensor orientations for a single loca-
tion is presented in Fig. 2(b) and a layout with sensors located
at a small subset of locations with a span of orientations at
each location is shown in Fig. 2(c).

Clearly, the dense layout constructed in this manner is
not realistic, as it contains thousands of intersecting sensors.
However, by computing the gain matrix for this layout,
it becomes possible to select a subset of sensors that adheres to
geometrical and physical constraints, providing the best values
in terms of the SNR metric.

C. Choice of Sensors in Terms of SNR or CRLB

We start by computing the gain matrix G for the initial dense
layout described above. Then, we restrict the forward matrix
G to the ROI � by forming a new matrix G� comprising only
the columns of the original G that represents the sources from
the selected ROI. Note that each row in G� and G corresponds
to a potential sensor and therefore these two matrices equal
in number of rows. The total number of rows is equal to the
number of points in the dense grid multiplied by the number
of sensor orientations in each location.

Above, we restricted the gain matrix with respect to sources
lying in the chosen ROI. Next, we restrict the gain matrix
with respect to sensors. Specifically, we remove the potential
sensor locations that have a priori low SNR concerning sources
located in the chosen ROI. To achieve this, we compute the
SNR cortical map for the matrix G� according to (5) as
follows:

SNR�
s =

1
Nd∈�

d∈�∑
d

SNRsd. (11)
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Fig. 2. (a) Uniformly spaced 1400 points for location of sensors in a dense layout. (b) Scheme of sensor placement at a single scalp point. Triangle is an
element of scalp mesh with v1, . . . , v3 nodes. (c) Example of a dense layout with angle variation of sensors’ sensitive axes (shown for 32 points).

The idea is to remove the sensors with inappropriate values
of SNR�

s . Specifically, we consider a subset of sensors such
that S = {s : SNR�

s ≥ ε max SNR�
s }. The choice of ε can

be done using the typical signal power in an ROI, and in the
current work, we use ε = 0.02. Further, however, for brevity,
we will use the same notations for the restricted with respect
to sensor gain matrix, meaning that the mentioned restriction
has already been applied.

We also emphasize that the value of σ 2
I in (5) can be

adjusted to account for background noise from various direc-
tions. Often, magnetic contamination in the MSR has a vector
nature. Denoting the background magnetic contamination in
the MSR as vC , we can project this contamination onto the
sensor’s sensitive axis and compute σ 2

I as follows:

σ 2
I = σ 2

I + ⟨vC , sas⟩

where ⟨·, ·⟩ denotes the scalar product, and sas represents the
sensitive axis of the sth sensor.

After applying the aforementioned filters on sensors and
sources, we compute the matrix A0 according to (6) and begin
the iterative process of sensor selection. Each mth iteration
takes the matrix Am−1 and an additional matrix G�

m−1 as
inputs, with G�

0 being empty.
In the mth iteration, we first select the sensor with index sm ,

corresponding to the highest value of the diagonal elements
in Am−1 and satisfying to constrain that sensors should not
overlap on the scalp. We then add the sm row of the gain matrix
G� to G�

m−1, forming the matrix G�
m . Next, we project the

matrix G� such that

ĜT
� = GT

� − Gm
�

T Gm
�

T
)†

G�
T

to make the columns of Ĝ� orthogonal to the columns of Gm
�.

Using Ĝ�, we then form a new matrix Am according to (6).
The outputs of the m-th iteration are matrices Am , Gm

� that
will be used at the subsequent iteration, and the index sm of
the sensor chosen at the iteration. The algorithm stops when
the required number of optimal sensors is reached. The visual
representation of the algorithm is shown in Fig. 3.

We also implemented greedy CRLB metric minimization
algorithm proposed in [19] and used it for comparison of
optimal layouts in terms of both forward and inverse metrics.

D. Methods of Comparison

To provide an accurate comparative analysis, it is reasonable
to compute the cross metrics, that is, to compare the optimized
layouts either to each other or to industrial 102-SQUID Elekta
Neuromag layout in terms of forward and inverse metrics.
For the purpose of comparison, we designate two suitable
layouts with indices a and b. Accordingly, the correspond-
ing performance metrics to be juxtaposed are denoted as
SNRa, SNRb, CRLBa, and CRLBb, signifying the computa-
tion of each of these metrics for every cortex dipole, which
represent integral scalar values computed for each layout.

The comparison of two sensor systems in terms of SNR is
expressed in decibels (dB) using (4): SNRb

a = SNRa − SNRb.
For comparison in terms of CRLB, we use ln ratio of two
sensor arrays

CRLBb
a = (− ln CRLBa) − (− ln CRLBb)

= ln
CRLBb

CRLBa
. (12)

This latter representation yields a qualitative assessment of
the disparity in dipole position determination accuracy subse-
quent to the resolution of the MEG inverse problem. We opt
for this representation to enhance visualization clarity (positive
values indicate lower error bound of system a compared to
system b, and negative values indicate the opposite).

V. NUMERICAL EXPERIMENTS

In the current section, we present a set of numerical exper-
iments on sensor layouts optimization, and comparison of the
optimized layouts with both non-optimized (uniform sensor
placement) and conventional 102-SQUID sensor arrays. After
that we check the influence of sensors’ count and sensors
sensitive axis orientation on the optimized layout performance.
We also present a comparison of the RALFE algorithm’s
performance and its computational efficiency against those of
the greedy CRLB minimization algorithm [19].
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Fig. 3. RALFE algorithm with sensor position restriction in terms of SNR and sensor geometry.

A. Model and the ROIs

In the present study, we explore optimization algorithms
predicated on both forward and inverse performance metrics
(see Section III).

The developed RALFE algorithm is designed for usage
of optimization in terms of the certain ROI. In the current
research, we choose two different ROIs to show the results
of our study: the PM ROI, which further will be referred as
PM, and the basal temporal, referred further as BT. These
ROIs are perfect in terms of visual representation of our
results, but completely different in terms of functions and
in terms of cortex’s normal orientations, and distance from
sources to sensors. In real scenarios of functional research
of the mentioned ROIs, the researcher might be interested in
different frequency bands of the measured signal, which also
provides us with a possibility of demonstration of optimization
in conditions of different brain and sensor noise variance.

The PM cortex is responsible for planning and executing
voluntary movements. The proximity of this ROI to the
scalp sensors affects the signal strength and quality. In PM,
we chose the scenario of research on the β-suppression and
β-synchronization, filtering our signal in 16–25 Hz band.

In contrast, the BT cortex is involved in complex processes
such as memory and sensory perception, particularly visual
and auditory information. This ROI is located deeper in the
brain, affecting the ease of signal detection and, therefore,
the general manner of the optimized sensor array. One of the
scenarios of the research in the BT is the research on the α-
suppression, filtering therefore the signal in 10–15 Hz band.

We used MRI-based head model of a subject, specifically
one-layered BEM surface with 10 242 nodes and two cortical

Fig. 4. Superior and inferior ROIs chosen for numerical experiments on
sensor system optimization. (a) PM cortex (blue), superior ROI. (b) BT cortex
(cyan), inferior ROI. (c) Lateral view, both ROIs are shown.

hemisphere surfaces represented with dense grid of dipoles,
10 242 dipoles per hemisphere. We used Destrieux’s atlas for
parcellation provided as output of FreeSurfer software suites,
and collected the same ROIs as considered in [19] (label 29 for
PM ROI and labels 21–23, 37, 43, 50–51, 60–61, and 72 for
BT ROI). The ROIs have been allocated using the Python-
MNE [47]. The ROIs are presented on Fig. 4. The variances
associated with the ROIs’ frequency bands were computed
from experimental data according to Sec@on IVA and are
shown in Table II.

B. Optimized Layouts
In the current section, we present examples of optimal

layouts for two ROIs depicted in Fig. 4, and the analysis of
optimal layouts in terms of performance metrics is considered
above, in Sections III-B and III-C. As we stated before, the
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Fig. 5. Task-oriented layouts optimized with RALFE (first and third rows) and greedy CRLB minimization [19] (second and fourth rows) algorithms for
Ns = 15 within two ROIs: PM cortex (left column) and BT cortex (right column). Top panel (rows 1–2)—YIGM layouts; and bottom (rows 3–4)—OPM
layouts.

TABLE II
VARIATIONS OF NOISE EVALUATED FROM THE EXPERIMENTAL DATA

initial number of points in the dense layout is equal to 1400.
In every point of the initial layout, we placed four sensors
with angles 0◦, 30◦, 60◦, and 90◦ with respect to the normal
(radial) orientation. The number of sensors in the dense layout
was therefore equal to 5600. The optimization has been done
for final number of sensors Ns = 15 in order to build a sensor
array when the available sensors count is limited.

In Fig. 5, optimal layouts are shown. The top row depicts the
layouts consisting of YIGM and optimized with our RALFE

optimization algorithm. The bottom row depicts the same for
the OPM sensors. The left panel is dedicated to the PM ROI,
while the right one shows the layouts optimized with respect
to BT ROI.

C. Performance Analysis

To estimate the performance of our optimized layouts,
we use the decibel-measured SNR metric (5) and inverse
metric—CRLB estimate (9). The layouts have been compared
according to Section IV-D. The parameters of the sensors
including geometry and noise variances used for layouts
comparison can be found in Tables I and II.

First, we compare the performance of the optimized layouts
with Ns = 15 (optimization for PM and BT ROIs) with
non-optimized layouts of the same sensor type with Ns = 15,
placed uniformly on the scalp surface. The results represented
with SNR and CRLB cortical maps are shown in Fig. 6.

In Fig. 7, we present the performance of the same optimized
layouts in comparison with the industrial standard in MEG—
Elekta Neuromag SQUID-MEG system. Since, in the current
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Fig. 6. Relative SNR and relative CRLB cortical maps of the layouts optimized with RALFE for PM (first and third columns) and BT ROIs (second and
fourth columns). Top panel—optimized YIGM sensor layout; bottom panel—optimized OPM sensor layout. Target ROIs for optimization are shown in yellow
(SNR maps) and red (CRLB maps); mean SNR and median CRLB values within target ROI are shown on top of each map.

Fig. 7. Relative SNR and relative CRLB cortical maps of the layouts optimized with RALFE for PM (first and third columns) and BT (second and
fourth columns) ROIs; target ROIs are shown in yellow. Top rows in (a) and (b)—optimized YIGM sensor layout; bottom—optimized OPM sensor layout.
(a) Estimated noises. (b) Default noises.

research, we consider only magnetometers, the gradientome-
ters were excluded from the consideration. Therefore, the
reference layout contains 102-SQUID magnetometers. Elekta
layout (locations and orientations of SQUIDs) was taken from
Python-MNE software [47] and adjusted to the real head

model after digitization procedure with three-space Isotrack
II System (Fastrak Polhemus, Colchester, VA, United States).

We noticed that the intrinsic noise level impacts severely
on performance metrics in case of comparison of layouts with
different sensor types (YIGM versus SQUID and OPM versus
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Fig. 8. (a) Distribution of angles in optimized layouts. The histogram
is averaged between two ROIs: PM and BT. Left—RALFE; right—greedy
CRLB minimization [19]. (b) Comparison between two layouts optimized
with RALFE; one with loose sensor position to the head versus one with
sensors fixed normally to the head. Blue line shows mean SNR difference in
PM ROI, depending on intrinsic and brain noise ratio—σB

2GGT/σI
2. Red

and green markers denote default and estimated noise ratio, respectively.

SQUID). To highlight this fact, we computed the SNR and
CRLB cortical maps for “default” values of σI : 3, 10, and
30 fT/

√
Hz for SQUIDs, OPMs, and YIGMs, respectively.

The result can be seen in the bottom panel of Fig. 7. One
can see the superior values of the relative SNR for the default
noise values (bottom panel) compared to the realistic noise
values (top panel), estimated from the recordings according to
Section IV-A.

We analyzed the variance of sensitive axis orientation
for 15-sensor arrays optimized with RALFE and greedy
CRLB minimization (YIGMs and OPMs were considered) in
Fig. 8(a). In order to reveal the influence of sensor’s orientation
effect, we compared two 15-YIGM layouts optimized with
RALFE for PM ROI; layout a was optimized with loose
magnetometers’ orientation (0, 30, 60, and 90 degrees to scalp
surface) and compared with the layout b optimized with fixed
magnetometers’ positioned normal to the scalp). We computed
relative SNR for different σI levels: less, comparable, or higher
to the estimated σB . The result is shown in Fig. 8(b).

To compare our RALFE approach with greedy CRLB
minimization algorithm taken as a benchmark from [19],
we compared 15-YIGM layouts obtained for PM and BT ROIs:
layout a optimized with RALFE, layout b optimized with the
benchmark, relative SNR and ln ratio CRLB cortical maps

Fig. 9. Optimization approach comparison: RALFE versus greedy CRLB
minimization. (a) SNR. (b) CRLB [19]. (c) Computational times comparison
top panel—with respect to number of sensors in a dense layout (find five
optimal sensors), bottom panel—with respect to optimal sensor number to
find (160 uniform sensors positions was taken as dense layout).

are shown in Fig. 9(a). We show that RALFE optimization is
comparable with brute-force CRLB minimization in terms of
inverse metric, and this effect is independent on the number of
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Fig. 10. Optimization approach comparison RALFE versus greedy CRLB
minimization. (a) Normalized SNR, TIC, CRLB, and its first derivative metrics
dependencies on number of sensor in optimized layout. (b) − ln(CRLB)

dependency of sensor number in optimized layout with RALFE and with
greedy CRLB minimization. Vertical black line denotes 15-sensor count;
considered in our experiments.

sensors in optimized array, see Fig. 10(b). We also compared
two algorithms in terms of computation efficiency, Fig. 9(c).

General dynamics of considered forward and inverse metrics
with respect to the number of sensors, Ns , in optimized layout
is shown in Fig. 10(a).

VI. DISCUSSION

The numerical experiments reveal several key insights. Most
notably, optimization significantly enhances sensor system
efficiency within a specific ROI. Compared to non-optimized
systems with Ns = 15, the optimized layout achieves approx-
imately a 5-dB improvement in the target ROI (Fig. 6).
Furthermore, as shown in Fig. 7, optimized systems with only
15 sensors perform comparably (YIGM, up to −0.83 dB) or
even outperform in some ROIs (OPMs, up to +2.13 dB) the
reference 102-sensors Elekta Neuromag MEG system in terms
of SNR, despite the higher intrinsic noise of novel sensors
compared to SQUIDs.

In terms of CRLB, the results are less encouraging (see
Fig. 7, right panel). While optimized arrays significantly
outperform uniform layouts in source localization resolution
(Fig. 6, right panel), the 15-sensor configuration still lags
behind the Elekta Neuromag’s 102-sensor system by a factor
of 8 to 30 in terms of CRLB. This gap arises naturally
due to the ill-posed nature of the inverse problem and the
combined effects of a limited sensor count and higher sensor
noise [48], [49], [50]. Reducing YIGM sensor noise to levels
comparable with OPMs is critical for improved resolution.
Nevertheless, YIGM sensors remain promising for functional
research in the “sensor space” domain and as a step toward
further optimization.

An interesting observation can be made by compar-
ing 7(a) and (b). In the simplified “default” noise scenario
[see 7(b)], optimization significantly enhances the results, with
YIGM sensors outperforming the reference SQUID system in
terms of SNR, while performing only slightly worse in CRLB.
This observation is crucial for aligning real (experimental)
results with simulation outcomes: the actual noise measured
during the experiment should be incorporated not only into
data processing but also into modeling.

An intriguing observation can be made from Fig. 8; while
OPMs predominantly utilize a radial orientation of the sensi-
tive axis, YIGMs are positioned in both radial and tangential
configurations [see Fig. 8(a)]. We hypothesize that this vari-
ation may be attributed to the ratio of intrinsic noise of
the sensors and the neuronal noise. The additional experi-
ment shown in Fig. 8(b) reveals that the impact of sensor
orientation on SNR depends on the noise ratio. OPMs are
more affected by σI due to their further placement, resulting
in reduced impact of brain noise (σB) and lower geometric
influence (GGT ) compared to YIGMs. This positions OPMs
in the left part of the curve in Fig. 8(b), where a loose
layout is less advantageous than a radial one. Conversely,
the closer proximity of YIGMs to the scalp amplifies the
effect of σB , while their flat and comparatively large sensitive
body increases the impact of geometry (GGT ). These factors
likely explain the orientation differences between OPMs and
YIGMs. Notably, the effect of sensor orientation is negli-
gible when comparing different sensor types and numbers
(see Figs. 6 and 7).

The optimization algorithm demonstrated excellent effi-
ciency in terms of computational performance. The most
time-intensive step involved generating the gain matrix (for-
ward solution) for the dense sensor layout. Once this
matrix was prepared, the subsequent steps—mainly eigenvec-
tor calculations—were relatively quick and straightforward.
This allowed us to perform the entire process on a standard
laptop (MacBook Pro with an M1 chip and 16 GB of RAM),
with the forward solution taking approximately 5 minutes
to calculate. Additionally, the gain matrix can be saved
for reuse in task-specific optimizations targeting different
ROIs across individual subjects. This streamlined approach
is especially advantageous for laboratories with no access to
high-performance computing systems. Being computationally
efficient in comparison to slow brute-force algorithm of CRLB
minimization [see Fig. 9(c)], the RALFE approach provides
comparable results in terms of forward [Fig. 9(a)] and inverse
CRLB metric; Figs. 9(b) and 10(b) show that this similarity
does not depend on number of sensors Ns in the final sensor
array.

We also discover influence of sensor count in terms of
TIC, SNR, and CRLB metrics. For illustrative purposes,
we show metrics for PM’s optimal layouts in Fig. 10: the
normalized metrics behavior (a) and the absolute −ln (CRLB)
values to compare layouts optimal in terms of greedy CRLB
minimization and RALFE (b). We can notice that TIC metrics
grow linearly, however the influence of this formal metric on
localization accuracy lower bound vanishes at 20 sensors and
above (refer for normalized and absolute CRLB values). Also
it is interesting to note the decay of SNR metric with number
of sensors beyond 20. It can be explained by the fact that the
rest optimal sensors are placed rather far from the targeted
ROI, thus reducing sensitivity (specificity to the ROI signal)
due to SNR averaging across the sensors. These facts give us a
clue about minimal and sufficient sensor count for registration
of signal originated from the selected ROI.

In our future work, we will experimentally validate the
optimal sensor layouts by creating prototypes of YIGM and
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OPM compact sensor arrays. These prototypes will be used to
register brain activity during motor and visual cognitive tasks,
with the quality of the MEG signals compared to data collected
using the Elekta Neuromag system. Additionally, we plan to
apply the RALFE approach to address scenarios where intrin-
sic sensor noise varies significantly across sensitive axes, as it
has been observed in some magnetically shielded rooms [51].

VII. CONCLUSION

In this study, we developed the RALFE algorithm, which
is founded on the orthogonalization of the gain matrix. The
algorithm is based on forward model analysis and indepen-
dent on inverse filter and regularization parameters choice.
Optimized layouts obtained with RALFE are comparable in
terms of both forward and inverse metrics to ones obtained
with brute-force localization error minimization algorithm, but
computational performance is much higher. The algorithm
is flexible, allowing to add a number of restrictions in the
optimization process, related to physical dimensions of the
sensors, limitations on SNR with respect to the chosen ROI,
limitations on “vector” SNR due to background magnetic
fields spatial components, etc. The high computational effi-
ciency allows the ROI-specific optimal layout design without
an access to high-performance computational clusters. Using
the developed techniques, we obtained 15-channel layouts for
two ROIs with consideration of frequency bands of interest and
corresponding noises for YIGM and OPM sensors. Our results
demonstrate that the performance of the optimized layouts
is comparable to that of the Elekta Neuromag SQUID-MEG
system, a widely recognized industry standard in MEG. Future
research will focus on the experimental validation and further
refinement of these findings. We anticipate that the resulting
optimal layouts for various ROIs will be of significant interest
to researchers utilizing OPM and YIGM technologies.
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