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Localization in materials with several
conducting bands as a method to boost
superconductivity

Check for updates

Vyacheslav D. Neverov1,2, Alexander E. Lukyanov2, Andrey V. Krasavin 1,2 , Arkady A. Shanenko1,2,
Mihail D. Croitoru 2,3 & Alexei Vagov2

Strong disorder exerts two opposing effects on a superconducting material. On one hand, it leads to
localization of electrons andCooper pairs, resulting in spatial fragmentation of the condensate state. It
enhances the local density of single-particle states, increasing the binding energy of Cooper pairs and
the critical temperature atwhich thecondensate state appears.On theother hand, it destroys the long-
range coherence, suppressing superconductivity and reducing the corresponding critical
temperature. Thiswork demonstrates that if suchadisordered superconductor is coupled to a cleanor
weakly disordered conducting material, the long-range coherence is restored via the proximity effect.
As a result, the coexistence of the two subsystems combines the advantages of the high critical
temperature of the disordered superconductor and the global supercurrent of the clean one. This
synergy effect is robust and can occur in superconducting multi-band and heterostructures, whether
they are disordered or have artificial superstructures.

The quest to obtain a superconducting material with a high critical
temperature is a task of utmost importance that has the potential to
revolutionize all electric applications. Multiple ways to achieving room
temperature superconductivity have been and are being explored1.
Although the final goal still remains elusive, several strategies to increase
the critical temperature appear promising.

One approach is to subject materials to extremely high pressure2.
Hydrogen-rich compounds, such as hydrides, have demonstrated super-
conductivity at very high temperatures under pressure. A groundbreaking
discovery was made in 2015 by Eremets and coworkers3, who reported
superconductivity at Tc = 203K in H3S under a pressure of 155 GPa. Sub-
sequent efforts achieved the critical temperature of Tc = 243 K for yttrium
hydrides4, and Tc = 250 K in lanthanum hydrides5. The increase in the
superconducting critical temperature is believed to be due to pressure-
induced changes in the electronic bands and phonon spectrum of the
material due to light hydrogen atoms.

Another promising direction is to explore superconductivity in
layered structures. These include traditional high-Tc copper oxides
(cuprates)6,7 and iron-based superconductors (iron pnictides)8. Recently,
more exotic layered structures have come into focus, such as twisted
bilayer graphene9 and interfaces between complex oxides10. Creating
layered heterostructures can induce superconductivity in materials that
are otherwise weakly or non-conducting. An example is the interface

between lanthanum aluminate and strontium titanate, both of which are
bulk insulators11. Interesting examples are also found among ultrathin
2D materials12, such as FeSe monolayers grown on STO substrates13,
where a significant enhancement of the superconducting critical tem-
perature has been reported. Superconductivity is known to be enhanced
by superstructures9 and geometrical confinement14.

It is also well known that a higher critical temperature, Tc, can be
achieved by increasing the density of electronic states (DOS) involved in
Cooper pairing. In this context, compounds with a singular DOS near the
Fermi surface have attracted significant interest. Notably, these include
quasi-one-dimensional superconductors with DOS divergences due to
dimensional effects15–19, systems resembling kagome materials20–22, where
a nontrivial atomic lattice results in the formation of both van Hove
singularities and a flat band, and twisted graphene layers, where van
Hove singularities arise due to interlayer coupling23. A high critical
temperature in systems with DOS divergences can be stabilized using a
multiband structure, where interactions between the band condensates
suppress superconductive fluctuations24,25.

Introducing disorder by adding impurities and defects can also
enhance superconductivity. This may seem paradoxical, as disorder is
commonly expected to suppress both conductivity and super-
conductivity. Strongly disordered superconductors demonstrate a
conductor-insulator transition, accompanied by a pseudo-gap in the
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single-particle DOS and spatial inhomogeneity of the condensate26–32.
However, in moderately disordered materials28,33,34, disorder can have
the opposite effect, enhancing superconductivity and increasing the
critical temperature35–39. This effect is related to the multi-fractal
structure of electrons40, which increases the local DOS near the Fermi
level18,41,42, thereby strengthening superconducting pairing. The
potential for disorder to elevate the critical temperature has been
explored in the context of cuprate superconductors and unconven-
tional superconductivity in general43–45. It has been suggested that
dopant atoms can enhance the coupling constants associated with
Cooper pairing in these systems. Consequently, disorder can also be
regarded as a tool to improve superconducting characteristics46–53. By
manipulating the spatial distribution of the disordered potential, it is
theoretically possible to achieve significantly higher temperatures at
which Cooper pairing and the condensate state occur.

However, the presence of a condensate state alone does not
necessarily indicate that the material is superconducting32,38. In dis-
ordered materials, the condensate can become spatially fragmented
or clustered, with strong enhancement at some spatial points and
suppression at others. For a supercurrent to be sustained, these
regions of enhanced condensate must be interconnected to maintain
long-range phase coherence. Disorder tends to disrupt this coher-
ence, potentially isolating superconducting islands.

As a result, disordered materials exhibit two opposing tendencies: on
one hand, disorder can facilitate the formation of the condensate state at
higher temperatures, while on the other, the inhomogeneity of this state
disrupts phase coherence, suppressing the supercurrent. Such systems have
two critical temperatures: the local critical temperature TΔ

c , at which the
condensate emerges, and the global oneTc, atwhich the supercurrent begins
to flow38. A disordered material can have a very high TΔ

c while at the same
time a very low or zero Tc.

Thiswork introduces amechanism that enhances the superconducting
critical temperature Tc in systems comprising multiple condensate com-
ponents, one of which is strongly disordered. Such a situation arises natu-
rally in multiband superconductors, for example, in MgB2

54–56, where
substantial differences in disorder levels between bands can occur due to
variations in orbital composition and impurity hybridization. Another
example is provided by hybrid structures consisting of alternating layers of
disordered and clean materials.

The enhancement of Tc originates from a synergistic interaction
between the condensate components. The disordered condensate is
localized and possesses a high intrinsic critical temperature TΔ

c;1, yet it is
incapable of supporting a global supercurrent. In contrast, the second
component is weakly disordered and able to sustain a supercurrent,
although its critical temperature is significantly lower, Tc;2≪TΔ

c;1. When
these components are coupled, global superconductivity emerges with a
critical temperature close to that of the disordered condensate,
Tc ’ TΔ

c;1. This mechanism—restoring global supercurrent at elevated
temperatures via coupling to an auxiliary, nearly clean subsystem—is
generic and applicable to a wide range of both natural and artificially
engineered systems.

Results
The model
We consider a superconductor with two coupled subsystems, referred to as
bands, each with its own charge carriers. This model can describe not only
two-band superconductors but also layeredmaterials where the subsystems
are spatially separated. The system is modeled using a Hamiltonian with
three distinct contributions:

H ¼ H1 þH2 þ H12; ð1Þ

where Hν is the Hamiltonian for each of the bands ν = 1, 2, and H12

describes the interaction between the bands. Superconducting pairing in
the bands is described using the lattice Hubbard model with on-site

attraction,

Hν ¼
X
i;j;σ

hνijc
y
νiσcνjσ � gν

X
i

nνi"nνi#; ð2Þ

where cνiσ are electron operators for band ν, lattice site i, and spin σ, nνiσ ¼
cyνiσcνiσ is the electron number operator, gν> 0 is the coupling constant of the
Cooper pairing, and the single-electron part of the Hamiltonian (2) is
defined as

hνij ¼ tνij þ Vνiδij; ð3Þ

where tνij are the hopping matrix elements that have a non-zero value of tν
only between the nearest neighbors, andVνidescribes the disorder potential.

The Hamiltonian of the inter-band coupling reads as

H12 ¼ �g12
X
i

cy1i"c
y
1i#c2i"c2i# þ c:c:

� �
; ð4Þ

where g12 is the inter-band coupling constant. The model accounts for
the inter-band transfer of Cooper pairs while neglecting the transfer of
single electrons. Such inter-band tunneling is absent in clean systems,
where the single-particle Hamiltonian is already diagonal in the basis
of band states. However, it may become relevant in disordered
materials, where strong disorder potentials facilitate scattering between
bands, or in hybrid structures, where electrons can tunnel between
distinct layers.

The model described by Eqs. (1)–(4) is not restricted to atomic-scale
systems, where the index j denotes atomic positions within a crystal lattice.
It can also be interpreted as a discretized version of the conventional BCS
model for a continuous superconducting medium. In this context,
the discretization lattice must be sufficiently fine to resolve all relevant
characteristic length scales, such as the BCS coherence length. For con-
venience, we set the discretization spacing a = 1 as the unit of length in the
system.

In the calculations, we assume the model is two-dimensional. It is
directly applicable to layered structures; however, we believe that the results
of the mean field calculations for this model can also describe 3D super-
conductors, for example, thin films.

The disordered potential due to impurities is modeled by the potential
Vi = V at impurity sites, and Vi = 0 elsewhere57. The model is characterized
by two key parameters: the disorder strengthV and the impurity densityNd.
We assume that band ν = 1 is strongly disordered. The other band, ν = 2, is
weakly disordered so that the Anderson’s theorem is applicable and the
critical temperature Tc,2 remains unaffected by disorder. For clarity, we
assume that disorder is entirely absent in this band.

Impurity positions can be chosen either completely randomly or with
spatial correlations. It is well known that spatial correlations in the disorder
potential can significantly influence all superconducting properties,
including the critical temperature38. The model above can also be used to
describe materials with superstructures if one considers the limit of a fully
correlated impurity potential distribution.

We note that the goal of this work is not to identify the optimal
impurity configuration that maximizes the superconducting critical tem-
perature. Instead, we analyze three representative scenarios: (i) a system
with fully random impurity positions, (ii) a system with spatially correlated
impurity positions, and (iii) a system featuring periodic 1D and 2D super-
structures as the limiting case of the fully correlated disorder potential. In all
cases, themodel parameters are chosen such that the critical temperature of
the strong band TΔ

c;1 is enhanced by a factor ~2 compared to the clean,
impurity-free case.

The analysis of the system is performed using the mean-field
approximation, where the superconducting condensate is determined
self-consistently by solving the Bogoliubov-de Gennes (BdG) equations
together with the gap equation and the occupation number equation, as
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detailed in the Methods section. While the mean-field approximation is
not strictly applicable to 2D systems due to the influence of fluctuations,
the results are expected to remain valid. The validity of these results
is supported by several factors: strong disorder, which effectively
increases the system’s dimensionality, and the presence of two coupled
band condensates. Furthermore, a direct mean-field solution to the
BdG equation for 1D chains revealed that the results are equivalent to
the corresponding 3D model when the interchain coupling is not very
large58.

For the numerical solution, we use the tunneling constants t1,2 = 1 as
the system’s energy unit. The pairing coupling constants are set to g1 = 2,
g2 = 1, g12 = 0.25, while the band occupations are chosen as n1 = 0.5 and
n2 = 0.8. These values correspond to electronic quasiparticles in both bands,
with the Fermi level situated far from the center of the band. Note that these
occupations correspond to the clean limit, and their relative values are
altered by disorder.

The parameters are selected such that, in the absence of interband
coupling, the critical temperature of band ν = 1 is significantly higher than

that of band ν = 2, i.e., T ð0Þ
c;1≫Tc;2. In the clean band ν = 2, all conventional

definitions of the critical temperature coincide, yieldingTc;2 ¼ T ð0Þ
c;2 ¼ TΔ

c;2.
Following standard terminology, band ν=1 is referred to as the strong band,
while band ν = 2 is designated as the weak band.

Despite relatively large values of the coupling constants, the system
remains in the BCS regime. The band Fermi energies are εF,1 ≃ 2.5 for the
strongbandand εF,2≃ 3.5 for theweak band.The corresponding gap values
at T = 0 are Δ1 ≃ 0.2 and Δ2 ≃ 0.1, ensuring that for both bands, the gap
remains much smaller than the Fermi energy, i.e., Δν ≪ εF,ν. The BCS
regime is further confirmed by comparing coherence lengths calculated
using the standard BCS expression with the numerical results38. Both
methods yield the same results: ξ1≃ 4 for the strong band and ξ2≃ 6 for the
weak band, both of which exceed the average electron spacing l ~ 2 in
both bands.

The disorder strength in band ν = 1 is set to V = 4, with a disorder
density in the range 0.5≤Nd≤0.75. This level of disorder is sufficient to
generate a highly inhomogeneous, fragmented (multifractal) condensate
state. The fragmentation of the condensate disrupts its long-range
phase coherence, as evidenced by the vanishing superfluid stiffness59,60,
leading to a suppression of the actual superconducting critical tempera-
ture, Tc,1.

For the chosen parameters, the first band approaches the BCS-BEC
crossover with kF1ξ1 ≃ 3. This regime exhibits both the much higher local
critical temperature at which the condensate state appears and spatial
localization, which hinders global superconductivity. In contrast, the
parameters of the second band correspond to kF2ξ2 ≃ 6, which approaches
the conventional BCS regime. The choice of parameters ensures the desired
system design, where one band develops the localized condensate state with
a high local Tc, while the other band behaves like a weakly coupled BCS
superconductor. We note in passing that the BCS-BEC crossover regime is
relevant to a great number of materials, including cuprates and iron-based
superconductors, as well as multiband superconductors with one of the
bands approaching the Lifshitz transition61–63.

We emphasize that the specific choice of parameters is intended solely
for illustrative purposes, as the qualitative results do not depend on their
exact numerical values. The conclusions of this work remain valid as long as
the key elements of the model are preserved: it comprises two coupled
components, with the condensate in the strong band being localized or
lacking long-range coherence due to a strong disorder potential— the same
disorder that enhances its local critical temperature TΔ

c;1 — while the weak
band remains in the clean limit with a much lower intrinsic critical
temperature.

The calculations are performed on a finite system of size N × N with
N=32,which is sufficiently large relative to the characteristic length scalesof
themodel for the chosen parameters. To furtherminimizefinite-size effects,
periodic boundary conditions are imposed.

Random disorder
First, we investigate scenario (i), where impurity positions are completely
randomanduncorrelated.The impuritydensity is set toNd=0.5.The results
of these calculations are summarized in Fig. 1, where panel (a) displays the
temperature dependence of the sample-averaged gaps:

�Δν ¼
1

N2

X
i

jΔνij: ð5Þ

This panel compares the results for the cases where the strong band is
disordered (filled circles) and clean (empty circles). Disorder leads to a
substantial increase in the critical temperature TΔ

c , at which the condensate
emerges. It is related to the fact that disorder reduces the coherence length,
thereby enhancing the local density of single-particle states (DOS) and
effectively increasing the superconducting pairing strength. The coherence
length decreases significantly to ξ1 ~ 2, driving superconductivity in that
band toward theBCS-BECcrossover regimewith an enhancedmaximal gap
Δmax
1 ’ 0:5 and the critical temperature TΔ

c;1 ’ 1:8T ð0Þ
c;1. The intrinsic

critical temperature of the weak band is much lower Tc;2≪TΔ
c;1. However,

inter-band coupling induces a non-zero gap in the weak band at
temperatures close to Tc [cf Fig. 1 (a)] due to the proximity effect.

As mentioned in the Introduction, the condensate existence does not
necessarily imply that the systemcan conduct supercurrent. Strong disorder
leads to a highly inhomogeneous, fragmented condensate state, where the
long-range coherence is destroyed. The inhomogeneity is illustrated by the
spatial profiles of the band gaps ∣Δ1i∣ and ∣Δ2i∣, shown in Fig. 1b and c,
respectively, that are calculated at the critical temperature T ð0Þ

c of the clean
system.

The profiles in Fig. 1b and c look similar, reflecting the fact that the
condensate in the weak band takes place due to the proximity effect.
However, the contrast between the maximum andminimum values for the
two bands differs significantly. For the strong band in Fig. 1b, the contrast
reaches a few orders of magnitude, while for the weak band in Fig. 1c, it is
much smaller. This is further seen in the profiles of ∣Δ1i∣ and ∣Δ2i∣ shown in
Fig. 1d.Here, the profiles are calculated along the dashed lines in Fig. 1b and
c, respectively.

The profiles in Fig. 1d demonstrate that for the weak band, the relative
difference between the maximal and minimal gap values is much smaller,
because in this case the gap has a notable minimal value. In contrast, the
minimal value in the strong disordered band is practically zero. Comparing
the profiles for both bands, one concludes that the gap function in the weak
band can be represented approximately as

Δ2i ¼ Δð0Þ
2 þ γΔ1i; ð6Þ

where Δð0Þ
2 is the minimal (homogeneous) contribution, and γ is a pro-

portionality constant. Indeed, Fig. 1(d) shows that, with the exception of the
minimal values, the profiles appear rather similar, and the intervals where
the gap has its minimal and maximal values coincide for both bands.

The homogeneous part of the gap reveals itself in the statistical
distribution P(Δ) of the gap values, shown in Fig. 1e. Notice that for both
bands, the distribution has a two-peak structure. It reflects the con-
densate fragmentation (clustering), where the gap is large inside con-
densate clusters and small between them. The peaks are much closer one
to another for the weak band due to its lower contrast. The homogeneous
contribution in the weak band is reflected in the minimal non-zero value
of the lower peak. In contrast, for the strong band, this minimal value of
the lower peak is practically zero.

The appearance of the homogeneous partΔð0Þ
2 is counterintuitive since

the proportionalityΔ2i∝Δ1i is expecteddue to the proximity effect. Instead,
the gap of the weak band demonstrates the homogeneous part for all con-
sidered parameters of the model. It is not a coincidence and can be derived
directly from the gap equation (see Methods section). To do this one
assumes no back action effects – the condensate in the strong band is
affected by the weak band negligibly. With this assumption, one indeed
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obtains Eq. (6) where the homogeneous contribution is given by

Δð0Þ
2 ¼ g12

g1

g2c1 ln c2=T
� �

1� g2c1 ln c2=T
� � �Δ1; ð7Þ

c1,2 are model-dependent constants, and �Δ1 is the average gap of the
strong band.

The temperature dependence of the homogeneous contributionΔð0Þ
2 is

governed by the logarithmic factor in Eq. (7) and by the average �Δ1. Con-
sequently, Δð0Þ

2 vanishes at TΔ
c . In the vicinity of TΔ

c , Eq. (7) provides the
asymptotic expression Δð0Þ

2 / �Δ1=T . This estimate is plotted in Fig. 1f
demonstrating an excellent agreement with the numerical results at tem-
peratures T≳0:5T ð0Þ

c .

The homogeneous contribution to the gap means that the condensate
in the weak band is not fragmented as its clusters remain connected.
Consequently, the long-range coherence is preserved, and the system
remains globally superconductive up to temperatures T ! TΔ

c . This con-
clusion is supported by calculating the superfluid stiffnessDð0Þ

s;2 for this band
(for details of the superfluid stiffness calculations at finite temperatures, see
Methods section). Its logarithmic temperature dependence is shown in
Fig. 1g. The stiffness disappears at Tc ’ TΔ

c . For comparison, empty circles
show the results for the clean limit. In the latter case, the stiffness disappears
atmuch lower temperatureT ð0Þ

c [cfFig. 1a], confirming the rise of the critical
temperature in the disordered systems.

Notice, that the calculation of Dð0Þ
s;2 does not account for thermal fluc-

tuations, and, therefore, the results should be interpreted with caution,

Fig. 1 | Uncorrelated disorder. a Temperature dependence of the sample-averaged
gap function �Δν for the strong band ν = 1 (red) and the weak band ν = 2 (blue),
showing results for the cases when strong band is disordered (filled circles) and in its
clean limit (empty circles). Low temperature T ð0Þ

c;2 is the critical temperature of the
second band in the absence of inter-band coupling. Color density plot with the
spatial distribution of the gap function Δ1i (b) and Δ2i (c) at temperature
T ¼ 0:9T ð0Þ

c . d Profile of the gap function for strong band ν = 1 (red) and weak band
ν = 2 (blue), calculated along the dashed lines shown in b and c with Δmax

1 ¼ 0:365

and Δmax
2 ¼ 0:085. The minimum values of the gap function in the strong and weak

bands are indicated by the red and blue dashed lines, respectively. e Histograms of
the absolute value of the gap function for the strong band ν = 1 (red) and the weak
band ν = 2 (blue). f Homogeneous contribution Δð0Þ

2 to the gap in weak band ν = 2,
compared between numerical calculations (circles) and estimates using Eq. (7).
g Superfluid stiffness Dð0Þ

s;2 for weak band ν = 2 calculated for the cases when strong
band ν = 1 is disordered (filled circles) and in the clean limit (empty circles). The
dashed lines represent estimations Dð0Þ

s;2 / jΔð0Þ
2 j2 (orange) and Dð0Þ

s;2 / j�Δ2j2 (red).
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particularly when a system is strongly disordered. Nevertheless, this quan-
tity provides a useful indication of whether the system is superconductive.
Plotting it alongside j�Δ2j2 and jΔð0Þ

2 j2 in Fig. 1g reveals a special role of the
homogeneous part of the condensate. In a clean superconductor, the
superfluid stiffness is proportional to the condensate density. For a strongly
disordered system, this relation ismore complex59,60.However, Fig. 1g shows
that the temperature dependence of jΔð0Þ

2 j2 is very close to that of Dð0Þ
s;2 ,

suggesting thatDð0Þ
s;2 / jΔð0Þ

2 j2 in thewide temperature range. In contrast, the
temperature dependence of the sample-averaged condensate density j�Δ2j2
yields a much poorer approximation for the superfluid stiffness. One con-
cludes that the homogeneous condensate component is themost important
factor contributing to the superfluid stiffness and thus to superconducting
current.

Correlated disorder
We now turn to scenario (ii), where impurity positions exhibit spatial
correlations. Such correlations are present inmany real materials, including

various classes of superconductors48,64,65. Previous studies have demon-
strated that spatial correlations in the disorder landscape can significantly
affect superconducting properties, influencing both the local emergence of
the condensate and the global phase coherence. To generate an impurity
distribution with spatial correlations, we develop an algorithm based on the
approach outlined in earlier works38,66–68. The details of this method are
provided in the Methods section.

Results for a correlated impurity distribution with densityNd = 0.7 are
shown in Fig. 2a1–a4,where panels (a1) and (a2) display the band gaps ∣Δ1i∣
and ∣Δ2i∣, respectively. Comparing these with the distributions for uncor-
related disorder in Fig. 1b, c reveals that the correlated disorder is char-
acterized by significantly larger condensate clusters, separated by similarly
large intervals of suppressed condensate.

Figure 2a3 gives the temperature dependence of the average gaps �Δ1
and �Δ2, which determine the critical temperature TΔ

c . For comparison,
Fig. 2a3 plots the temperature dependence for the clean system, which
gives Tc ¼ 1:9T ð0Þ

c .

Fig. 2 | Correlated disorder. a1–a4 Superconductor with correlated disorder. Color
density plot with the spatial distribution of the gap function Δ1i (a1) and Δ2i (a2) for
the strong and the weak band, respectively, at temperature T ¼ 0:9T ð0Þ

c . a3 tem-
perature dependence of the sample-averaged gap function �Δν for the strong band
ν = 1 (red) and the weak band ν = 2 (blue), showing results for the cases when strong
band is disordered (filled circles) and in its clean limit (empty circles). a4 Homo-
geneous contribution Δð0Þ

2 to the gap in weak band ν = 2, compared between
numerical calculations (circles) and estimates using Eq. (7). b1–b4 Superconductor
with 1D superstructure. Color density plot with the spatial distribution of the gap
function Δ1i (b1) and Δ2i (b2) at temperature T ¼ 0:9T ð0Þ

c . b3 Temperature
dependence of the sample-averaged gap function �Δν for the strong band ν = 1 (red)

and the weak band ν = 2 (blue), showing results for the cases when strong band is
disordered (filled circles) and in its clean limit (empty circles). b4 Homogeneous
contribution Δð0Þ

2 to the gap in weak band ν = 2, compared between numerical
calculations (circles) and estimates using Eq. (7). c1–c4 Superconductor with 2D
superstructure. Color density plotwith the spatial distribution of the gap functionΔ1i

(c1) and Δ2i (c2) at temperature T ¼ 0:9T ð0Þ
c . c3 Temperature dependence of the

sample-averaged gap function �Δν for the strong band ν = 1 (red) and the weak band
ν = 2 (blue), showing results for the cases when strong band is disordered (filled
circles) and in its clean limit (empty circles). c4 Homogeneous contribution Δð0Þ

2 to
the gap in weak band ν = 2, compared between numerical calculations (circles) and
estimates using Eq. (7).
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As in the case of uncorrelated disorder, Fig. 2a1 and a2 demonstrate a
substantial difference in the contrasts of the band gap profiles, which is
related to the same mechanism. The disorder gives rise to the condensate
fragmentation in the strong band, while in the weak band the gap acquires
the homogeneous contribution Δð0Þ

2 . Its temperature dependence, extracted
from the numerical solution, is plotted in Fig. 2a4. The figure also shows the
estimate by Eq. (7), which demonstrates a very good quantitative agreement
with the numerical result.

Superstructures
Finally, we examine the extreme case (iii) of a fully correlated potential that
forms superstructures. Of particular interest are periodic superstructures,
where the critical temperature of the superconducting transition can be very
highdue toquantumconfinement resonances41,69–71.However, unlike earlier
works, we focus on superstructures where the condensate state is localized
and global superconductivity is suppressed. In this case, the condensate is
fragmented, and in some parts of the sample, it is nearly completely absent.
We consider two prototype periodic structures: 1D stripes with the density
of potential sitesNd = 0.5 and a 2D chessboard withNd = 0.75, as illustrated
in Fig. 2b1–b4 and c1–c4.

Calculated profiles of ∣Δ1i∣ and ∣Δ2i∣ are depicted in Fig. 2b1 and b2
for the stripe patterns, and in Fig. 2c1 and c2 for the chessboard con-
figurations, respectively. In these figures, the stripes and squares corre-
spond to regions of maximum and minimum gap values. As observed in
the disordered models discussed above, the gap in the stronger band
reveals a significantly larger contrast between its maximum and mini-
mum values, indicating that the condensate density is nearly entirely
suppressed between the clusters. The fragmentation gives rise to an
increase in the critical temperature, with Tc ’ 1:6T ð0Þ

c for the stripes and
Tc ’ 2:2T ð0Þ

c for the chessboard.
As in disordered samples, the gap in the weak band comprises a

homogeneous contribution, Δð0Þ
2 , which persists between the condensate

clusters. Its appearance helps the system condensate to sustain the long-
range coherence. The temperature dependence of Δð0Þ

2 is shown in Fig. 2b4
and c4, alongside estimates by Eq. (7). As before, the estimate yields an
excellent agreement with the numerical results. The homogeneous com-
ponent only vanishes when the temperature reaches Tc, confirming that the
critical temperature for the superconducting transition Tc coincides with
that of the condensate TΔ

c .

Discussion
The above examples describe a mechanism to achieve high-temperature
superconductivity by manipulating the spatial distribution of the external
potential. The latter creates spatially fragmented localized condensate
islands, with a significantly higher critical temperature. The enhancement of
the critical temperature is related to the localization and multi-fractal
structure of single-particle states, which enhance theCooper pairing.On the
other side, this gives rise to clustering of the condensate state, suppressing
the long-range coherence of the condensate, which in turn hinders the
superconductive current. As a result, the systemdevelops a condensate state
without actually becoming superconductive.

However, global coherence and supercurrent are restored when the
disordered material is coupled to an auxiliary “weak” subsystem, where the
condensate state is induced by the tunneling of Cooper pairs (proximity
effect). In contrast to the original material, the condensate in the weak
subsystem comprises a homogeneous part. It connects the condensate
clusters, restoring the long-range coherence of the condensate state and
enabling superconducting current through the entire sample. This con-
tribution vanishes only with the condensate itself. Consequently, the
superconducting critical temperature coincides with that of the condensate
state in the strong subsystem.

This mechanism for the superconductivity enhancement is based,
eventually, on the proximity effect. Localized Cooper pairs of the material
tunnel to an auxiliary subsystemwhere they canpropagate freely, inducing a
supercurrent. However, the proximity effect in this system differs from the

standard situation, appearing when a superconductor is connected to a
normal conductor. Superconducting correlations in theweak subsystem are
expected to decay when moving away from a superconducting cluster. In
contrast, here induced superconductivity correlations approach a constant
value. This appears similar to the phenomenon of Bose-condensation.
BosonicCooper pairs, created in the strong subsystemwhere the condensate
forms localized clusters, are injected into the clean subsystem,where the pair
ground state is homogeneous.

The considered mechanism also has parallels with the phenomenon
of suppressing fluctuations in two-band superconductors. The latter
takes place where one of the bands has a high mean-field critical tem-
perature, but the superconductivity is disrupted by large fluctuations.
However, even a small coupling to the other band suppresses the fluc-
tuations, keeping the superconducting critical temperature close to its
high mean-field value25. In this work, superconductivity is compromised
by spatial fluctuations of the condensate, but the latter are mitigated by
coupling to the auxiliary clean band.

Mechanisms for suppressing both thermal and spatial fluctuations can
work alongside. This may take place when spatial fragmentation of the
condensate is accompanied by strong thermal fluctuations. Then coupling
to the weak auxiliary subsystem restores the long-range coherence, sup-
pressing the fluctuations as well.

As noted above, direct tunneling between different bands— neglected
in the present model — may become relevant in strongly disordered or
hybrid systems.However, our conclusions remain valid unless the tunneling
is sufficiently strong to fully hybridize the single-particle states of themodel.
In this limiting case, the resulting behavior depends on the distribution of
disorder across the newly hybridized bands. If one hybridized band remains
strongly disordered while the other stays relatively clean, the system effec-
tively preserves the key features of the original model, and the main con-
clusions of this work continue to hold.

We emphasize that the proposed mechanism for enhancing
superconductivity is likely applicable to both naturally occurring and
artificially engineered or modified materials. It can be effective in het-
erostructures, hybrid systems, and compounds with layered atomic
architectures featuring spatially separated condensate components.
Moreover, it is relevant for materials with surface superstructures, where
localized surface states play the role of the strong band, while the bulk
behaves as the weak one. A notable example is bulk graphite with
impurity-induced surface superstructures. According to recent reports72,
this system exhibits superconductivity at nearly room temperature.
Additionally, the recent direct detection of local carrier pairing exhi-
biting an unexpectedly large gap value Δ ≈ 2 eV in bismuth-based high-
temperature superconductors73 positions these materials as promising
options for realizing the mechanism proposed in this study to enhance
the critical temperature.

Methods
Bogoliubov-de Gennes equations
The condensate state is described using the mean-field approximation for
the model (1)–(4). The corresponding mean-field Hamiltonian for each
band ν = 1, 2 reads as

Hν ¼
X
ijσ

hνijc
y
νiσcνjσ þ

X
i

Δνic
y
νi"c

y
νi# þ h:c:; ð8Þ

where the gap functionsΔνi are found self-consistently by solving a systemof
gap equations

Δ1i ¼ g1hc1i"c1i#i þ g12hc2i"c2i#i; ð9aÞ

Δ2i ¼ g2hc2i"c2i#i þ g12hc1i"c1i#i ð9bÞ

which connects the gaps with the anomalous averages 〈cνi↑cνi↓〉. Notice that
the model does not account for the cross-band averages. The Hamiltonians
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(8) are diagonalized separately by solving Bogoliubov-de Gennes equations
(BdG) for eigenfunctions uðnÞνi , v

ðnÞ
νi , and eigenvalues Eνn,X

j

~hνiju
ðnÞ
νj þ Δνiv

ðnÞ
νi ¼ Eνnu

ðnÞ
νi ; ð10aÞ

�
X
j

~hνijv
ðnÞ
νj þ Δ�

νiu
ðnÞ
νi ¼ Eνnv

ðnÞ
νi ; ð10bÞ

where matrix elements of the single-particle Hamiltonian are

~hνij ¼ hνij þ ðUνi � μÞδij: ð11Þ

Here, the chemical potential μ and potentialUνi are found from another set
of self-consistency equations,

Ne ¼
X
ν;i

nνi; Uνi ¼ Vνi �
gν
2
nνi; ð12Þ

where nνi ¼ hcyνiσcνiσi and Vνi is the disorder potential. Using solutions of
the BdG equations, the anomalous averages are calculated as

hcνi"cνi#i ¼
X
n

uðnÞνi v
ðnÞ�
νi ð1� 2f νnÞ; ð13Þ

and the normal averages are

nνi ¼ 2
X
n

∣uðnÞνi ∣
2
f νn þ ∣vðnÞνi ∣

2ð1� f νnÞ
h i

: ð14Þ

with fνn = f(Eνn/T) being the Fermi distribution.

Homogeneous contribution to the gap
To obtain an estimation for the homogeneous contribution to Δ2, we
use the fact that ∣Δ2∣ < ∣Δ1∣ and neglect the back action of Δ2 on Δ1.
This implies that we solve the corresponding gap equation for Δ1

separately, and then use the result to find Δ2 from the remaining
equations. The corresponding gap equation for the second band
becomes

Δ2i ¼ g2F2i þ
g12
g1

Δ1i; ð15Þ

where

F2i ¼
X
n

uðnÞ2i v
�ðnÞ
2i 1� 2f 2n

� �
ð16Þ

with uðnÞ2i and v�ðnÞ2i being eigenvectors of the BdG equation for the
second band.We now look for these eigenvectors in the form of the Fourier
series,

u2i
v2i

� �
¼

X
k

uk
vk

� �
eikri ; ð17Þ

where the sum over k involves the normalizing factor 1/N2. In the inverse
space, the BdG equations read as

ξkuk þ
X
k0

Δ2ðk � k0Þvk0 ¼ Ekuk; ð18aÞ

�ξkvk þ
X
k0

Δ2ðk � k0Þ�uk0 ¼ Ekvk; ð18bÞ

where

Δ2ðkÞ ¼
X
i

Δ2i e
�ikri ; ð19Þ

and ξk ¼ �2t2ðcos kxaþ cos kyaÞ � μ2 with a being the lattice constant, t2
the hopping integral, andμ2 the chemical potential.Notice that the sumover
k is restricted by the Debye frequency ωD. In this equation, we use the fact
that g1 is small and neglect the Hartree potential in Eq. (12).

We now utilize the fact that the characteristic size of condensate
clusters or the localization length ξ is much larger than the de Broglie
wavelength 1/kF of electrons taking part in the Cooper pairing, with ℏkF
being the Fermi momentum. Then, one can neglect the slow spatial
dependence of the gap to obtain the homogeneous contribution to Δ2:

Δ2ðkÞ ’ g2�F2 þ
g12
g1

�Δ1

� �
δðkÞ; ð20Þ

where δ(k) is the Dirac function, �Δ1 is given in Eq. (5), and

�F2 ¼
1
N2

X
i

F2i: ð21Þ

Note that this approximation is eventually equivalent to the Anderson
approximation, where the quasiparticle states are looked after in the formof
ui=uϕi and vi= vϕi, whereϕi are single-electron states. For the clean system,
single-electron states are simply plane waves ϕi / expðikrÞ.

When one inserts this approximation for the gap into the BdG equa-
tion (18), it can then be solved explicitly, yielding a well-known result,

v2k ¼
1
2

1� ξk
Ek

� �
; u2k ¼ 1

2
1þ ξk

Ek

� �
; ð22Þ

with the quasi-particle energy being

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ g2�F2 þ

g12
g1

�Δ1

� �2
s

: ð23Þ

We now substitute this result into the gap equation (15), which yields the
gap in the form of the two contributions,

Δ2i ¼ Δð0Þ
2 þ g12

g1
Δ1i; ð24Þ

where the homogeneous part is given by

Δð0Þ
2 ¼ g2

X
k

g2�F2 þ
g12
g1

�Δ1

� �
1� 2f k
2Ek

: ð25Þ

Wenote that Eq. (24) reproduces our numerical result in Eq. (6) that the gap

splits into a homogeneous part Δð0Þ
2 and the one that is proportional to Δ1i.

To find the value ofΔð0Þ
2 explicitly, we note that following Eq. (15), this

gap contribution is related to the anomalous correlation function as

Δð0Þ
2 ¼ g2F2i, which is thus constant being equal to its sample average �F2.

Then, using the substitution g2�F2 ¼ Δð0Þ
2 in Eq. (25) one obtains the

homogeneous part of the gap in the form

Δð0Þ
2 ¼ g12

g1

g2α
1� g2α

�Δ1; α ¼
X
k

1� 2f k
� �

2Ek
: ð26Þ
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Wenote that this is still the equation forΔð0Þ
2 as Ek is also the function of this

quantity. However,Δð0Þ
2 can be easily estimated when T ~ Tc, and the gap in

Eq. (23) can be neglected. In this case, one obtains

α ’ c1 ln
c2
T

� �
; ð27Þ

where c1∝N2(0) and c2∝ ℏωD, withN2(0) being the number of states at the
Fermi level. The temperature dependence given by Eqs. (26) and (27) is
shown in Fig. 1(f).

Spatially correlated impurity distribution
To describe impurity distribution that is spatially correlated, forming a
granulated (clusterized) disorder potential, we employ themodel of spatially
correlated random functions defined on the lattice as38

Zi ¼
1

N2

XN=2

jx ;jy¼1

q�β=2
j cos qjri þ ϕj

� �
; ð28Þ

where ri is a point on the lattice, qj = (2πjx/N, 2πjy/N) is a discrete inverse
space vector, jx,y = 1, …, N, qj = ∣qj∣, ϕj are random phases uniformly
distributed in the interval 0; 2π½ Þ, andβ is a constant that defines asymptotic
dependence of the spatial correlations.

To generate a random impurity distribution used to obtain Fig. 2a1
and a2 we use random Zi from Eq. (28) to construct another random
function as

Yi ¼ 1� jZij
max jZij

� �
" #2

; ð29Þ

which lies in the interval [0, 1]. Next we obtain the normalized quantity

Xi ¼ V
Yi

max jYij
� � ; ð30Þ

with V being the disorder strength, and use it to construct the impurity
distribution of the potential as

Vi ¼
V ; Xi ≥ ϵ;

0; Xi < ϵ:

	
ð31Þ

Parameter ϵ ∈ [0, V] is the threshold that controls the size of super-
conducting clusters. If ϵ =V, the potential is absent, and if ϵ = 0 thenVi =V
for all i. In the calculations for Fig. 2a1 and a2 we set β =− 4 and ϵ = 0.5V.

Superfluid stiffness
The superfluid stiffness is obtained using a standard expression59,60

D0
s ¼ h�Kxi þ Λxx qx ¼ 0; qy ! 0;ω ¼ 0

� �
: ð32Þ

Here, the kinetic energy along the direction x is given as

h�Kxi ¼
4t
N

X
i;n

vðnÞi vðnÞiþex
1� f n
� �þ uðnÞi uðnÞiþex

f n

h i
: ð33Þ

The transverse current-current correlator is obtained using the expression

Λxx qx ¼ 0; qy ! 0;ω ¼ 0
� �

¼ 2t2 ð34Þ

×
P
m;n

P
i;j

Aðm;nÞ
ij þ Cðm;nÞ

ij

� �
f n�f m
En�Em

h

þ Bðm;nÞ
ij þ Dðm;nÞ

ij

� �
f n�f m�1
EnþEm

i
;

ð35Þ

with

Aðm;nÞ
ij ¼ uðnÞi uðnÞjþex

uðmÞ
j uðmÞ

iþex
� uðnÞjþex

vðnÞiþex
uðmÞ
j vðmÞ

i

�uðnÞiþex
uðnÞjþex

uðmÞ
j uðmÞ

i þ uðnÞjþex
vðnÞi uðmÞ

j vðmÞ
iþex

�uðnÞi uðnÞj uðmÞ
jþex

uðmÞ
iþex

þ uðnÞj vðnÞiþex
uðmÞ
jþex

vðmÞ
i

þuðnÞiþex
uðnÞj uðmÞ

jþex
uðmÞ
i � uðnÞj vðnÞi uðmÞ

jþex
vðmÞ
iþex

;

Bðm;nÞ
ij ¼ uðnÞi uðnÞjþex

vðmÞ
j vðmÞ

iþex
þ uðnÞjþex

vðnÞiþex
vðmÞ
j uðmÞ

i

�uðnÞiþex
uðnÞjþex

vðmÞ
j vðmÞ

i � uðnÞjþex
vðnÞi vðmÞ

j uðmÞ
iþex

�uðnÞi uðnÞj vðmÞ
jþex

vðmÞ
iþex

� uðnÞj vðnÞiþex
vðmÞ
jþex

uðmÞ
i

þuðnÞiþex
uðnÞj vðmÞ

jþex
vðmÞ
i þ uðnÞj vðnÞi vðmÞ

jþex
uðmÞ
iþex

;

where uðnÞi and vðnÞi are solutions of the BdG equations, En is the quasi-
particle energy, and fn = f(En/T) is the Fermi distribution. In the summation
we take only the solutions with En > 0. Finally, tensors C

ðm;nÞ
ij andDðm;nÞ

ij are
determined, respectively, from Aðm;nÞ

ij and Bðm;nÞ
ij via the replace-

ment uðnÞi () vðnÞi .
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author upon reasonable request.
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