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Abstract—In this paper we consider nonsingular Morse—Smale flows on closed orientable 3-
manifolds, under the assumption that among the periodic orbits of the flow there is only one
saddle orbit and it is twisted. It is found that any manifold admitting such flows is either a lens
space, or a connected sum of a lens space with a projective space, or Seifert manifolds with base
sphere and three special layers. A complete topological classification of the described flows is
obtained and the number of their equivalence classes on each admissible manifold is calculated.
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1. INTRODUCTION AND FORMULATION OF RESULTS

In this paper we consider nonsingular (without fixed points) Morse—Smale flows (NMS flows)
ft defined on closed connected orientable 3-manifolds M3. The nonwandering set of such a flow
consists of a finite number of periodic hyperbolic orbits. In a neighborhood of a hyperbolic periodic
orbit O, the flow admits a simple description (up to topological equivalence), namely, there exists
its tubular neighborhood Vi homeomorphic to the solid torus V =D? x S!, in which the flow is
topologically equivalent to the suspension over some linear diffeomorphism of the plane given by a
matrix with positive determinant and real eigenvalues modulo different from unity (see, e. g., [6]).
If both eigenvalues are modulo greater than (less than) one, then the corresponding periodic orbit
is repelling (attracting), otherwise it is a saddle. A saddle orbit is called twisted if both eigenvalues
are negative, otherwise it is called untwisted.

The study of nonsingular Morse—Smale (NMS) flows on 3-manifolds has a rich history, with
several foundational contributions. M. Wada [15] provided a complete classification of the links
formed by closed orbits of NMS flows on the 3-sphere S, showing how such links correspond to
specific topological configurations of periodic trajectories. Building on the structural aspects of
these flows, Azimov [1] described the decomposition of the ambient manifold into so-called round
handles. In particular, this handlebody decomposition helps capture the global topology induced
by the flow.

A key result in the classification of NMS flows with a minimal number of periodic orbits —
specifically, two (one attracting and one repelling, which are present in every NMS flow) — is that
such flows can exist only on lens spaces. This was shown in [9], where it was further established
that each lens space admits exactly two equivalence classes of such flows, with the exceptions of
the 3-sphere S* and the projective space RP?, for which the equivalence class is unique.
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NONSINGULAR FLOWS WITH A TWISTED SADDLE ORBIT 699

When the number of periodic orbits increases, the range of manifolds that support NMS flows
broadens significantly. For instance, the construction in [9] (specifically dealing with three untwisted
periodic orbits) demonstrates that NMS flows can be realized on small Seifert fibered spaces.
However, the classification becomes more intricate when considering flows with twisted periodic
orbits — an area that has not been thoroughly explored in the literature.

Morgan [8] conducted a more detailed study of the topological types of compact orientable 3-
manifolds that admit NMS flows, contributing to our understanding of how the qualitative dynamics
of such flows interact with the manifold’s topology. However, even in Morgan’s work, flows with
twisted orbits have not been systematically addressed.

To clarify the topology of ambient manifolds for Morse — Smale flows (including nonsingular ones)
and to find conditions for their topological classification, various methods have been proposed, see,
e.g., [1, 8, 10, 16]. We develop a new approach that allows us to see how the dynamics are related
to the topology. One of the ways to see such a relationship is to find invariants for such flows that
allow us to describe the topology of the ambient manifold.

In the present paper we obtain an exhaustive classification for the set G (M?) of NMS flows
ft: M3 — M3 with a single saddle orbit, under the assumption that it is twisted.

Since the ambient manifold of the flow f! € G (M?3) is the union of stable (unstable) manifolds
of all its periodic orbits [14], the flow must have at least one attracting and at least one repelling
orbit. In the present paper the following fact is established.

Lemma 1. The nonwandering set of any flow f* € Gy (M?) consists of exactly three periodic orbits

S, A, R, saddle, attracting and repelling, respectively.

Due to the topological equivalence of the flow f! in the interior of tubular neighborhood Vo of a
periodic orbit to a suspension over a linear diffeomorphism, the unstable and stable manifolds of
these orbits have the following topology:

o W¥=W;:=RxS' (open Mébius band);

o W =Wy =R2xS!

o Wi=Wj=s

Using these properties of the topology of invariant manifolds of periodic orbits and Lemma 1, we

obtain the following result on the representation of the ambient manifold M?3. Lemma 2 is similar
to the result of Azimov on round-handle decompostion for all dimensions except 3.

Lemma 2. The ambient manifold M? of any flow f' € G (M?) is represented as a union of three
solid tori

M3 =V,UVsUVg

with nonintersecting interior (glued at the boundaries), which are tubular neighborhoods of the orbits
A, S, R, respectively, with the following properties:

e the torus Ts = Vg is the union of compact tubular neighborhoods K, Kr of knots va =
W§nTs, yvr = WS NTs, respectively, such that Ko N Kr = 0KaNOKRg (see Fig. 1);

e the torus Ta = OV4 is the union of the annulus K 4 and the compact surface K = T4 \ int K 4,
e the torus T = OVR is the union of the annulus Kr and the compact surface K = Tg \ int Kg.
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essential inessential

Fig. 1. Knot 74 on boundary dV4 of canonical neighborhood.

For O € {A, S, R} we choose a parallel Lo on the torus Tp (a curve homologous in Vpp to the
orbit O) and a meridian Mo (a curve, homotopic to zero on Vi» and essential on Tp) such that the
ordered pair of curves Lo, Mo defines the outer side of the solid torus V.

Let g be the connected component of the set K oriented coherently with the saddle orbit S.
By virtue of the equivalence of the flow f!|y, to the suspension, the meridian Mg can be chosen
such that g intersects the meridian Mg at exactly two points (see Section 3.1 for details). Then
the generators Lg, Mg can be chosen so that with respect to them the knot g has homotopic type

(vs) = (lg,mg) = (2,1).

We orient the knots g, 74 consistent with the knot vg. Let us write down the homotopy type
of the knot «g with respect to the Lr, Mg

(yr) = (Ir. mr)
and the homotopy type of the knot v4 with respect to the L4, M4
(ya) = (la,ma).
Since Tg \ vr is homeomorphic by flow-map to T4 \ 74, then
(lr,mg) = (0,0) <= (la,ma) = (0,0).

If (Ig,mpgr) = (0,0), then let us write the homotopy type of the meridian Mpr C K with respect to
the formers L 4, Ma

(MR) = (pa,qa)-
If (Ir,mg) # (0,0), then choose a knot og C Tg such that
(og) = (1,1).

and og intersects with each component of the 9K connectivity at exactly one point (this can be
done since the intersection index of the knots g and og is 1).

Let us choose knots op C T, 04 C T4 coinciding with each other on the annulus K and such
that og = (cp Uoa) NTs. Let us write their homotopy types with respect to generators

<UR> = <vacR>7 <UA> = <bA,CA>~
Definition 1. By the flow f! € G (M?), we define the set
Cft = (lla b17 127 b2)

as follows:
L4 (lla bla 121 b2) = (lRa bRa lAa bA) if (lRa mR) 7é (07 O)a
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e (Iy,1a, b1, b2) = (0, 2, pa, qa) if (Ir, mgr) = (0,0) and the 2-disk bounded by knot ~gr
remains on the left when moving along the knot;

o (Iy, by, lo, ba) = (0, =2, —pa, —qa) if (I, mgr) = (0, 0) and the 2-disk bounded by the knot
~vgr remains on the right when moving along the knot.

Note that the set Cje of the flow f'e€ Gy (M?) is admissible in the sense of the following
definition.

Definition 2. The set of integers C' = (Iy,b1,12,b2) is called admissible if
e (l1,b1) = (0,£2) or ged(ly,b1) = 1;
e gcd(le, by) = 1.
If)eﬁnition 3. We call the admissible sets C' = (I1, b1, l2, b2), C" = (11, b}, 15,b5) consistent (C ~ C”)
if:
o li=1,i=1,2
and there exists 0 € {—1, 1} such that
e b, =0l (mod [;);
° lﬂg(?lz(bl - 55’1) + 2[1(1)2 — 55/2) + lll2<1 — 5)) =0.

In the present work, the following classification result is established.
Theorem 1. The flows f*, f" € G5 (M?) are topologically equivalent if and only if Cpe ~ Cpr.
Moreover, for any admissible set C' there ezists a flow f' € G5 (M?) such that C' ~ Cye.

We also managed to construct a correspondence between invariants and ambient manifolds of
flows of the class considered.

Theorem 2. Flows of class Gy (M3) admit all lens spaces L, ,, all connected sums of the form
Lp7q#]RP3 and all Seifert manifolds of the form M(SQ, (a1, B1), (a2, B2), (2, 1)) More precisely, let
the flow f' € G7 (M?) have the invariant Cpt = (I1,b1,12,b2). Then

o If (Jlu] — 1)(Jl2| — 1) =0, then M3 = Ly, ,, thus:

- iflllg = 0, then
M3 = RP?;

— if Cpt = (£1, by, la, ba), Iz # 0, then
M3 2 Ly op, , 5

— if Cpe = (Iy, by, +1, by), Iy £0, then
M3 2 Ly, oy, by -

o Iflily =0 and (|ly] — 1)(|l2| — 1) # 0, then M? = L, ,#RP?, thus:

— if Cpe = (0, by, Iy, ba), then
M3 =Ly, ,#RP3;

— if Cpe = (I, b1, 0, £1), 11 # 0, then M3 = Ly, » # RP3.
o Ifot = (ll, bl, 12, bg), |l1| > 1, |l2| > 1, then M3 = M(SQ, (ll,b1>, (lg,bg), (2,1)).
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Due to the fact that the topological equivalence class and the topology of a manifold are defined
using the same invariant, it becomes possible to compute the number of topological equivalence
classes on each admissible manifold.

Theorem 3. The set G (Lpq), |p|| # 2, decomposes into a countable number of equivalence
classes, whereas the sets GI(RP?’), G (Lpg# RP?), Gy (M(S2, (a1,81), (ag,B2), (2, 1))) consist

of a finite number of classes.

Moreover, we explicitly give the correspondence between the invariants and ambient manifolds in
Section 7 after the proof of Theorem 3.

Note that, on the three-dimensional sphere S3, the list of flows representing equivalence classes
of the set G (S%) listed in Theorem 3 is exactly the same as that obtained in Bin Yu’'s paper
(see Proposition 7.4 in [17]).

2. TOPOLOGY OF 3-MANIFOLDS
2.1. Lens Spaces

Further, we will assume that the constituents of the homotopy types of knots on the boundary
OV of the standard fullness V = D? x S! are the meridian M = (9D?) x S' with homotopy type
(0,1) and the parallel L = {z} x S, z € 9D? with homotopy type (1,0).

A three-dimensional manifold L,, = Vi U; V2 resulting from gluing two copies of a solid
torus V4 =V is called a lens space, Vo =V by some homeomorphism j: 0V; — 9V, such that

3x((0,1)) = (p, @)

Proposition 1 ([5]). Two lens spaces Ly q, Ly o are homeomorphic if and only if |p| = |p/|, ¢ =
+¢ (mod p) or q¢’ = £1 (mod p). Also,

Lo1 2 S?xSY, L1g=S? Ly 2 RP2.

2.2. Dehn Surgery Along the Knots and Links

In this section, we provide some facts and notations regarding Dene’s surgery. The reader is
referred to [11] for further details.

Suppose we are given

e a closed 3-manifold M;
e knot v C M,

e tubular neighborhood U, of knot v, which is a solid torus with standard generators on OU, —
meridian M, and parallel L.;

e homeomorphism h: OV — OU,, which induces an isomorphism in the given generators such

that h.((0,1)) = (8, a).
The manifold
M, = (M \ int U,y) Up .V

is called the manifold obtained from the manifold M by Dehn surgery along the knot ~ with
equipment 3, cv.

Let py: (M \int U,) UV — M, denote the natural projection. Put 5 = p, ({0} x S!), U5 =
py(V), h = p,h~': U, — OU5. Then the manifold M is recovered from M., by the following inverse
surgery.
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Proposition 2 ([11]). Let v C M be a knot with 3, and 7 be a knot with —/3,&, where af =1
(mod ). Then

M = (M,)5.

The Dehn surgery naturally generalizes to the case where v = ~; U - - - U~, C M is the disjunctive
union (link) of equipped knots. The resulting manifold M., in this case is called the manifold obtained
from the manifold M3 by Dehn surgery along the equipped link . A link vy =~ U---U~, C M is
called is trivial if the knots 71, ..., bound the pairwise nonoverlapping 2-discs dy,...,d, C M.

Proposition 3 ([11]). Lety =~y U---U~v,. C M be a trivial link with equipment By, a5 .. .5 Br, Q.
Then

M, & M# Loy g, # - La, 5,

2.3. Seifert Fiber Spaces

A solid torus V partitioned into fibers of the form {z} x S! is called a trivially fibered solid
torus. Consider the solid torus V = D? x S! as a solid cylinder D? x [0, 1] with bases glued together
by virtue of rotation by an angle 27v/a for coprime integers a,v, « > 1. The partitioning of
a solid cylinder into segments of the form {z} x [0,1] determines the partitioning of this solid
cylinder into circles called fibers. The segment {0} x [0, 1] generates a fiber called special, all other
(nonspecial) fibers of the solid torus are wrapped « times around the special layer and v times
around the meridian of the solid torus. The number « is called the multiplicity of the singular fiber.
A solid torus with such a partition into fibers is called a nontrivially fibered solid torus with orbital
invariants (o, v).

A Seifert fiber space is a compact, orientable 3-manifold M, partitioned into nonintersecting
simple closed curves (fibers) such that each fiber has a tubular neighborhood entirely composed of
fibers, layer-by-layer homeomorphic to the fibered solid torus. Such a partitioning is called Seifert
fibration. Fibers that under some such homeomorphism pass to the center of a nontrivially fibered
solid torus are called special.

The base of a Seifert fiber space M is a compact surface ¥ = M/, where ~ is an equivalence
relation such that x ~ y if and only if z and y belong to the same layer.

The base of any Seifert fiber space is a compact surface which is closed if and only if the manifold
M is closed; in particular, the base of any fibered solid torus is a disk (see, e. g., [7]). Thus, any Seifert
fibration M with a given base ¥ and orbital invariants (g, v1),. .., (@, 1), r € N) is obtained from

s

the manifold ¥ x S! by Dehn surgery along the link v = | | 74, where v; = {s;} x S!, 5; € ¥ is a
i=1

knot with equipment 3;, ;, v;5; =1 (mod «;). Therefore, the generally accepted notation of such

a Seifert fibration is as follows:

M(Z, (al,ﬁl), ey (ar,ﬁr)).

Thus, the orientation on the fibers of the Seifert fibration is uniquely determined by the
orientation of the circle S' in the manifold ¥ x S,

Two Seifert fibrations M, M’ are called isomorphic if there exists a homeomorphism h: M — M’
which maps the fibers of one fibration into the fibers of the other while preserving the orientation of
the fibers. The homeomorphism A in this case is called the isomorphism of Seifert fibrations. It is not
difficult to see that the fibrations on solid tori with orbital invariants (a, v) and o/, v’ are isomorphic
if and only if @« = o/ and v = 6/ (mod «a) (§ = +1), and if § = +1, then the isomorphism preserves
the orientation of the solid torus, otherwise it changes.

The following statement, which gives a criterion for the isomorphism of two Seifert stratifications
by their invariants, was proposed by Herbert Seifert in [12]. An exposition of this statement, in
notations closer to those given in this section, but only for orientation-preserving isomorphisms,
can be found in the notes by Allen Hatcher [5] and the textbook by Sergey Matveev and Anatoly
Fomenko [7].
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Proposition 4. The Seifert fibration M (Z, (o1, 1), - .., (ar, Br)) and M'(X', (o, B1), - .., (L, BL))

are isomorphic if and only if r =1’ and the following conditions are satisfied for § = +1 and the
permutation o: {1,2,...,r} = {1,2,...,r}:
e X is homeomorphic to ¥';
o ;= a;(i); B = 53(/7(1‘) (mod o) forie{1,...,r};
T ) T }3,
e if the surface of X is closed, then % =0 =
=1 i=1 ¢

7

Thus, if d = +1, the isomorphism is orientation-preserving, and if 6 = —1, the isomorphism is
orientation-reversing.

Note that some manifolds admit nonisomorphic Seifert fibrations. All such manifolds are well
known (see, for example, [5]) and, as can be seen from the following statement, such manifolds
include, for example, lens spaces.

Proposition 5 ([3]). 3-manifolds admits a Seifert fibration with a base homeomorphic to a sphere
and at most two special fibers if and only if it is homeomorphic to a lens space. Thus, the list of all
Seifert fibrations on lens spaces is as follows:

o only the manifold S*> x S' admits fibrations without special fibers;
° M(S27 (Ck, ﬁ)) = L/j,a;
o M(S? (v, B1), (a2, 82)) = Ly g, where p = Brag+ a1 B2, ¢ = Bive + anés and asls — 1582 =1.

The following statement, on the contrary, allows us to infer the nonhomeomorphism of ambient
manifolds from the nonisomorphism of Seifert stratifications.

Proposition 6 ([5], Theorem 2.3). If two Seifert fibrations with three special fibers and a base
sphere are not isomorphic, then the manifolds on which they are defined are not homeomorphic.

3. DYNAMICS OF FLOWS OF CLASS Gy (M3)

In this section we prove Lemmas 1 and 2 in the Introduction.
Let us start with Lemma 1:

Proof. The basis of the proof is the following representation of the ambient manifold M3 of the
NMS flow f* with a set of periodic orbits Per: (see, e.g., [14])

M=) wg= |J W (3.1)
OEPerft OEPerft

as well as the asymptotic behavior of invariant manifolds

dA(WH) \ W = U W5,
OcPer 1 : WENWg#0
A(WE)\ W = U w§.

OcPer 1 : WyNWy#o

In particular, it follows from the above relations that any NMS flow has at least one attracting
orbit and at least one repelling orbit. Moreover, if the NMS flow has a saddle periodic orbit, then
the basin of any attracting orbit has a nonempty intersection with the unstable manifold of at least
one saddle orbit (see Proposition 2.1.3 [4]) and the same situation with the basin of the repelling
orbit.

Let now f! € Gy (M3) and S be its only saddle orbit. It follows from relation (3.1) that W¥\ S
intersects only with basins of attracting orbits. Since the set W§ \ S is connected and the basins of
attracting orbits are open, W¢ intersects exactly one such basin. Let A denote the corresponding
attracting orbit. Since the saddle orbit is unique, the attracting orbit is unique. Similar reasoning
for W¢ leads to the existence of a single repelling orbit R. O
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3.1. Canonical Neighborhoods of Periodic Orbits

The flows admit a simple description (up to topological equivalence) in the neighborhood of a
hyperbolic periodic orbit, namely, they are suspensions over linear diffeomorphisms of the plane.

Let us recall the definition of suspension. Let ¢: R? — R? be a diffeomorphism. Let us define
the diffeomorphism ®: R? — R? by the formula

(w1, 29,23) = (P21, 22),23 — 1).
Then the group {®"} = Z acts freely and discontinuously on R3, by virtue of which the orbit space
Iy = R3/® is a smooth 3-manifold, and the natural projection Vg R3 — II4 is a covering. In this
case, the flow ¢': R3 — R? given by the formula
(21, 9, m3) = (w1, 22,3 + 1)
induces a flow [¢]! = vqgftvq;l : 11, — Iy, called suspension.
We define the diffeomorphisms a1, as, ag: R? — R? by the formulas

ax1(xy,z2) = (£221, £22/2), as(r1, v2) = (221, 222), ag = az_l.

Suppose
Vo = {(x1,2,23) € R?| 427 + 4723 < 1},

Vig = {(21,22,23) € R 477327 + 4323 < 1},

Vo = {(z1, 22, 73) € R?| 477327 + 477323 < 1},
For i € {0, —1,+1,2}, let
T; = Vi, Vi = 0q,(V;), Ti = OVi, O = v,,(Ox3).

The following fact asserts canonical neighborhoods at hyperbolic periodic orbits.

Proposition 7 ([6]). For any hyperbolic periodic orbit O of a flow f': M> — M3 defined on a
closed orientable manifold M3, there exists a tubular neighborhood Vo of the orbit O and a number
io € {0,—1,+1,2} such that the flow f* is topologically equivalent, via some homeomorphism

Ho, to the flow [aio]t|Vio~

Ive

Let us call the neighborhood Vo = Ho(V;,,) the canonical neighborhood of the periodic orbit
of O.

On the torus T; we choose longitude L; (a curve homologous in V; to the orbit of @;) and
meridian M; (a curve homotopic to zero on V; and essential on T;) such that the ordered pair of
curves IL;, Ml; defines the outer side of the solid torus V;.

In the proof of topological equivalence we will use the following fact, which follows from the
proof of Theorem 4 and Lemma 4 in [9] and can also be found in [16, Theorem 1.1].

Proposition 8. The homeomorphism h: T; — T; for i € {0,2} continues up to the homeomor-
phism H: V; — V;, realizing the equivalence of the flow [a;]' with itself, if and only if the induced
: o 1k
isomorphism is of the form" h, = , where 6 € {=1,1}, k € Z.

0 ¢

1)Throughout the paper, we assume that the string (I, m) is multiplied by the matrix on the left and the first
element of the basis is the parallel of the torus.
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The boundary of the canonical neighborhood of a saddle orbit, in contrast to an attracting
or repulsing orbit, contains curves tangent to the suspension trajectories. Precisely, we denote by
Oy, 2, the flow trajectory ¢! intersecting the plane Oz129 at a point with coordinates (w1, x2,0).
It is directly verified that the trajectory O, ., intersects the surface 7% if and only if |zizs| < %
and (z1,22) # (0,0). The trajectories touch the surface at one point if |z122| = %, transversally

intersect the surface at one point if z1z9 = 0, and otherwise transversally intersect the surface at
two points

Olj,xz ﬁCT:f:l = {($1,$2,$§), ($1a$27$§t)}7 xfsi < xg

Fig. 2. Cylinder Tx; and orbits of the flow &°.

Let T' = {(z1,22,23) € Ty1 : |z122| = %}, T% = Oz123N T4 and I'* = Ozgzs NT41. The sets
I'“, I'® consist of two curves by construction, the set I' consists of four curves dividing 711 into four
connected components. The closure T" of two of these components contains I'*, the closure T of
two other contains I'* (see Fig. 2). We assume that I'* and I'® are oriented in ascending order of
coordinate x3. For ¢ € {—1,1}, let us put

T’LS = Va, (Ts)a T;J = Vaq,; (Tu)v L'y = vg, (r)v FZS = Va, (1—\5)7 F?LL = Va,; (Fu)
So the longitude Lg = Hg(I'}) and meridian Mg = Hg(Oz122 NT_1) are chosen.

3.2. Trajectory Mappings

In this section we prove Lemma 2:

Proof. Without loss of generality we will assume that the neighborhoods V4 = Ha(Vy), Vg =
Hs(V_1), Vr = Ha(V3) of orbits A, S, R are pairwise disjoint.
Note that the knots

ya=Wg¢NTsg=Hs(I")), yn =WsNTsg = Hg(I'?)
have tubular neighborhoods
K4 =Hg(T",), Kr = Hgs(T%,),
respectively, which are homeomorphic to annuli with a common boundary
I's = Hs(I'_y).

Next, we “blow up” the solid tori V4 and Vg along the trajectories so that they become “adjacent”
to each other and to Vg. For this purpose we introduce the following notations:
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o let T4 =0Va, Tr=0Vg,

Kp = U ) | nTe Kk=Te\ Kk,
t>0, wecl(KR)

KY = U )| nTa Ei=Ta\ K
t>0, wecl(K )

e define a continuous function 7,: Tp — R* such that fTR(T) (r) € Kgr for r € Ki and the set
K= | f™=r (r) (r) disjoint with torus T4, let T = K U K and define homeomorphism
recl(Kp)
Y, Tr = Tr by the formula ¢, (r) = f'r (r) (r). Also, let Vg denote the connected component
of M3\ Ty which contains R;

e define a continuous function 7,: T4 — RY such that f~7a(¥(a) € K4 for a € K% and
f*TA(a) (a) e K for a€ K3, let Ty =KUK4 ¢a: Ta — T4 and define homeomorphism
¥, (a) = f77a@(a). Also, let V4 denote the connected component of M3\ Ty which contains
A;

e define a continuous function 7p4: Kg \ 7g — RT such that fRA®)(w) € K4\ y4, define
homeomorphism t: Tr \ 7 — T4 \ 74 by the formula

), we ()
dj( ) {w, w € (TR\KR).

Thus, the constructed solid tori V4, Vg, Vg satisfy the conditions of the lemma. [l

4. TOPOLOGICAL CLASSIFICATION OF FLOWS ft e Gy (M?)

Let us prove the first statement of Theorem 1: flows f%, f"* € Gy (M3) are topologically
equivalent if and only if their sets Cpr = (I1,b1,12,b2), Cpr = (17, ], 15,5) are consistent.

Proof. Recall that for a periodic orbit O € {4, S, R} of the flow f! € G (M3) we denote by Vo its
canonical neighborhood with boundary Tp. In this case, the ambient manifold M3 of the flow f* is
represented as a union of three solid tori M3 = V4 U Vg U Vg with nonintersecting interior, torus T's
is the union of compact tubular neighborhoods of K 4, Kg, the knots v4 = WgNTs, yr = WgNTs,
K =Tr\int K4y =T4 \ int K4 and the knot 7g is the connected component of the boundary of
the annulus K.

On the torus Tp, O € {S, R, A} we have chosen the longitude Lo (a curve homologous in Vo
to the orbit of @) and the meridian My (a curve homotopic to zero on Vi and essential on Tp)
such that the ordered pair of curves Lo, Mo defines the outer side of the solid torus of V. The
knot 7o is oriented coherently with the saddle orbit S and has homotopy type (vo) = (lo, mo)
with respect to the generators Lo, Mp.

If (Ir,mg) = (0,0), then we have written the homotopy type of the meridian Mp C K with
respect to the generators L4, M4

(MRg) = (pa,qa).

If (Ig,mg) # (0,0), then any knot oo C Tp having homotopy type (oco) = (bp,co) and the
intersection index 1 with knot o has the following property:

loco — mebp = 1. (4.1)
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Let Egl (251) denote the set of all knots on T, having intersection index +1 (-1) with the knot
Yo. Then

oo € Zél — (60) = (£bo + nolo, £co + nomo), no € Z. (4.2)

It is easily verified that the intersection index of knots 0, ¢ is —ne. Then, if 65 = (6rUda) N Ts,
then

na+ngr+ng=0. (4.3)

Also recall that the generators Lg, Mg are chosen such that with respect to them the knot g
has homotopy type

(vs) = (lsyms) = (2,1). (4.4)
If (Ir,mpg) # (0,0) let the knot 0g C T's be chosen such that
(0s) = (bs,cs) = (1, 1) (4.5)

and og intersects with each connected component of the 9K at exactly one point (this can be done
since the intersection index of the knots vg and og is 1). Let the knots op C T, 04 C T4 be chosen
such that

os=(orUoa)NTs. (4.6)
By definition, Cyt = (I1, b1, 12, b2), where

i (l17 b17 127 b2) = (lRa bRu lA? bA)? if (lRa mR) # (07 0)7

o (1, b1, la, ba) = (0, 2, pa, qa), if (Ir, mg) = (0,0) and 2-ball, bounded by the knot g
remains to the left when traveling along the knot;

o (I1, by, I, ba) = (0, =2, —pa, —qa), if (Ig, mgr) = (0, 0) and 2-ball, bounded by the knot v
remains to the right when traveling along the knot.

Similar equalities with primes hold for the flow ft.

Let us prove separately the necessity and sufficiency of the conditions of Theorem 1.

Necessity. Let the flows f! and f* with periodic orbits A, R, S and A’, R', S’ be topologically
equivalent via the homeomorphism h: M? — M3. For O € {A, S, R}, without reducing generality,
let Vor = h(Vp). Let ho = h|TO: To — Tor.

Since he is a restriction of a homeomorphism of a solid torus, the action of the homeomorphism
ho in the fundamental group m1(Tp) in the generators Lo, Mo is given by a matrix:

1 k
hosx = © ko €Z, 60 € {—1,+1}. (4.7)

0 do

Thus, since the tori T'x, Tg, Tr are pairwise intersecting two-dimensional manifolds, all numbers
d4,0g,0r have the same sign, let

04 =05 =0Rr=0p =2

From the properties of the conjugating homeomorphism it follows that ho(yo) =0, O €
{S, A, R}, whence

lo=1lo (4.8)

and
(lr,mp) = (0,0) <= (lg,mp) = (0,0). (4.9)
Let us prove that the consistency condition of the sets C:, Cpr holds separately for two cases: I)

(Ir,mg) = (0,0), IT) (Ir,mg) # (0,0).
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In case I), it follows from the definition of the sets Cy:, C'pr that Iy = lp = 0, [ba| = |bh] = 2.
Since the homeomorphism hpr maps the 2-disc bounded by the knot g into the 2-disc bounded by
the knot vz with the direction of knots preserved, we have by = §b5.

It follows from Eqs. (4.7) that hpg.({0,1)) = (0,9). Thus, ha«((pa,qa)) = (0par,dqas). Since
(lI2,b2) = (£pa,+qa), we have (I5,b5) = (6(xpas),d0(£4¢y)) which implies ha.((l2, b)) = (15, b5).
Also, it follows from Eqs. (4.7) that ha.({l2,b2)) = (l2,db2 + kala), whence ly =1} and by = b},
(mod I3).

In case II), equality (4.8) is equivalent to the equality I; =1}, i = 1,2. Let 6o = ho(cp) and
denote by

(6or) = (bor, é0r)

the homotopy type of the knot 6o with respect to the generators Ly/, M. Then it follows from
the formula (4.7) that

bor = bo. (4.10)

Since the determinant of the matrix hops equals 6 and ho(vo) = vor, it follows that o € 2?9,.
Then from the formula (4.2) we obtain

bor = 8bey + norlor, éo = dcor + nomer. (4.11)
Whence, taking into account equalities (4.8) and (4.10), we find that
bo = dbor + norlo, (4.12)
S0
bo = dbor  (mod o). (4.13)

By construction, g = (6r U d4) NTg, which, given equality (4.3), entails the equality
na +nr +ng = 0. (4.14)

If [alg # 0, then by expressing nes from equality (4.12) and substituting into equality (4.14), given
that lg = 2, bg = bgr = 1, we arrive at

2lp(ba — dbar) + 2la(br — dbgrr) +1alr(1 —6) =0,
which is equivalent to
Lalr(2lg(ba — 6bar) + 2la(br — 6brr) + Lalg(l — 8)) =0,
which holds when [4lgp = 0.

Sufficiency. Let the sets Cpr = (l1, by, 12,b2), Cpe = (17,6}, 15,5) of flows ft, £ be consistent via
the parameter 6 € {—1,1}. We define the homeomorphism Qs: V_1 — V_; by the formula

Qs = va_,Qsv, ", where Qs(z1, 22, 23) = (81, 22,23): Vo1 — V1.

We check directly that the constructed homeomorphism @) realizes the equivalence of the flow
[a_1]t with itself. Let

hs = HeQsHg' : Vs — V.

We show that the homeomorphism hg|x, can be extended to a homeomorphism hg: Ty — Ta

1 k
inducing an isomorphism h 4, = A for some k4 € Z and the homeomorphism hg|x, can be
0 o
. . L . 1 kr
extended to the homeomorphism hpr : T — Tk inducing isomorphism hpr, = for some
0 ¢
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kr € Z such that ha|lx = hr|x. Then, by virtue of Proposition 8, the homeomorphisms h4, hr
can be extended to homeomorphisms ha: V4 — Var, hgp: Vg — Vi realizing the equivalence of
the flows f*|,, ~with f’t|v and f!|,, with f|, | respectively, and the desired homeomorphism
A Al R R/
h: M?® — M?3 realizing the equivalence of f!, f* flows coincides with ho on Vp for O € {S, A, R}.
Let us consider the cases separately: I) (I1,b1) = (0,42), IT) (I1,b1) # (0, £2).
In case I), it follows from the consistency condition of the sets Cyt, Cpr that by = b, lo =15
and by = 0by + kalp for some kg € Z. Since the annuli K 4, K4 are contractible on tori T, Tar,

the homeomorphism hg|x, can be extended to the homeomorphism hy: T4 — T4 inducing an
isomorphism

1 k
hA* = 4
0 o
Let us define the homeomorphism hr: Tr — T by the formula
hs(x), ze K
hi(x) = s(x) R
ha(z), zeK

Since hax((l2,b2)) = (15, bh), it follows that hr.((0,1)) = (0,4), so

1 kg
0 ¢

hR* =

for some kg € Z.
In case II), it follows from the consistency condition of the sets Cyt, Cpr that If = I;, b = 0b;
(mod 1), i = 1,2. So,
lgr =g, by =0br (mod IR); lar =14, by =ba (mod la). (4.15)
Next, we consider separately cases I1a) [4lr = 0, IIb) l4lgr # 0.

In case Ila) we assume without loss of generality that {p =0 (in case [4 = 0 the reasoning
is similar). It follows from (4.15) and (4.1) that ma = dma + kala for some k4 € Z. Then the
homeomorphism hg|x, continues to a homeomorphism h4: T4 — T4/ inducing an isomorphism

1 kg
0 ¢

has =

Let us define the homeomorphism hgr: Tr — Tr by the formula

o) = hs(z), =€ Kg
hr(@) {hA(:E), reK

Since Ir = 0, we have mp = 1, mp = £0 and hence hg, ({0, £1)) = (0, £4). Then

1 kg
0 o

hR* -

for some kgr € Z.
In case IIb), the homeomorphisms h4: T4 — T4 and hr: Tr — Tr are constructed as in case
kr
ITa). Let us show that hp. = , where mp = dmp + kglg.
0 o
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From equality (4.11) we find that the knot hg(og) has the intersection index
1-9¢
ngr = T
with the knot og/, and the knot ha(o4) has the intersection index
by — 0ba
ngy = ——"—
la
with knot o0 4/. According to equality (4.14), knot hr(or) has intersection index np = —(ngr +nar).
Then from the consistency condition of the sets, we find that
br — 0bp
ng = ——.
lr
Whence hR*(<bR7 CR)) = <bR7 5R> Since hR*(<lR7 ’I’I’LR>) = <ZR7 mR’)a we have

1 kg
0 ¢

hR* -

5. REALIZATION OF FLOWS f!e Gy (M?3)
In this section we prove the second part of Theorem 1: for any admissible invariant C there
exists a flow f! € G (M3). Recall that an invariant C is called admissible if:
e (I1,b1) = (0,%£2) or ged(l1,b1) = 1;
° ng(lg,bg) =1.

Proof. Let C' = (Iy, b1, 11, l1, b1). We construct the three-dimensional manifold M3 and the flow
ft € Gy (M?) such that Cy: = C separately for the cases: I) (I1,b1) = (0,£2), II) (I1,b1) # (0,£2).
In case I), for (I1, b1) = (0,+2), let (p, q) = (£la, +bs). Let us define a homeomorphism : Ty —

ros
Ty inducing an isomorphism defined by the integer matrix h, = with the determinant equal

p q
to —1. On the torus Ty, we choose a v essential knot with a tubular neighborhood K C (T2 \ My)
and orient it so that the 2-disk bounded by it remains on the left in the case by = +2 and — on the
right in the case by = —2. Let yv4 = ¢¥(ygr) and K4 = ¢(KR).
Let vgp: Kgp — T2,

psia: K4 — T"; be homeomorphisms such that wglwma}{}? = Ylorg, Yr(VR) =T1%, Ya(ya) =
I'*. Let ~ be the minimal equivalence relation on VoL V_; UV, for which z ~¢(x),z € (T2 \
int Ka), © ~va(x),r € Ka, ©~Yr(x),z € K. Then

M3 = (VoUV_1UVy)/ ~.

We denote by 7: Vo LUV _; LIVy — M? the natural projection. Let the flow f': M3 — M?3 be given
by the formula

T [ao]t(ﬂ"l(ac))), x € m(Vp)
fa) = [a,l]t(fl(x))), zen(V_1)
w(lagt(n L(2)), =€ W(V2>)

By construction, Cy: = C'.
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In case II), we represent the sphere S? as a union of three two-dimensional disks D4, Dg, Dgr
with centers O4, Og, Opg, glued along the boundary as depicted in Fig. 3 (glued segments
are marked with the same color). Then the manifold S? x S' is represented as a union of
three solid tori V4 = Dg x S!, Vg = Dg x S!, Vg = Dr x S!, which are tubular neighborhoods
of the knots £4 = O4 x St, £g=0g x St, fp = Or x S', glued along the boundaries T4 = OV,
Tsg = 0Vg, Tr = OVg, along the annuli Ky = TaNTs, Kp=TrNTs, K =TaNTr, K =TAsNTg,
respectively.

Fig. 3. Disks Da, Ds, Dr. The color and arrows show identification of boundary subsets.

Let C = (I1,b1,l2,b3). Then the sought manifold M3 is obtained by the Dehn surgery
along the link ¢4 U ¢g LI ¢r with equipment (—bo,l2),(—1,2),(—b1,l1). Moreover, the homeomor-
phisms of surgery ha: Vo — Va, hg: V1 = Vg, hg : V_1 = Vg, hp: Vo — Vg are chosen such
that hg(T";) = Ka, hs(T*,) = Kg. Denote by m: Vo LUV_; UV, — M3 the natural projection.
Let f': M? — M? be defined by the formula

T [ao]t(w_l(x))>, x € m(Vyp)
7@ = r(laal (7' @)), @€ m(Vor)
T [ag]t(ﬂ"l(ac)», x € m(Vs)

By construction, Cy: = C. 0

6. TOPOLOGY OF AMBIENT MANIFOLDS OF FLOWS ft ¢ Gy (M3)

In this section we prove Theorem 2.

Proof. Let us prove the theorem separately for the cases: T) l1lo = 0, IT) I1ls # 0.

In case I), we denote by M g the manifold obtained by Dehn surgery along knot S with equipment
(1,1) in the generators Lg, Mg. Let vg: (M3 \ int V)LV — Mg be the natural projection. For
simplicity, we keep the labels of all objects on vg(M?3 \ int Vis) the same as they were on M3\ int Vg
and put S = vg({0} x S1), V, 5= US(V) Then Vg = Vg U Vs is a solid torus with boundary Tg and
there exists an isotopy (;: Vg — Vg, t € [0,1] such that (o = id|v,, C|x = id|x, t € [0,1], ((VR) =
VR, (1(csNKR) = 0gN K4. For any curve ¢ C TR, let us put ¢ = (1 (¢) C TR Then the isomorphism
(14 is identical in the generators Lp, Mp; L R, Mp and

M2 =Vg Uy Va, (6.1)
where 1: OV — OV, is a homeomorphism inducing the isomorphism in generators L, Mp; La, Ma

s -
and 1, = . Hence, M2 = L, ;. From Statement 2, we find that M3 = (L, )5, where S is

p q

a knot with equipment (—1,2). Since the knot S bounds a 2-ball on at least one of the tori V4, Vg,
by virtue of Statement 3 (L, 4)g = Ly # L2 1. Whence, by virtue of Statement 1,

M? = L, #RP?. (6.2)

Let us show how the proof of 2) and 1i) follows from the deductions made.
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If (I1,b1) = (0,%£2), it follows from the definition of the set C'y« that 1.((0,1)) = (*l2, £b2). By
virtue of Statement 3,

3
21) M® = Ly, 4, # RP, |lo] # 1;

3
1) M3 = RP, |ly| = 1.

If (I1,b1) # (0,£2). It follows from the definition of the set Cy: that 1.((0,1)) = (£l2, £m4),
Vx((1,£cR)) = (&b, £ca). By direct calculation we see that 17 1((0,1)) = (£1,b), where |I| = |l2],
|b| = |b2| (mod l2). By virtue of Statement 3,

3
21) M® = Ly, 1, # RP, |lo] # 1;

5 3
1i) M° = RP, |lo| = 1.
By reasoning analogous to the above, we find that

3
2ii) M® = Ly, 4, #RP, |l1| # 1;

3
1) M3 = RP, |l| = 1.

In case II), consider first the subcase |l1| = 1. Then Vg = Vg U Vp is a filled torus with boundary
Ts and there exists an isotopy (: Vg — Vg, t € [0,1] such that (o= id|yy. G|k, =id|K,, t €
[0,1], ¢1(Vs) = Vs, Ci(ocsNKR) = orN K. For any curve ¢ C Ty, let é=((c) C Ts. Then the
isomorphism (1, is identical in the generators Lg, Mg; Lg, Mg and

M2 = Vs Uy Va, (6.3)

where : OVp — OVy4 is a homeomorphism, inducing in the generators iS,MS; LA, M, isomor-
r s

phism v, = . Hence, Mg = Lpg- From the definition of the set Cy:, it follows that
p q

V4 ((2,1)) = (£ly,ma), ¥«((1,1)) = (£by, +c4). By direct calculation, we see that v, ((0,1)) =
(£l,b), where |I| = ||l2 — 2ba], |b] = |b2| (mod l2). By virtue of Statement 3,

1ii) M° 2= Liy—op, by-

In the case |l2| = 1, by similar reasoning, we find that

3
Liil) M” = Ly, —op, b, -

In the case |l;| > 1, |la] > 1, it follows from the procedure for realizing a flow over an admissible
set (see the proof of the second part of Theorem 1 in case II)) that M? is a Seifert fiber space with
base sphere with three special fibers

M3 = M(S27 (lla b1)7 (127 b2)7 (27 1))
This completes the proof of Theorem 2. O
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7. COUNTING THE NUMBER OF TOPOLOGICAL EQUIVALENCE CLASSES

In this section we give a proof of Theorem 3. To do this, recall that for any pair p, g of integer
prime numbers, we put p = |p| and denote by g the smallest nonnegative of the numbers ¢’ satisfying
the condition ¢ = +¢’ (mod p), and by ¢ the smallest nonnegative of the numbers ¢’ satisfying the
condition ¢¢' = +1 (mod p).

Proof. By virtue of Theorem 2, flows of class G; (M?) admit three types of manifolds 1) L, 4;
2) Ly # RP3; 3) M(SQ, (I1,b1), (I2,b2), (2, 1)) Let us prove the proof separately for each of these
cases.

1) According to Statement 1, two lens spaces L, 4, L,y o are homeomorphic if and only if p = p’
and either ¢ = ¢ or ¢ = ¢’. Whence it follows that L, = Lp g and, Ly o = Lp g if and only if at
least one of the following conditions for k& € 7Z is satisfied:

P =p.q=q+kp; (7.1)
p'=-pd =q+kp; (7:2)
P =pq=-q+kp; (7.3)

p'=-pq =—q+kp; (7.4)

=04 =q+kp; (7.5)
p'=—p,q =q+kp; (7.6)
P =04 =-q+kp; (7.7)

p'=—b,q =—q+kp; (7.8)

By virtue of Theorem 2, the lens Lj g, p # 2 is an ambient manifold for flows with invariants
(1,10 +2¢,¢); (7.9)
(' +24¢',d,£1,n), (7.10)

where n € Z. Substituting condition (7.1) into (7.9), we obtain sets of the form
(£1,b1,p 4 2(q + kp),q + kp).
From the definition of consistency, it follows that two sets of
(£1,n1,p+2(G+k1p), q + k1p), (£ 1,n2,5 + 2(q + k2p), G + kop), G + kop

are consistent if and only if ki = k2, n1 = na. Thus, each representation of the lens L,, in
the form (7.1) gives rise to the family (£1,n,p+ 2(q+ k+ kp),q+ kp), n,k € Z of pairwise
nonconsistent sets corresponding, by virtue of Theorem 2, to pairwise nonequivalent flows. If
Ip| > 2, then similar families are obtained from each of the representations (7.2)—(7.4). It is directly
verified that the sets of all four families are not pairwise equivalent. Finally, if ¢ # ¢ (equivalent
to ¢ # +1 (mod p)), we obtain four more families of pairwise nonequivalent sets corresponding
to the representations (7.5)—(7.7). Adding sets of type (7.10) to the list of sets, we obtain a list
of eight more pairwise nonequivalent sets, from which the result of the theorem follows directly in
cases la) and 1b).

In cases 1c) and 1d), by directly substituting the pairs p=0,G=1; p =1, = 0 into the sets
1b), respectively, we obtain the announced lists of pairwise nonequivalent pairs.

In the case |p| = 2, the lens L, , is an ambient manifold for the flows with invariants

(0,¢,£1,n); (7.11)
(£1,7,0,d), (7.12)
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where n € Z, c € {—2,—-1,1,2}, d € {—1,1}. From the definition of consistency, it follows that the
two sets

(07611 ila”l)a (01 Cc2, ila”?)

are consistent if and only if ¢; = ¢, n1 = £ny (mod 1). A similar statement is true for sets of
the form (7.12), resulting in the announced list le).

2) By virtue of Theorem 2, the manifold L, ,# RP3, |p|| # 1 is an ambient manifold for flows
with invariants

0,¢,9",4); (7.13)

(.4, 0,d), (7.14)
where n € Z, c € {—2,-1,1,2}, d € {—1,1}. It follows from the definition of consistency that for
Ip| > 2 the two sets of

(07 c1,p,q+ k’lﬁ)? (07 c2,p,q+ kQﬁ)

are consistent if and only if ¢; = ¢, k1 = k2 (mod 1). Thus, each representation of the lens L, ,
in the form (7.1) gives rise to a family (0,¢,p,q) of pairwise nonconsistent sets corresponding, by
virtue of Theorem 2, to pairwise nonequivalent flows. Similar families are obtained from each of
the representations (7.2), (7.3), (7.4), (7.5), (7.7), (7.8) if ¢ # . Adding the sets of type (7.14) to
the list of sets, we obtain the list of sets announced in 2a) and 2b) of this theorem.

In cases 2¢) and 2d), by directly substituting into sets 2b) the pairs p=0,4=1; p=2,7=1,
respectively, we obtain the announced lists of pairwise nonequivalent pairs.

3) By virtue of Theorem 2, the manifold M(SQ, (a1, 51), (a2,B2), (2, 1)) is an ambient manifold
for flows with invariants

(o1, B1, a2, B2). (7.15)

By virtue of Statement 4, M(S27 (a17/81)7 (a2752)7 (271)) = M(S27 (O/lwgi)a (O/Qvﬁé)a (271)) if
and only if at least one of the following conditions is met:

o = o, Bl = P14 kiar, ah = ag, 85 = B2 + keao; (7.16)
o) =, B] = Pa+ krag. oy = oy, By = B1 + kpan, (7.17)

where k1, ko € Z. By virtue of Theorem 2, M(SQ, (a1, 51), (ag,P2), (2, 1)) is an ambient manifold
for flows with invariants

(ah, B1, a, 7). (7.18)
Substituting (7.16) into (7.18), we obtain sets of the form
(o1, B1 + kraq, ag, B2 + kaaz).

It follows from the definition of consistency that all such sets are equivalent to the set (v, 81, ae, B2).
A similar situation is obtained with relation (7.17). This gives us the sets announced in 3a) and 3b).

O

As the proof of Theorem 3 suggests, the correspondence between the invariants and ambient
manifolds of flows f! € Gy (M?) is:

e equivalence classes of the set G| (L 4) depending on p, ¢ are represented by flows with the
following invariants:
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a) |p| > 2, > £ +1 (mod p), n,k € Z
(£1,n,p+2(q + kp), g + kp) , (£1,n, —p + 2(q + kp), ¢ + kp) ,
(£1L,n,p +2(=q + kp), —q + kp) , (£1,n, —p + 2(—q + kp), —q + kp) ,
(£1,n,p+2(¢ + kp), ¢ + kp) , (£1,n,—p + 2(¢ + kp), ¢ + kp) ,
(£1,m,p +2(—q + kp), —q + kp) (£1,n, —=p + 2(—q + kp), —q + kp) ,
(p+2(q +kp), g+ kp,£1,n) ,(=p +2(q + kp), ¢ + kp,£1,n,),
(D +2(—q + kp), —q + kp, £1,n) , (=P + 2(=q + kp), —q + kp, £1,n) ,
(p+2(q + kp), G + kp, £1,n) , (=p + 2(¢ + kp), § + kp, £1,n) ,
(p+2(—q+ kp), —q + kp, £1,n) (=p + 2(—q + kp), = + kp, £1,n, ) ;

b) |p| > 2, @ =+1 (mod p), n,k €Z
(il,n,ﬁ+2(cj+ kﬁ),q—k kp),(il,n, —]5+2(’+kﬁ),q+kp),
(£1,n,p +2(=q + kp), —q + kp) , (£1,n, —p + 2(—q + kp), —q + kp) ,
(p+2(q+ kp), g+ kp,£1,n), (—=p + 2(q + kp), ¢ + kp, £1,n, ),
(p+2(—q+ kp), —q+ kp, £1,n) , (=p + 2(—q + kp), —q + kp, £1,n) ;

c) p=0,ne’
(£1,n,2,1),(x1,n,—2,-1),(2,1,+1,n),(—-2,—1,£1,n);

d) Ipl=1,nkeZ
(+1,n,1 4 2k, k), (1 + 2k, k, +1,7n) ;

e) |p|=2
(£1,0,0,1),(0,1,£1,0), (0,2, %1,0) ;

e equivalence classes of the set G| (Lp (# RP?) depending on p, ¢ are represented by flows with
the following invariants:

a) [p| >2, ¢* # £1 (mod p)

(0,2,p,%£q),(0,-2,p,£q) , (0, =2,p, £q) , (0, =2, —p, £q)
(0,2,p,%£q),(0,2,-p, £q) , (0, -2,p, £q) , (0, =2, —p, £q)
(0,1,p,%+q),(0,1,-p, £q) , (0, -1,p,£q) , (0, =1, —p, £q)
(0,1,p,%£4), (0,1, —p, £q) , (0, ~1,p, £q) , (0, — p,iQ),
(ﬁ,:l:(j,o,l),( p:l:QaO 1),(17 +4q,0, 1)a< p:l:q, ) 1)7
(P;£q,0,1), (=p,%4¢,0,1), (p, £4,0,—1) , (=P, £, 0, —1);

b) |p| > 2, ¢ =+1 (mod p)
(0,2,p,%£49),(0,2,-p, £q) , (0, =2,p, £q) , (0, =2, —p, £q) ,
(0,1,p,£9), (0,1, —p,£q) , (0, —1,p, £q) , (0, =1, —p, £q) ,
(p,£4,0,1),(-=p,£4¢,0,1) , (p, £4,0, -1) , (=p, £4,0, —1) ;
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c)p=0
(0,2,0,41),(0,1,0, 1) ;

d) [p| =
(0,2,2,41),(0,2,-2,41),(0,1,2,£1), (0,1, -2, +1)
(2,4£1,0,1), (=2, +1,0,1);

e cquivalence classes of the set G1_<M(82, (a1,51), (ag,B2), (2,1))) depending on

ay, B1, ag, Po are represented by flows with the following invariants:

a) aj=ay =a, i =P =

(a?ﬁ7a7/8)‘

b) a1 —as| +[B1— B2 >0
(al,ﬁl,QQ,ﬁg) ’ (a27/8270517ﬁ1) .
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